
A Comparative Study of Several Genetic-Based

Supervised Learning Systems

Albert Orriols-Puig, Jorge Casillas, and Ester Bernadó-Mansilla

1Enginyeria i Arquitectura La Salle
Universitat Ramon Llull, 08022, Barcelona, Spain.

{aorriols,esterb}@salleURL.edu

2Dept. Computer Science and Artificial Intelligence
University of Granada, 18071, Granada, Spain.

casillas@decsai.ugr.es

Abstract. This chapter gives insight in the use of Genetic-Based Ma-
chine Learning (GBML) for supervised tasks. Five GBML systems which
represent different learning methodologies and knowledge representa-
tions in the GBML paradigm are selected for the analysis: UCS, GAs-
sist, SLAVE, Fuzzy AdaBoost, and Fuzzy LogitBoost. UCS and GAs-
sist are based on a non-fuzzy representation, while SLAVE, Fuzzy Ad-
aBoost, and Fuzzy LogitBoost use a linguistic fuzzy representation. The
models evolved by these five systems are compared in terms of perfor-
mance and interpretability to the models created by six highly-used non-
evolutionary learners. Experimental observations highlight the suitability
of GBML systems for classification tasks. Moreover, the analysis points
out which systems should be used depending on whether the user prefers
to maximize the accuracy or the interpretability of the models.

1 Introduction

Genetic-Based Machine Learning (GBML) [30] gathers a wide range of learn-
ing techniques that use Evolutionary Algorithms (EAs) [30, 26, 5] for knowledge
discovery. Research on this topic was historically conducted from two perspec-
tives: Pittsburgh-style [12] and Michigan-style [30] GBML systems. Recently,
the increase in the understanding of how evolutionary algorithms work [27] has
propelled the research on GBML. As a result, the concept of GBML has been
extended with new proposals of learners that use EAs to evolve their knowl-
edge. Some of these approaches lay between the definitions of Pittsburgh-style
and Michigan-style GBML, such as the Iterative Learning Rule approach [47].
Others methodologies propose to include EAs as robust search mechanisms to
assist the building of neural networks [34, 48] or statistical classifiers [14, 36].

Among the different new approaches, evolutionary algorithms have been com-
bined with Fuzzy Rule-Based Systems, resulting in the so-called Genetic Fuzzy

Rule-Based Systems (GFRBSs) [11]. GFRBSs use EAs either to learn fuzzy rules
or to tune different components of the fuzzy system. The main advantage of the

2

fuzzy representation is that it allows for a better interpretability of the knowl-
edge evolved, providing a flexible, robust, and powerful methodology to deal
with noisy, imprecise, and incomplete data.

The aim of this work is to evaluate the performance and the interpretability
of the models evolved by five different GBML architectures in data mining tasks,
and to compare their behavior to other non-evolutionary techniques. We include
representatives of the different tendencies of GBML for supervised learning in
the comparison. We select two GBML systems that use a non-fuzzy (crisp) repre-
sentation: UCS [6], and GAssist [4]; and three GBML methods based on a fuzzy
representation: SLAVE [29], Fuzzy AdaBoost [14], and Fuzzy LogitBoost [36]. We
compare these GBML systems to six highly-used non-evolutionary techniques.
These learners come from different learning paradigms such as instance-based
learning, rule and decision-tree induction, statistical modeling, and neural net-
works. The algorithms are compared on a collection of twenty real-world datasets
extracted from the UCI repository [8] and local repositories [7].

The remaining of this paper is organized as follows. Section 2 presents the dif-
ferent approaches in GBML, and Sect. 3 briefly explains the five GBML systems
selected for the comparison. Section 4 details the experimentation comparison
and present the results. Finally, Sect. 5 summarizes and concludes the work.

2 Genetic-Based Machine Learning

Firstly designed regarding the animal behavior [30], research on GBML has
been historically conducted from two different perspectives: the Pittsburgh ap-
proach [12], and the Michigan approach [30, 31]. Recently, a third methodology
has received an increasing amount of attention: the Incremental Rule Learning

approach [47]. This three families are briefly introduced as follows.

Pittsburgh-style GBML systems follow the essence of genetic algorithms
[30, 27]. Each individual in the population consists of a rule set that covers all
the input space. The quality of an individual is estimated considering different
aspects such as its accuracy and size. The typical genetic operators, i.e., selection,
crossover, and mutation, are adapted to deal with rule sets instead of binary
strings. At the end of the learning process, Pittsburgh-style GBML systems
return the best individual found during the search, which is used to predict the
class of unknown examples. The first successful developments of Pittsburgh-style
GBML for supervised learning are GABIL [13] and GIL [32]. A new generation
Pittsburgh-style GBML derived from GABIL can be found in GAssist [4].

Michigan-style GBML methods are cognitive systems that combine a credit-
apportionment system, usually adapted from a reinforcement learning method
[44], and evolutionary algorithms to evolve a population of accurate rules. Dif-
ferently from the Pittsburgh approach, each individual is represented by a single
rule, which is evaluated incrementally by the credit-apportionment system. An
evolutionary algorithm is applied with a certain frequency on the population to
discover new promising rules. At the end of the learning process, all the rules

3

in the population contribute to decide the output of new test examples. Some
of the first developments of Michigan-style GBML are SCS [26] and NewBoole
[9]. Although these systems showed to be able to solve different classification
tasks, some drawbacks were also detected, mainly associated to the achievement
of accurate generalizations. This led to further research that culminated in the
design of XCS [50, 51], by far the most influential Michigan-style GBML system.
XCS works under a reinforcement learning scheme. The system can be used for
classification tasks by considering a reinforcement learning problem in which
maximum payoffs correspond to correct classifications and minimum payoffs to
incorrect classifications. On the other hand, classification tasks can be solved in
a more straightforward way using UCS [6], a system which inherits the main
components from XCS but specializes them to supervised learning.

Iterative Rule Learning (IRL), firstly proposed in the context of the SIA

system [47], uses a separate-and-conquer methodology to create an ordered list
of individuals. Each individual is represented by a single rule, as in the Michi-
gan approach. The system iteratively invokes an evolutionary algorithm, which
evaluates the individuals according to their accuracy and generality. The best
individual returned by the EA is added to the end of the ordered list of rules, and
all the matching examples are removed from the training dataset. This process
is repeated until the training dataset is empty. In test mode, the predicted class
of a new example is given by the first rule in the ordered list that matches the
example. One of the best representatives of IRL system is HIDER [1].

The big advances in the understanding of evolutionary algorithms and the
proposal of the first competent evolutionary algorithms [27, 37, 38] has led to the
hybridization of EAs and different machine learning techniques, resulting in a
wide variety of new GBML systems. In the field of statistical learning, EAs have
been applied to discover new promising rules in different boosting algorithms
such as AdaBoost [21] and LogitBoost [22]. In the realm of neural networks,
EAs have been used to evolve either the weights [34] or the structure of neural
networks [48]. The flexibility provided by EAs has also been used to construct
Fuzzy Rule-Based Systems (FRBSs), resulting in the so-called GFRBS [11]. Re-
search on this field has mainly focused on the use of evolutionary algorithms to
tune different components of an FRBS, such as the fuzzy sets or the fuzzy rules.

For the study performed in this paper, we selected five rule-based GBML sys-
tems that belong to different approaches and use either fuzzy or crisp knowledge
representations. Specifically, we chose two of the most significant crisp GBML
methods for supervised learning, which use intervalar representations: 1) UCS [6],
a Michigan-style GBML system, and 2) GAssist [4], a Pittsburgh-style GBML
technique. We also selected three GBML algorithms that use a fuzzy-rule repre-
sentation: 3) SLAVE [10, 28], an IRL algorithm, and the boosting techniques 4)
Fuzzy AdaBoost [14] and 5) Fuzzy LogiBoost [36], two implementations of the
AdaBoost and LogitBoost algorithms that use EAs to evolve fuzzy rules. Next
section introduces these five learners.

4

3 Description the GBML Systems used in the

Comparison

This section briefly describes the five GBML systems included in the comparison:
UCS [6], GAssist [4], SLAVE [29], Fuzzy AdaBoost [14], and Fuzzy LogitBoost
[36]. The reader is referred to the original papers for further information about
these methods.

3.1 UCS

UCS [6] is a Learning Classifier System which inherits the main components
of XCS [50, 51], but specializes them to be applied only to supervised learning
tasks. In the following, we describe the main components of the system.

Knowledge Representation. UCS evolves a population of classifiers which
jointly cover the input space. Each classifier consists of a production rule of the
form condition → class and a set of parameters. The condition specifies the set
of inputs where the classifier can be applied. For continuous inputs, the condition
is codified as a set of intervals [li, ui]

n, which globally represents a hyperrectangle
in the feature space. The class ck of the rule specifies the class predicted when
the condition is satisfied:

if x1 ∈ [l1, u1] ∧ . . . ∧ xn ∈ [ln, un] then ck (1)

Each rule has the following parameters: a) accuracy acc; b) fitness F ; c)
correct set size cs; d) numerosity num; and e) experience exp. Accuracy and
fitness are measures of the quality of the classifier. The correct set size is the
estimated average size of all the correct sets where the classifier participates.
Numerosity is the number of copies of the classifier, and experience is the number
of times that a classifier has belonged to a match set.

Learning Interaction. During training, UCS incrementally evolves a set of
classifiers. At each learning iteration, the system receives an input example e

and its class c. Then, the system creates the match set [M], which contains all
the classifiers in the population [P] whose condition matches e. From that, the
correct set [C] is formed, which consists of all the classifiers in [M] that predict
class c. If [C] is empty, the covering operator is activated, creating a new classifier
with a generalized condition matching e, and predicting class c.

Next, the parameters of all the classifiers in [M] are updated. The experience
of each classifier is increased, and its accuracy is updated depending on whether
the current prediction was correct. The correct set size cs is calculated if the
classifier belongs to [C]. Then, as proposed in [35], the fitness is shared among
all the classifiers that participate in [C].

After one learning cycle, a genetic algorithm (GA) is triggered if the average
time since the last application of the GA on the classifiers in [C] is greater
than θGA. In this case, the GA selects two parents from [C] with a probability
that depends on the classifier’s fitness. The two parents are copied, creating

5

two new children, which are recombined and mutated with probabilities χ and
µ respectively. Recombination crosses the parent’s conditions by two points.
Mutation modifies the lower and upper bound of an interval according to a
uniform distribution. Finally, each offspring is introduced into the population,
removing another classifier if the population is full.

3.2 GAssist

GAssist [4] is one of the most competitive Pittsburgh-style GBML systems.
GAssist was initially derived from GABIL [13], introducing several modifica-
tions that able the system to overcome scalability problems detected in the first
Pittsburgh-style GBML approaches [20]. The rule representation and the learn-
ing interaction are described as follows.

Knowledge Representation. GAssist evolves a set of individuals, each of
them represented by a variable-length set of rules:

Ind = (R1 ∨ R2 ∨ . . . Rn) (2)

where each rule consists of a condition and a predicted class ck:

IF (x1 = V 1
1 ∨ . . . ∨ x1 = V 1

m) ∧ . . . ∧ (xn = V 1
n ∧ . . . ∧ xn = V k

n) THEN ck

(3)

That is, each input variable xi is represented by a disjunction of feasible val-
ues for this variable. For nominal variables, (V i

1 ...V i
j) represent the j possible

values that the variable can take. For continuous variables, GAssist applies a
discretization technique to transform the input space into intervals of values.
Several discretization techniques have been proposed for GAssist. In our exper-
iments, we used a uniform discretization.

Learning Interaction. The core of the system is a near-standard genetic algo-
rithm similar to the one applied in GABIL [13]. Thus, at each learning iteration,
the system selects a set of individuals, and applies crossover and mutation gen-
erating a new set of offspring. These offspring are evaluated by means of a fitness
function based on the minimum description length principle (MDL) [41]. GAssist
uses the same crossover operator defined by GABIL, i.e., a semantically correct

crossover operator [13]. This is a multiple-point crossover operator that forces
that the selected points cut both parents in the same position of the variable.
The mutation operator randomly adds or removes one value of a given variable.

GAssist introduces a new deletion operator that permits to remove rules
from individuals, and so, to control their size. This operator is activated after a
predefined number of iterations, and it removes the rules of an individual that
do not match any input example. To avoid an excessive loss of diversity, which
may have a negative effect in subsequent recombinations, this operator is not
applied if the individual does not have a minimum number of rules.

6

Finally, GAssist controls the runtime of the system by means of a windowing
scheme addressed as Incremental Learning with Alternating Strata (ILAS). This
mechanism splits the training dataset into several non-overlapping subsets of
examples, and selects a different subset at each GA iteration. Thus, ILAS permits
to reduce the training time of a single iteration of the GA since a lower number
of examples need to be match with the new individuals in the evaluation process.
Moreover, in [4], it was empirically shown that this technique allows for a better
generalization.

3.3 SLAVE

SLAVE [10, 28] is an inductive learning algorithm based on a fuzzy-rule repre-
sentation. The system follows an iterative rule learning scheme. In the following,
the knowledge representation and the learning interaction are explained.

Knowledge Representation. SLAVE creates a set of individuals whose con-
dition is represented in conjunctive normal form:

IF x1 is fAk
1 ∧ . . . ∧ xn is fAk

n THEN c
k

where each input variable xi is represented by a disjunction of linguistic terms

Ãk
i = {Ai1 or ... or Aini

}, and the consequent ck is the class predicted by the rule.
In our experiments, all the variables share the same semantics, which are defined
by means of triangular-shaped fuzzy membership functions. The matching degree

µAk(e) of an example e with a classifier k is computed as follows. For each
variable xi, we compute the membership degree for each of its linguistic terms,
and aggregate them by means of a T-conorm (disjunction). Then, the matching
degree of the rule is determined by the T-norm (conjunction) of the matching
degree of all the input variables.

In the inference process, the class of a new example is determined by the
rule that maximizes the matching degree with this example. In case of having
more than one rule with maximum matching degree, the class of the rule with
maximum fitness is selected as the output.

Learning Interaction. SLAVE iteratively evolves a set of individuals following
an iterative rule learning scheme [47]. This process is based on the iteration of
the following steps: 1) learn one rule from the dataset, 2) penalize the data
covered by the rule.

Figure 1 illustrates the learning scheme of SLAVE. Given a data set E and
a specific class B, the system searches for the rule that describes this class more
accurately. This process is performed by a steady-state genetic algorithm. The
fitness function of the GA is determined by the train error and the generality
of the rule. Then, this rule is aggregated to the fuzzy-rule set. If more rules are
required to represent all the examples of class B, the examples covered by the
current rules of class B are removed, and the GA is run again providing a new

7

R (A)
B

Learning process

Label B

Structure
Basic Training

Set

Selection of a Class

Module for selecting
the best rule that

describes this class

Restore all examples
of the Training Set

the Fuzzy Rule Set
Append the rule to

A => B

Elimination
Module of Example

Are
more rules

for this concept
needed?YES NO

A => Bnot learned

Fuzzy Rule Set

All the class have been learned

E

Fig. 1. Illustrative scheme of the learning process of SLAVE.

rule for class B. The same procedure is repeated until no more rules are required
for class B. Then, the same algorithm is followed to learn rules for the other
classes of the domain, resulting in a rule set that covers all the instances in the
training data set.

3.4 Fuzzy AdaBoost

Fuzzy AdaBoost [14] is an evolutionary boosting algorithm that applies the
AdaBoost algorithm [21] to learn a fuzzy-rule-based classifier. In the following,
we introduce the knowledge representation and the learning procedure of Fuzzy
AdaBoost.

Knowledge Representation. Fuzzy AdaBoost creates a set of weak classifiers,
which take the following form:

IF x1 is A
k
1 ∧ ... ∧ xn is A

k
n THEN c

k
1 WITH s

k
1 , ... , c

k
p WITH s

k
p

Each input variable xi is represented by a linguistic term Ak
i . All variables share

the same semantics, represented by triangular-shaped membership functions.
The method permits the absence of a variable by not assigning any linguistic
term to this variable. In the consequent, the rule maintains one weight sk

j for
each class j that indicates the soundness with witch the weak classifier predicts
the class j.

8

The fuzzy inference is as follows. Given an input instance e, it is assigned to
the class c that maximizes the following expression:

arg maxk=1,·,p

N∨

j=1

Aj(e) ∧ s
j
k (4)

where N is the number of classifiers in the population. ∨ and ∧ are the t-norm
and the t-conorm operators respectively.

Learning Interaction. Fuzzy AdaBoost iteratively invokes an algorithm that
provides a low quality classifier, addressed as weak hypothesis in the boosting
literature. Each example i in the training dataset has associated a weight wi,
and the search for promising classifiers focuses on the examples that have higher
weights. Each time that a new weak hypothesis is added to the compound clas-
sifier, the examples in the training dataset are re-weighted. In that way, in next
iterations, the search will be focused toward examples that are more difficult to
learn. Moreover, at the end of each iteration, a voting strength α is assigned
to each weak hypothesis, which depends on the confidence in the classification
accuracy of that rule. In the following, these three steps briefly explained.

1. Creation of weak classifiers. Fuzzy AdaBoost uses a integer-coded genetic
algorithm [26] to evolve a population of the aforementioned weak classifiers.
The best weak classifier generated by the GA is added to the compound
classifier. The fitness of each classifier is computed as a combination of two
objectives. The first objective considers the generality of the rule, i.e., the
proportion of examples that matches with high degree. The second objective
computes the accuracy of the rule. Thus, the GA pressures toward highly
general and accurate rules.

2. Computation of the strength of a classifier. Fuzzy AdaBoost updates the
strength αj of a classifier according to the error of the rule generated in the
previous generation j. That is, low errors result in high values of αj ; that
means that the rule will have a strong influence in the inference of the class.

3. Update of the weights of the training examples. After one iteration of the
learning algorithm (and so, the generation of a new rule), the weights wi

of the examples in the training dataset are updated. Specifically, the weight
of a correctly classified instance wi is decreased according to the matching
degree of the new rule with this instance and the strength αj of the rule. On
the other hand, the weight of incorrectly classified instances is increased, so
that new rules will focus on the classification of these instances.

Class Inference of Test Examples. Given a new unknown example e, Fuzzy
AdaBoost predicts the output of e as follows. Each rule j votes for each class it

9

predicts according to equation 4, resulting in a vote gc(e) for a class c. Then,
the votes for each class are added:

votek =
∑

j:classj=k

αj · gj(e) (5)

The most voted class is returned as output.

3.5 Fuzzy LogitBoost

The LogitBoost algorithm [22] is a boosting method similar to AdaBoost that
uses a greedy version of generalized backfitting [22] to build an additive model.
It has been experimentally shown that LogitBoost outperforms AdaBoost, es-
pecially in multi-class problems. Due to these improvements, LogitBoost was
extended to induce fuzzy classifiers, resulting in the so-called Fuzzy LogitBoost
algorithm [36]. This learning technique inherits the main components from Fuzzy
AdaBoost—such as the knowledge representation, the learning scheme, and the
voting scheme—, but introduces the corrections proposed by LogitBoost. In the
following, we detail the learning interaction, and refer the reader to section 3.4
for details on the knowledge representation and class inference of new input
examples.

Learning Interaction. Fuzzy LogitBoost follows a learning scheme similar
to AdaBoost. The goal of the algorithm is to minimize the likelihood of the
compound classifier. For details on the statistical formulation of the problem, the
reader is referred to [22, 42, 36]. Instead, this section presents the final algorithm
for Fuzzy LogitBoost.

Algorithm 3.1 shows the pseudocode for Fuzzy LogitBoost. The algorithm
generates N weak classifiers, where N is a configuration parameter. The process
to generate a new classifier is the following (see lines 4-22 of the algorithm). For
each training example, the probability of the output class i, given the rule j

and the example k is computed according to the function fijk, which represents
the additive model. pijk is used to update the weigths wijk. Next, a genetic
algorithm is applied to find a rule that fits accurately the training data, which
is subject to the fitness function given in line 10. Then, the function values fijk

are updated for each class i according to the best classifier found by the GA.
Finally, the new rule is added to the compound classifier.

4 Experimentation

This section analyzes the competence of the five GBML systems in classification
tasks. In pattern classification, we aim at obtaining accurate models which pro-
vide comprehensible explanations for human experts. For this purpose, we select
a set of real-world problems and compare the performance and rule set inter-
pretability of the GBML systems to a set of highly-competent and widely-used
machine learning techniques. In the following, we first present the experimenta-
tion methodology and then compare the five GBML to the other learners.

10

Algorithm 3.1: Outline of the Fuzzy Logitboost Algorithm.

Algorithm: Logitboost1

fi0k = 02

for j=1,· · · ,N do3

for k=1,· · · ,p do4

for i=1,· · · ,n do5

pijk = e
fij−1k

1+e
fij−1k6

wijk = pijk(1 − pijk)7

end8

Find rule antecedent Aj that minimizes fitness(Aj), where:9

fitness(Aj) =
Pn

i wijk

“
sj · Aj(xi) −

yik−pijk

wijk

”2

10

and11

sj =
P

i(yik−pijk)Aj(xi)
P

i wijk[Aj(xi)]212

for i=1,· · · ,n do13

fijk = fij−1k + sj · Aj(xi)14

end15

Aggregate the new rule to the compound classifier16

end17

end18

4.1 Methodology

Herein, we present (i) the real-world problems chosen for the experimentation,
(ii) the learning techniques included in the comparison, (iii) the metrics used
to evaluate the learners performance and models interpretability, and (iv) the
statistical analysis applied to evaluate the results.

Experimentation Problems. We selected a collection of twenty real-world
problems with different characteristics (see Table 1) which may pose particular
challenges to the different learning techniques. All these problems were obtained
from the UCI repository [8], except for tao, which was chosen from a local repos-
itory [7].

Machine Learning techniques included in the comparison. We com-
pared the five GBML methods to C4.5, IBk, Naive Bayes, Part, SMO, and
Zero-R. C4.5 [40] is a decision tree that enhances ID3 by introducing methods
to deal with continuous variables and missing values. IBk is an implementation
of the nearest neighbor algorithm; it classifies a test instance with the major-
ity class of its k nearest neighbors. Naive Bayes [33] is a probabilistic classifier
that estimates the parameters of a Bayesian model. Part [19] is a learning ar-
chitecture that combines the extraction of rules from partial decision trees and
the separate-and-conquer rule learning technique to create a rule-based classifier

11

Table 1. Properties of the datasets. The columns describe: the identifier of the dataset
(Id.), the name of the dataset (dataset), the number of instances (#Inst), the total
number of features (#Fea), the number of real features (#Re), the number of integer
features (#In), the number of nominal features (#No), the number of classes (#Cl),
and the proportion of instances with missing values (%MisInst),

Id. dataset #Inst #Fea #Re #In #No #Cl %MisInst

ann Annealing 898 38 6 0 32 5 0
aut Automobile 205 25 15 0 10 6 22.4
bal Balance 625 4 4 0 0 3 0
bpa Bupa 345 6 6 0 0 2 0
cmc Contraceptive method choice 1473 9 2 0 7 3 0
col Horse colic 368 22 7 0 15 2 98.1
gls Glass 214 9 9 0 0 6 0
h-c Heart-c 303 13 6 0 7 2 2.3
h-s Heart-s 270 13 13 0 0 2 0
irs Iris 150 4 4 0 0 3 0
pim Pima 768 8 8 0 0 2 0
son Sonar 208 60 60 0 0 2 0
tao Tao 1888 2 2 0 0 2 0
thy Thyroid 215 5 5 0 0 3 0
veh Vehicle 846 18 18 0 0 4 0
wbcd Wisc. breast-cancer 699 9 0 9 0 2 2.3
wdbc Wisc. diagnose breast-cancer 569 30 30 0 0 2 0
wne Wine 178 13 13 0 0 3 0
wpbc Wisc. prognostic breast-cancer 198 33 33 0 0 2 2
zoo Zoo 101 17 0 1 16 7 0

without performing global optimization. SMO [39] is a widely-used implemen-
tation of support vector machines [46]. Zero-R is a very simple classifier that
always predicts the majority class in the training dataset; this learner is in-
cluded in the comparison to show a performance baseline. Table 2 summarizes
the main characteristics of the learners.

All the non-fuzzy methods except for GAssist and UCS were run using
WEKA [53]. For GAssist, we used the open source code provided in [3]. For
UCS, we ran our own code. All the open source methods were configured with
the parameters values recommended by default. Moreover, the models for SMO
and IBk were selected as follows. For SMO, we ran the system with polynomial
kernels of order 1, 3, and 10. Then, we ranked the results obtained with the
three polynomial kernels and chose the model that maximized the average rank:
SMO with polynomial kernels of order 3. Additionally, we also supply the results
of SMO with Gaussian kernels. The same process was followed for IBk. We ran
the experiments with k={1,3,5}, and chose the configuration that maximized
the average rank: k=5. UCS was configured with the following parameters (see

12

Table 2. Summary of the main characteristics of the learners included in the compar-
ison: C4.5, IBk, Naive Bayes (NB), Part, SMO, Zero-R (0-R), UCS, GAssist (GAt),
SLAVE (SLV), and the two boosting algorithms (Bst), Fuzzy AdaBoost and Fuzzy
LogitBoost .

Paradigm Knowledge Rep. and Inference Method

C4.5
Decision-tree induction Decision-tree.

Inference: class given by the corresponding
leaf.

IBk
Instance-based learning No general model.

Inference: class determined by the majority
class of the k nearest neighboors.

NB
Statistical Modeling Probabilities of a Bayesian model.

Inference: the output is the class with maxi-
mum probability.

Part
Rule induction based on
decision-tree induction and a
separate-and-conquer approach

Ordered list of rules. Continuous variables rep-
resented by float-coded attributes.
Inference: the output is the class of the first
matching rule in the ordered list.

SMO
Neural networks (support vec-
tor machines)

Weights of the support vector machines.
Inference: The class is determined by the de-
cision function represented by the SVM.

0-R
Majority-class predictor No knowledge representation.

Inference: Majority class in the training
dataset.

UCS
Michigan-style GBML Population of intervalar rules with a fitness or

strength value.
Inference: The output is the most voted class
(weighted by fitness) among the matching
rules.

GAt
Pittsburgh-style GBML Ordered list of intervalar rules (intervals ob-

tained via discretization). Use of a default rule.
Inference: the output is the class of the first
matching rule in the ordered list.

SLV
Iterative Rule GBML Population of linguistic fuzzy rules.

Inference: class determined by the rule with
maximum matching.

Bst
Statistical Learning Theory
and GBML

Population of linguistic fuzzy rules with a
strength per class.
Inference: The output is the most voted class
(weighted by the strength) among the match-
ing classifiers.

[6, 35] for notation details): numIter=100,000, N=6400, acc0 = 0.99, ν=10,
{θGA, θdel, θsub}=50, χ=0.8, µ=0.04, δ=0.1, P#=0.6.

Fuzzy AdaBoost and Fuzzy LogitBoost were run using KEEL [2]. Default pa-
rameters were used, except for the maximum population size which was set to 50.
The results of SLAVE were supplied by the authors. They used exactly the same

13

datasets and validation methodology as the other methods in the comparison.
SLAVE used a steady-state GA with population size N=100, and probabilities
of crossover χ=1.0 and mutation µ=0.4. The GA run was stopped after 500 iter-
ations without improvement. In all these fuzzy methods, we used five linguistic
terms per variable, defined by triangular-shaped membership functions.

Comparison metrics. The data models built by each learner were evaluated
in terms of performance and interpretability. We measured the performance of
the method with the test accuracy, i.e., the proportion of correct classifications
on previously unseen examples. To obtain reliable estimates of the test accuracy,
we used a ten-fold cross validation procedure [45].

The comparison of the interpretability of the models is more complicated
since the methods included in the analysis use different knowledge representa-
tions. For this reason, we first identify two groups of learners. The first group
consists of those methods that build models that can be hardly interpreted (e.g.,
models represented with weights) and learners that do not create any data model,
i.e., lazy learners. The second group comprises those learners that build inter-
pretable models (e.g. trees and rule sets). We excluded the first group of learners
from the comparison, and focused on the models created by the second group
of learners. As this group consists of learners with different types of knowledge
representation, we provide some information of the sizes of the models to quali-
tatively compare them. For tree-based learners, we supply the number of leaves.
For the rule-based systems, we provide the total number of rules evolved. Finally,
we qualitatively compare these results considering the type of rule sets created
and their size.

Statistical analysis. We statistically analyzed the performance of each learner
following the procedure pointed in [15]. As suggested by the author, we avoided
to use any parametric statistical test since they require that the data satisfy
several strong conditions. Instead, all the statistical analysis is based on non-
parametric tests.

We first applied a multi-comparison statistical procedure to test whether all
the learning algorithms performed the same on average. Specifically, we used the
Friedman test [23, 24], the non-parametric equivalent to the analysis of variance
test ANOVA [18]. If the Friedman test rejected that all the learners performed
the same on average, post-hoc test were applied. Our first concern was to com-
pare the performance of each GBML system with respect to the performance of
the other learners. For this purpose, we applied the non-parametric Bonferroni-
Dunn test [17]. The Bonferroni-Dunn test defines that one learner performs
significantly differently to a control learner if the corresponding average rank
differs by, at least, a critical difference CD computed as

CD = qα

√
nl(nl + 1)

6nds

(6)

14

where nl is the number of learners, nds is the number of datasets, and qα is
the critical value based on the Studentized range statistic [43]. We illustrate the
results of this test by showing the group of learners that perform equivalently
to the control learner.

The Bonferroni-Dunn test is said to be conservative, specially as the number
of learners increases or the number of datasets decreases, so that it may not de-
tect significant differences although they actually exist. Nonetheless, we use this
test in the first step of our analysis since it permits to detect groups of learners
that truly perform differently from other learners. We later apply pairwise com-
parisons to detect further significant differences between learners that belong to
the same group. We used the non-parametric Wilcoxon signed-ranks test [49]
for pairwise comparisons, and provide the approximative p-values computed as
indicated in [43].

4.2 Results

Comparison of the performance. Table 3 details the test accuracies obtained
by each learner on the twenty real-world problems. The average performance of
Fuzzy AdaBoost for the problems ann and aut is not provided since the system
was not able to extract competent fuzzy rules from the two domains, leaving
nearly all the feature space uncovered. We confirmed with the authors that this
behavior could be due to the high number of nominal attributes that these two
problems have. The last two rows of the table supply the average rank and
the position of each algorithm in the ranking. The ranks were calculated as
follows. For each dataset, we ranked the learning algorithms according to their
performance; the learner with the highest accuracy held the first position, whilst
the learner with the lowest accuracy held the last position of the ranking. If a
group of learners had the same performance, we assigned the average rank of
the group to each of the learners in the group.

The experimental results show the competitiveness of UCS and GAssist. UCS
presents the second best average rank; it is only outperformed by SMO with
polynomial kernels of order 3. GAssist holds the sixth position of the ranking,
degrading the average rank obtained by SMO with polynomial kernels, UCS,
IB5, Part, and C4.5. Finally, SLAVE, Fuzzy LogitBoost, and Fuzzy AdaBoost
are in the position 8, 9, and 11 of the ranking.

We analyzed if these differences in the average ranks of the learners were
statistically significant by means of the multi-comparison test of Friedman. The
statistical test rejected the hypothesis that all the methods performed the same
on average with p = 7.84 · 10−12. To evaluate the differences among them, we
applied different statistical tests. First, we compared the five GBML systems
to all the other learners by means of a Bonferroni-Dunn test at a significance
level of 0.1. Figure 2 graphically represents the groups of learners that perform
equivalently to (1) UCS, (2) GAssist (GAt), (3) SLAVE (SLV), (4) Fuzzy Log-
itBoost (LBst), and (5) Fuzzy AdaBoost (ABst). We did not include Zero-R in
the analysis, since its results are only provided as a baseline.

15

Table 3. Comparison of the test performance of all the machine learning techniques:
C4.5, IB5, Naive Bayes (NB), Part, SMO with polynomial kernels of order 3 (SMO3),
SMO with Gaussian kernels (SMOr), Zero-R (0-R), GAssist (GAt), SLAVE (SLV),
Fuzzy AdaBoost (ABst), and Fuzzy LogitBoost (LBst). The two last rows show the
average rank of each learning algorithm (Rnk), and its position in the rank (Pos).

C4.5 IB5 NB Part SMO3 SMOr 0-R UCS GAt SLV ABst LBst

ann 98.9 97.3 86.3 98.6 99.3 91.9 76.2 99.0 97.9 96.8 - 76.2
aut 80.9 64.0 58.8 74.4 78.1 45.5 32.6 77.4 68.6 70.7 - 32.6
bal 77.4 88.2 90.6 82.9 91.2 88.3 45.5 77.3 79.6 72.0 85.5 88.3
bpa 62.3 58.8 56.0 67.6 60.0 58.0 58.0 67.5 62.2 60.0 65.3 64.5
cmc 52.6 46.5 50.6 50.0 48.7 42.7 42.7 50.3 53.6 46.1 49.5 51.1
col 85.3 81.5 78.2 84.5 75.6 82.4 63.1 96.3 94.3 82.9 63.1 63.1
gls 66.1 64.7 48.9 66.6 66.1 35.7 35.7 70.0 65.1 57.6 62.5 68.2
h-c 78.5 83.2 82.8 74.2 78.6 82.5 54.5 79.7 80.1 77.9 60.4 62.1
h-s 79.3 80.7 83.3 80.0 78.9 82.6 55.6 74.6 77.7 76.3 57.6 59.3
irs 94.0 96.0 96.0 94.0 92.7 93.3 33.3 95.4 96.2 93.3 95.5 95.3
pim 74.2 73.3 75.8 74.9 76.7 65.1 65.1 74.6 73.8 72.3 70.7 71.8
son 71.1 84.0 69.7 74.4 85.5 69.3 53.4 76.5 75.8 73.1 46.6 53.4
tao 95.9 97.1 81.0 94.3 84.2 83.6 49.9 87.0 91.6 82.1 91.5 91.7
thy 94.9 94.8 97.2 94.3 88.9 69.8 69.8 95.1 92.5 91.3 97.4 97.1
veh 71.1 68.9 46.3 73.4 83.3 41.7 25.4 71.4 67.0 66.5 30.8 37.2
wbcd 95.0 97.1 96.1 95.7 96.4 96.1 65.5 96.3 95.6 96.4 94.9 94.1
wdbc 94.4 96.8 93.1 94.5 97.6 92.9 63.1 96.0 94.2 91.7 37.3 62.7
wne 93.9 96.7 97.2 93.3 97.7 39.9 39.9 96.1 93.2 94.3 85.6 85.0
wpbc 71.6 78.9 69.5 70.0 81.3 73.0 73.0 69.4 72.3 75.7 23.6 76.4
zoo 92.8 90.5 94.5 93.8 97.8 76.0 41.9 96.8 94.0 96.5 41.9 41.9

Rnk 5.25 4.68 5.88 5.13 4.23 8.18 11.08 4.4 5.45 7.13 8.95 7.68

Pos 5 3 7 4 1 10 12 2 6 8 11 9

The statistical analysis confirms the robustness of UCS and GAssist. UCS
belongs to the group of the best learners, significantly outperforming SLAVE,
Fuzzy LogitBoost, SMO with Gaussian kernels, and Fuzzy AdaBoost. The test
also indicates that GAssist does not significantly degrade the performance of
SMO with polynomial kernels, the best ranked method. Moreover, GAssist sig-
nificantly outperforms SMO with Gaussian kernels and Fuzzy AdaBoost.

As the Bonferroni-Dunn test is said to be quite conservative [15], so that
it may not detect all the significant differences, we complemented the statis-
tical study by comparing each pair of learners. Table 4 shows the approxi-
mate p-values of the pairwise comparison according to a Wilcoxon signed-ranks
test. The symbols ⊕ and ⊖ indicate that the method in the row significantly
improves/degrades the performance obtained with the method in the column.
Similarly, the symbols + and − are used to denote a non-significant improve-
ment/degradation. Furthermore, Fig. 3 graphically illustrates the significant dif-
ferences between methods. That is, each method is depicted in one vertex of the
graph, and significant improvements (at α=0.05) of one learner with respect to
another are plotted with a directed edge labeled with the corresponding p-value.

16

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

↓

C4.5

5.25

↓
IB5

4.67

↓
NB

5.88

↓
Part

5.13

↓
SMO

3

4.22

↓
SMO

r

8.18

↓
SLV

4.4

↓

UCS

5.45

↓
GAt

7.13

↓
LBst

8.95

↓
Abst

7.67

CD = 2.70

(1)

(3)

(1)

(2)

(4)

(5)

Fig. 2. Comparisons of one learner against the others with the Bonferroni-Dunn test at
a significance level of 0.1. All the learners are compared to five different control groups:
(1) UCS, (2) GAssist (GAt), (3) SLAVE (SLV), (4) Fuzzy LogitBoost (LBst), and (5)
Fuzzy AdaBoost (ABst). The learners connected are those that perform equivalently
to the control learner.

To facilitate the visualization, the last three methods in the ranking are not
included in the graph, i.e., SMO with Gaussian kernels, Fuzzy AdaBoost, and
Zero-R. These three methods are outperformed by all the other methods.

The pairwise comparison confirms the conclusions derived from the Bonferroni-
Dunn test, and finds further significant differences between pairs of learners.
UCS, GAssist, SMO with polynomial kernels, Part, IB5, and C4.5 are the best
methods in the comparison; any of them degrades the results obtained by other
methods, and all them significantly outperfom SLAVE, Fuzzy LogitBoost, SMO
with Gaussian kernels, Fuzzy AdaBoost, and Zero-R. Thus, these results sup-
port that the two non-fuzzy GBML systems are, at least, as good as some of the
most-used machine learning techniques.

The non-fuzzy GBML techniques present poorer results. Among them, the
best method is SLAVE, with an average rank of 7.13. SLAVE is significantly out-
performed by the six best methods of the analysis. Fuzzy LogitBoost is signifi-
cantly outperformed by the same six methods and Naive Bayes. Fuzzy AdaBoost
significantly degrades the results of all the other learners, except for SMO with

17

Table 4. Pairwise comparisons of the learners by means of a Wilcoxon signed-ranks
test. The above diagonal contains the approximate p-values. The below diagonal shows
a symbol ⊕ / ⊖ if the method in the row significantly outperforms/degrades the
method in the column at a significance level of .05 and +/=/− if there is no significant
difference and performs better/equal/worse.

C4.5 IB5 NB Part SMOp3 SMOrbf 0-R UCS GAst SLV ABst LBst

C4.5 .709 .263 .904 .421 .007 .000 .204 .941 .012 .001 .011
IB5 = .053 .794 .412 .000 .000 .852 .455 .019 .002 .005
NB − − .247 .067 .033 .000 .135 .108 .601 .003 .021
Part + − + .296 .006 .000 .232 .433 .014 .001 .006
SMO3 + + + + .003 .000 .654 .296 .004 .003 .007
SMOr ⊖ ⊖ ⊖ ⊖ ⊖ .001 .006 .003 .027 .167 .576
0-R ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ .000 .000 .000 .249 .001

UCS + = + + − ⊕ ⊕ .218 .002 .002 .007
GAt − − + − − ⊕ ⊕ − .017 .002 .017
SLV ⊖ ⊖ + ⊖ ⊖ ⊕ ⊕ ⊖ ⊖ .023 .057
ABst ⊖ ⊖ ⊖ ⊖ ⊖ − + ⊖ ⊖ ⊖ .004
LBst ⊖ ⊖ ⊖ ⊖ ⊖ − ⊕ ⊖ ⊖ − ⊕

Gaussian kernels, Fuzzy LogitBoost, and Zero-R. These results are not surpris-
ing. The linguistic fuzzy representation implies the discretization of the feature
space, and the discretization points are fixed by the number of linguistic terms.
In our experiments, we used only five linguistic terms per variable. Thus, in this
scenario, a single rule may not have the required granularity to define accurately
the class boundaries of a given complex domain, limiting the maximum accuracy
that can be achieved. However, the linguistic fuzzy representation allows for a
better readability of the rules, as discussed in the next section.

Comparison of the interpretability. Figure 4 plots partial examples of the
models created by each learner (except for IBk, which does not create any model)
for the two-dimensional tao problem. The picture highlights the differences be-
tween knowledge representations, which make difficult the comparison among
them. In our study, we provide some characteristics of the models to qualita-
tively evaluate their readability.

We first distinguish between two types of learners a) lazy learners or learners
with knowledge representation based on weights, and b) rule-based or tree-based
learners. As before, we exclude Zero-R from the comparison. The first group
consists of IBk, SMO, and Naive Bayes. IBk is a lazy classifier that does not
create any global model from the training dataset; to predict the output of
a new input example, IBk searches for the k nearest neighbors and returns
the majority class among them. SMO represents the knowledge by

(
n
2

)
support

vector machines (where n is the number of classes of the classification problem),
each one consisting of a set of real-valued weights (see Fig. 4(a)). Naive Bayes
builds models formed by a set of parameters which estimate the independent

18

C4.5 IB5 NaiveBayesPart

Slave LogitBoost

UCS SMOPoly3 GAssist

p=0.012

p=0.011

p=0.019 p=0.005 p=0.021
p=0.014

p=0.006

p=0.004 p=0.007

p=0.002

p=0.007

p=0.017

p=0.017

Fig. 3. Illustration of the significant differences of performance among methods. An

edge L1
pvalue→ L2 indicates that the learner L1 outperforms the learner L2 with the

corresponding pvalue. To facilitate the visualization, SMO with Gaussian kernels, Fuzzy
AdaBoost, and Zero-R are not included in the graph.

probabilities of a Bayesian model. Consequently, the knowledge created by these
three methods is really hard to interpret. Without a further comparison among
them, we state that these three methods provide the poorest models in terms of
interpretability.

The second group comprises the tree-based learner C4.5, and the rule-based
systems Part, UCS, GAssist, SLAVE, Fuzzy AdaBoost, and Fuzzy LogitBoost.
C4.5 evolves a tree in which each node represents a decision over one variable
(see Fig. 4(b)). Part creates a set of rules which are defined by a conjunction of
conditions over their variables, and are interpreted as an ordered activation list
(see Fig. 4(c)). The knowledge representation of GAssist, UCS, SLAVE, Fuzzy
AdaBoost, and Fuzzy LogitBoost is detailed in Sect 3, and examples are shown
in Figs. 4(e), 4(d) 4(f), and 4(g). It is worth noting the differences between
these systems. The rule sets evolved by GAssist are interpreted as an ordered
activation list, similarly to Part; besides, GAssist uses a default rule. On the other
hand, in UCS, SLAVE, Fuzzy AdaBoost, and Fuzzy LogitBoost, rules are not
ordered; they represent independent classifiers. Consequently, all the matching
rules participate in the classification of new input instances (except for SLAVE,
the inference process of which only considers the rule with maximum matching
degree).

19

 - 1.000 * <0.229 0.875 > * X]
 - 0.298 * <0.708 0.437 > * X]

...

(a) SMO

x <= -2.75
| x <= -3.25: red (308.0)
| x > -3.25
| | y <= 1.75: red (55.0)
| | y > 1.75
| | | x <= -3: red (11.0/1.0)
| | | x > -3
| | | | y <= 4.25: blue (6.0)
| | | | y > 4.25: red (4.0)

...

(b) C4.5

if x ≤ -3.25 then red (308)
else if x > 2.75 then blue (347/1)
else if y ≤ 0 and x ≥ -1 then red (192/1)

...

(c) Part

if x > 2.72 and (y is [0.92,4.61] or y > 5.07) then blue
else if (x is [-0.54, 0.54] or x > 2.72) and y is [-4.28, -2.57] then blue

...
otherwise red

(d) GAssist

if x is [-6.00, -0.81] and y is [-6.00, 0.40] then red with acc= 1.00
if x is [2.84, 6.00] and y is [-5.26, 4.91] then blue with acc =1.00
if x is [-6.00, -0.87] and y is [-6.00, 0.74] then red with acc =1.00

...

(e) UCS

if x is {XS or S or M} and y is {XS or S or M} then red

if x is XS then red

if x is {VL or M or H or VH} then blue

...

(f) SLAVE

if x is L and y is L then blue with -5.42 and red with 0.0

if x is M and y is XS then blue with 2.21 and red with 0.0

if x is M and y is XL then blue with -2.25 and red with 0.0

...

(g) Boosting

Fig. 4. Examples of part of the models evolved by (a) SMO, (b) C4.5, (c) Part, (d)
GAssist, (e) UCS, (f) SLAVE, and (e) Fuzzy AdaBoost and Fuzzy LogitBoost for the
two-dimensional tao problem.

20

Table 5. Average sizes of the models built by C4.5, Part, UCS, GAssist, SLAVE, Fuzzy
AdaBoost (ABst), and Fuzzy LogitBoost (LBst).

C4.5 Part UCS GAssist SLAVE ABst LBst

ann 38 15 4410 5 8 50 50
aut 44 21 4064 7 17 50 50
bal 45 37 1712 8 22 50 50
bpa 25 9 2603 6 6 50 50
cmc 162 168 3175 15 49 50 50
col 5 9 3446 5 7 50 50
gls 24 15 3013 5 15 50 50
h-c 29 21 2893 6 6 50 50
h-s 17 18 3499 5 7 50 50
irs 5 4 634 3 3 50 50
pim 19 7 3225 7 13 50 50
son 14 8 5999 5 9 50 50
tao 36 17 609 6 3 50 50
thy 8 4 1283 4 5 50 50
veh 69 32 4601 7 26 50 50
wbcd 12 10 1799 3 5 50 50
wdbc 11 7 5079 4 5 50 50
wne 5 5 3413 3 4 50 50
wpbc 12 7 5078 4 10 50 50
zoo 11 8 1244 6 7 50 50

To evaluate the size of the models, we used the following metrics. For the
tree-based system, we counted the number of decision leaves. For the rule-based
systems, we used the number of rules. Note that these measures are not directly
comparable due to the differences in the knowledge representations. However,
we use these metrics to make a qualitative analysis.

Table 5 shows the model sizes of the rule-based and tree-based systems. These
results show that:

• GAssist evolves rule sets that are significantly smaller than the rule sets
created by all the other methods according to a Wilcoxon signed-rank test
(at α = 0.05). Thus, in terms of population size, GAssist is the best method
in the comparison.

• SLAVE builds the second smallest rule sets, being only improved by GAssist.
However, note that the types of rules evolved by SLAVE are much easier to
read for two main reasons:

1. GAssist uses an intervalar representation, where the intervals are ob-
tained by applying a discretization technique over the input space. On
the other hand, SLAVE uses a linguistic fuzzy representation. That is,
variables are represented by linguistic terms; so, the rules can be easily
read by human experts.

21

2. GAssist uses an ordered activation list; that is, a rule is used to infer the
class of a new input instance only if all the previous rules in the list do
not match with this instance. Thus, the context of the rules (i.e., the con-
ditions of the previous rules in the activation list) has to be considered
to read the whole rule set. Oppositely, in SLAVE, rules are indepen-
dent classifiers. So, human experts can read each rule individually. This
supposes one of the main advantages of the knowledge representation of
SLAVE with respect to the representation of GAssist.

3. GAssist uses a default rule, which reduces considerably the rule set size,
while SLAVE does not. The rule set sizes of SLAVE could be further
reduced by including a default rule.

For these three reasons, we consider that the models created by SLAVE are
more interpretable than those evolved by GAssist, even though the rule sets
evolved by SLAVE are slightly bigger than those created by GAssist.

• Fuzzy AdaBoost and Fuzzy LogitBoost create rule sets of moderate size. In
fact, the size of these rule sets is determined by a configuration parameter.
In our experiments, we set the maximum population size to 50 since it maxi-
mized the average performance rank of the two learners. Smaller population
sizes could be set for few specific problems without loss of accuracy. How-
ever, in our analysis, we are interested in robust methods that do not highly
depend on the configuration parameters. For this reason, we used the same
parameters in all runs, and did not search for the best configuration of each
system for each particular dataset.

This identifies a disadvantage of the two statistical methods with respect
to the other learners. While UCS, GAssist, and SLAVE evolve a different
number of rules depending on the intrinsic complexities of the domain, Fuzzy
AdaBoost and Fuzzy LogitBoost need to know beforehand the number of
rules to be created. Several techniques could be applied to overcome this
drawback. For example, new approaches could be designed to remove the
new rules that do not improve the accuracy of the compound classifier.

• UCS evolves the largest rule sets among all the methods in the comparison.
Thus, even using a rule-based representation, the high number of rules may
hinder the interpretability of the models evolved. Some reduction techniques
have been proposed to remove non-useful rules from the final populations in
XCS [52, 25, 16]. In further work, these reduction techniques will be adapted
to UCS to try to improve the interpretability of the models.

The whole study performed through this section highlights that genetic-based

machine learning is one of the best alternatives for facing challenging data min-
ing and classification problems. The analysis also provides guidelines on which
system should be used depending on the requirements of the problem. If the ac-
curacy of the classification model is crucial, UCS appears to be the best approach
to face a new problem. If the results also need to be readable, our recommenda-
tion is to use GAssist, since it offers highly interpretable models that are nearly

22

as accurate as those created by UCS. If the readability prevails over the perfor-
mance, SLAVE turns out to be the best choice as it creates a very low number
of easily-readable independent linguistic fuzzy rules.

5 Summary and Conclusions

In this paper, we studied the suitability of genetic-based machine learning for
pattern classification. For this purpose, we selected five GBML approaches that
represent different styles and knowledge representations; two non-fuzzy GBML
systems: UCS, GAssist; and three fuzzy GBML methods: SLAVE, Fuzzy Ad-
aBoost, and Fuzzy LogitBoost. These learners were compared to six highly-used
machine learning techniques on a set of twenty real-world problems. The results
were analyzed by means of different statistical procedures.

The analysis showed the competence of GBML for classification tasks, and
also pointed some recommendations on which GBML system use depending on
the requirements of the user. UCS showed to be one of the best learners in
terms of performance. It presented the second best performance, only being
outperformed by the support vector machine SMO with polynomial kernels of
order 3. GAssist resulted in a slightly inferior average performance, but evolved
much more readable rule sets. SLAVE evolved the most interpretable models, but
their performance was significantly inferior than the performance of the models
created by UCS and GAssist.

Another observation drawn from the comparison is that there is not any
method that outperforms another learner in all the problems. This indicates
that the intrinsic complexities of the classification domains may have different
effects depending on the learner. Our proposal as further work is to include
measures to evaluate the complexity of the domains in the comparison, with
the aim of pointing the complexities that affect the performance of the different
GBML systems.

Acknowledgements

The authors thank the support of Enginyeria i Arquitectura La Salle, Ramon
Llull University, as well as the support of Ministerio de Educación y Ciencia

under projects TIN2005-08386-C05-01 and TIN2005-08386-C05-04, and Gener-

alitat de Catalunya under Grants 2005FI-00252 and 2005SGR-00302.

References

1. J. Aguilar-Ruiz, J. Riquelme, and M. Toro. Evolutionary Learning of Hierarchical
Decision Rules. IEEE Transactions on Systems, Man, and Cybernetics—Part B,
33(2):324–331, 2003.

2. J. Alcalá-Fdez, M.J. del Jesus, J. M. Garrell, F. Herrera, C. Herbás, and L. Sánchez.
Proyecto KEEL: Desarrollo de una herramienta para el análisis e implementación

23

de algoritmos de extracción de conocimiento evolutivos. In J.S. Aguilar R. Giráldez,
J.C. Riquelme, editor, Tendencias de la Mineŕıa de Datos en España, Red Española
de Mineŕıa de Datos y Aprendizage, pages 413–424, 2004.

3. J. Bacardit. GAssist Source Code: http://www.asap.cs.nott.ac.uk/
jqb/PSP/GAssist-Java.tar.gz.

4. J. Bacardit. Pittsburgh Genetic-Based Machine Learning in the Data Mining Era:
Representations, generalization and run-Time. PhD thesis, Ramon Llull University,
Barcelona, Catalonia, Spain, 2004.

5. T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, USA,
1996.

6. E. Bernadó-Mansilla and J.M. Garrell. Accuracy-Based Learning Classifier Sys-
tems: Models, Analysis and Applications to Classification Tasks. Evolutionary
Computation, 11(3):209–238, 2003.

7. E. Bernadó-Mansilla, X. Llorà, and J.M. Garrell. XCS and GALE: a Comparative
Study of Two Learning Classifier Systems on Data Mining. In Advances in Learning
Classifier Systems, volume 2321 of LNAI, pages 115–132. Springer, 2002.

8. C.L Blake and C.J. Merz. UCI Repository of ML Databases:
http://www.ics.uc.edu/ mlearn/MLRepository.html. University of California,
1998.

9. P. Bonelli and A. Parodi. An efficient classifier system and its experimental com-
parison with two representative learning methods on three medical domains. In
4th International Conference on Genetic Algorithms, pages 288–295, 1991.

10. L. Castillo, A. González, and R. Pérez. Including a simplicity criterion in the
selection of the best rule in a genetic fuzzy learning algorithm. Fuzzy Sets and
Systems, 120:309–321, 2001.

11. O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena. Genetic Fuzzy Systems:
Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, volume 19 of Ad-
vances in Fuzzy Systems—Aplications and Theory. World Scientific, 2001.

12. K. A. de Jong and W. Spears. Learning Concept Classification Rules Using Genetic
Algorithms. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 651–656. Sidney, Australia, 1991.

13. K.A. de Jong, W.M. Spears, and D.F. Gordon. Using Genetic Algorithms for
Concept Learning. Genetic Algorithms for Machine Learning, A Special Issue of
Machine Learning, 13, 2-3, pages 161–188, 1993.

14. M.J. del Jesús, F. Hoffmann, L.J. Navascués, and L. Sánchez. Induction of fuzzy-
rule-based classifiers with evolutionary boosting algorithms. IEEE Transactions
on Fuzzy Systems, 12(3):296–308, 2004.

15. J. Dems̃ar. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal
of Machine Learning Research, 7:1–30, 2006.

16. P. W. Dixon, D. W. Corne, and M. J. Oates. A Ruleset Reduction Algorithm for the
XCSI Learning Classifier System, volume 2661/2003 of Lecture Notes in Computer
Science, pages 20–29. Springer, 2004.

17. O.J. Dunn. Multiple Comparisons among Means. Journal of the American Statis-
tical Association, 56:52–64, 1961.

18. R.A. Fisher. Statistical Methods and Scientific Inference. Hafner Publishing Co,
New York, 2nd edition, 1959.

19. E. Frank and I. H. Witten. Generating accurate rule sets without global optimiza-
tion. In Proceedings of the 15th International Conference on Machine Learning,
pages 144–151. Morgan Kaufmann, San Francisco, CA, 1998.

24

20. A. Freitas. Data mining and knowledge discovery with evolutionary algorithms.
Springer-Verlag, 2002.

21. Y. Freund and R.E. Schapire. Experiments with a New Boosting Algorithm. In
International Conference on Machine Learning, pages 148–156, 1996.

22. J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical
view of boosting. Ann Stat, 32(2):337–374, 2000.

23. M. Friedman. The Use of Ranks to Avoid the Assumption of Normality Implicit in
the Analysis of Variance. Journal of the American Statistical Association, 32:675–
701, 1937.

24. M. Friedman. A Comparison of Alternative Tests of Significance for the Problem
of m Rankings. Annals of Mathematical Statistics, 11:86–92, 1940.

25. C. Fu and L. Davis. A modified classifier system compaction algorithm. In
GECCO’02: Proceedings of the Genetic and Evolutionary Computation Conference,
pages 920–925, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

26. D.E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learning.
Addison Wesley, 1 edition, 1989.

27. D.E. Goldberg. The Design of Innovation: Lessons from and for Competent Genetic
Algorithms. Kluwer Academic Publishers, 1 edition, 2002.

28. A. Gónzalez and R. Pérez. Completeness and consistency conditions for learning
fuzzy rules. Fuzzy Sets and Systems, 96:37–51, 1998.

29. A. Gónzalez and R. Pérez. SLAVE: A Genetic Learning System Based on an
Iterative Approach. IEEE Transactions on Fuzzy Systems, 7(2):176–191, 1999.

30. J.H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, 1975.

31. J.H Holland. Escaping Brittleness: The possibilities of General-Purpose Learning
Algorithms Applied to Parallel Rule-Based Systems. In Michalski Mitchell and
Carbonell, editors, Machine Learning, an artificial intelligence approach, volume II
of Lecture Notes in Artificial Intelligence, pages 593–623. Morgan Kaufmann, 1986.

32. C.Z. Janikow. A Knowledge-Intensive Genetic Algorithm for Supervised Learning.
Machine Learning, 13(2-3):189–228, 1993.

33. G.H. John and P. Langley. Estimating Continuous Distributions in Bayesian Clas-
sifiers. In 11th Conference on Uncertainty in Artificial Intelligence, pages 338–345.
Morgan Kaufmann, 1995.

34. Z. Liu, A. Liu, C. Wang, and Z. Niu. Evolving neural network using real coded
genetic algorithm (GA) for multispectral image classification. Future Generation
Computer Systems, 20(7):1119–1129, 2004.

35. A. Orriols-Puig and E. Bernadó-Mansilla. A Further Look at UCS Classifier Sys-
tem. In GECCO’06: Genetic and Evolutionary Computation Conference workshop
program, Seattle, W.A., USA, 08–12 July 2006. ACM Press.

36. J. Otero and L. Sánchez. Induction of descriptive fuzzy classifiers with the logit-
boost algorithm. Soft Computing, 10(9):825–835, 2006.

37. M. Pelikan. Hierarchical Bayesian Optimization Algorithm: Toward a New Gener-
ation of Evolutionary Algorithms, volume 170 of Studies in Computational Intelli-
gence. Springer, 2005.

38. M. Pelikan, K. Sastry, and E. Cantú-Paz. Scalable Optimization via Probabilistic
Modeling, volume 33 of Studies in Computational Intelligence. Springer, 2006.

39. J. Platt. Fast Training of Support Vector Machines using Sequential Minimal Opt.
In Advances in Kernel Methods - Support Vector Lear. MIT Press, 1998.

40. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers, San Mateo, California, 1995.

25

41. J. Rissanen. Modeling by shortest data description. Automatica, vol. 14:465–471,
1978.

42. R.E. Schapire and Y. Singer. Improved Boosting Algorithms using Confidence-
Rated Predictions. Machine Learning, 37(3):297–336, 1999.

43. D.J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman & Hall, 2000.

44. R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. Cam-
bridge, MA: MIT Press, 1998.

45. T.G. Dietterich. Approximate Statistical Tests for Comparing Supervised Classi-
fication Learning Algorithms. Neural Comp., 10(7):1895–1924, 1998.

46. V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, 1995.
47. G. Venturini. SIA: A Supervised Inductive Algorithm with Genetic Search for

Learning Attributes Based Concepts. In P. B. Brazdil, editor, Machine Learning:
ECML-93 - Proc. of the European Conference on Machine Learning, pages 280–
296. Springer-Verlag, Berlin, Heidelberg, 1993.

48. D. Wierstra, F.J. Gómez, and J. Schmidhuber. Modeling systems with internal
state using evolino. In GECCO’05: Proceedings of the 2005 conference on Genetic
and evolutionary computation, pages 1795–1802. ACM Press, 2005.

49. F. Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1:80–83,
1945.

50. S.W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computation,
3(2):149–175, 1995.

51. S.W. Wilson. Generalization in the XCS Classifier System. In 3rd Annual Conf.
on Genetic Programming, pages 665–674. Morgan Kaufmann, 1998.

52. S.W. Wilson. Compact Rulesets from XCSI. In Advances in Learning Classifier
Systems, 4th International Workshop, volume 2321 of Lecture Notes in Artificial
Intelligence, pages 197–210. Springer, 2002.

53. I.H Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.

