
Rule mining with GBGP to improve
web-based adaptive educational systems

C. Romero, S. Ventura, C. Hervás & P. González
Department of Computer Sciences and Numerical Analysis
University of Cordoba, Spain

Abstract

In this chapter we describe how to discover interesting relationships from
student’s usage information to improve adaptive web courses. We have used
AHA! to make courses that adapt both the presentation and the navigation
depending on the level of knowledge that each particular student has. We
use data mining methods for providing feedback to courseware authors. The
discovered information is presented in the form of prediction rules since these
are highly comprehensible and they show important relationships among
the presented data. The rules will be used to improve courseware, specially
. We propose to use (GBGP) with multi-objective optimization techniques
as rule discovery method. We have developed a specific tool named EPRules
(Education Prediction Rules) to facilitate the knowledge discovery process
to non-experts users in data mining.

1 Introduction

In the past years, we have seen an exponential growth in the use of web-
based technology in distance learning systems. At the same time, differ-
ent artificial intelligence techniques have been applied to these systems to
improve students’ learning, leading to what is know as Intelligent Tutoring
Systems. The union of web-based learning with Intelligent Tutors has given
rise to the current Web-based Educational Hypermedia Adaptive Systems
[1] that allow adapting the teaching to each individual student through
Internet. But the methodology used for its construction is static. Once the
construction of a course is concluded and it is published in the Web for
its use, the system logs information about the users’ interaction with the

course. However, teachers only use this information for student evaluation.
We propose a dynamic construction methodology that uses the system usage
information to discover information that will allow the teacher to improve
the course. The application of knowledge discovery techniques and in web-
based education systems is a very novel and promising research area [2].
The same idea has been successfully used for a long time in e-commerce
systems [3]. But whereas the e-commerce objective is to guide clients in
making purchase decisions, the e-learning objective is to guide students in
learning. Currently there are a lot of tools, both commercial and freeware,
to carry out data mining tasks, and mainly rule discovery. Among all these,
DBMiner [4] and Weka [5] stand out because they are very popular pub-
lic domain systems and they have an integrated graphic environment that
lets them carry out almost all data mining tasks. The main inconvenience
is that these tools can be difficult to use for a non-expert in data mining
(teachers are typically not experts in data mining). In addition they are of
a general purpose nature, so they can’t carry out a specific treatment of
domain knowledge. In particular they do not contain features that are spe-
cific to the area of Adaptive Systems for Web-based Education (ASWEs)
[1]. To resolve these problems we have developed a specific tool that has
been denominated EPRules (Education Prediction Rules), to simplify the
process of discovering prediction rules [6]. We have used AHA! [7] to make
courses that adapt both the presentation and the navigation depending on
the level of knowledge that each particular student has. We have performed
several modifications in AHA! to specialize it and power it in the educa-
tional area. Our objective is to discover relations from the gathered usage
data (reading times, difficulty levels and test results) from student execu-
tions and show the most interesting ones to the teacher so that he can carry
out the suitable modifications in the course to improve it.

In the following, we start describing the use of rule mining techniques
in e-learning systems. Next we show the process of discovering informa-
tion, implemented in EPRules, and the proposed grammar-based genetic
programming for rule discovery. Then, EPRules tool and the performed
tests are described and some instances of the discovered rules are presented.
Finally we present the main conclusions and future work.

2 Data mining in e-learning systems

is a knowledge discovery process to find previously unknown, potentially
useful and non-trivial patterns from large repositories of data [4]. is the
application of data mining techniques to extract knowledge from web data.
There are three web mining categories: web content mining, web struc-
ture mining and web usage mining [3]. Web usage mining is the more rel-
evant technique for e-learning systems. Web usage mining generally refers
to the application of data mining techniques on web logs and meta-data.
Frequently used methods in web usage mining are:

• Association rules. Associations between web pages visited.
• Sequence analysis. Analyzing sequences of page hits in a visit or

between visits by the same user.
• Clustering and classification. Grouping users by navigation behaviour,

grouping pages by content, type, access, and grouping similar naviga-
tion behaviours.

are interesting relationships discovered among data items [8]. The typi-
cal example is purchasing analysis, which can identify item pairs frequently
purchased together. The use of rule mining in education is not new but was
already successfully employed in several web-based educational systems. In
their pioneering article, Zäıane [2] proposes the use of web mining tech-
niques to build an agent that could recommend on-line learning activities
or shortcuts in a course web site based on learner’s access history to improve
course material navigation as well as assist the online learning process. In
other research, Wang [9] describes a set of tools for analyzing browsing log
files based on data mining techniques such as association mining and col-
laborative filtering. Related research has been carried out by Yu et. al.[10],
they use data mining technology to find incorrect student behavior. They
modify traditional web logs, and apply fuzzy association rules to find out
the relationships between each pattern of learner’s behavior, including time
spent on-line, numbers of articles read, number of articles published, num-
ber of questions asked, etc. In other research, Ha et. al. [11] proposes to
use web page traversal path analysis for customized education and web
page associations for virtual knowledge structures. Finally, Minaei-Bidgoli
and Punch [12] introduce an approach for predicting student performance,
they use clustering web-based assessment resources and discover interesting
association rules within a web-based educational system. They use genetic
algorithms to optimize a combination of multiple classifiers by weighing
feature vectors.

All these current approaches use the visited pages as input to the search,
and hence the discovered information describes relations between pages. In
contrast, our proposed method also searches for relations between concepts
and chapter units of web-based courses, and not only between pages. We
are going to propose a methodology that uses evolutionary algorithms as
association rule mining method for discovering interesting relationships in
student’s usage data to improve adaptive systems for web-based education
[13]. Four main steps are distinguished in our methodology there are:

1. Construction of the course. The teacher builds the Hypermedia Adap-
tive Course providing information of the domain model, the pedagogic
model and the interface module. An authoring tool is usually used
to facilitate this task. Once the teacher finish the elaboration of the
course, all the contents may be published on a web server.

2. Execution of the course. Students execute the course using a web
navigator and in a transparent way the usage information is picked
up and stored into the server in the log file of each student.

3. Rule discovery. After log files have been transferred to a database, the
teacher can apply the evolutionary algorithms to discover important
relationships among the gathered data. We want to discover relation-
ships between knowledge levels, times and scores. The teacher can use
our specific mining tool (EPRules) in order to facilitate this task.

4. Improving the course. The teacher can use the discovered relationships
in order to perform the modifications that he believes more appropri-
ate to improve the performance of the course. For example he can mod-
ify the course’s original structure (joining concepts, changing concepts
from level or chapter, etc.) and content (eliminating or improving bad
questions, bad pages, etc.). To do it, he uses an authoring tool again.

3 Students’ usage data

The usage information we have used to carry out the prediction rule dis-
covery is the usage information captured from a Linux operating system
course. We have developed the Linux course using AHA! [7] because apart
from being a generic adaptive hypermedia system, it captures all the user’s
usage information, and its source code is available so we can (and are allowed
to) modify it. We have modified AHA! in order to increase its adaptation
power in education [14]. More precisely, we wanted to adapt or personalize
the system to each particular student depending on his knowledge level.
To do it, we have modified: the user model, the domain model and the
adaptation engine of AHA!:

• Domain model. A course consists of several chapters with several con-
cepts, but the concepts and the questions related with these concepts
are divided in three levels of difficulty (high, medium or low).

• User model. The student’s knowledge for each concept, initial test or
final test can be only one of these values: 0 (not yet read), 10 (low),
50 (medium) and 100 (high).

• Adaptation engine. Before studying a new chapter the students have
to do an initial adaptive test to discover their initial knowledge level.
The system then presents them only the concepts with this level. Each
concept has an activity to evaluate the student’s knowledge about this
specific concept. When the students have visited all the concepts they
have to do a final (multiple-choice) test to evaluate their knowledge
about the chapter at this level. If they obtain a medium or high level
in the final test they can go to a higher level. If they are in the highest
level already they can go to the next chapter. In each chapter every-
thing starts again (see Figure 1): initial test, studying pages and doing
activities and then the final test.

Adaptive
Test (all

concepts
and a few
questions)

Student
Initial

Chapter
Level

Classic
Test (only
low level

concepts)

Activity Concept
Level

INITIAL
EVALUATION

HIGH LEVEL PAGES

MEDIUM LEVEL PAGES

LOW LEVEL PAGES

Activity

Activity

CONCEPT 1

CONCEPT
EVALUATION

CONCEPT 2 FINAL
EVALUATION

Student
Final

Chapter
Level

CHAPTER 1

COURSE

Classic
Test (only

medium
level

concepts)

Classic
Test (only
high level
concepts)

Figure 1: Modified AHA!.

In figure 2 the Introduction chapter of the Linux course is shown at two
different difficulty levels (beginner and expert). Each version has a different
concept explanation that is suited to the respective knowledge level that it
is expressed by the background color of the page and the text label: Grado
0(beginner), Grado 1(normal) and Grado 2(expert).

Figure 2: Two different levels of the Linux Introduction Chapter.

The AHA! system stores the usage information in two web log files (logs
and model files) in which the information about user navigation and user
knowledge is respectively stored. In addition, we have used another log file

(test file) to store the scores of the questions (activities and tests). The
specific usage information used for data mining is the data logged for each
student’s interaction with the Linux course:

• Times. It’s created from the log files and it contains information about
the Web pages (contents, questions, etc.) and the time in which the
student has accessed to them.

• Levels. It’s created from the model file and it contains information
about the knowledge level (high, medium, low) that the student has
in each concept.

• Success. It’s created from the test file and it contains information
about the success or failure of the students in the questions (tests or
activities).

Before applying rule mining algorithms we have transformed and moved
all the log information to a relational database. This made (repeated) data
extraction easier and increased the speed of the algorithms. During this
process we have carried out the following pre-processing tasks [15]: attribute
selection, data cleaning, discretization of continuous attributes and data
integration.

4 Knowledge discovery process

The typical knowledge discovery process is shown in Figure 3.

PreprocessingInformation Data Mining PostProcessing Knowledge

Figure 3: Typical knowledge discovery process

As we can see data mining is only one step of the full process of knowledge
discovery [16] that consists of:

Preprocessing. It consists of the data gathering, data cleaning, discretiza-
tion of continuous data, attribute selection, data integration, etc.

Data mining. It consists of the application of a data mining task: classifi-
cation, regression, clustering, rule discovery, etc.

Postprocessing. It consists of the interpretation, evaluation of the obtained
results and the utilization of the discovered knowledge.

Our specific process of knowledge discovery with ASWEs is shown in
Figure 4. It starts with the selection of course usage data, then it applies
data mining algorithms to discover rules and finally the rules selected by
the author can be used to make decisions about how to improve the course.
All this process can be carried out by the teacher or author of the course,
using the EPRules tool [13].

IsUseful?To Apply RuleDiscoveryAlgorithm To AnalyzeRuleDiscoveredKnowledgeTo pick upWeb CourseUsage Data To DoModifications inthe CourseNO YES
Figure 4: Specific knowledge discovery process.

The rule discovery process begins with the selection of the database where
the pre-processed usage data of the course to be used are stored. Then the
knowledge discovery algorithms to be applied must be selected as well as
their specific parameters and both the objective and subjective restrictions
that we want the discovered rules to fulfil. After finishing the algorithm
execution, the group of discovered prediction rules is displayed: the elements
of the rule antecedent and consequent as well as the evaluation measures of
each rule are shown, and it is determined if the group of discovered rules are
interesting or not. This depends on the number of rules, on their quality with
respect to the different measures, and on their semantic meaning. Then it is
decided which of the discovered rules are sufficiently interesting to use them
to take decisions on possible modifications to the course. If the rules are
not considered sufficiently interesting the algorithm is applied again, with
different parameters and restrictions, in order to discover a more interesting
group of rules.

4.1 Rule Discovery with GBGP

IF-THEN rules are one of the most popular forms of knowledge representa-
tion, due to its simplicity, comprehensibility and expressive power [4]. There
are different types of rules depending on the knowledge they store. They are
referred to as: decision rules, association rules, classification rules, predic-
tion rules, causal rules, optimization rules, etc. The types of rules we will
use are the prediction rules and Table 1 shows the precise format of the
rules in EBNF (Extended Backus Naur Form).

The objective of prediction rules [17] is to predict an objective attribute
depending on the values of another group of attributes. Although the syntax
of prediction rules is similar to classification rules that have only one condi-
tion in the consequent, any of the attributes can appear in the consequent
of the rule as it occurs in association rules. We are going to discover pre-
diction rules, doing for that a dependence modeling task. This data mining
task consists of the prediction of relationships among attributes specified (or
not) by the user [15]. are very popular in data mining because they usually
represent discovered knowledge at a high level of abstraction and it can be
used directly in the decision making process. Dependence modeling can be
considered like a generalization of discovering classification rules [18] or a
specialization of association rules [8].

The rule discovery is carried out by (GBGP) [19] using techniques [20]
which let us use several criteria to assess the quality of the rules. Grammar-
based Genetic Programming is a genetic programming paradigm in which
individuals are represented by trees derived from a grammar defined by the
user to specify the solutions of the problem, in our case all the possible
prediction rules. This paradigm has been chosen because it allows a high
expressive power which is going to simplify the interaction with the user,
restricting the grammar so the requested rules will be the only ones gener-
ated. There are plenty of metrics to evaluate the quality of the rules [21, 22],
each one centered on some (different) aspects of quality. However, there isn’t
any metric which clearly surpasses the others in all application domains. For
this reason this problem has been set out like a multi-objective optimiza-
tion problem [20]. In this case there would not be a single attitude function
associated to a metric, but several functions to perform the optimization
at the same time. There are several ways to deal with the multi-objective
optimization problem using evolutionary algorithms: the first one uses the
”aggregation function”, while the second one uses the Pareto Front concept.
In the Pareto Front (which is the one we use) there is a vector of objectives
to optimize within each individual, and the purpose of the algorithms is
to make the solution for the individual converge towards the group of the
best solutions (in terms of all objectives together and not in any specific
objective) [23].

The evolutionary algorithm we have used consists of the following steps
(Michalewicz, 96): The first step is Initialization, next Evaluation, Selec-
tion and Reproduction steps are repeated until the Finalization condition

Table 1: IF-THEN rule format in EBNF.

<rule> ::= IF<antecedent>THEN<consequent>
<antecedent> ::= <antecedent>AND<condition>|<condition>

<consequent> ::= <condition>

<condition> ::= <level-attribute> = <level-value> |
<time-attribute> = <time-value> |
<success-attribute> = <success-value>

<level-attribute> ::= LEVEL.Name of a valid level attribute
<time-attribute> ::= TIME.Name of a valid time attribute
<success-attribute> ::= SUCCESS.Name of a valid success attribute
<level-value> ::= BEGINNER | NORMAL | EXPERT
<time-value> ::= HIGH | MEDIUM | LOW
<success-value> ::= YES | NO

is fulfilled.
• Initialization consists of generating a group of initial rules specified

by the user. They are generated from the most frequent values in
the database. We use a Michigan approach in which each individual
(chromosome) encodes a single rule. We use encoding scheme value
in which a rule is a linear string of conditions, where each condition
is a variable-value pair. The size of the rules depends on the number
of elements in antecedent and the last element always represents the
consequent. The generic format of the rules we are going to discover
in Backus Naur Form (BNF) is shown in Table 1.

• Evaluation consists in calculating the fitness of the current rules. The
fitness function used is made up of a 3-valued vector in which each
value measures one of the three main aspects of the discovered knowl-
edge using a data mining algorithm [15], that is, comprehensible, inter-
estingness and accuracy. The metrics selected as partial objectives are
the ones named certainty factor measure [24], interestingness measure
[22] and simplicity measure [25].

• Selection chooses rules from the population to be parents to crossover
or mutate. We use rank-based selection that first ranks the population
and then every rule receives fitness from its ranking. The worst will
have fitness 1, second worst 2, etc. and the best will have fitness N
(number of rules in population). Parents are selected according to their
fitness. With this method all the rules have a chance to be selected.

• Reproduction consists of creating new rules, mutating and crossing
over current rules (rules obtained in the previous evolution step).
Mutation consists of the creation of a new rule, starting from an older
rule where we change a variable or value. We randomly mutate a vari-
able or values in the consequent or antecedent. Crossover consists of
making two new rules, starting from the recombination of two existent
rules. In recombination the antecedent of a rule is joined to the conse-
quent of another rule in order to form a new rule and vice versa (the
consequent of the first rule is joined to an antecedent of the second).

• Finalization is the number of steps or generations that will be applied
to the genetic process. We could also have chosen to stop when a
certain number of rules are added to the final rule vector.

5 EPRules tool

The EPRules tool [6] is a visual tool to discover prediction rules and it is
oriented to be used by the teacher or author of the course. It has been imple-
mented in the Java programming language and its main characteristic is its
specialization in education through attributes, filters and specific restric-
tions for the ASWE domain. Furthermore, it is a dynamic tool, because it
lets the (advanced) user add new rule discovering algorithms and new rule
evaluation measures, by modifying only some configuration files (Java prop-

erties files) and by selecting the new types in the algorithm directory or the
new evaluation measures. The graphic interface of the EPRules application
consists of four main windows:

• Data input: In this window (Figure 5) you can either open an existing
database with the usage data of a course or create a new one and
add new students to it. The course usage files (students’ log files)
must be selected in order to be pre-processed and integrated into a
relational database. We have also transformed continuous attributes
into discrete attributes using one of the following unsupervised global
methods: equal-width method, equal-frequency method and manual
method (in which you have to specify the cut-off points.). We have
only done discretization of the time attribute, assigning three values:
HIGH, MEDIUM and LOW.

Figure 5: Data input window.

• Data view: If a course database has been opened from this window all
students’ pre-processed usage data can be visualized. These data are
about the access times, correct answers and knowledge levels obtained
by students for the different web pages (activities and contents) that
make up the course. You can select either visualizing all students’ data
or a specific student’s data, or just about a particular chapter of the
course or about a specific concept of the chapter, or the visibility and
difficulty level of a particular chapter (high, normal, low), or a type
of particular information (time, level or correct answers).

• Rule discovery: This is the most important part of the tool because
this is where the different algorithms for rule discovery are applied.
The implemented algorithms are algorithms for decision tree building

like ID3 [18], an algorithm for association rule discovery like Apri-
ori [8], an algorithm for induction rules like Prism [26] and different
versions of evolutionary algorithms, specifically the grammar based
genetic programming algorithm with or without multi-objective opti-
mization (Pareto). You can select the algorithm to use and its partic-
ular parameters of execution (figure 6) and also the subjective restric-
tions that the rules have to fulfil (figure 7), so that the rules finally
shown to the user are really interesting for him.

Figure 6: Algorithms window.

Figure 7: Restrictions window.

• Results: This window appears automatically after finishing the algo-
rithm execution and lets us visualize all the discovered prediction rules
(Figure 8). For each discovered prediction rule the conditions of the
rule antecedent and consequent are shown and then all the values for
each rules evaluation measure [22, 21] (certainty factor, interesting-
ness, simplicity, confidence, support, interest, gini, laplace, etc., cur-
rently 40 different available measures). In a predetermined way, they
appear ordered from the first discovered one to the last one, but they
can be rearranged taking into account a condition or the value of any
measure by simply clicking the desired column.

Figure 8: Results window.

6 Experimental results

To carry out the tests we have used the log information of 50 students of
Computer Science Engineering at the Cordoba university taking a course
about the LINUX operating system. The course was developed with (and
served through) the AHA! system [7]. Different tests have been carried out
in order to compare the results that each implemented algorithm produces
in the task of knowledge discovery. The objective is to compare the num-
ber of discovered rules in each case and the quality of them based on the
previously set out measures about accuracy, interestingness and compre-
hensibility. Because evolutionary algorithms are not deterministic, the evo-
lutionary algorithms have been executed 10 times, and we have used the
average values of all the executions. Furthermore, three different tests have
been carried out: first using all data, then only the frequent data (those

with a support higher than 0.5) and finally, the range data (those with a
support higher than 0.2 and lower than 0.9).

The obtained results show (Table 2, 3, 4) that, in general, evolutionary
algorithms generate a lower number of rules but with higher interest than
classic algorithms, making them more suitable to be used on-line, like for
example in the extraction of knowledge in an adaptive system of education.
Classic algorithms, and specially Apriori, produce very exact rules, but fail
when generating rules with a higher interest and, furthermore, the length
of the produced rules makes these rules difficult to understand. In addition,
when we use all data (this could happen when the user wants to extract
global information about the system without applying any type of restric-
tion over the group) it generates a group of rules so large that it becomes
impossible to exploit the rules later. The obtained results using the pro-

Table 2: Number of discovered rules.

Algorithm All Range Frequent

ID3 474 131 89
Prism 657 172 62
Apriori 5960 491 70
AE-GBGP 198 162 51

Table 3: Percentage of exact rules.

Algorithm All Range Frequent

ID3 46,0 51,9 60,3
Prism 71,9 53,7 91,9
Apriori 84,3 90,0 93,0
AE-GBGP 76,5 86,1 96,3

Table 4: Percentage of interesting rules.

Algorithm All Range Frequent

ID3 1,5 7,6 15,6
Prism 2,5 11,6 49,3
Apriori 3,6 7,9 53,1
AE-GBGP 21,9 60,4 76,6

posed evolutionary algorithms show that, in general, these algorithms pro-
duce a lower number of rules than classic algorithms. Moreover, the use of
algorithms based on Pareto Front (MOGA and NSGA) let us optimize the
three objectives at the same time, producing in all the executions the higher
proportion of accurate, comprehensible and interesting rules.

6.1 Description of the discovered information

The main objective of our work is to discover a group of useful and inter-
esting rules and to present them to the teacher so that he can easily take
decisions about how to improve the course. Semantically, the discovered
rules express the following relationships:

IF Level|Time|Success AND ...
THEN Level|Time|Success

Where Level, Time and Success are expressions referring to users’ attained
knowledge state (BEGINNER, NORMAL, EXPERT), the reading time for
pages (HIGH, MEDIUM, LOW), and to information on students’ successes
and failures in the test and activities questions (YES, NO). Taking the dis-
covered rules as a basis the teacher can decide which of the expressed rela-
tionships are desirable or undesirable, and what can be done to strengthen
or weaken them (namely changing or modifying the contents, structure and
adaptation of the course). The discovered rules show different types of rela-
tionships depending on which attributes are in the rule consequent:

• Time. It shows which attributes (in the rule antecedent) have an influ-
ence on the time (attribute of the rule consequent).

• Level. It shows which attributes (in the rule antecedent) have an influ-
ence on the level (attribute of the rule consequent).

• Success. It shows which attributes (in the rule antecedent) have an
influence on the success (attribute of the rule consequent).

These relationships can make reference to chapters (levels obtained in
initial and final tests) or to concepts (times, successes and levels obtained
in exposition content pages and evaluation activities) of web-based adap-
tive courses. Using these discovered relations a teacher can make decisions
about which modifications in the course are the most appropriate in order
to increase the relationship (if he considers it to be desirable) or on the con-
trary to eliminate the relationship (if he considers it not to be desirable),
changing or modifying the contents, the structure or the adaptation of the
course.

Next we are going to describe the meaning and the possible use of several
discovered rules.

IF LEVEL.interface-network-high = EXPERT THEN
LEVEL.tcpip-telnet-medium = EXPERT
(Interest=0.57, Factor Certainty=0.75, Simplicity=1)

This rule shows that the knowledge level obtained in the evaluation activ-
ities of the two mentioned concepts have been simultaneously very high
(EXPERT). This indicates that the concepts (NETWORK, with HIGH dif-
ficulty level in the INTERFACE chapter, and TELNET, with MEDIUM
difficulty level in the TCPIP chapter) may be related to each other. In this
case, the teacher should check the presentation content of both concepts
and try to find what the reason of the relationship is. And he should then
decide if joining both concepts into a single concept, putting both concepts
in the same chapter, setting them to the same level of difficulty, correcting
the rules that assign levels, or any other modification is most appropriate. In
this particular rule example we have considered that both concepts should
have the same level of difficulty. But if the levels refer to initial or final test
instead of activities, it can be concluded that the chapters are related. Then
the teacher can join the chapters, or put them one after the other, or on the
contrary, create more distance between them.

IF SUCCESS.characteristic-introduction-high(2) = NO AND
TIME.characteristic-introduction-high(2) = HIGH THEN}
LEVEL.characteristic-introduction-high = EXPERT
(Interest=0.65, Factor Certainty=0.87, Simplicity=0.5)

This second rule shows that students, evaluated as EXPERT in the con-
cept CHARACTERISTIC in the INTRODUCTION chapter at the HIGH
difficulty level, fail question number two of the activity of this concept, and
they also need a HIGH time to answer that question. So, this rule shows
that something is wrong with this question (bad or not clear enunciate,
several or none correct answers, etc.) and the teacher should review that
question to see what happen.

7 Conclusions and future work

In this paper we have introduced a visual tool to discover knowledge in the
form of prediction rules in order to help teachers to improve adaptive Web-
based courses. Particularly, we have proposed the use of Grammar-based
genetic programming with multi-objective techniques. The quality of the
results, depending on the number of rules obtained and their interestingness,
accuracy and comprehensible factor of the rules, is higher than for a number
of classic algorithms that use only one measure or a composition of some of
them to evaluate the rules. Regarding the usability of the discovered rules
for taking decisions about the modifications to be carried out in ASWEs,
the different types of rules, and the usefulness that they can have to improve
the course have been described and illustrated using specific instances of the
discovered rules in a Linux course. A specific tool, named EPRules, has been
developed in order to simplify the whole process of knowledge discovery.
This tool lets us carry out the pre-processing of usage data in web courses,
the selection of restrictions on the type of information to be discovered as

well as the application of data mining algorithms to extract the rules and
to show them. Currently we are working on the following issues:

• Complete automation of the knowledge discovery process in ASWEs,
so that the discovered rules can be applied directly on the course,
without manual intervention by the teacher or author of the course,
except for accepting or rejecting the changes proposed by the rules.

• Use other metrics related to the subjective interest of professionals in
the discovered rules. Some works has been done using evolutionary
algorithms [27] in which there isn’t an aptitude function but individ-
uals are assessed by an expert in each cycle of the algorithm.

• Use parameter-free rule mining algorithms [28]. In this way, we don’t
need to ask to the courseware authors for the specific values of the
algorithm’s parameters, and they don’t need to understand what is
the role of these parameters in the data mining process.

Acknowledgements

The authors gratefully acknowledge the financial support provided by the
Spanish Department of Research of the Ministry of Science and Technology
under TIC2002-04036-C05-02 Projects.

References

[1] Brusilovsky, P., Adaptative educational systems on the world-wide-
web: A review of available technologies. Int. Conf. on Intelligent Tutor-
ing System, 1998.

[2] Zaiane, O.R., Web usage mining for a better web-based learning envi-
ronment. Technical report, 2001.

[3] Spiliopoulou, M., Web usage mining for web site evaluation. Commu-
nicacions of the ACM, 2000.

[4] Klosgen, W. & Zytkow, J., (eds.) Handbook of Data Mining and Knowl-
edge Discovery. Oxford University Press, 2001.

[5] Witten, I.H. & Frank, E., Data Mining. Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann,
1999.

[6] Romero, C., Ventura, S. & de Bra, P., Discovering prediction rules in
aha! courses. 9th International Conference on User Modeling, John-
stown, PA, USA, pp. 25–34, 2003.

[7] de Bra, P. & Ruiter, J., Aha! adaptive hipermedia for all. Proc. of the
WebNet Conference, pp. 262–268, 2001.

[8] Agrawal, R., Imielinski, T. & Swami, A., Mining association rules
between sets of items in large databases. ACM SIGMOD International
Conference on Management of Data, 1993.

[9] Wang, F., On analysis and modeling of student browsing behavior in

web-based asynchronous learning environments. International Confer-
ence on Web-based Learning, Hong Kong, pp. 69–80, 2002.

[10] Yu, P., Own, C. & Lin, L., On learning behavior analysis of web based
interactive environment. International Conference ICCEE, Oslo, 2001.

[11] Ha, S., Bae, S. & Park, S., Web mining for distance education. APAN
Conference, Beijing, 2000.

[12] Minaei-Bidgoli, B. & Punch, W., Predicting student performance: an
application of data mining methods with the educational web-based
system lon-capa. IEEE Frontiers in Education, pp. 1–6, 2003.

[13] Romero, C., Ventura, S. & de Bra, P., Knowledge discovery with genetic
programming for providing feedback to courseware author. User Mod-
eling and User-Adapted Interaction: The Journal of Personalization
Research, 14(5), pp. 425–465, 2005.

[14] Romero, C., de Bra, P., Ventura, S. & de Castro, C., Using knowledge
levels with aha! for discovering interesting relationship. World Congress
ELEARN, Montreal, 2002.

[15] Freitas, A.A., Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer Verlag, 2002.

[16] Mitraa, S., S.K., S.P. & Mitra, P., Data mining in soft computing frame-
work: A survey. IEEE Transaction on Neural Networks, 13(1), pp. 3–14,
2001.

[17] Noda, E., Freitas, A. & Lopes, H.S., Discovering interesting prediction
rules with a genetic algorithm. Conf. on Evolutionary Computation,
1999.

[18] Quilan, J.R., Generating production rules from decision trees. Proceed-
ing of IJCAI-87, 1987.

[19] Whigham, P.A., Gramatically-based genetic programing. Proceedings
of the Workshop on Genetic Programming, pp. 33–41, 1995.

[20] Coello, C., Veldhuizen, D. & Lamount, G., Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer, 2002.

[21] Lavrac, N., Flach, P. & Zupan, B., Rule evaluation measures: A unify-
ing view. ILP-99, Berlin Heidelberg, 1999.

[22] Tan, P. & Kumar, V., Interesting measures for association patterns.
Technical Report TR00-036, Department of Computer Science, Uni-
versity of Minnnesota, 2000.

[23] Fonseca, C.M. & Fleming, P.J., Genetic algorithms for multiobjec-
tive optimization: Formulation, discusin and generalization. Conf. on
Genetic Algorithms, San Mateo, CA, 1993.

[24] Shortliffe, E. & Buchanan, B., A model of inexact reasoning in
medicine. Mathematical Biosciences, 23, pp. 351–379, 1975.

[25] Liu, J.L. & Kwok, J.T., An extended genetic rule induction. Conf. On
Evolutionary Computation, 2000.

[26] Cendrowska, J., Prism: an algorithm for inducing modular rules. Jour-
nal of Man-Machine Studies, 27, pp. 349–370, 1987.

[27] Williams, G.J., Evolutionary hot spots data mining. an architecture

for exploring for interesting discoveries. Conf. on Knowledfe Discovery
and Data Mining, 1999.

[28] Keogh, E., Lonardi, S. & Ratanamahatana, C., Towards parameter-free
data mining. ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Seattle, WA, pp. 22–25, 2004.

