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Summary. We introduce the notion of expected pair-wise comparison of a fuzzy
random variable. It inludes some well-known parameters such as the quadratic en-
tropy of a random variable, the upper probability induced by a random set or the
scalar variance of a fuzzy random variable as particular cases. The special case of
expected dissimilitude is highlighted and shown as a useful alternative to the scalar
variance when the images of the fuzzy random variable are not necessarily convex,
nor in a numerical scale.
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1 Introduction

Fuzzy random variables (frv for short) were first introduced by Féron in 1976,
as functions that assign a fuzzy subset to each possible output of a random
experiment, extending the notions of random variable and random set. Later
on, several variants were proposed. The different definitions in the literature
vary on the measurability conditions imposed to this mapping, and in the
properties of the output space, but all of them intend to model situations
that combine fuzziness and randomness. Apart from the differences among
the formal definitions, fuzzy random variables have been also given different
interpretations. Thus, a frv can be viewed ([3]) as a random object, an ill-
known random variable or as a conditional upper probability. Each of those
interpretations leads to a different way of extending parameters as the expec-
tation, the variance, etc. The case of the variance is discussed in detail in [3].
In this paper, we will treat fuzzy random variables as random objects. We
will introduce the notion of expected pair-wise comparison and we will discuss
in some detail the specific notion of expected dissimilitude measure. The ex-
pected dissimilitude will average the “degrees of difference” or “divergence”
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between pairs of outcomes of the frv. In order to find a suitable quantifica-
tion the differences between two outcomes of the frv, we will provide a brief
discussion about some previous notions in the literature such as divergence
measures ([8]) or distance measures ([6]), and we will introduce the notion of
dissimilitude. Once being able to quantify such differences, the expected diver-
gence will average them into a single quantity. We will show how the expected
dissimilitude encompasses some different kinds of existing measures: on the
one side, it extend the notion of scalar variance of a frv ([3, 7]). On the other
hand, it also extends the quadratic entropy of a random variable. So, depend-
ing on the specific dissimilitude measure we use, we can extend the notion of
variance, entropy, or a mixture of them. Furthermore, it allows us to quantify
the expected difference between the different outcomes of the frv when the
universe is not a numerical scale. The existing definitions of scalar variance
are not easily adaptable to this kind of universes, because they involve the
notion of expectation. In this paper, we do not average the dissimilitude de-
gree between each possible outcome and the expectation, but between pairs
of outcomes, by taking into account a pair of independent copies of the frv.

The rest of the paper is organized as follows: in Section 2, we briefly discuss
the state of art about comparison measures, we provide some new results
relating the notions of dissimilarity [2], divergence [8], distance [6] and metric,
and we introduce the new notion of dissimilitude measure. In Section 3, we
propose the concepts of expected pair-wise comparison and expected pair-wise
dissimilitude of a frv, studying some interesting properties, and illustrating
them with examples. We end the paper with some concluding remarks.

2 Dissimilitude measures for pairs of fuzzy sets

As we pointed out in the last section, an initial step in the construction of
an expected dissimilitude measure will be the study of different options to
compare pairs of outcomes of a fuzzy random variable. Let us denote by
F(U) the family of fuzzy subsets of a universe U . A comparison measure [2]
is a mapping S : F(U)×F(U) → [0, 1] expressed as:

S(A,B) = GS(A ∩B,A−B,B −A), ∀A,B ∈ F(U),

for some GS : F(U)×F(U)×F(U) → [0, 1]. This notion includes the idea of
similarity and dissimilarity, and other kinds of comparison of pairs of fuzzy sets
in a common framework. In this paper, we will slightly relax the assumptions
for a comparison measure, and we will not force them to take values in the
unit interval. We will pay attention to the quantification of the the degree
of “difference” between two fuzzy outcomes. To this purpose, we will survey
some previous proposals in the literature and we will check some properties
and relations between them.

Montes el al. introduced in [8] an axiomatic definition for the divergence
between pairs of fuzzy subsets based on the following natural properties:
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• It is nonnegative and symmetric.
• It becomes zero when the two fuzzy sets coincide.
• It decreases when two fuzzy sets become “more similar”.

Different formalizations of the third idea lead to different axiomatic defini-
tions. Two of them are:

Definition 1. (Bouchon-Meunier et al., [2]) Consider a universe U and let
F(U) the family of fuzzy subsets of U . A comparison measure S : F(U) ×
F(U) → R is a dissimilarity measure when, for any pair A,B ∈ F(U) the
following conditions hold:

Diss1.- GS does not depend on its first argument (intersection) and it is
increasing in the other two (differences) w.r.t. the fuzzy inclusion.

Diss2.- S(A,A) = 0

Definition 2. (Montes et al., [8]) Consider a universe U and let F(U) the
family of fuzzy subsets of U . A mapping D : F(U)×F(U) → R is a divergence
measure when, for any pair A,B ∈ F(U) the following conditions hold:

Div1.- D(B,A) = D(A,B).
Diss2.- D(A,A) = 0.
Div3.- D(A ∪ C,B ∪ C) ≤ D(A,B).
Div4.- D(A ∩ C,B ∩ C) ≤ D(A,B).

There is a strong relationship between dissimilarities and divergences: ac-
cording to the following result, the divergence between two crisp sets A and B
does not depend on their intersection, and it increases with their difference.
(We omit the proof.)

Proposition 1. Consider the function D : F(U)×F(U) → R

• If D satisfies axiom Div3, then D(A,B) ≤ D(A−B,B−A), ∀A,B ∈ ℘(U)
(the class of crisp subsets of U).

• If D satisfies axiom Div4, then D(A,B) ≥ D(A − B,B − A), ∀A,B ∈
F(U).

• If D satisfies axiom Div4, then D(A,B) ≤ D(C,B), for all A,B,C ∈ ℘(U)
such that C ∩B = ∅ and A ⊆ C.

Thus, the above measures (divergence and dissimilarity measures) focus on
the differences between two fuzzy sets, but they do not care about their simi-
larities. Sometimes, we need to take into account the similarities between sets,
other times, we do not. Let us illustrate this with an easy example.

Example 1. Consider the set of languages:

U = {English (e), Spanish (s), French (f), Italian (i), Dutch (d), Russian (r)}
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and let the crisp subsets E = {e, s, f, i, d}, G = {e, s, f, d, r}, A = {i} and
V = {r} denote the respective communication skills of four persons called
Enrique, Gert, Angelo and Vladimir. Enrique and Gert share much more
language skills than Angelo and Vladimir, but those commonalities cannot be
detected by means of the above measures (divergences and dissimilarities). If
we just wanted to focus on the differences, those measures would be useful.
But, if also take into account their common skills, we should use different
comparison measures.

We can find in the literature some other measures that detect the differ-
ences between two fuzzy subsets, but they are not necessarily independent on
the commonalities. Let us show some of them:

Definition 3. (Fan J, Xie W, [6]) Consider a universe U and let F(U) the
family of fuzzy subsets of U . A mapping d : F(U)× F(U) → R is a distance
measure when:

Div1.- d(B,A) = d(A,B), ∀A,B ∈ F(U).
Diss2.- d(A,A) = 0, ∀A ∈ F(U).
DM3.- d(D,Dc) = maxA,B∈F(U) d(A,B), for any crisp set D ∈ ℘(U).
DM4.- If A ⊆ B ⊆ C, then max{d(A,B), d(B,C)} ≤ d(A,C).

There are some relationships between divergence and distance measures. In
fact, it is checked in [8] that any function satisfying Div3 and Div4 fulfills
DM4. Furthermore, any local 3 divergence satisfies DM3. Thus, any local di-
vergence measure satisfies Definition 3. Let us mention that the term distance
measure is used in [6] without referring to the mathematical notion of metric.
Nevertheless, both notions are somehow related, as they quantify the degree
of difference between fuzzy subsets. We can find in the recent literature some
metrics and pseudo-metrics defined on classes of fuzzy sets, such as the well
known Hamming distance, the Puri-Ralescu [9] pseudo-metric4 and other fam-
ilies of metrics proposed in [1, 7, 10] on some specific classes of convex fuzzy
sets, for instance.

We can find some relationships between the above metrics and the no-
tions of divergence, distance and comparison measure. In this short paper, we
will only list them, without referring to formal details about the domain of
definition of each measure, and without detailing the proofs:

Proposition 2.

• All the metrics and pseudo-metrics cited above can be expressed as com-
parison measures on their respective domains of definition and they satisfy
axioms Div1, Diss2, Div3 and DM4.
3A divergence measure is called local ([8]) when there exists a function h : [0, 1]×

[0, 1] → R such that: D(A, B)−D(A ∪ {x}, B ∪ {x}) = h(A(x), B(x)), ∀x ∈ U.
4Puri and Ralescu introduce a metric in the class of fuzzy subsets of Rn with

compact and non-empty level cuts. It can be easily extended to more general families
of fuzzy subsets as a pseudo-metric.
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• Only the Hamming distance satisfies axioms Diss1, Div4 and DM3.

According to the above proposition, axioms Diss1, Div4 and DM3 exclude
most of the mentioned (pseudo)-metrics. In the rest of the paper, we will use
the term dissimilitude measure for those comparison measures safisfying Div1,
Diss2, Div3 and DM4.

3 Expected pair-wise comparison of a fuzzy random
variable

Consider a probability space (Ω,A, P ) and a frv defined on it, i.e., an A− σ
measurable mapping X̃ : Ω → F , where σ is a σ-field defined on a certain
class of fuzzy subsets F ⊆ F(U). (This general definition encompasses several
specific proposals in the literature). Any fuzzy random variable induces a
probability measure on σ by means of the formula:

PX̃(C) = P ({ω ∈ Ω : X̃(ω) ∈ C}), ∀ C ∈ σ.

Now consider the product probability P ⊗ P : A ⊗ A → [0, 1] as the only
probability measure satisfying the restriction

(P ⊗ P )(A×B) = P (A) · P (B) ∀A,B ∈ A.

Let X̃1 and X̃2 two (identically distributed) copies of X̃, and consider a com-
parison measure on F , S : F × F → [0, 1].

Definition 4. We define the expected pair-wise comparison of X̃ as the quan-
tity

ES(X̃) =
∫

Ω×Ω

S(X̃1(ω), X̃2(ω′)) d(P ⊗ P )(ω, ω′),

provided that the mapping g(ω, ω′) = S(X̃1(ω), X̃2(ω′)), ∀ (ω, ω′) ∈ Ω ×Ω is
A⊗A− βR measurable.

The above definition generalizes some well-known quantities, as we show
in the following examples.

Example 2. Consider a finite population Ω and the set of languages U =
{e, s, f, i, d, r} of Example 1. Consider the multi-valued mapping Γ : Ω →
℘(U) that assigns to each person ω ∈ Ω the subset of languages in U (s)he
can speak5. The following expected pair-wise comparison measures provide
interesting information about such attribute:

5Let us assume that Γ (ω) 6= ∅, ∀ω ∈ Ω, so everybody is assumed to be able
to speak some language in the set U . Multi-valued mappings represent special cases
of fuzzy-valued mappings. Furthermore, if we consider the power set as the initial
σ-field, they are measurable with respect to any σ-field on the final space.
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• Let us fix an arbitrary subset D ⊆ U . Consider the comparison measure S1

such that GS1 is defined as GS1(A,B,C) = max{M(A∩B),M(A∩Bc)},
where

M(E) =

{
1 if E ∩D 6= ∅,
0 otherwise.

The expected pair-wise comparison of Γ , ES1(Γ ) coincides with the upper
probability ([4]) of D and it represents the proportion of persons in the
population that speak some of the languages included in D. If, for instance,
D is equal to {d}, then ES1(Γ ) represents the proportion of persons that
can speak Dutch, at least.

• Let us fix again an arbitrary subset D ⊆ U . Consider the comparison mea-
sure S2 such that GS2 is defined as GS2(A,B,C) = min{M(A∩B),M(A∩
Bc)}, where

M(E) =

{
1 if E ⊆ D,

0 otherwise.

The expected pair-wise comparison of Γ , ES2(Γ ), coincides with the lower
probability ([4]) of D and it represents the proportion of persons in the
population that do not speak any language outside D.

• Consider the comparison measure S3(A,B) = #(A ∩ B). The expected
pair-wise comparison ES3(Γ ) averages the capacity of communication be-
tween pairs of people in the population.

• Consider the Hamming distance S4(A,B) = dH(A,B) = #(A4B). The
expected pair-wise comparison ES4(Γ ) represents a degree of divergence
about the language skills of the people in the population.

Example 3. The above example can be modified if we have more refined in-
formation about the communication skills of the people. We can use a frv
X̃ : Ω → F(U) to represent those abilities. The membership value X̃(ω)(u)
will represent a degree of preference ([5]) in a [0, 1] scale for the language
u ∈ U . Thus X̃(ω)(u) > X̃(ω)(u′) will mean that the person ω prefers to
speak u than u′, because (s)he is more familiar with it. Those degrees of pref-
erence can be determined as a function of the CEFR levels, for instance. For
a specific dissimilitude measure, the expected dissimilitude of X̃ reflects an
expected degree of difference in the language skills between pairs of persons
in the population.

Example 4. Consider a set of days, Ω, and consider the multi-valued mapping
Γ : Ω → ℘(R), where Γ (ω) = [L(ω), U(ω)] represents the interval of minimum
and maximum temperatures attained in Mieres on a date ω. Several expected
pair-wise comparison measures return different informative quantities such as:
the variance of the min temperatures, the variance of the max temperatures, a
mixture (linear combination) of both variances, the variance of the amplitudes
of the min-max intervals, the proportion of days where the min temperature
exceeds a certain threshold, the variance of the middle points of the intervals,
etc.
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The particular case where the comparison measure S is a dissimilitude is
remarkable. It extends some key notions in the literature, as we show in the
following remarks.

Remark 1. On the one hand, it extends the notion of quadratic entropy of a
random variable: If X̃ represents a random variable X on a finite universe
U = {u1, . . . , un} in the sense that X̃(ω) = {X(ω)}, ∀ω ∈ Ω, and S(A,B) =
dH(A,B) = #A4B is the Hamming distance, then the expected pair-wise
comparison of X̃ is the quadratic entropy of X:

ES(X̃) =
n∑

i=1

n∑
j=1

dH({xi}, {xj})pi · pj =
n∑

i=1

n∑
j=1

(1− δij)pi · pj = 1−
n∑

i=1

p2
i ,

where pi denotes the probability P (X = ui), i = 1, . . . n.

Remark 2. On the other hand, it extends some notions of scalar variance of a
fuzzy random variable [3] in the literature: all the (pseudo-)metrics considered
at the end of Section 2 satisfy the properties of dissimilitude measures. Fur-
thermore, any non-decreasing function of a similitude satisfying the boundary
condition g(0) = 0 is also a dissimilitude. If we construct the similitude mea-
sure S = d2

2 on the basis of any of those distances d, and we take into account
the specific arithmetic used in each context, in order to avoid the explicit use
of the expectation, we can extend the existing notions of scalar variances [3] in
the literature. Furthermore, expected dissimilitude measures even apply when
the images of the frv are not necessarily convex, and/or they do not lay in a
numerical scale, as we have illustrated in Example 2.

Some general properties of expected dissimilitude measures are given in
the following proposition.

Proposition 3. Let S : F × F → R be a dissimilitude measure. Then:

• ES(A) = 0, ∀A ∈ F .
• ES(X̃ ∪A) ≤ ES(X̃), for all frv X̃ and all A ∈ F .
• If S(A,B) =

∑
x∈U g(A(x), B(x)) then E(X̃ ∪ Ỹ ) ≤ ES(X̃) + ES(Ỹ ), for

all frv X̃ and Ỹ .

Example 5. We can illustrate the above properties by referring to the lan-
guage skills of Example 2. The first property would mean that the expected
dissimilitude is null when everybody in the population owns the same com-
munication skills. For the second property, let us assume that all the people
in that population that do not speak Spanish take a course on this language.
Then, the expected dissimilitude measure should decrease. Finally, suppose
that we consider two separate groups of languages, and we consider the com-
munication skills of the people within each group (X̃ denotes the abilities
within the first group of languages, and Ỹ denotes the abilities within the
second group.) Then, the expected dissimilitude in the whole set of languages
cannot be strictly greater than the sum of the expected dissimilitude values
within each group.



8 Inés Couso, Laura Garrido, Susana Montes, and Luciano Sánchez

4 Concluding remarks

The notion of expected comparison of a fuzzy random variable encompasses
several well known parameters associated to random variables, random sets
and fuzzy random variables. In particular, the expected dissimilitude quanti-
fies the dispersion of the outcomes of a fuzzy random variable. It generalizes
some entropies for random variables and also some scalar variances of fuzzy
random variables. The existing definitions of scalar variances that we can find
in the literature [3, 7] are restricted to those situations where the outcomes of
the frv are convex fuzzy subsets of Rn. The new definition applies in a variety
of situations, even for the cases where there is not a numerical scale. We have
illustrated the utility of the new notion with several examples. In future works
we plan to study some additional properties of the expected dissimilitude, for
some specific dissimilitude measures, trying to lay bare the connection with
the general notions of entropy and dispersion.
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