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Abstract

An interesting feature of encoding the individuals of a Pittsburgh Learning Classifier System
as a decision list is the emergent generation of a default rule. However, performance of the
system is strongly tied to the learning system choosing the correct class for this default rule.
In this paper we experimentally study the use of an explicit (static) default rule. We first test
simple policies for setting the class of the default rule, such as the majority /minority class of
the problem. Next, we introduce some techniques to automatically determine the most suitable
class.

1 Introduction

One of the ways to solve classification problems using a genetic algorithm (Holland, 1975; Goldberg,
1989) is called Pittsburgh approach (DeJong, Spears, & Gordon, 1993) or Pittsburgh learning
classifier system. The individuals of this system encode a full and variable-length rule set and the
solution proposed is the best individual of the population. There are several encoding options for
an individual. One of them is coding an individual as a decision list (Rivest, 1987) (an ordered
set of rules). If we apply this strategy in the evolutionary framework, often the system evolves a
default rule. That is, a rule that matches any input instance.

Default rules can be very useful in combination with a decision list because the size of the rule
set can be reduced significantly. For instance, for the 11-bit multiplexer we can obtain a rule set
of 9 rules instead of 16 unordered ones, as represented in Figure 1. With a smaller rule set, the
search space is reduced resulting in two potential advantages: (1) the learner has to learn less rules
(representing only the other classes of the dataset) and (2) with a smaller rule set the system may
be less sensitive to over-learning potentially increasing the test accuracy of the system.

The objective of this paper is to investigate the potential benefits of using an explicit and static
default rule in a Pitt LCS. Along those lines, the question arises which is the best default class
to use. Simple strategies may use the majority class. However, our tests show that dependent
on the problem, the minority class may be better as the default class choice. Thus, we develop a
mechanism that is able to automatically determine the best class for the default rule.

The rest of the paper is structured as follows: Section 2 shows some related work. Next,
Section 3 describes briefly the main characteristics of the system used in this paper. Later, Section
4 illustrates the motivation of using a default rule, followed by the description and some illustrative



Figure 1: Unordered and ordered rule sets for the MX-11 domain
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results of the simple policies for the default rule in Section 5. After the simple policies, we describe
the more sophisticated ones in Section 6. Section 7 shows the experimentation results of applying
the previous described policies. Finally, Section 8 presents conclusions and further work.

2 Related work

We can find previous uses of a static default rule in the LCS field, although not in an explicit way:
Classic Pitt-approach systems such as GABIL (DeJong, Spears, & Gordon, 1993) or GIL (Janikow,
1991), which perform concept learning (learning a concept from sets of positive/negative examples),
implicitly have a default rule that covers the negative examples. The rules generated do not have
an associated class because all of them cover the positive examples. However, there is no explicit
policy to decide which set is the positive or negative in order to learn better. The decision comes
from the definition of the dataset.

Looking at the machine learning field in general we find other examples of default rules. The
C4.5rules system (Quinlan, 1993) uses an explicit default rule and like our system it generates a
rule set acting as a decision list. To select the class for this default rule it uses the class that has
less instances covered by the other rules in the rule set. This kind of approach seems feasible when
we have induced the rule set beforehand, instead of using it during learning as our system does.

The IREP system (Cohen, 1995) induces, in order, the rules modelling each class of the problem
(using the instances of the classes still to be learned as negative examples). The criteria of this
global order is ascendent frequency of examples. Therefore, the default rule of this system uses a
majority class policy.



3 Framework

GAssist (Bacardit & Garrell, 2004) is a Pittsburgh genetic-based machine learning system descen-
dant of GABIL (DeJong, Spears, & Gordon, 1993). The system applies a near-standard GA that
evolves individuals that represent complete problem solutions. An individual consists of an ordered,
variable-length rule set. Directly from GABIL we have taken the semantically correct crossover
operator for variable-length individuals.

Dealing with variable-length individuals raises some important issues. One of the most impor-
tant one is the control of the size of the evolving individuals (Soule & Foster, 1998). This control
is achieved in GAssist using two different operators:

1. Rule deletion. This operator deletes the rules of the individuals that do not match any training
example. This rule deletion is done after the fitness computation and has two constraints:

(a) The process is only activated after a predefined number of iterations (to prevent an
irreversible diversity loss)

(b) The number of rules of an individual never goes below a threshold. This introduces
some “neutral code” that can protect the individuals from the disruptive effect of the
crossover operator.

2. Minimum description length-based fitness function. The minimum description length (MDL)
principle (Rissanen, 1978) is a metric applied in general to a theory (being a rule set in this
paper) which balances the complexity and accuracy of the rule set. In previous work we
developed a fitness function based on this principle. A detailed explanation of the fitness
function can be found in (Bacardit & Garrell, 2003).

The knowledge representation used for real-valued attributes is called adaptive discretization
intervals rule representation (ADI) (Bacardit & Garrell, 2004). This representation uses the se-
mantics of the GABIL rules (conjunctive normal form predicates), but applies non-static intervals
formed by joining several neighbor discretization intervals. These intervals can evolve through the
learning process splitting or merging among them potentially using several discretizers at the same
time.

Parameters of the system are set as follows: Crossover probability 0.6; tournament selection;
tournament size 3; population size 300; Individual-wise mutation probability 0.6; initial number of
rules per individual 20; probability of “1” in initialization 0.75; Rule Deletion Operator: Iteration
of activation: 5; minimum number of rules: number of active rules +3; MDL-based fitness function:
Iteration of activation 25; initial theory length ratio: 0.075; weight relax factor: 0.9. ADI knowledge
representation: split and merge probability: 0.05; reinitialize probability at initial iteration: 0.02;
reinitialize probability at final iteration: 0; merge restriction probability: 0.5; maximum number
of intervals: 5; set of uniform discretizers used: 4, 5, 6, 7, 8, 10, 15, 20 and 25 bins; iterations:
maximum of 1500.

4 Motivation

In order to illustrate the benefits of the default rule, we show the results of running the system with
no static default rule for the Glass problem from the UCI repository (Blake, Keogh, & Merz, 1998)
in table 1. We used stratified ten-fold cross validation for the tests and a hundred random seeds
for each fold (a total of 1000 runs, unlike the 15 seeds and 150 runs used in the rest of the paper).
We can see the benefits of using a default rule and, more importantly, the benefits of choosing the
correct class for the default rule.



Table 1: How the generation of a default rule can affect the performance in the Glass dataset

Runs generating a default rule 736
Runs not generating a default rule 264
Accuracy of runs with a default rule 66.98+8.00
Accuracy of runs without a default rule 66.27+7.79

Average accuracy of runs using class 1 as default rule | 65.45+7.39
Average accuracy of runs using class 2 as default rule | 67.76+£7.81
Average accuracy of runs using class 3 as default rule | 59.4045.51
Average accuracy of runs using class 4 as default rule | 66.18+8.70
Average accuracy of runs using class 5 as default rule | 67.661+8.58
Average accuracy of runs using class 6 as default rule | 64.48+7.36

Figure 2: Match process using an static default rule

Match process
Input : RuleSet, Instance
Index =0
Found = false
While Index < RuleSet.size and not Found Do
If RuleSet.rule[Index] matches Instance Then
Class = RuleSet.rule[Index].class
Found = true
Else
Index + +
EndIf
EndWhile
If not Found Then
Class = DefaultClass
EndIf
Output : Predict class Class for instance Instance

5 Simple default rule

The implementation of the static default rule is very simple. Basically it affects only the match-
ing function classifying any input instance by the default class if no rule matches the instance,
represented by the pseudocode in Figure 2. Also, the default class is removed from the classes
that can be used by the rest of the rules in the population, effectively reducing the search space.
A general representation of the extended rule set is shown in Figure 3. For the specific case of
two-class domains, the classification problem is transformed into a concept learning problem and
the resulting knowledge representation is quite close to the ones used in other evolutionary concept
learning systems like GABIL (DeJong, Spears, & Gordon, 1993) or GIL (Janikow, 1991).

In order to answer the question of which class is suitable for being the default class we start
by experimenting with two simple policies: using the most and least frequent class in the domain.
In Section 7 we can see the results of these tests for several datasets. Here we show the results (in
Table 2 only of two datasets (Glass and Ionosphere), also from UCI. For Glass the best policy is
using the majority class. For lonosphere the best policy is using the minority class. The point of
showing these two datasets is that it is very difficult to decide a priori which is the most suitable
default rule class for each dataset. Also, we can see in the values of the train accuracy and the
number of rules a hint about how we can combine the two policies to maximize the performance
of the system. In Section 7 we show a simple combination consisting on choosing at the test stage



Figure 3: Representation of the extended rule set with the static default rule
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Table 2: Results using majority and minority policy for the default class in the Glass and Ionosphere
datasets.

Domain Def. Class. Policy Train accuracy  Test accuracy = Number of rules
Glass disabled 79.91+2.6 66.4+8.1 6.4+0.7
Glass majority 83.2+1.6 69.5£6.9 6.6+0.8
Glass minority 80.6+2.3 66.748.0 7.240.8

Tonosphere disabled 96.0+0.6 92.843.6 2.34+0.6
Tonosphere majority 95.7£0.8 90.0+£4.4 5.7+1.2
Tonosphere minority 96.840.7 93.04+3.7 2.64+0.8

the policy which has more train accuracy.

6 Automatically determined default class

Given that the majority class does not always suite best as default class, the next step is to modify
the system to automatically determine the best default class. Our initial approach simply assigns a
randomly chosen class as default class to each individual in the initial population. Additionally, we
introduce a restricted mating mechanism to avoid crossover operations between individuals having
different default classes. Having removed the default class from the rest of the rules, crossing
individuals with different default classes may create lethals with high probability.

If we run the system in this setting, we mainly observed that all individuals with one default
class take over the population. The question is if the system is able to choose the correct default
class during the initial iterations. To answer this question, we show the evolution of the train
accuracy and the number of rules for the lonosphere tests described in the previous section in
Figure 4. We can see that the train accuracy of the default class policy using the suitable class
for this problem (that is, the minority class) is lower at the initial iterations than the accuracy of
the majority class policy. Also, we can see the reason for the better test accuracy of the minority
policy in the smaller (better generalized) rule set created by this policy.



Figure 4: Evolution of the train accuracy and the number of rules for the Ionosphere problem using
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Figure 5: Pseudocode for the niched tournament selection

Niched tournament selection
Input : Population, PopSize, NumNiches, TournamentSize
NextPopulation = ()
For i = 1 to NumNiches

ProportionNiche[i] = PopSize/NumNiches
EndFor

For i =1 to PopSize
Niche = select randomly a niche based on ProportionNiche

ProportionNiche[Niche] — —
Select TournamentSize individuals from Population belonging to Niche
winner=Apply tournament
Add winner to NextPopulation
EndFor
Output : NextPopulation

Thus, it appears necessary to introduce an additional niching mechanism that preserves indi-
viduals for all default classes until the system has learned enough to decide correctly on the best
default class. This niching is achieved using a modified tournament selection mechanism, inspired
in (Oei, Goldberg, & Chang, 1991) in which the individuals participating in each tournament are
forced to belong to the same class. Also, each default class has an equal number of tournaments.
This niched tournament selection is represented by the pseudocode in Figure 5. The tournament
with niche preservation is used until the best individuals of each default class have similar train
accuracy. After this point, the niching is disabled and the system chooses freely among the individ-
uals. Specifically, we compute for each niche the average accuracy for the last 15 iterations of its
best individual. When the standard deviation of all these averages is smaller than 0.5%, we disable

the niched tournament selection.



Table 3: Features of the datasets used in the experimentation of this paper
Dataset Properties
Domain #lInst. #Attr. #Real #Nom. #Cla. Dev.cla. Maj.cla. Min.cla. MV Inst. MV Attr. MYV values

bpa 345 6 6 — 2 7.97% 57.97% 42.03% — — —
bps 1027 24 24 — 2 1.60% 51.61% 48.39% — — —
bre 699 9 9 — 2 15.52% 65.52% 34.48% 2.29% 1 0.23%
gls 214 9 9 — 6 12.69% 35.51% 4.21% — — —
h-s 270 13 13 — 2 5.56% 55.56% 44.44% — — —
ion 351 34 34 — 2 14.10% 64.10% 35.90% — — —
Irn 648 6 4 2 5 14.90% 45.83% 1.54% — — —
mmg 216 21 21 — 2 6.01% 56.02% 43.98% — — —
pim 768 8 8 — 2 15.10% 65.10% 34.90% — — —
son 208 60 60 — 2 3.37% 53.37% 46.63% — — —
thy 215 5 5 — 3 25.78% 69.77% 13.95% — — —
veh 846 18 18 — 4 0.89% 25.77% 23.52% — — —
wdbc 569 30 30 — 2 12.74% 62.74% 37.26% — — —
wine 178 13 13 — 3 5.28% 39.89% 26.97% — — —
wpbc 198 33 33 — 2 26.26% 76.26% 23.74% 2.02% 1 0.06%
7 Results

In this section, we show the results of comparing the three policies tested for the default class
(magority,minority,auto to the original system (orig) with emergent default rule. The tests include
15 datasets used previously in (Bacardit & Garrell, 2004), summarized in table 3. Each dataset
has been partitioned into training/test sets using stratified ten-fold cross-validation (Kohavi, 1995),
and having for each fold the tests repeated 15 times.

Table 4 shows the results for these tests, also including a fifth configuration (major-
ity+minority): Choosing for the test stage the majority /minority policy that obtained more training
accuracy. This configuration usually chooses the correct policy (although there are some exceptions,
like bpa). These results were analyzed using pair-wise statistical t-tests with Bonferroni correction
to determine how many times each method could significantly outperform or be outperformed by
the other methods. These statistical tests are summarized in table ?7.

A second set of tests was performed increasing the population size from 300 to 400. The
rationale of these tests was to provide a fair learning environment for the auto setup. Because of
the additional niching process, only a higher population size can guarantee that each niche has
enough individuals to learn correctly. The results are shown in table 6. The summary of the
statistical t-tests applied to these results is in table 7.

We can extract some interesting observations from these results. First of all, all methods using
a default rule obtain better accuracy on average than the original system. Moreover, we can see
how the policy using an automatically determination of default class benefits from the population
size increase, which matches the usual requirements of niching methods.

Also, we can see how the only method that degrades performance when we increase the pop-
ulation size is the majority class policy, suggesting that the system is sensitive to over-learning in
domains where the majority class policy is not suitable. The larger average number of rules and the
better training accuracy of the solutions generated by this policy confirm the overlearning problem
compared to all other non-composed policies. The statistical tests show us how only the auto and
major+minor policies show a robust behavior.



Table 4: Results of the tests comparing the studied default class policies to the original configuration
using pop. size 300

. Default rule policy
Domain | Result Disabled | Major | Minor | Auto | Major+Minor

Train 78.6+1.6 81.4+1.3 80.1+1.6 80.8+1.4 81.4+1.3

bpa Test 63.8+7.4 62.9+7.8 65.2+6.5 64.01+6.9 62.9+7.8
#rules 6.7£1.0 8.9+1.4 8.3£1.5 8.5+1.6 8.9+1.4

Train 84.84+0.9 86.0+0.7 86.8+0.7 86.61+0.7 86.8+0.7

bps Test 80.1+3.9 81.2+3.6 81.5+3.6 81.4+3.7 81.5+3.6
#rules 5.1£0.4 6.1+1.1 5.7£0.9 5.6+0.8 5.7£0.9

Train 97.7+0.3 98.2+0.3 98.440.3 98.440.3 98.440.3

bre Test 95.94+2.2 95.0+£2.5 95.7+2.0 95.61+2.2 95.7+2.0
F#rules 2.6+0.7 5.841.2 3.2+0.6 3.3+0.7 3.240.6

Train 79.94+2.6 83.2+1.6 80.6+2.3 79.0+1.8 83.2+1.6

gls Test 66.41+8.1 69.5+6.9 66.7+8.0 66.91+7.4 69.5+6.9
#rules 6.4+0.7 6.61+0.8 7.240.8 6.940.9 6.6+0.8

Train 89.8+1.2 91.6+0.9 92.1+0.8 91.940.9 92.1+0.8

h-s Test 79.54+6.2 79.31+6.4 81.3+6.8 81.3+6.1 81.3+6.8
#rules 6.7£0.9 7.6+£1.2 7.3£1.2 7.4+1.3 7.3£1.2

Train 96.0+0.6 95.7+0.8 96.8+0.7 96.81+0.7 96.8+0.7

ion Test 92.8+3.6 90.0+4.4 93.0+3.7 93.1+3.9 93.0+3.7
F#rules 2.3£0.6 5.7+£1.2 2.6+£0.8 2.6+£0.7 2.6+£0.8

Train 75.24+1.9 76.84+0.8 75.44+1.4 75.4+1.0 76.84+0.8

Irn Test 68.5+4.7 68.9+5.7 68.9+4.5 68.61+5.6 68.9+5.7
#rules 8.5£1.9 9.6+1.9 9.2+1.9 8.6+£1.7 9.6+1.9

Train 79.7+1.8 83.2+1.3 83.1+1.3 83.0+1.4 83.2+1.3

mmg Test 66.2+7.8 68.9+8.3 67.8+8.4 66.849.0 68.9+8.3
#rules 6.5£0.8 6.74+0.9 6.7£0.8 6.64+0.9 6.7£0.9

Train 79.74+0.9 81.3+0.8 80.9+0.7 81.14+0.8 81.3+0.8

pim Test 74.7+4.7 75.41+4.8 75.0+4.7 75.0+4.5 75.44+4.8
#rules 5.240.4 6.2+1.0 5.6+£0.8 6.1£1.0 6.2+1.0

Train 92.2+1.6 96.1+1.2 94.8+1.4 95.5+1.4 96.1+1.2

son Test 72.6+11.5 77.0+9.0 76.14+9.7 76.1+9.3 77.0+9.0
#rules 6.7+1.1 7.6+1.4 7.7+1.3 7.4+1.1 7.6£1.4

Train 97.4+1.0 98.4+0.7 98.44+0.7 98.14+0.8 98.44+0.7

thy Test 91.9+5.6 92.8+4.8 92.3+5.3 92.21+5.6 92.8+4.8
#rules 5.2+0.4 5.7+0.6 5.440.5 5.5+0.6 5.7£0.6

Train 71.1+2.2 73.5+1.4 73.5+1.4 72.0+1.5 73.5+1.4

veh Test 66.4+4.7 68.1+4.5 67.4+4.9 67.5+4.7 68.1+4.5
#rules 6.61+1.2 9.3£2.0 9.9+1.6 8.0£1.8 9.3£2.0

Train 97.2+0.8 97.8+0.6 97.8+0.6 97.84+0.7 97.8+0.6

wdbc Test 94.1+3.0 94.2+3.1 94.0+3.0 94.3+3.1 94.24+3.1
#rules 4.3+1.1 4.6+0.9 4.441.0 4.5£1.0 4.6+0.9

Train 99.44+0.5 99.7+£0.4 99.94+0.3 99.61+0.4 99.94+0.3

wine Test 92.7+5.9 93.3+6.2 92.24+6.3 93.91+5.9 92.24+6.3
#rules 3.8+£0.7 3.6+0.6 4.1£0.5 3.8+0.6 4.1£0.5

Train 84.3+3.0 89.4+2.0 86.4+3.4 88.7+2.3 89.4+2.0

wpbc Test 76.0+7.3 75.8+7.4 72.6+8.5 75.2+7.5 75.84+7.4
#rules 2.840.8 3.84+0.9 4.24+1.2 3.6£1.0 3.84£0.9

Train 86.9+9.0 88.8+8.4 88.3+8.8 88.3+9.0 89.0+8.5

ave. Test 78.84+11.4 | 79.5410.7 | 79.3+11.0 | 79.54+11.3 79.8410.9
#rules 5.3£1.8 6.5+1.8 6.1£2.1 5.9+1.9 6.1+2.1




Table 5: Summary of the statistical t-tests applied to the experimentation results of popsize 300,
with a confidence level of 0.05. Cells in table count how many times the method in the row
significantly outperforms the method in the column.

Policy Disabled Major Minor Auto Major+Minor || Total
Disabled - 2 1 0 0 3
Major 3 - 2 1 0 6
Minor 2 2 - 0 0 4
Auto 2 1 1 - 0 4
Major+Minor 4 2 2 - 9
Total [ 11 7 6 2 0 |

8 Conclusions and Future Work

In this paper we have tested some methods that extend the rule-based and decision-list-style knowl-
edge representations for a Pittsburgh Learning Classifier System by using a static default rule. This
kind of systems tend to generate an emergent default rule, which can increase the performance of
the system. By forcing the representation of a default rule, we intended to guarantee these positive
effects.

Simple policies such as using the majority/minority class as the default class perform quite
well compared to the original system. However, they perform poorly on certain datasets somewhat
showing a lack of robustness. We can almost integrate the best results of both policies by using the
simple heuristic of selecting the policy with more training accuracy. This mechanism introduces a
good performance boost, but doubles the run-time.

For this reason, we have developed a mechanism that decides automatically the class for the
default rule. This technique works by integrating in a single population individuals using all
possible default classes, and letting them compete among themselves. This approach has a problem,
however, which is providing a fair competition framework, because each default rule can have a
different learning rate. In order to achieve this fairness, we use a niched tournament selection
that guarantees that all niches (different default rules) survive in the population until they can
compete successfully by themselves. This automatic mechanism performs best when we increase
the population size, which is an usual requirement in most systems that use niching, because we
have to guarantee that each niche has enough individuals to ensure building block supply and thus
successful and reliable learning.

The increase in population size for the majority/minority policies, however, showed no per-
formance increase or even some performance decrease, suggesting the amplification of the policy
weaknesses This weaknesses are derived from overlearning, which is reflected in the larger training
accuracy and larger average rule set sizes and also on the statistical tests.

Although the automatic policy does not outperform the major+minor policy, the accuracy dif-
ference is quite small in most datasets and the computational cost is significantly lower. Therefore,
it appears that in most situations the automatic policy is the best method.

As further work, additional statistical tests are necessary to determine the best policy or, at
least, the most robust one. Also, we think that it is interesting to study how we can mix the
knowledge of individuals across different niches, which is disabled in the current automatic policy
to avoid creating lethals. If we can find a feasible mechanism to perform this recombination process,
it is quite probable that we can reduce the currently increased population size requirements of the



Table 6: Results of the tests comparing the studied default class policies to the original configuration
using pop. size 400

. Default rule policy
Domain | Result Disabled | Major | Minor | Auto | Major+Minor

Train 79.3+1.7 82.0+1.4 80.7+1.4 81.0+1.6 82.0+1.4

bpa Test 64.0+7.5 62.6£7.5 64.4+6.9 64.5+7.3 62.6+7.5
#rules 6.8£1.0 8.9+1.4 8.3£1.6 8.7t1.4 8.9+1.4

Train 84.940.9 86.2+0.7 87.1+0.6 86.91+0.8 87.1+0.6

bps Test 80.4+4.5 80.9+3.8 81.6+3.8 81.24+3.9 81.6+3.8
#rules 5.1+0.4 6.1+1.1 5.9£1.0 5.8+£1.0 5.9£1.0

Train 97.7+0.4 98.3+0.3 98.5+0.4 98.44+0.4 98.5+0.4

bre Test 95.7+2.3 95.0+2.6 95.7+1.9 95.84+1.9 95.7+1.9
F#rules 2.6£0.8 5.8+1.1 3.3+£0.7 3.2+0.7 3.3£0.7

Train 80.8+2.5 83.8+1.6 81.3+2.1 79.5+1.7 83.8+1.6

gls Test 66.8+7.0 69.1+7.7 68.0+8.3 67.1+£7.4 69.1+7.7
#rules 6.5+0.7 6.84+0.8 7.5+0.9 6.74+0.8 6.8+0.8

Train 90.1+1.0 92.0+0.9 92.440.8 92.240.8 92.440.8

h-s Test 79.447.0 79.24+5.8 81.6+6.9 81.21+6.6 81.6+6.9
#rules 6.6£0.8 7.8+£1.3 7.4+1.2 7.4+1.2 7.4+1.2

Train 96.1+0.6 95.9+0.8 97.1+0.7 96.94+0.7 97.1+0.7

ion Test 93.5+3.5 90.4+4.3 93.4+3.5 92.844.0 93.4+3.5
F#rules 2.3+0.7 5.7+£1.2 2.6£0.7 2.6+0.9 2.6£0.7

Train 75.7+1.7 77.240.8 75.84+1.4 75.7+1.0 77.240.8

Irn Test 68.0+5.0 69.1+5.4 68.7+5.2 69.1+4.9 69.1+5.4
F#rules 8.4+1.9 9.5+1.6 9.3£1.9 8.8+1.8 9.5+1.6

Train 80.3+1.7 83.4+1.3 83.4+1.3 83.5+1.1 83.4+1.3

mmg Test 65.9+8.3 69.0+8.0 67.3+8.9 69.7+7.7 69.0+8.0
#rules 6.5£0.8 6.54+0.9 6.8+1.0 6.64+0.9 6.5+0.9

Train 80.0+1.0 81.5+0.7 81.2+0.7 81.44+0.7 81.5+0.7

pim Test 74.7+4.6 75.2+4.4 74.84+4.7 74.914.6 75.24+4.4
#rules 5.3£0.6 6.3+1.1 5.84£0.9 6.1£1.0 6.3£1.1

Train 92.7+1.5 96.7+1.1 95.3+1.3 96.1+1.3 96.7+1.1

son Test 71.3+9.4 76.21+9.1 74.61+10.1 76.3+8.9 76.249.1
#rules 6.7£1.0 7.6£1.3 7.7£1.5 7.6£1.4 7.6£1.3

Train 97.6+0.9 98.6+0.7 98.6+0.7 98.31+0.8 98.6+0.7

thy Test 91.5+6.2 92.0+5.2 92.4+4.8 91.44+5.6 92.4+4.8
#rules 5.2+0.5 5.7+£0.7 5.440.6 5.5+0.6 5.440.6

Train 71.9+1.9 74.1+1.3 74.24+1.2 72.6+1.3 74.24+1.2

veh Test 66.9+4.3 67.6+£4.2 68.3+4.5 67.9+4.8 68.3+4.5
#rules 6.5+1.3 9.44+1.8 10.0£1.8 8.4+1.8 10.0£1.8

Train 97.2+0.8 98.0+0.5 97.94+0.6 97.840.6 98.0+0.5

wdbc Test 93.9+2.9 94.4+43.1 94.44+3.2 94.443.1 94.443.1
#rules 4.3+1.2 4.84+1.1 4.240.7 4.540.9 4.8+1.1

Train 99.44+0.6 99.7+£0.4 99.84+0.3 99.61+0.4 99.84+0.3

wine Test 94.1+6.0 93.2+6.4 92.0+6.5 93.21+6.3 92.0+6.5
#rules 3.8+£0.7 3.74+0.6 4.240.5 3.8+£0.7 4.240.5

Train 84.9+2.8 89.9+1.8 87.1+£3.3 89.0+2.1 89.9+1.8

wpbc Test 76.6+6.7 75.3+7.0 72.449.1 76.3+7.1 75.3+7.0
#rules 2.840.9 3.940.9 4.441.2 3.7£1.0 3.94£0.9

Train 87.2+8.8 89.2+8.3 88.7+8.6 88.61+8.9 89.3+8.3

ave Test 78.84+11.5 | 79.3+10.7 | 79.3+11.1 | 79.74+10.8 79.7+11.7
#rules 5.3+1.7 6.6+£1.7 6.2+2.1 6.0£2.0 6.2+2.2
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Table 7: Summary of the statistical t-tests applied to the experimentation results of popsize 400,
with a confidence level of 0.05. Cells in table count how many times the method in the row
significantly outperforms the method in the column.

Policy Disabled Major Minor Auto Major+Minor || Total
Disabled - 2 1 0 0 3
Major 1 - 1 0 0 2
Minor 1 3 - 0 0 4
Auto 1 3 1 0 5
Major+Minor 2 3 1 0 - 6
Total | 5 11 4 0 0 |

automatic policy. As an alternative, although it has more computational cost, it is also interesting
to refine the major+minor policy to determine why it cannot choose properly in certain datasets,
and try to fix the problem.
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