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Abstract

Heating, Ventilating and Air Conditioning (HVAC) Systems are equip-
ments usually implemented for maintaining satisfactory comfort conditions
in buildings. The design of Fuzzy Logic Controllers for HVAC Systems is
usually based on the operator’s experience. However, an initial rule set
drawn from the expert’s experience sometimes fail to obtain satisfactory re-
sults, since inefficient or redundant rules are usually found in the final Rule
Base. Moreover, in our case, the system being controlled is too complex and
an optimal controller behavior is required.

Rule selection methods directly obtain a subset of rules from a given fuzzy
rule set, removing inefficient and redundant rules and, thereby, enhancing
the controller interpretability, robustness, flexibility and control capability.
On the other hand, different parameter optimization techniques could be
applied to improve the system accuracy by inducing a better cooperation
among the rules composing the final Rule Base.

In this chapter, we present a study of how several tuning approaches can
be applied and combined with a rule selection method to obtain more com-
pact and accurate Fuzzy Logic Controllers concerning energy performance
and indoor comfort requirements of a HVAC System. This study has been
performed considering a physical modelization of a real test environment.

Keywords: HVAC systems, fuzzy logic controllers, rule selection, genetic tuning,
genetic algorithms.

1 Introduction

HVAC Systems are equipments usually implemented for maintaining satisfactory
comfort conditions in buildings. The energy consumption as well as indoor com-
fort aspects of ventilated and air conditioned buildings are highly dependent on
the design, performance and control of their HVAC systems and equipments.

∗This research has been supported by the Spanish CICYT Project TIC-2002-04036-C05-01
(KEEL).
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Therefore, the use of appropriate automatic control strategies, as fuzzy logic con-
trollers (FLCs) [18, 38, 39], for HVAC systems control could result in important
energy savings when compared to manual control, specially when they explicitly
try to minimize the energy consumption [1, 5, 31, 43].

In current systems [5, 7, 22, 31, 37, 43, 44, 51, 52], various criteria are con-
sidered under separate cover, thermal regulation, maintaining a temperature set
point or range, energy consuption, Predicted Mean Vote (PMV), system stability
or indoor air quality. In Sections 2.2, include a deep explanation of this systems.

In this work, different criteria must be considered jointly in order to reduce
the energy consumption maintaining a desired comfort level. In our case, five
criteria will be optimized and 17 variables are considered by the FLC.

Control systems in buildings are often designed using rules of thumb not al-
ways compatible with the controlled equipment requirements and energy perfor-
mance. Therefore, the different involved criteria should be optimized for a good
performance of the HVAC System. A way to improve this problem is removing
rules that degrade the system (rule selection method). On the other hand, other
technique that improve performance of FLCs is tuning of parameters. There are
two different tuning algorithms:

• Classical tuning : Consist of a tuning of the parameters that define the
linguistic labels. We considered symmetrical fuzzy partitions of triangular-
shaped membership functions, therefore three parameters are optimized.

• Lateral tuning: This technique is present in [4], with the result that reduces
the size of the search space in complex problem. Moreover, this proposal
decreases the tuning problem complexity, since the 3 parameters considered
per label are reduced to only 1 symbolic translation parameter. As to how
perform the lateral tuning there are two possibilities:

– Global Tuning of the Semantics. Tuning is applied to the level of
linguistic partition.

– Local Tuning of the Rules. Tuning is applied to the level of rule.

In [3] presented a study of how smart combination of these basic techniques
can improve furthermore the behavior of FRBS (system modeling with fuzzy
rule-based system).

In this work, we propose combined different tuning methods (classic tuning
and lateral tuning) with rules selection technique to obtain FLC more precise
and compact concerning energy saving in HVAC System.

This contribution is arranged in the following way. In the next section, the
basics of the HVAC systems control problem are presented, studying how FLCs
can be applied to it. In Section 3, the proposed real test site and the control
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objectives are introduced, establishing the concrete problem that will be solved
in this work. In Sections 4, the use of rule selection are presented in depth.
In Sections 5, show classic and lateral tuning methods considered in this work.
Section 6 presents the evolutionary optimization process performing the rule se-
lection together with the tuning methods. Experimental results are shown in
Section 7. In Section 8, some concluding remarks are pointed out. Finally, a
table with the used acronyms is presented in Appendix A.

2 Heating, Ventilating, and Air Conditioning Systems

An HVAC system is comprised by all the components of the appliance used to
condition the indoor air of a building. The HVAC system is needed to provide
the occupants with a comfortable and productive working environment which
satisfies their physiological needs. Therefore, in a quiet and energy-efficient way
at low life-cycle cost, an HVAC system should achieve two main tasks:

• To dilute and remove emission from people, equipment and activities and
to supply clean air (Indoor Air Quality).

• To maintain a good thermal quality both in summer and winter (Thermal
Climate).

There are no statistical data collected on types and sizes of HVAC systems
delivered to each type of building in different European countries. Therefore, to
provide an HVAC system compatible with the ambiance is a task of the BEMS
designer depending on its own experience. In Figure 1, a typical office building
HVAC system is presented. This system consists of a set of components to be
able to raise and lower the temperature and relative humidity of the supply air.

2.1 The HVAC System Control Problem

Temperature and relative humidity are essential factors in meeting physiologi-
cal requirements. When temperature is above or below the comfort range, the
environment disrupts person’s metabolic processes and disturbs his activities.

Therefore, an HVAC system is essential to a building in order to keep occu-
pants comfortable. A well-designed operated, and maintained HVAC system is
essential for a habitable and functional building environment. Outdated, inap-
propriate, or misapplied systems result in comfort complaints, indoor air quality
issues, control problems, and exorbitant utility costs. Moreover, many HVAC sys-
tems do not maintain an uniform temperature throughout the structure because
those systems employ unsophisticated control algorithms. In a modern intelligent
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- Heating
- Cooling

A - This module mixes the return and the outside air to provide supply
air, and also closes outside air damper and opens return air damper when
fan stops. B - It is a filter to reduce the outside air emissions to supply air.
C - The preheater/heat recovery unit preheats the supply air and recovers
energy from the exhaust air. D - A humidifier raising the relative humidity
in winter. E - This is a cooler to reduce the supply air temperature and/or
humidity. F - An after-heater unit to raise the supply air temperature
after humidifier or to raise the supply air temperature after latent cooling
(dehumidifier). G - The supply air fan. H - The dampers to demand
controlled supply air flow to rooms. I - It is a heat recovery unit for energy
recovery from exhaust air. J - The exhaust air fan.

Figure 1: Generic structure of an office building HVAC system

building, a sophisticated control system should provide excellent environmental
control [5].

Within this framework (building automation), the objective of a global con-
troller is to maintain the indoor environment within the desired (or stipulated)
limits. In our case, to maintain environmental conditions within the comfort zone
and to control the indoor air quality. Furthermore, other important objectives are
usually required, e.g, energy savings (our main objective), system stability, etc.
In any case, numerous factors have to be considered in order to achieve these ob-
jectives. It makes the system being controlled very complex and present a strong
non linearity.

To obtain an optimal controller, control and controlled parameters 1 have
to be chosen regarding the control strategy being implemented, the technical
feasibility of the measurements as well as economic considerations. Fortunately,
the BEMS designer is usually able to determine these parameters.

In the following subsections, the most usually used control and controlled
1Control or explicit parameters are variables which may be used as inputs or outputs for a

control strategy (controller’s variables), whilst controlled or implicit parameters are variables
which are affected by the action of a controlled device, and may be considered in order to
evaluate the performance of such controller (problem’s objectives).
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parameters are presented. The specific parameters considered in the test site
(building) presented in this work will be selected among them in Section 3, where
this site is introduced.

2.1.1 Control or explicit parameters: Controller’s variables

To identify the FLC’s variables, various (control or explicit) parameters may be
considered depending on the HVAC system, sensors and actuators. Usually, these
parameters are selected among the following ones:

• Predicted Mean Vote (PMV) index for thermal comfort: Instead of only
using air temperature as a thermal comfort index, we could consider the
more global PMV index selected by international standard organization
ISO 7730 (http://www.iso.org/iso/en/ISOOnline.frontpage), incorporating
relative humidity and mean radiant temperature.

• Difference between supply and room temperatures: Possible disturbances
can be related to the difference between supply and mean air temperature.
When ventilation systems are used for air conditioning, such a criterion can
be important.

• CO2 concentration: Indoor air quality was found to be critical. As CO2

concentration is a reliable index of the pollution emitted by occupants, it
can be selected as indoor air quality index. It is therefore supposed that
both the building and the HVAC system have been properly designed and
that occupants actually are the main source of pollution.

• Outdoor temperature: Outdoor temperature also needs to be accounted for,
since during mid-season periods (or even mornings in summer periods) its
cooling (or heating) potential through ventilation can be important and can
reduce the necessity of applying mechanical cooling (or heating).

• HVAC system actuators: They directly depends on the concrete HVAC
system, e.g., valve positions, operating modes, fan speeds, etc.

2.1.2 Controlled or implicit parameters: Problem’s objectives

To identify global indices for assessment of the indoor building environment,
various (controlled or implicit) parameters may be measured depending on the
objectives of the control strategy. In these kinds of problems, these parameters
could be selected among:

• Thermal comfort parameters: Indoor climate control is one of the most
important goals of intelligent buildings. Among indoor climate character-
istics, thermal comfort is of major importance. This might include both
global and local comfort parameters.
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• Indoor air quality parameters: Indoor air quality is also of major concern
in modern buildings. It is controlled either at the design stage by reducing
possible pollutants in the room and during operation thanks to the ventila-
tion system. As our work is dedicated to HVAC systems, indoor air quality
is also an important parameter to account for.

• Energy consumption: If appropriate indoor air quality and thermal comfort
levels have to be guaranteed in offices, this has to be achieved at a minimum
energy cost. Therefore, energy consumption parameters would need to be
incorporated.

• HVAC system status: A stable operation of the controlled equipments is
necessary in order to increase life cycle and thus reduce the maintenance
cost. Information of the status of the equipments at the decision time step
or on a longer period must thus be considered.

• Outdoor climate parameters: Indoor conditions are influenced by outdoor
conditions (air temperature, solar radiation, wind). Moreover, in an air
distribution HVAC system, the power required to raise or lower the supply
temperature is a function of outdoor temperature and humidity. Some of
these parameters would thus need to be selected.

2.2 Fuzzy Control of HVAC Systems

Nowadays, there is a lot of real-world applications of FLCs like intelligent sus-
pension systems, mobile robot navigation, wind energy converter control, air
conditioning controllers, video and photograph camera autofocus and imaging
stabilizer, anti-sway control for cranes, and many industrial automation applica-
tions [30].

An FLC [18, 38, 39] is a kind of fuzzy rule-based system which is composed
of a KB that comprises the information used by the expert operator in the form
of linguistic control rules, a Fuzzification Interface, that transforms the crisp val-
ues of the input variables into fuzzy sets that will be used in the fuzzy inference
process, an Inference System that uses the fuzzy values from the fuzzification
interface and the information from the KB performing the reasoning process,
and a Defuzzification Interface, which takes the fuzzy control action from the
inference process and translates it into crisp values for the control variables. The
KB is comprised of two components: the Data Base and the Rule Base. The
Data Base contains the definitions of the linguistic labels, that is, the member-
ship functions for the fuzzy sets. The Rule Base is a collection of fuzzy control
rules, comprised by the linguistic labels, representing the expert knowledge of the
controlled system. Figure 2 shows the generic structure of an FLC.

In current systems, various criteria are considered independently, thermal
regulation, maintaining a temperature setpoint or range, which only considers
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Figure 2: Generic structure of a FLC

implicit energy savings [5, 22, 31, 44, 51, 52]. In [7], the more global Predicted
Mean Vote (PMV) is used to control thermal comfort (incorporating relative
humidity and mean radiant temperature), but again it does not explicitly op-
timize the energy consumption, the system stability or the indoor air quality
(CO2 concentration). In [37], an adaptive neuro-fuzzy inference system (ANFIS)
is employed to optimization of the system energy consuption by the control in-
building section of HVAC system(indoor air loop and chilled water loop). In [43],
a FLC involving 7 variables (5 inputs and 2 outputs) is optimized by means of an
evolutionary algorithm to decrement the energy consumption and to maintain a
temperature setpoint, which also set aside some important criteria.

However, in this work, various different criteria must be considered in order to
reduce the energy consumption maintaining a desired comfort level. Therefore,
many variables have to be considered from the controlled system, which makes
the problem very complex. In our case, five criteria will be optimized and 17
variables are considered by the FLC.

In these kinds of problems (HVAC system controller design), the KB is usually
constructed based on the operator’s experience. However, FLCs sometimes fail
to obtain satisfactory results with the initial rule set drawn from the expert’s
experience [31]. Moreover, in our case the system being controlled is too complex
and optimal FLCs are required. Therefore, this approach needs of a modification
of the initial KB to obtain an optimal controller with an improved performance.

A possible way to improve the FLC performance without losing interpretabil-
ity to a high degree is to extend its usual structure making it more flexible. Many
different possibilities to improve Linguistic Fuzzy Modeling have been considered
in the specialized literature [8]. They can also be applied to the framework of
fuzzy control (e.g., a tuning on the semantic of an FLC previously obtained from
human experience could be performed by modification of the Data Base com-
ponents [1, 2]). All of these approaches share the common idea of improving
the way in which the linguistic fuzzy model/controller performs the interpolative
reasoning by inducing a better cooperation between the rules in the KB.
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There are two of these approaches presenting complementary characteristics,
the parameter tuning and the rule selection. In this work, the combination of
the tuning methods (classic and lateral tuning) with rule selection methods can
present a positive synergy, reducing the search space, easing the system readabil-
ity and even improving the system accuracy.

On the other hand, to evaluate the FLC performance, physical modelization
of the controlled buildings and equipments is usually needed. These models
have been developed by BEMS designers using building simulation tools, and
they are able to account for all the parameters considered in the control process.
Thus, we will have the chance to evaluate the FLCs designed in the simulated
system with the desired environmental conditions. In the same way, these system
models can be used by the experts to validate the initial KB before the automatic
optimization process. Besides, it is of major importance to assess the fitness
function in this process.

3 The GENESYS Test Cell

Within the framework of the JOULE-THERMIE programme under the GENESYS 2

project, a real test site (building) provided by a French private enterprise —whose
name must remain anonymous— was available for experimentation. From now
on, this site will be called the GENESYS test site.

Located in France, this test environment consists of seven single zone test
cells. Around the walls of these cells, an artificial climate can be created at any
time (winter conditions can be simulated in summer and viceversa). The cells
considered are medium weight constructions. Figure 3 illustrates this environ-
ment and presents its main characteristics. Two adjacent twin cells were available
for our experiments, the cells number four and five. Both test cells were equipped
with all sensors required according to the selected control and controlled param-
eters. The HVAC system tested was a fan coil unit supplied by a reverse-cycle
heat pump, and a variable fan speed mechanical extract for ventilation.

The first task was to develop the thermal model of this test site. The main
achievement was the development of a full monozone building model. This model
was built from scratch within the Matlab-Simulink environment, being developed
as a general purpose model which could be used for any other conditions, projects
or applications in the future. However, in order to improve its performance, it
was later customized to suit the GENESYS test site. The thermal simulation
was based on finite-differences methods for the conduction model. The maxi-
mum value for the time-step of the simulation was calculated using the stability
condition according to the discretization scheme. Simulation time step could be

2GENESYS Project: Fuzzy controllers and smart tuning techniques for energy efficiency and
overall performance of HVAC systems in buildings, European Commission, Directorate-General
XII for Energy (contract JOE-CT98-0090).
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-  Equiped with various sensors for indoor
   climate evaluation: air flow velocity,
   relative humidity, CO   concentration, etc.2

3

ATC Test Cells

Figure 3: Representation and main characteristics of the GENESYS test cells

reduced to 60 seconds. Due to the relatively small thickness and large thermal
conductivity of windows, the heat conduction model for the windows was consid-
ered constant. Convective heat exchanges were based on constant heat convection
coefficients. Radiant temperature was calculated as a function of surface temper-
ature, weighted by their relative area. The HVAC system model was based on
manufacturers data and modules developed in the frame of IEA (International
Energy Agency) task 22 provided by the Royal Technical Institute of Stockholm.

Data were available and used for model calibration. The main problems in
the calibration concerned the modelization of the HVAC equipment as well as
solar radiation effects on internal heat gains. The experimentation of this work
has been performed considering the calibrated and validated GENESYS test cell
simulation model. Concretely, the GENESYS summer-season model.

3.1 Objectives and Fitness Function

As said, our main optimization objective was the energy performance
but maintaining the required indoor comfort levels. Therefore, we should
consider the development of a fitness function aiming at characterizing the per-
formance of each tested controller towards thermal comfort, indoor air quality,
energy consumption and system stability criteria. In this way, the global objective
is to minimize the following five criteria:

O1 Upper thermal comfort limit: if PMV > 0.5, O1 = O1 + (PMV − 0.5).

O2 Lower thermal comfort limit: if PMV < −0.5, O2 = O2 + (−PMV − 0.5).

O3 IAQ requirement: if CO2 conc. > 800ppm, O3 = O3 + (CO2 − 800).

O4 Energy consumption: O4 = O4+ Power at time t.
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O5 System stability: O5 = O5+ System change from time t to (t − 1), where
system change states for a change in the system operation, i.e., it counts
the system operation changes (a change in the fan speed or valve position).

In our case, these criteria are combined into one overall objective function by
means of a vector of weights. This technique (objective weighting) has much
sensitivity and dependency toward weights. However, when trustworthy weights
are available, this approach reduces the size of the search space providing the
adequate direction into the solution space and its use is highly recommended.
Since trustworthy weights were obtained from experts, we followed this approach.

Hence, an important outcome was to assign appropriate weights to each cri-
terion of the fitness function. The basic idea in this weight definition was to find
financial equivalents for all of them. Such equivalences are difficult to define and
there is a lack of confident data on this topic. Whereas energy consumption cost
is easy to set, comfort criteria are more difficult. Recent studies have shown that
a 18% improvement in people’s satisfaction about indoor climate corresponds to
a 3% productivity improvement for office workers. Based on typical salaries and
due to the fact that PMV and CO2 concentrations are related to people’s sat-
isfaction, such equivalences can be defined. The same strategy can be applied
to the systems stability criterion, life-cycle of various systems being related to
number of operations. Based on this, weights can be obtained for each specific
building (test site). Thus, trusted weights for the GENESYS test cell objective
weighting fitness function were obtained by the experts with the following values:
wO

1 = 0.0083022, wO
2 = 0.0083022, wO

3 = 0.00000456662, wO
4 = 0.0000017832 and

wO
5 = 0.000761667. Finally, the fitness function to be minimized was computed

as:

F =
n∑

i=1

wO
i ·Oi .

3.2 FLC Variables and Architecture

A hierarchical FLC architecture considering the PMV, CO2 concentration, pre-
vious HVAC system status and outdoor temperature was proposed by the BEMS
designer for this site. The GENESYS summer-season FLC architecture, variables
and initial Rule Base are presented in Figure 4.

As Data Base, we considered symmetrical fuzzy partitions of triangular-
shaped membership functions for each variable. These membership functions
were labeled from L1 to Lli, with li being the number of membership functions
of the i-th variable. Figure 5 depicts the Data Base. Both, the initial Rule Base
and the Data Base, were provided by the BEMS designer.

Notice that, Figure 4 represents the decision tables of each module of the
hierarchical FLC considered in terms of these labels. When the Rule Base con-
siders more than two input variables (as in the case of modules M-2 in layer 2 and
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Module 3a: Required HVAC System Status

#R = 172

Figure 4: Initial Rule Base and generic structure of the GENESYS summer-season
FLC

M-3a and M-3b in layer 3 where three input variables are involved), the three-
dimensional table is decomposed into three two-dimensional decision tables (one
for each possible label of the first variable) in order to clearly show its composi-
tion. Therefore, each cell of the table represents a fuzzy subspace and contains
its associated output consequent(s), i.e., the corresponding label(s). The output
variables are denoted in the top left square for each module. Notice that, when
there are two consequents, they are placed in the same cell (divided by a diagonal
line).

4 Rule Selection

In complex multidimensional problems with highly nonlinear input-output re-
lations many redundant, inconsistent and conflicting rules are usually found in
the obtained Rule Base (especially in the case when they are generated by only
considering the expert’s knowledge). On the other hand, in high-dimensional
problems, the number of rules in the Rule Base grows exponentially as more in-
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Figure 5: Data Base of the GENESYS summer-season fuzzy logic controller

puts are added. A large rule set might contain many redundant, inconsistent and
conflicting rules. These kinds of rules are detrimental to the FLC performance
and interpretability.

Rule Selection methods directly aggregate multiple rules and/or select a subset
of rules from a given fuzzy rule set in order to minimize the number of rules
while at the same time maintaining (or even improving) the system performance.
Inconsistent and conflicting rules that degrade the performance are eliminated
thus obtaining a fuzzy rule set with better cooperation.

Rule reduction methods have been formulated using Neural Networks, clus-
tering techniques and orthogonal transformation methods, and algorithms based
on similarity measures, among others [12, 25, 47, 48, 49, 53]. In [13], a different
approach was proposed which attempts to reduce the growth of the Rule Base
by transforming elemental fuzzy rules into DNF-form.

On the other hand, using GAs to search for an optimized subset of rules is
motivated in the following situations:

• the integration of an expert rule set and a set of fuzzy rules extracted by
means of automated learning methods [27],

• the selection of a cooperative set of rules from a candidate fuzzy rule set [14,
16, 15, 32, 33, 36],

• the selection of rules from a given KB together with the selection of the
appropriate labels for the consequent variables [11],

• the selection of rules together with the tuning of membership functions by
coding all of them (rules and parameters) in a chromosome [23], and
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• the derivation of compact fuzzy models through complexity reduction com-
bining fuzzy clustering, rule reduction by orthogonal techniques, similarity
driving simplification and genetic optimization [45].

Two of them are of particular interest in our case, the second and the fourth.
In this work, we propose the selection of a cooperative set of rules from a candidate
fuzzy rule set together with tuning methods coding all in a chromosome. This
pursues the following aims:

• To improve the FLC accuracy selecting the set of rules best cooperating
while a local tuning of rules is performed to improve the interaction among
them.

• To obtain simpler, and thus easily understandable, FLCs by removing un-
necessary rules.

5 Tuning methods

In the next subsection, presented the classical and lateral tuning methods that
improve performance of FLCs.

5.1 Classical Tuning of Fuzzy Rule-Based Systems

This approach, usually called data base tuning, involves refining the membership
function shapes from a previous definition once the remaining FRBS components
have been obtained [14, 24, 28, 34, 35, 40].

The classical way to refine the membership functions is to change their def-
inition parameters. For example, if the following triangular-shape membership
function is considered:

µ(x) =


x−a
b−a , if a ≤ x < b

c−x
c−b , if b ≤ x ≤ c ,

0, otherwise

changing the basic parameters — a, b, and c — will vary the shape of the fuzzy set
associated to the membership function, thus influencing the FRBS performance
(See Figure 6). The same yields for other shapes of membership functions (trape-
zoidal, gaussian, sigmoid, etc.).

Tuning membership functions involves fitting the characterization of the mem-
bership functions associated to the primary linguistic terms considered in the
system. Thus, the meaning of the linguistic terms is changed from a previous
definition, an initial data base in an FRBS.
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Figure 6: Tuning by changing the basic membership function parameters

In this way, in order to ensure a good interpretability through the membership
functions optimization process [9, 41, 42], some researchers have proposed several
properties. Considering one or more of these properties several constraints can be
applied in the design process in order to obtain a BD, maintaining the linguistic
model comprehensibility to the higher possible level [6, 14, 10, 21].

An example of evolutionary tuning can be seen in Figure 7, where each mem-
bership function is encoded by means of three gene values representing its defi-
nition points.

Initial Data Base

0 2

YX
S M L1 1 1 S M L2 2 2

0 2

YX
S M L1 1 1 S M L2 2 2

Tuned Data Base

0 20 2

 Evolutionary
Tuning

S 1 M 1 L 1 S 2 M 2 L 2

0 0.650 1 1.650.35 2 21.350 0.650 1 1.650.35 2 21.35

S 1 M 1 L 1 S 2 M 2 L 2

0 0.650 1 1.40.6 1.9 2.210.150.55-0.2 0.8 1.60.5 1.75 2.21.1

Figure 7: Example of evolutionary tuning
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5.2 Lateral Tuning of Fuzzy Rule-Based Systems

In this section, we will introduce for the lateral tuning of fuzzy systems, presenting
the rule structure and two different tuning approaches (global approach and local
approach). Then, the evolutionary post-processing method to perform the lateral
tuning following both approaches will be described.

5.3 The Lateral Tuning

The Lateral Tuning is a new model of tuning of FRBSs considering the linguistic
2-tuples representation to laterally tuning the support of a label, which maintains
the interpretability associated to the representation model. In this way, the model
for rule representation based on the linguistic 2-tuples is introduced. This concept
is presented in [29] and allow a lateral displacement of the labels named symbolic
translation.

ES MSVS L VL EL y
2

y
2 ES MSVS L VL EL

Figure 8: Lateral Displacement of the Linguistic Label M

Figure 8 shows the lateral displacement of the label M. The new label “y2” is
located between B and M, being enough smaller than M but closer to M.

The symbolic translation of a linguistic term is a number within the interval
[-0.5, 0.5) that expresses the domain of a label when it is moving between its two
lateral labels. Formally, we have the couple,

(si, αi), si ∈ S, αi ∈ [0.5,−0.5).

Figure 9 depicts the symbolic translation represented by the couple (S2, −0.3)
considering a set S with five linguistic terms and representing the labels by their
ordinal value in the said set ({0, 1, 2, 3, 4}).

In [29], both the linguistic 2-tuples representation model and the needed el-
ements for linguistic information comparison and aggregation are presented and
applied to the Decision Making framework. In the context of the FRBSs, we are
going to see its use in the linguistic rule representation. In the next we present
this approach considering a simple control problem.

Let us consider a control problem with two input variables, one output vari-
able and a DB defined from experts determining the membership functions for
the following labels:
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-0.3

2.7

(S  ,-0.3)2

S0 S1 S2 S3 S4

Figure 9: Symbolic translation of a label

Error → {N,Z, P}, 5Error → {N,Z, P},
Power → {L,M,H} .

R1: If the           is Zero and the                         

 
Classical Rule:  

Error  

 is Positive then the             is HighPower  

 

Rules with 2-tuples Representation:
 

 

Error Variation

R1: If the           is (Zero, 0.3) and theError Error Variation

is (Positive, -0.2) then the             is (High, -0.1)Power

Figure 10: Classical Rule and Rule with 2-Tuple Representation

Figure 10 shows the concept of classical rule and linguistic 2-tuples represented
rule. Analized from the rule interpretability point of view, we could interpret the
tuned rule as:

If the Error is “higher than Zero” and
the Error Variation is “a little smaller than Positive”
then the Power is “a bit smaller than High”.

This proposal decreases the tuning problem complexity, since the 3 parameters
considered per label are reduced to only 1 symbolic translation parameter. As to
how perform the lateral tuning there are two possibilities, the most interpretable
one and the most accurate one:

• Global Tuning of the Semantics. In this case, the tuning is applied to the
level of linguistic partition. In this way, the couple (Xi, label) takes the
same tuning value in all the rules where it is considered. For example, Xi is
(High, 0.3) will present the same value for those rules in which the couple
”Xi is High” is initially considered.
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Considering this approach, the global interpretability of the final FRBS is
maintained. It is analogous to the classical tuning of the DB considering
descriptive fuzzy rules [14], i.e., a global collection of fuzzy sets is considered
by all the fuzzy rules. Therefore, this approach obtains more interpretable
but less accurate linguistic models than the local approach.

• Local Tuning of the Rules. In this case, the tuning is applied to the level
of rule. The couple (Xi, label) is tuned in a different way in each rule,
based on the quality measures associated to the tuning method (usually
the system error).

Rule k: Xi is (High, 0.3) (more than high)
Rule j: Xi is (High, -0.2) (a little lower than high)

In this case, the global interpretability is lost to some degree and, the
obtained model should be interpreted from a local point of view. This
approach is analogous to the classical tuning of approximate fuzzy rules [14],
i.e., each fuzzy rule has associated its own local fuzzy sets. However, in our
case, the tuned labels are still related to the initial ones, preserving the
global interpretability to some degree. Anyway, this approach presents
more accuracy but less interpretability than the global approach.

Once both approaches have been presented, some aspects related to the search
space reduction and the interpretability of the obtained models should be clari-
fied. Naturally, these aspects are highly related to the kind of tuning performed
(local or global).

We have pointed out that the lateral tuning decreases the tuning problem
complexity, since only 1 symbolic translation parameter is considered per label.
We must clarify that this is true individually considering both approaches, local
and global. Therefore, the global lateral tuning reduces the search space respect
to the classical tuning of the DB and the local lateral tuning reduces the search
space respect to the classical tuning of approximate fuzzy rules. From the point of
view of the interpretability, they also should be individually compared, since the
global approach tries to obtain more interpretable models and the local approach
tries to obtain more accurate ones.

6 Five Different Optimization Methods

Once the rule selection and two different tuning approaches has been presented,
in this section, the genetic optimization algorithms developed for classical tuning
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[24, 28], lateral tuning [4], rule selection [32, 46] and, the combined action of rule
selection with both tuning approaches (rule selection and classical tuning, rule
selection and lateral tuning) are proposed. However, only three of them will be
presented, the first one, the second one and the last one, since the remaining can
be respectively obtained as a part of this last (the CT and the CS parts).

In the following, the common parts of the said algorithm are introduced to
later present its application to classical and lateral tuning methods and the com-
bined action of rule selection with both tuning approaches(coding scheme and
operators).

6.1 Common aspect of the algorithm

As said, it consists of a GA based on the well-known steady-state approach and
considering an objective weighting-based fitness function. The steady-state ap-
proach [50] consists of selecting two of the best individuals in the population and
combining them to obtain two offspring. These two new individuals are included
in the population replacing the two worst individuals if the former are better
adapted than the latter. An advantage of this technique is that good solutions
are used as soon as they are available. Therefore, the convergence is acceler-
ated while the number of evaluations needed is decreased (in our case it is very
important since the model evaluation takes several minutes).

In order to make the method robust and more independent from the weight
selection for the fitness function, the use of fuzzy goals for dynamically adapting
the search direction in the space of solutions will be considered. The selection
scheme is based on the Baker’s stochastic universal sampling together with an
elitist selection.

Evaluating the chromosome: The fitness function (see Section 3.1) has been
modified in order to consider the use of fuzzy goals that decrement the importance
of each individual fitness value whenever it comes to its respective goal or penalize
each objective whenever its value worse with respect to the initial solution. To
do so, a function modifier parameter is considered, δi(x) (taking values over 1.0).
A penalization rate, pi, has been included in δi(x), allowing the user to set up
priorities in the objectives (0 less priority and 1 more priority). Therefore, the
global fitness is evaluated as:

F ′ =
5∑

i=1

wO
i · δi(Oi) ·Oi ,

Two situations can be presented according to the value of the goal gi, and
the value of the initial solution ii. Depending on these values, two different δ
functions will be applied:
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• When the value of gi is lesser than the value of ii, the objective is not
considered if the goal is met and penalized if the initial results are worsened
(see Figure 11).

1

0
gi ii

δi(x) =



0, if x ≤ gi

x− gi

ii − gi
, if gi < x < ii

x− ii
x− x · pi

+ 1, if ii ≤ x .

Figure 11: δi(x) when gi ≤ ii

• When the value of ii is lesser than the value of gi, the initial results can be
worsened while the goal is met and, it is penalized otherwise (see Figure 12).

1

0
giii

δi(x) =


0, if x < gi

x− gi

x− x · pi
+ 1, if gi ≤ x .

Figure 12: δi(x) when gi > ii

Restart approach: Finally, to get away from local optima, this algorithm
uses a restart approach [19]. Thus, when the population of solutions converges
to very similar results (practically the same fitness value in all the population),
the entire population but the best individual is randomly generated within the
corresponding variation intervals. It allows the algorithm to perform a better
exploration of the search space and to avoid getting stuck at local optima.

6.2 Classical tuning

In this subsection, the coding scheme and genetic operators of the algorithm
proposed for classical tuning are explained. To do so, the WMC-SSGA approach
presented in [2], which is exactly the same that is considered for classical tuning,
will be briefly described.

The coding scheme represents a solution by joining the representation of the
li labels of each one of the n variables composing the DB:

Ci = (ai
1, b

i
1, c

i
1, . . . , a

i
li
, bi

li
, ci

li
), i = 1, . . . , n ,

CT = C1C2 . . . Cn .
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To make use of the existing knowledge, the DB previously obtained from
experts is included in the population as an initial solution. The remaining indi-
viduals are randomly generated maintaining their genes within their respective
variation intervals. These intervals are computed from the initial DB, having the
same interval the group composed by the vertex of a label and the nearest points
of the next and the previous labels. From these groups, the interval extremes are
obtained computing the middle point between the nearest points of the corre-
sponding consecutive groups [2]. Finally, these intervals are dynamically adapted
from the best individual for each generation.

Since a real coding scheme is considered, the crossover and mutation operators
have been selected according to this aspect: the Max-Min-Arithmetical crossover
and Michale-wicz’s non-uniform mutation (more complete information on these
operators can be found in [2, 17]). Once the mutation operator is applied on the
four offspring generated by the crossover operator, the two best are selected as
the final descendents.

6.3 Lateral tuning

This subsection present the coding scheme and genetic operators of the lateral
tuning algorithm.

Coding scheme and initial gene pool

Taking into account that two different types of tuning have been proposed
(global tuning of the semantics and local tuning of the rules), there are two
different kinds of coding schemes. In both cases, a real coding is considered, i.e.,
the real parameters are the GA representation units (genes).

In the following both schemes are presented:

• Global Tuning of the Semantics: Joint of the parameters of the fuzzy
partitions. Let us consider the following number of labels per variable:
(m1,m2, . . . ,mn), with n being the number of system variables. Then, a
chromosome has the following form (where each gene is associated to the
tuning value of the corresponding label),

CT = (c11, . . . , c1m1 , c21, . . . , c2m2 , . . . , cn1, . . . , cnmn).

See the CT part of Figure 13 (in the next section) for an example of coding
scheme considering this approach.

• Local Tuning of the Rules: Joint of the rule parameters. Let us consider
that the FRBS has M rules: (R1, R2, . . . , RM), with n system variables.
Then, the chromosome structure is,

CT = (c11, . . . , c1n, c21, . . . , c2n, . . . , cM1, . . . , cMn).
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To make use of the available information, the initial FRBS obtained from
automatic fuzzy rule learning methods or from expert’s knowledge is included in
the population as an initial solution. To do so, the initial pool is obtained with
the first individual having all genes with value ‘0.0’, and the remaining individuals
generated at random.

Genetic Operators

The genetic operator considered is crossover. No mutation is considered in
this case in order to improve the algorithm convergence. A description of the
crossover operator is presented in the following.

The BLX-α crossover [20] and a hybrid between a BLX-α and an arithmetical
crossover [26] are considered. In this way, if two parents, Cv

T = (cv
T1, . . . , c

v
Tk, . . . , c

v
Tm)

and Cw
T = (cw

T1, . . . , c
w
Tk, . . . , c

w
Tm), are going to be crossed in CT , two different

crossovers are considered:

1. Using the BLX-α crossover [20] in the second parts (with α being a constant
parameter chosen by the GA designer), one descendent Ch

T = (ch
T1, . . . , c

h
Tk,

. . . , ch
Tm) is obtained, with ch

Tk being randomly generated within the interval
[ILk

, IRk
] = [cmin − I · α, cmax + I · α], cmin = min(cv

Tk, c
w
Tk), cmax =

max(cv
Tk, c

w
Tk) and I = cmax − cmin.

2. The application of the arithmetical crossover [26] in the wider interval con-
sidered by the BLX-α, [ILk

, IRk
], results in the next descendent:

Ch
T with ch

Tk = aILk
+ (1− a)IRk

,

with a ∈ [0, 1] being a random parameter generated each time this crossover
operator is applied. In this way, this operator performs the same gradual
adaptation in each gene, which is an interest characteristic.

6.4 Rule selection combine with tuning approaches

In this subsection, explain the coding scheme and genetic operators of the algo-
rithm combining rule selection with tuning approaches.

Coding scheme and initial gene pool

A double coding scheme (C = CS + CT ) for both rule selection and tuning is
used:

• For the CS part, the coding scheme generates binary-coded strings of length
m (with m being the number of fuzzy rules in the existing FLC, obtained
from expert knowledge). Depending on whether a rule is selected or not,
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the alleles ‘1’ or ‘0’ will be respectively assigned to the corresponding gene.
Thus, the corresponding part Cp

S for the p-th chromosome will be a binary
vector representing the subset of rules finally obtained.

Cp
S = (cp

S1, . . . , c
p
Sm) | cp

Si ∈ {0, 1}

• The CT part represent the coding scheme, previously explained, for the
classical or lateral tuning algorithm.

Finally, a chromosome Cp is coded in the following way:

Cp = Cp
SCp

T

To make use of the available information, the FLC previously obtained from
expert knowledge is included in the population as an initial solution. To do so,
the initial pool is obtained with an individual having all genes with value ‘1’ in
CS part and all genes with value ‘0.0’ in CT part, and the remaining individuals
generated at random:

∀k ∈ {1, . . . ,m}, c1
Sk = 1 and c1

Tk = 0.0 .

Genetic operators

The crossover operator will depend on the chromosome part where it is ap-
plied: in the CS part, the standard two-point crossover is used, whilst in the CT

part for classical tuning is applied Max-Min-Arithmetical operator and for lateral
tuning is applied a hybrid between a BLX-α and an arithmetical crossover.

The two-point crossover involves exchanging the fragments of the parents
contained between two points selected at random (resulting two different descen-
dents).

Finally, four offspring are generated by combining the two ones from the CS

part (two-point crossover) with the two ones from the CT part.

As regards the mutation operator, it flips the gene value in the CS part. In
CT part for classical tuning use Michale-wicz’s non-uniform mutation operator
and for lateral tuning no mutation is applied. In this way, once the mutation
operator is applied over the four offspring obtained from the crossover operator,
the resulting descendents are the two best of these four individuals.
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Figure 13: Example of Coding Scheme Considering the Global Tuning and Rule
Selection

7 Experiments and Analysis of Results

To evaluate the goodness of the proposed technique, several experiments have
been carried out considering the GENESYS test site. The main characteristics,
the control objectives and the initial FLC for this site have been presented in
Section 3. In this section, the experiments performed with the new weighted
rules FLC on the said GENESYS summer model are presented. In order to see
the advantages of the combined action of the rule selection and tuning techniques,
three different studies have been performed:

1. Considering the said post-processing approaches separately. In this case, we
consider the different proposed techniques individually:

• Rule Selection.

• Classical Tuning.

• Lateral Tuning (both approaches, global and local).

2. Combining the rule selection with the tuning approaches. In this case, we
consider the rule selection and the different tuning approaches jointly:

• Rule Selection and Classical Tuning.

• Rule Selection and Lateral Tuning (both approaches, global and local).
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3. Analysis of the approaches. A comparison will be performed pointing out
the good performance obtained when both, rule selection and tuning, are
combined.

To assess the proposed techniques for fitness computation, accurate models of
this controlled building (as well as the corresponding initial FLC) were provided
by experts. The proposed optimization strategy was assessed with simulations of
10 days with the corresponding climatic conditions.

The FLCs obtained from the proposed technique will be compared to the
performance of the initial expert FLC and to the performance of a classic On-Off
controller. The goals and improvements will be computed with respect to this clas-
sical controller as done in the GENESYS 1 project. The intention from experts
was to try to have 10% energy saving (O4) together with a global improvement
of the system behavior compared to On-Off control. Comfort parameters could
be slightly increased if necessary (no more than 1.0 for criteria O1 and O2).

Table 1: Initial results and fitness function (F ′) parameters

Fitness PMV CO2 Energy Stability
MODEL #R F % O1 O2 O3 O4 % O5 %

ON-OFF − 6.58 − 0.0 0 0 3206400 − 1136 −
FLC 172 6.32 4 0.0 0 0 2901686 9.50 1505 -32.48

Goals (gi) − − − 1.0 1 7 2000000 − 1000 −
Rates (pi) − − − 1 1 1 0.9 − 0.97 −

Table 1 presents the results obtained with the On-Off and the initial FLC con-
trollers together with the parameters considered to compute the fitness function
in the GA (F ′), fuzzy goals and penalization rates (the objective weights can be
seen in Section 3.1). Notice that, the goals imposed to the algorithm are higher
than the ones initially required by the experts since we are trying to obtain even
better results. No improvement percentages have been considered in the table
for O1 . . . O3, since these objectives always met the experts requirements and the
On-Off controller presents zero values for these objectives.

Finally, the values of the parameters used in all of these experiments are
presented as follows: 31 individuals, 0.2 as mutation probability per chromosome
(except for the Lateral Tuning which has no mutation), 0.3 for the factor α in
the hybrid crossover operator and 0.35 as factor a in the max-min-arithmetical
crossover. The termination condition will be the development of a fixed number of
iterations, which will depend on the approach (Classical Tuning, Lateral Tuning
or Rule Selection with Tuning approaches) followed, in order to perform a fair
comparative study as we will see as follows. In order to evaluate the GA good
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convergence, three different runs have been performed considering three different
seeds for the random number generator.

7.1 Results considering the said post-processing approaches sep-
arately

The models presented in Table 3, where % stands for the improvement rate with
respect to the On-Off controller for each criterion and #R for the number of
fuzzy rules, correspond to the best individuals from the population at 1000 or
500 iterations considering the three runs performed. Moreover, the averaged
results have been presented for each criterion. The time required for each model
evaluation is 215 seconds (for rule selection and lateral tuning) or 430 seconds
(for classical tuning) approximately.

Table 2: Methods Considered for Comparison

Method Description
S Rule Selection
C Classical Genetic Tuning
GL Global Lateral Tuning
LL Local Lateral Tuning

The models presented in Table 3 correspond to the best individuals from the
population at iteration 500 (for the classical tuning) or 1000 (for the rule selection
and the lateral tuning) considering the three proposed seeds. The estimated run
time is four days for 500 or 1000 iterations (evaluations × evaluation time ×
generations).

From the obtained results, the tuning approaches present better result in
energy and stability than the rule selection, On-Off controller and the initial
FLC controller. The rule selection technique minimize the number of rules while
at the same time significant little improvements over the On-Off controller, but
not over tuning approaches.

Within the tuning approaches, the lateral tuning present a good trade-off
between energy and stability, because this approaches reduces the size of the
search space in complex problem, like our problem. Lateral techniques are robust
and perform a better exploration of the search space and avoid getting stuck at
local optima. Specifically, the local tuning approach obtain more accurate than
the global approach, due to this technique present a best freedom degree and
tuned each parameter locally. The local tuning presenting improvement rates of
about a 26% in energy and about a 18% in stability.
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Table 3: Results obtained with rule selection and tuning approaches

PMV CO2 Energy Stability
MODEL #R O1 O2 O3 O4 % O5 %

ON-OFF − 0.0 0 0 3206400 − 1136 −
FLC 172 0.0 0 0 2901686 9.50 1505 -32.48

Rule Selection
S1 147 0.2 0 0 2867692 10.56 991 12.76
S2 162 0.0 0 0 2889889 9.87 1441 -26.85
S3 172 0.0 0 0 2901686 9.50 1505 -32.48

Classical Tuning
C1 172 0.0 0 0 2575949 19.66 1115 1.85
C2 172 0.0 0 0 2587326 19.31 1077 5.19
C3 172 0.0 0 0 2596875 19.01 1051 7.48

Global Lateral Tuning
GL1 172 0.7 0 0 2378784 25.81 1069 5.90
GL2 172 1.0 0 0 2327806 27.40 1066 6.16
GL3 172 0.9 0 0 2268689 29.25 1080 4.93

Local Lateral Tuning
LL1 172 0.9 0 0 2386033 25.59 896 21.13
LL2 172 0.8 0 0 2343409 26.92 943 16.99
LL3 172 0.3 0 0 2377596 25.85 938 17.43

7.2 Results Combining the rule selection with the tuning ap-
proaches

The models presented in Table 5 correspond to the best individuals from the
population at iteration 500 considering the three proposed seeds (once again %
stands for the improvement rate with respect to the On-Off controller and #R
for the number of fuzzy rules). Now, both parts, rule selection (CS) and tuning
approaches (CT ), are considered and four evaluations are required per iteration.
In order to maintain the number of evaluations equal to the one considered in
the previous subsection only 500 iterations will be considered. Therefore, the
estimated run time was four days for 500 iterations (computed as product of the
number of evaluations per generation, the evaluation time and the number of
generations).

In view of the obtained results, we can point out that all the controllers derived
by the proposed method achieve significant improvements over both, the On-Off
controller and the initial FLC controller. In this case, all the goals required by
experts were met, amply exceeding the expected results.

A good trade-off between energy and stability was achieved for all the ob-
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Table 4: Methods Considered for Comparison

Method Description
C-S Classical Tuning and Rule Selection
GL-S Global Lateral Tuning and Rule Selection
LL-S Local Lateral Tuning and Rule Selection

Table 5: Results obtained combining rule selection with tuning approaches

PMV CO2 Energy Stability
MODEL #R O1 O2 O3 O4 % O5 %

ON-OFF − 0.0 0 0 3206400 − 1136 −
FLC 172 0.0 0 0 2901686 9.50 1505 -32.48

Selection with Classical Tuning
C-S1 94 0.0 0 0 2540065 20.78 1294 -13.91
C-S2 109 0.1 0 0 2492462 22.27 989 12.94
C-S3 100 0.1 0 0 2578019 19.60 887 21.92

Selection with Global Lateral Tuning
GL-S1 105 1.0 0 0 2218598 30.81 710 37.50
GL-S2 115 0.4 0 0 2358405 26.45 818 27.99
GL-S3 118 0.8 0 0 2286976 28.68 872 23.24

Selection with Local Lateral Tuning
LL-S1 133 0.5 0 0 2311986 27.90 788 30.63
LL-S2 104 0.6 0 0 2388470 25.51 595 47.62
LL-S3 93 0.5 0 0 2277807 28.96 1028 9.51

tained models, maintaining the remaining criteria within the optimal values. GL-
S presents improvement rates of about a 28.6% in energy and about a 29.6% in
stability. Since the remaining criteria for comfort and air quality are within the
requested leves. Moreover, the proposed algorithm presents a good convergence
and seems to be independent of random factors.

Figure 14 represents the initial and the final data base for the genetic FLC
taking as final DB the first solution for global tuning with selection in Table 5. It
shows that small variations in the membership function parameters cause large
improvements in the FLC performance.

Figure 15 represents the decision tables of the model obtained from GL-S
considering the first seed (see Section 3.2). In this case, a large number of rules
have been removed from the initial FLC, obtaining much simpler models (more
or less 70 rules were eliminated in each run). This fact improves the system
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readability, and allows us to obtain simple and accurate FLCs.

7.3 Analyzing Both Approaches

In order to see how the consideration of the rule selection affects to the tuning
approaches, Table 6 presents a comparison. The averaged results obtained from
the three different runs performed in the previous subsections are shown in the
table.

Table 6: Comparison among the different methods

PMV CO2 Energy Stability
MODEL #R O1 O2 O3 O4 % O5 %

ON-OFF − 0.0 0 0 3206400 − 1136 −
FLC 172 0.0 0 0 2901686 9.50 1505 -32.48

Averaged Results
S 160 0.1 0 0 2886422 9.98 1312 -15.52
C 172 0.0 0 0 2586717 19.33 1081 4.84

GL 172 0.9 0 0 2325093 27.49 1072 5.66
LL 172 0.7 0 0 2369013 26.12 926 18.52

C − S 109 0.1 0 0 2536849 20.88 1057 6.98
GL− S 113 0.7 0 0 2287993 28.64 800 29.58
LL− S 110 0.5 0 0 2326088 27.46 804 29.26

The methods combining the rule selection with the tuning approaches has
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yielded much better results than post-processing approaches separately, showing
the good results that the global lateral tuning together with a rule selection in
this problem. Moreover, since the initial rules and membership functions remains
fixed, the interpretability level obtained is very near to the original one.

It is notorious the fact that the simplified FLCs present much better results
that the ones obtained by only tuning approaches. The simplified FLCs only
maintain a 64% of the initial rules. On the other hand, considering rule selection
helps to reducing the search space and favor the ability of such technique to
obtain good solutions.

Analyzing the results presented in Table 6 we can point out the following
conclusions:

• The global lateral tuning improvement of the system behavior in optimiza-
tion of the energy consumption, particularly when this approach is com-
bined with rule selection.
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• Combining the local lateral tuning with rule selection obtain a model with
high stability level maintaining a high level of energy savings.

• The lateral tuning methods with rule selection allow to removing inefficient
and redundant rules with the tuning of parameters, obtaining results with
high percentage of energy and stability savings.

8 Concluding Remarks

In this work, we propose the use of tuning approaches together with a rule se-
lection to develop accurate FLCs dedicated to the control of HVAC systems con-
cerning energy performance and indoor comfort requirements. To do so, a GA
considering an efficient approach to perform tuning approaches and rule selection
has been developed.

The proposed technique has yielded much better results than the classical
On-Off controller showing its good behavior on these kinds of complex problems.
It is due to the following reasons:

• The lateral tuning reduce the search space in complex problem. These
approaches offers a great improvement of the system accuracy and obtain
an interpretable model.

• The complementary characteristics that the use of tuning approaches and
the rule selection approach present. The ability of rule selection reduce
number of rules by only selecting the rules presenting a good cooperation
is combined with tuning approaches.

A Acronyms

Acronym - Meaning

BEMS - Building Energy Management System
FLC - Fuzzy Logic Controller

FRBS - System modeling with fuzzy rule-based system
GA - Genetic Algorithm

HVAC - Heating, Ventilating, and Air Conditioning
KB - Knowledge Base

PMV - Predicted Mean Vote index for thermal comfort
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