
Substructural Surrogates for Learning
Decomposable Classification Problems

Albert Orriols-Puig1,2, Kumara Sastry2,
David E. Goldberg2, and Ester Bernadó-Mansilla1

1Grup de Recerca en Sistemes Intel·ligents, Enginyeria i Arquitectura La Salle,
Universitat Ramon Llull, Quatre Camins 2, 08022 Barcelona (Spain)

2Illinois Genetic Algorithms Laboratory, Department of Industrial and Enterprise
Systems Engineering, University of Illinois at Urbana-Champaign
aorriols@salle.url.edu, ksastry@uiuc.edu, deg@uiuc.edu,

esterb@salle.url.edu

Abstract. This paper presents a learning methodology based on a sub-
structural classification model to solve decomposable classification prob-
lems. The proposed method consists of three important components:
(1) a structural model, which represents salient interactions between
attributes for a given data, (2) a surrogate model, which provides a
functional approximation of the output as a function of attributes, and
(3) a classification model, which predicts the class for new inputs. The
structural model is used to infer the functional form of the surrogate.
Its coefficients are estimated using linear regression methods. The clas-
sification model uses a maximally-accurate, least-complex surrogate to
predict the output for given inputs. The structural model that yields an
optimal classification model is searched using an iterative greedy search
heuristic. Results show that the proposed method successfully detects
the interacting variables in hierarchical problems, groups them in link-
ages groups, and builds maximally accurate classification models. The
initial results on non-trivial hierarchical test problems indicate that the
proposed method holds promise and also shed light on several improve-
ments to enhance the capabilities of the proposed method.

1 Introduction

Nearly decomposable functions play a central role in the design, analysis, and
modeling of complex engineering systems [28,6,8]. A design decomposition prin-
ciple has been proposed for the successful design of scalable genetic algorithms
(GAs) [8,18,20], genetic programming [25], and learning classifier systems and
genetics based machine learning (GBML) [4,16]. For example, in [4], estima-
tion of distribution algorithms (EDAs) were applied over the rule-based knowl-
edge evolved by XCS [32,33] to discover linkages between the input variables,
permitting XCS to solve hierarchical problems that were intractable with first-
generation XCS.

Nonetheless, previous approaches used the probabilistic models built by
EDAs—GAs that replace variation operators by building and sampling
probabilistic models of promising solution—for recombination. However, the

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 235–254, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

236 A. Orriols-Puig et al.

probabilistic models can also be used to induce the form of surrogates which
can be used for efficiency enhancement of GAs [27,19,26] and GBML [17]. In
this paper, we use the substructural surrogates for learning from decomposable
problems with nominal attributes. Similar to Sastry, Lima, and Goldberg [26],
we use the structural model of EDAs to induce the form of the surrogate and
linear regression for estimating the coefficients of the surrogate. The surrogate
is subsequently used to predict the class of unknown input instances.

In this paper, we discuss the critical components of the proposed methodol-
ogy and outline several ways to implement it. We then propose a greedy search
heuristic for discovering the structural model that minimizes the test error of the
classification model constructed from it. We address this method as greedy Ex-
traction of the Structural Model for Classification (gESMC). We artificially design
a set of hierarchical problems by means of concatenating essential blocks whose
output, provided by a boolean function, serves as the input of another function
that determines the global output of the example. Thus, these problems may be
decomposed and essential blocks should be correctly processed to predict the cor-
rect output. gESMC is able to detect the interactions between variables and build
accurate classification models. Moreover, the system is compared to C4.5 and
SMO. The comparison highlights that extracting the problem structure is essen-
tial to solve hierarchical problems. Finally, we review the limitations of applying
a greedy search to obtain the best structural model, show in which circumstances
these limitations may appear, and propose approaches to overcome them.

The paper is organized as follows. Section 2 discusses the proposed method-
ology followed by a description of gESMC. The test problems designed and used
in this study are discussed in Sect. 4. Section 5 compares the results of gESMC
with C4.5 and SMO on the hierarchical problems. Section 6 discusses some en-
hancements that are yet to be investigated. Section 7 provides summary and
conclusions.

2 Methodology for Learning χ-Ary Input Problems

In this section, we discuss a methodology for learning the structural and the
classification model from a set of labeled examples. The methodology consists of
three layers: (1) the structural model layer , (2) the surrogate model layer , and (3)
the classification model layer . The structural model layer extracts the dependen-
cies between the attributes of the examples in the dataset. These dependencies
can be expressed in form of linkage groups [9,10], matrices [35], or Bayesian net-
works [18]. However the dependencies are represented, the key idea is that the
salient interactions between attributes are used as a basis for determining the
output. The surrogate model layer uses the structural model to infer the func-
tional form of the surrogate, and the coefficients of the surrogate are determined
using linear regression methods. The resulting surrogate is a function that ap-
proximates the output of each input instance. Finally, the classification model
layer uses the surrogate function to predict the class of new input instances.

In essence, we infer the structure of the surrogate from the structural models
of attribute interactions and then use linear regression methods to estimate

Substructural Surrogates for Learning Decomposable Classification Problems 237

the value of the coefficients (or the partial contributions of subsolutions to the
output) of the resulting surrogate function. Finally the surrogate is used to
predict the class of new input instances. Details of each of the three components
are discussed in the following sections.

2.1 Structural Model Layer

The structural model layer is responsible for identifying salient interactions be-
tween attributes, which need to be processed together to determine their contri-
bution to the output. For example, consider a problem with two binary attributes
(x1, x2) and whose output is determined by the x-or boolean function. If we con-
sidered each of the attributes independently, we cannot evolve a function that
computes the output accurately for all possible inputs. However, when we con-
sider the two attributes together, we can easily create a function that accurately
predicts the output for all possible input sequences.

A number of linkage-learning methods [8] can be used to implement the struc-
tural model layer. Here, we use estimation of distribution algorithms (EDAs)
[18,20], which learn the salient interactions between decision variables by build-
ing probabilistic models of promising candidate solutions. These probabilistic
models can be expressed in different forms such as (i) linkage groups [9,10], i.e.,
groups of variables that have a salient interaction; matrices [35], which express
the relationship between pairs or groups of variables, permitting to detect over-
laps in the groups of interacting variables; or Bayesian networks [18], in which
the nodes represent variables and the connections denote salient interactions be-
tween variables. The implementation proposed in the next section uses linkage
groups to express the salient interactions, although it can be extended to other
representations.

In the realm of learning classifier systems (LCSs) or genetics-based machine
learning (GBML), EDAs have been successfully combined with LCSs to extract
the linkages between classifiers’ alleles [4,16,17]. However, unlike previous studies
which used the structural model as a replacement of recombination, in this study
we integrate the structural model and learning with the use of substructural
surrogates.

In order to achieve this integration, the first step is to find the structural
model of the given data. This can be done in several ways. As with EDAs, given
a class of permissible structural models, we can search for the best structural
model. Prior and domain-specific knowledge can also be used to propose the
structural model, and a search mechanism could be used to refine it [1]. In this
study we use a greedy search heuristic that searches for the model structure
that results in the most accurate surrogate model, details of which are given in
Section 3.

2.2 Surrogate Model Layer

The surrogate model layer preprocesses the input examples according to the
structural model and builds a regression model from these preprocessed exam-
ples, as described in [26]. In this section we summarize the procedure of building

238 A. Orriols-Puig et al.

such a surrogate. Consider a matrix D of dimension n × � that contains all the
input examples (where n is the number of examples and � the number of at-
tributes). Once the structural model is built, every linkage group is treated as
a building block [11]. Then, we consider all possible input combinations within
each linkage group to process the input examples.

For example, consider the following structural model of a binary problem of 3
variables: {[x1, x3], [x2]}. That is, there is salient interaction between variables x1
and x3, which are independent from the variable x2. In this case, we consider the
following schemata: {0*0, 0*1, 1*0, 1*1, *0*, *1*}. In general, given m linkage
groups, the total number of schemata msch to be considered is given by:

msch =
m∑

i=1

[
Πki

j=1χi,j

]
, (1)

where χi,j is the alphabet cardinality of the jth variable of the ith linkage group,
and ki is the size of the ith linkage group.

Then, each example in D is mapped to a vector of size msch, creating the
matrix A of dimensions n × msch:

A =

⎛

⎜⎜⎜⎝

a1,1 a1,2 · · · a1,msch

a2,1 a2,2 · · · a2,msch

...
...

. . .
...

an,1 an,2 · · · an,msch

⎞

⎟⎟⎟⎠ , (2)

where ai,j will have value ’1’ if the ith example belongs to the jth schemata, and
’0’ otherwise. Note that, given an example, only one of the schemata for each
linkage group can have value ’1’.

We map different labels or classes of the examples to numeric values. For
example: {class1, class2, · · · , classk} −→ {Z1, Z2, · · · , Zk}. The label or class ci

of each example is also kept in a matrix C of dimensions n × 1:

C =
(
c1 c2 · · · cn

)τ
. (3)

Now, the task of designing the surrogate can be formulated into a linear system
of equations and our objective is to compute the coefficients of the matrix x of
dimensions msch × 1 that satisfy the following equality:

Ax = C. (4)

In practice, we may not find an x that satisfies this expression. For this reason,
we use a multi-dimensional least squares fitting approach. That is, the problem is
reformulated by estimating the vector of coefficients x that minimize the square
error function χ:

χ2 = (Ax − C)T · (Ax − C) . (5)

The problem of least-squares fitting is well-known, and so we do not provide
insight in the resolution methodology herein. The interested reader is referred to
[5,23]. Here, we used the multi-dimensional least squares fitting routine available
with Matlab [24].

Substructural Surrogates for Learning Decomposable Classification Problems 239

2.3 Classification Model Layer

Once we obtain the matrix x with the regression coefficients, the output for a
new example is computed as follows. The example is mapped to a vector �e of
size msch. The mapping procedure used is identical to that used to create matrix
A and as outlined in the previous section, the elements of �e will have a value ’1’
if the example belongs to the corresponding schemata and ’0’ otherwise. Then,
the predicted output is given by:

output = �e · x. (6)

Note that the output is a continuous value, and has to be transformed to one
of the possible class labels. Therefore, we convert the continuous output to the
closer integer Zi in {Z1, Z2, · · · , Zk}, and then, return the class label that cor-
responds to Zi.

In essence, the proposed method relies on the structural and the surrogate
models extracted from the data to build the classification model. Therefore, we
note that if this structural model does not reflect the variable interactions accu-
rately, the accuracy of the classification model will be limited. Thus, a critical
task for the success of the proposed methodology is our ability to find reasonably
accurate structural models. In the next section we propose an implementation
of the methodology that searches iteratively for the best structural model, and
uses the classification model to evaluate its quality. We call this implementation
greedy extraction of the structural model for classification (gESMC).

3 Implementing the Methodology: gESMC

The pseudocode of the implementation of our proposed method is shown in
Algorithm 1. In the initialization stage, the algorithm divides the data into
training and test sets. We start with a structural model where all variables are
treated as independent and build a surrogate function via regression over the
training set as explained in the previous section (see Section 2.2). The quality of
the classification model is evaluated with the test set and stored in the variable
mdl.

Similar to the extended compact genetic algorithm (eCGA) [10], in gESMC
we use a greedy search heuristic to partition the set of attributes into non-
overlapping clusters such that the classification error is (locally) minimized. That
is, starting from a model where variables are treated as independent, we continue
to merge substructures till either (1) the mdl measure becomes less than a user
set threshold θ, or (2) the search produces no improvement. In every iteration of
the inner loop (lines 10 to 13), we merge two linkage groups from the current best
model, create the surrogate and the classification model, and evaluate it. That is,(
m
2

)
new structural models are formed (where m is the number of substructures

in the current best model), and their surrogate functions created and evaluated.
Among the evaluated

(
m
2

)
models, the one with the lowest classification error is

chosen as the current best model for the next iteration if it significantly improves

240 A. Orriols-Puig et al.

Algorithm 1. Building of structural and classification model via a greedy
search.
Data: dataset is the set of labeled examples.
Result: function is the classification function and bestModel the structural

model.
begin1

i ← 02

count ← 03

[train, test] ← divideData (data)4

bestModel ← [1], [2], ..., [n]5

function ←− createSurrogateFunction (bestModel, train) � See Sect. 2.26

mdl ← evaluateModel (bestModel, test)7

isImproving ← true8

while mdl > θ and isImproving do9

for i ∈ {1, ..., length(bestModel) − 1} do10

for j ∈ {i + 1, ..., length(bestModel) − 1} do11

newModel[count] ← joinLinkages(bestModel, i, j)12

newFunction[count] ← createSurrogateFunction (13

newModel[count], train)
newMdl[count] ← evaluateModel (newModel[count], test)14

count ← count + 115

end16

end17

best ← position min. mdl(newMdl) � Selects the best model18

if newMdl[best] significantly improves mdl then19

bestModel = newModels[best]20

mdl = newMdl[best]21

else22

isImproving=false23

end24

end25

end26

the current best model; otherwise, we terminate the search, and the current best
surrogate and classification models are returned as the (locally) best models.

Three elements of the implementation need further explanation: (1) procedure
to divide the data into training and test sets (line 2), (2) evaluation of the model
(lines 5 and 12), and (3) procedure for comparing two models and choosing the
best one (line 17). Each of the three elements are discussed in the following
paragraphs.

Partition of the data. The procedure used to partition the data into train-
ing and test sets affects the estimation of classification error. A number of
approaches such as holdout validation, k-fold cross validation, and leave-
one-out cross-validation methods can be used. Here, we use a k-fold cross
validation [29] with k = 10.

Substructural Surrogates for Learning Decomposable Classification Problems 241

Evaluation of the model. The quality of a structural model depends on (1)
the complexity of this model, and (2) the test error of the classification
model created from it. Again a number of measures such as minimum de-
scription length metrics and multiobjective approaches could be used to
measure the relative quality of a given surrogate and classification model.
We use the k-fold cross validation which provides a measure of both the test
error and the model complexity in terms of overfitting the training data.
That is, if the structural model is more complex than necessary, the surro-
gate function will tend to overfit the training instances, and the test error
will increase. Nonetheless, we acknowledge that direct measures for model
complexity could be included in the evaluation.

Comparison of models. Given a current-best model, in gESMC we consider
all pairwise merges of the substructures of the current-best model. We need
to choose the best model among all the models created via the pairwise
merges and compare it to the current-best model. Again, this could be done
in a number of ways. For example, we could accept the new model if its
classification error is lower than that of the current-best model. However,
this might lead to spurious linkages and more complex models might be
accepted, especially if the data set is noisy. To avoid getting unnecessarily
complicated structural models, we can say that a model m1 is significantly
better than a model m2 if:

errorm1 < errorm2 − δ, (7)

where δ is a user-set threshold. Alternatively, we can use different statistical
tests as well. In our implementation, we use a paired t-test to determine if a
new, more complex, structural model is better than the current best model
[29]. That is, we feed the t-test with the errors corresponding to the ten
different folds obtained with the current best model and the new model. We
use a significance level of α = 0.01.

Before proceeding with a description of the test functions, we note two important
properties of gESMC. First, in the current implementation gESMC, the struc-
tural model is a partition of the variables into non-overlapping groups. However,
this limitation can easily be relaxed by using other structural models [35,18].
Second, because of the greedy procedure, we need some guidance from lower-
order, sub-optimal structural models toward an optimal structural model. This
limitation can be alleviated by replacing the greedy search heuristic with another
optimization method such as genetic algorithms [11,7]

4 Test Problems

In this section, we present a general set of decomposable problems to inves-
tigate the capabilities of gESMC in correctly identifying salient substructures
and building an accurate classification model. Following the idea of designing
hierarchical artificial problems proposed in [4,3], we design a class of two-level

242 A. Orriols-Puig et al.

k bits

Block1 Block2 Blockm. . .

O1 O2 Om. . .

Problem
output

Higher Level
Layer

Lower Level
Layer

Fig. 1. Example of the design of a two-level hierarchical problem. In the low level
layer, m blocks of k bits are concatenated. Each block is evaluated resulting in the
correspondent output. All the outputs are groups in an input string that is used to
determine the global output.

hierarchical problems where the lower level consists of functions that operate on
a set of binary-input blocks and the upper level consists of functions that op-
erate on the lower-level function values to produce the output (see a schematic
illustration of these types of problems in Fig. 1). The lower- and upper-level
function used in the study are explained in Section 4.1 and 4.2, respectively.

4.1 Lower Level of the Hierarchy

At the lower level of the hierarchy, we considered the following two binary func-
tions which operate independently on m blocks with k variables in each block.
Moreover the variables within a block interact with each other and determine
the output of the function.

The position problem. The position problem [2] is defined as follows. Given
a binary input of length �, the output is the position of the left-most one-
valued bit. For example, f(100)=3, f(010)=2, f(001)=1, and f(000)=0. Note
that every variable is linked to all the variables on its left.

The parity problem. The parity problem [15] is a two-class binary problem
defined as follows. Given a binary input of length �, the output is the num-
ber of one-valued bits modulo two. For example, f(110)=0, f(100)=1, and
f(111)=1. To predict the output accurately for the parity problem, all the
variables have to be jointly processed. Additionally, for a k-bit parity prob-
lem, the structural model that represents that all the variables are inde-
pendent yields a classification model of the same accuracy as the one that
contains substructures of size k − 1 or less. That is, till we get a structural
model that groups all k variables together, the accuracy of the classification
model does not increase.

4.2 Higher Level of the Hierarchy

At the higher level of the hierarchy, we use the following problems where
each variable contributes independently to the output. That is, the structural

Substructural Surrogates for Learning Decomposable Classification Problems 243

information is contained in the lower-level of the hierarchy and the upper level
function affects the salience of the substructures. Notice that χ-ary strings are
permitted in the higher level. That is, both problems defined as follows for the
higher level can deal with χ-ary strings.

The decoder problem. The decoder problem [2] is a binary-input multi-class
problem defined as follows. Given an input of length �, the output is de-
termined by the decimal value of the input. For example, f(111) = 7,
f(101) = 5, and f(000) = 0. Note that each variable independently con-
tributes to the output. That is, starting with class equal to zero, a ’1’ in ith

position adds 2i to the output, irrespective of other variable values.
The count-ones problems. The count-ones is defined as follows. Given a bi-

nary input of size �, the output is the number of one-valued bits. Again, the
output of the count-ones problems can be predicted by treating the input
variables independently.

As mentioned earlier, we concatenated m blocks of k bits of the two lower level
problems with the two higher level problems to create four different hierarchical
test problems. Specifically, we used the position at the lower level with the de-
coder (HPosDec) and the count-ones (HPosCount) in the higher level. Similarly,
low order parity blocks were combined again with the decoder (HParDec) and
the count-ones (HParCount). Additionally, we added some irrelevant bits, which
do not contribute to the output, to see if our method was capable of ignoring
them. Therefore, in our case, � ≥ m · k, where � is the length of the input string.

With the above description of the test problems, the following section presents
the results of gESMC and compares them with those of C4.5 and SMO.

5 Results

This section analyzes the behavior of gESMC for learning hierarchical problems,
and compares the results to those obtained with two highly competitive learners
in terms of performance and interpretability.

5.1 Experimental Methodology

We use the four hierarchical problems designed in the previous section to analyze
the performance of gESMC. We start with concatenations of three minimum-
order blocks in the lower level hierarchy (that is, k=2) and add 9 irrelevant
bits to the input. Our aim is to analyze the capabilities of gESMC in (i) iden-
tifying salient substructures of interacting variables, and (ii) ignoring irrelevant
variables. Next, we increase the order of the lower-order blocks with a two-fold
objective. For the problem with position blocks, we analyze if the system is able
to identify and efficiently handle larger groups of linked variables. For the prob-
lems with parity blocks, we want to investigate the behavior of gESMC when
there is a lack of guidance toward an accurate substructural model.

244 A. Orriols-Puig et al.

Table 1. Test error and standard deviation obtained with gESMC, SMO and C4.5
on the problems HPosDec, HPosCount, HParDec, HParCount with �=15, m = 3, and
k = 2. Results are averaged over ten runs with different holdouts and random seeds.

gESMC C4.5 SMO
HPosDec 0.00% ± 0.00% 0.00% ± 0.00% 0.00% ± 0.00%
HPosCount 0.00% ± 0.00% 0.00% ± 0.00% 21.89% ± 0.13%
HParDec 0.00% ± 0.00% 3.32% ± 2.90% 89.11% ± 0.94%
HParCount 0.00% ± 0.00% 5.15% ± 4.43% 62.72% ± 0.27%

To illustrate the need for detecting linkage groups in classification tasks, we
compare the results obtained with gESMC to those of two widely used learners:
C4.5 [22], and SMO [21]. C4.5 is a decision tree, derived from ID3, which has been
widely used because of its ability to tackle a wider range of problems and be-
cause of the interpretability of the extracted knowledge. SMO is a support vector
machine [30] that implements the Sequential Minimal Optimization algorithm.
Although the interpretability is more difficult since it represents the knowledge
as function weights, its competence has been demonstrated in different kinds of
problems. Both methods were run using WEKA [34]. Unless otherwise noted,
for C4.5 we used the default configuration, and for SMO, we used a polynomial
kernel of order 1.

The three methods are compared in terms of performance (that is, test accu-
racy) and comprehensibility of the knowledge generated by the learner. As the
datasets had a large number of instances, we used the holdout methodology1 to
estimate the test accuracy; that is, 70% of the instances were randomly selected
and placed in the training set, and the rest formed the test set. We repeated the
experiments with ten different holdouts. To compare the performance of each
pair of learners on a given problem, we applied a paired Student t-test [29] on
the results. We fed the results for each different seed to the t-test. To study the
interpretability of each method, we qualitatively compared the structural and
the classification models evolved by gESMC to the decision trees generated by
C4.5, and the weights extracted by SMO.

5.2 Results with 2-Bit Low Order Blocks

We first show performances for gESMC, C4.5, and SMO on the problems HPos-
Dec, HPosCount, HParDec, and HParCount with � = 15, m = 3, and k = 2.
Therefore, the problems were formed by three lower level blocks of two bits and
9 irrelevant bits at the end of the binary input. Next, we compare the results in
terms of performance and interpretability.

Comparison of the Performance. Table 1 summarizes the test errors result-
ing of applying gESMC, C4.5, and SMO on the four hierarchical problems. All

1 A holdout is the simplest cross-validation approach where the data is divided in two
sets, the train and the test set.

Substructural Surrogates for Learning Decomposable Classification Problems 245

Table 2. Structural models and surrogate functions build by gESMC for the problems
HPosDec, HPosCount, HParDec, HParCount with �=15, m = 3, and k = 2

HPosDec
link. groups [x0x1][x2x3][x4][x5][x6][x7][x8][x9][x10][x11][x12][x13][x14]
surr. func. 16.75 + 9(1 − x0x1) − 6x2x3 − 3x2x3 − 1.5x4 + 0.5x5

HPosCount
link. groups [x0x1][x2x3][x4][x5][x6][x7][x8][x9][x10][x11][x12][x13][x14]
surr. func. 0.75 + x0x1 + (1 − x2x3) + 0.5x4 + 0.5x5

HParDec
link. groups [x0x1][x2x3][x4x5][x6][x7][x8][x9][x10][x11][x12][x13][x14]
surr. func. 2 + 4(x0x1 + x0x1) − 2(x2x3 + x2x3) − (x4x5 + x4x5)

HParCount
link. groups [x0x1][x2x3][x4x5][x6][x7][x8][x9][x10][x11][x12][x13][x14]
surr. function x0x1 + x0x1 + x2x3 + x2x3 + x4x5 + x4x5

the results were averaged over ten runs, each with a different holdout partition
and random seed.

The results show that gESMC obtained 0% test error for all the problems
tested. This indicates that the method is able to process the variable linkages
and build maximally accurate classification models. None of the other learn-
ers could achieve 0% error in all the problems. C4.5 achieved 0% test error
for the problems HPosCount and HPosDec, the ones formed by position blocks.
Nonetheless, on the problems that consist of parity blocks, C4.5 was significantly
outperformed by gESMC according to a paired t-test on a confidence level of
0.99. Finally, SMO presents the worst behavior of the comparison. The learner
could accurately generalize over the input data only on the HPosDec problem.
For the problems HPosCount, HParDec, and HParCount, the results of SMO
significantly degraded those obtained with gESMC and C4.5. Note the big dif-
ference in the test errors; for HParDec, SMO has 89.11% test error, C4.5 has
3.32%, and gESMC is maximally accurate. We repeated the experiments with
a Gaussian kernel [13] to promote the discovery of the linkage groups, but no
significant improvement was found.

These results highlight the importance of learning and incorporating the struc-
tural model into the classification model. gESMC found highly accurate classi-
fication models only after discovering the problem structure (examples of some
structural and classification models are shown in the next section). However C4.5
and SMO failed since they were not able to identify this structure. Note that the
problems formed by parity blocks resulted more problematic for both learners
than the problems based on position blocks. This could be explained as follows.
The variables linkages in the position are weaker than in the parity. That is,
in the position problem every variable processed from left to right reduces the
uncertainty of the output. In the parity, looking at a single variable does not
reduce the uncertainty, and so, processing the linkages is crucial. We hypothesize
that, for this reason, problems formed by parity are more difficult to learn for
C4.5 and SMO.

Comparison of the Interpretability. We now analyze the interpretability
of the models created by gESMC, and qualitatively compare them to those ob-
tained by C4.5 and SMO. Table 2 shows the structural models and the associated

246 A. Orriols-Puig et al.

surrogate functions built for each problem. For HPosDec and HPosCount,
gESMC correctly detects the linkages between the groups of variables [x0, x1]
and [x2, x3]; all the other variables are considered independent. Variables x4 and
x5 are incorrectly identified as independent because gESMC reaches the termi-
nation criteria of 0% test error. For the problems HParDec and HParCount,
gESMC discovers the linkage groups [x0, x1], [x2, x3], and [x4, x5]. Differently
from the position problem, now gESMC needs to discover all the existing parity
groups to remove the uncertainty, and so, build the most accurate classification
model.

The availability of the structural model with gESMC is another advantage
over other conventional classification techniques in terms of interpretability. The
structural model facilitates easy visualization of the salient variable interactions;
moreover, it permits a better understanding of the resulting surrogate function.
Note that for all the problems, gESMC built easily interpretable functions and
also efficiently ignored irrelevant variables. For example, consider the problem
HParCount, in which the output is the number of ’1s’ resulting from the evalu-
ation of each low-order parity block. The function evolved clearly indicates that
if any of the linkage groups has the schemata ’01’ or ’10’ (values from which the
parity would result in ’1’), the output is incremented by one.

Let us now compare this knowledge representation to those obtained with
C4.5 and SMO. For this purpose, we consider the size of the trees built by
C4.5, and the machines constructed by SMO. For HPosDec and HPosCount,

at1 = 0
| at2 = 0
| | at3 = 0
| | | at4 = 0
| | | | at5 = 0
| | | | | at6 = 0: 0 (153.0)
| | | | | at6 = 1: 1 (150.0)
| | | | at5 = 1: 2 (314.0)
| | | at4 = 1
| | | | at5 = 0
| | | | | at6 = 0: 3 (154.0)
| | | | | at6 = 1: 4 (139.0)
| | | | at5 = 1: 5 (311.0)
| | at3 = 1
| | | at5 = 0
| | | | at6 = 0: 6 (277.0)
| | | | at6 = 1: 7 (299.0)
| | | at5 = 1: 8 (632.0)

. . .

Fig. 2. Portion of the tree built by C4.5 for the HPosDec problem

Substructural Surrogates for Learning Decomposable Classification Problems 247

C4.5 built a tree with 53 nodes, from which 27 were leaves. The resulting trees
specified the output for each combination of the six relevant bits (see a portion
of a tree for HPosDec in Fig. 2). Although these trees detail the output given the
value of the first six variables, they do not show the variable interactions. For
HParCount, C4.5 built trees that, on average, had 136 leaves and 270 nodes. For
HParDec, the trees had 142 leaves and 283 nodes. This high number of nodes
makes the interpretability of tree very hard. Additionally, all the trees had some
irrelevant attributes in the decision nodes. That is, C4.5 was overfitting the
training instances to reduce the training error, resulting in more complicated
trees, further hindering the interpretability of the classification model.

In contrast to gESMC and C4.5, SMO presented the less interpretable results.
In general, SMO creates a machine for each pair of classes, and adjust � + 1
weights for each machine (where � is the number of attributes of the problem).
For HPosDec, SMO built 351 machines with 16 weights ranging from 0 to 1. For
HPoscount, HParDec, and HParCount, 6, 6, and 28 machines were respectively
created, all them with 16 weights ranging from 0 to 1. Although some of these
weights were zero, the machines evolved could not be interpreted at all. Thus,
the human expert would not be able to extract any information from these
knowledge models.

Although both SMO and gESMC represent the knowledge in weights of func-
tions that partition the search space, gESMC yields the structural model which
permits easy visualization of salient variable interactions. Additionally, while
SMO weights the input variables, gESMC weights the different subsolutions of
the identified substructures. Classification models obtained via gESMC show the
relative influence of subsolutions to the output and therefore gESMC’s models
are more easily interpretable than the ones created by SMO.

5.3 Results Increasing the Low Level Block Size

We now increase the interaction order of the lower-level blocks to analyze its
effect on the performance of gESMC. Additionally, for the test problems with
parity blocks, we also want to investigate the effect of having no guidance from
lower-order substructures. Specifically, we want to analyze if this lack of guidance
thwarts the search of gESMC toward the best structural form of the surrogate.
For this purpose, we use HPosDec, HPosCount, HParDec, and HParCount with
� = 15, m = 2, and k = 3, and compared gESMC to C4.5 and SMO.

Table 3 shows the test errors for gESMC, C4.5, and SMO. For HPosDec and
HPosCount, gESMC obtained 0% error test and for both problems, two different
structural models were created during independent runs:

Model1 : [x0x1][x3x4x5][x2][x6][x7][x8][x9][x10][x11][x12][x13][x14],
Model2 : [x0x1x2][x3x4][x5][x6][x7][x8][x9][x10][x11][x12][x13][x14].

In both the above models, the variables of one of the lower-level blocks are
correctly identified, and only two variables of the other lower-level blocks form a
linkage group. As observed in the previous section, this is because gESMC meets

248 A. Orriols-Puig et al.

Table 3. Test error and standard deviation obtained with gESMC, SMO and C4.5
on the problems HPosDec, HPosCount, HParDec, HParCount with �=15, m = 3, and
k = 3. Results are averages over ten runs with different holdouts and random seeds.

gESMC C4.5 SMO
HPosDec 0.00% ± 0.00% 0.00% ± 0.00% 0.00% ± 0.00%
HPosCount 0.00% ± 0.00% 0.00% ± 0.00% 14.24% ± 1.03%
HParDec 24.00% ± 25.50% 9.01% ± 5.86% 76.91% ± 2.01%
HParCount 49.99% ± 0.00% 12.25% ± 6.69% 49.94% ± 0.22%

the convergence criteria of 0% test errors even when one of the substructures is
partially identified.

The surrogate functions evolved are qualitatively similar to those obtained in
the previous section. In all cases, only the six relevant variables were taken in
consideration, and specifically, some of their schemata. For example, one of the
surrogate functions created for the HPosDec is

14.9x5 + 15x5 − 2.5x3x4 + x3x4 − 12x0x1x2 − 4x0x1x2 − 8x0x1x2 − 4x0x1x2,
(8)

which only contains the six relevant variables x0, x1, · · · , x5.
As expected, for HParDec and HParCount, gESMC yielded poorer results. For

HParDec, the average test error was 24% with a high standard deviation. This
high deviation is because gESMC yielded a maximally accurate classification
model for 50% of the runs. For the rest 50%, gESMC could not discover an
accurate structural model. Further investigation showed that this is due to the
stochasticity of the holdout estimation. Since we randomly selected 70% of the
instances as the training set, the symmetry of the parity problem may be broken
leading the greedy search heuristic to yield the accurate structural model. This
indicates that introduction of stochasticity might break symmetry of parity-
like functions and render the accurate structural model hill-climbable. However,
the efficacy of adding exogenous noise to break symmetry needs to be further
investigated.

For HPosDec, gESMC was not able to discover the accurate structural model
in any of the cases, and therefore yielded a test error of 50%. As mentioned ear-
lier, the reason for this failure is due of the greedy search of the structural model.
For the k-bit parity function, since all structural models with substructures of
order k − 1 or lower yield classification models with the same error, the optimal
structural model is not hill-climbable. Therefore, the greedy search heuristic fails
to identify the accurate structural model and so yields inaccurate classification
models. This limitation can easily be alleviated in several number of ways, some
of which are outlined in the next section.

Finally, we compare the results of gESMC to those obtained with C4.5 and
SMO. All three algorithms perform equivalently in tackling HPosDec; differently,
gESMC and C4.5 outperform SMO on HPosCount. However, on HParDec and
HParCount, C4.5 outperforms both gESMC and SMO. Nonetheless, as with the

Substructural Surrogates for Learning Decomposable Classification Problems 249

2-bit lower-order blocks, the trees of C4.5 had some irrelevant variables in the
decision nodes indicating overfitting to the training data.

These results clearly show that gESMC can discover the accurate structural
model provided that it is hill-climbable from lower-order structural models. In
the following section, we discuss some approaches to relax this limitation of
gESMC. We also discuss ways to represent structural models with overlapping
substructures.

6 Discussion

The results presented in the previous section highlighted both the strengths and
limitations of gESMC. In this section we discuss some approaches to overcome
the limitations of gESMC which have to be further investigated. We discuss
approaches to discover accurate structural models even when there is a lack of
guidance from lower-level structural models. Moreover, we also address two new
issues: how to deal with problems that present non-linearities in the high order
function and also discuss ways to represent structural models with overlapping
substructures.

6.1 Lack of Guidance from Lower-Order Substructures

As mentioned earlier, the greedy search used in gESMC needs some guidance
from lower-order substructural models towards the optimal structural model.
That is, in order to discover a k-variable substructure the greedy search needs
a classification model built with at least one of the substructures of order 2 to
be more accurate than that with substructures of order 1, and the classification
model built with at least one of the substructures of order 3 has to be more
accurate than those with substructures of order 2 and so on. In the absence of
such a guidance, the greedy search may stop because it cannot find any structural
model that decreases the classification error. To alleviate this limitation, we
propose the following two approaches:

Increase the order of substructural merges. We can increase the order of
the linkages that the greedy search does if the test error is high and no better
structural model is found. That is, at each iteration, instead of pairwise
merges, we could permit higher-order merges if the pairwise merges yield no
improvement.

We implemented this approach and tested gESMC on the four hierarchical
problems. The results show that gESMC obtained 0% test error in all the
four problems, and the structural models were correctly evolved. However,
the limitation of this approach is the increase in the complexity and cost of
the algorithm which is dictated by the maximum order of linkages permitted
(�max):

Cost =
(

�

2

)
· s +

(
�

3

)
· s + · · · +

(
�

�max

)
· s, (9)

250 A. Orriols-Puig et al.

where s is the cost of building a surrogate. Note that the cost of this approach
increases with �max. For this reason, we do not consider this approach as a
general solution, although it can be really useful in certain problem domains.

Select randomly one of the new structural models. If the test error is
high, and the greedy search cannot find any structural model that signif-
icantly decreases this test error, a new structural model can be chosen ran-
domly. More sophisticated approaches could be followed, such as using a
technique based on simulated annealing [14]. In this case, we would accept a
structural model with a higher error with the hope of getting a better model
in the subsequent iterations.

Preliminary results using this strategy indicates that gESMC yields max-
imally accurate classification models for problems consisting of lower-order
parity blocks with k > 2. However, the structural models evolved are slightly
more complicated and contain spurious interactions between variables. Nev-
ertheless, these spurious linkages can be removed by analyzing the classifica-
tion model and the relative contribution of different schemata to the output.

6.2 Non-linearities in the High Order Functions

The problems designed for the experimentation consisted in higher order func-
tions in which each variable contributed independently to the output. The search
procedure could be easily replaced to be able to tackle problems with non-
linearities in the higher order functions [4] more efficiently. For example, the
greedy search of gESMC could be easily replaced by population-based search
methods such as genetic algorithms [11,7]. This would permit to solve non-
linearities in the higher order of the hierarchy at the cost of slightly increas-
ing the computational time, since a population of candidate solutions should be
evaluated and evolved.

6.3 Creating Structural Models with Overlapping Substructures

Finally, we look at problems with overlapping linkages where some variables
interact with different groups of variables depending on the input. A widely
used test problem with overlapping linkages is the multiplexer problem [12,31],
which is defined as follows. Given a bit string of length �, where the first log2 �
bits are the address bits and the remaining bits are the position bits , the output
is the value of the position bit referred by the decimal value of the address bits.
For example, for the 6-bit multiplexer, f(00 0101)=0 and f(10 1011)=1. Thus,
a surrogate with a group formed by all the address bits and the corresponding
position bit as a basis accurately determines the output.

We tested gESMC on the 6-bit and 11-bit multiplexer problems. The struc-
tural models evolved contained all the address and the position bits in the same
linkage group. For example, we obtained the following structural model for the
6-bit multiplexer:

[x0x1x2x3x4x5],

Substructural Surrogates for Learning Decomposable Classification Problems 251

which resulted in a 0% test error. Since gESMC builds structural models with
non-overlapping substructures, one way to handle overlapping substructures is
by grouping the substructures together. However, such a merger is unnecessary
and other methods which can build structural model with overlapping surrogates
such as the design structure matrix genetic algorithm (DSMGA) [35,17], can
evolve a structural model such as:

[x0x1x2][x0x1x3][x0x1x4][x0x1x5],

The above structural model also yields a surrogate with 0% test error, and gives
more information than the former one. Therefore, we will investigate the use of
DSMGA and other similar methods that can discover structural models with
overlapping variables.

7 Summary and Conclusions

In this paper, we proposed a methodology for learning by building a classification
model that uses the structural and surrogate model of a data set. First, we
discover the structural model of a set of examples, identifying salient groups of
interacting variables to determine the output. Then, the structural model is used
to infer the functional form of a surrogate function and the coefficients of the
surrogate are estimated using linear regression. Finally, using the substructural
surrogate, we build a classification model to predict the class of a given new set
of inputs.

We presented gESMC, an implementation of the methodology which uses a
greedy search heuristic to search for the structural, surrogate, and classification
models that minimize the classification error. Without any problem knowledge,
gESMC starts with a simplest model of independent variables and proceeds to
explore more complex structural models untill the classification error no longer
improves or is below a user-defined threshold.

We ran gESMC on four hierarchical test problems. We compared the models
evolved by gESMC with those created by C4.5 and SMO. The empirical ob-
servations evidenced that gESMC significantly outperforms C4.5 and SMO in
problems that consisted of 2-bit low order blocks in terms of learning accuracy
and interpretability. Moreover, one of the main differences between gESMC and
other learners is highlighted: gESMC detects the structure of the data and uses it
to predict the class of given inputs. In essence, gESMC not only yields accurate
classification models, but also the classification models evolved are interpretable.
That is, gESMC not only provides the classification model, but also the structure
of the data, making it amenable to human interpretation.

Along with these strengths, the results also highlighted some limitations of
the particular implementation of the methodology, gESMC. Specifically, the ac-
curacy of the structural model to capture salient variable interactions depends
on the guidance from lower-order substructures. Therefore, the accuracy of the
structural model and consequently the accuracy of the classification model suf-
fers when there is no guidance from lower-order substructures. This limitation

252 A. Orriols-Puig et al.

is expected provided that we use a minimum description length style metric and
also a greedy search heuristic that only considers pairwise merges of the substruc-
tures. Several approaches were outlined to overcome this limitation, serving as a
basis for further research on substructural surrogates for learning decomposable
classification problems.

Acknowledgments

We thank the support of Enginyeria i Arquitectura La Salle, Ramon Llull Univer-
sity, Ministerio de Ciencia y Tecnoloǵıa under project TIN2005-08386-C05-04,
and Generalitat de Catalunya under Grants 2005FI-00252 and 2005SGR-00302.

This work was also sponsored by the Air Force Office of Scientific Research,
Air Force Materiel Command, USAF, under grant F49620-03-1-0129, the Na-
tional Science Foundation under grant ITR grant DMR-03-25939 at the Ma-
terials Computation Center. The U.S. Government is authorized to reproduce
and distribute reprints for government purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Air Force Office of
Scientific Research, the National Science Foundation, or the U.S. Government.

References

1. Baluja, S.: Incorporating a priori Knowledge in Probabilistic-Model Based Opti-
mization. In: Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable Optimization
via Probabilistic Modeling: From Algorithms to Applications ch. 9, pp. 205–219.
Springer, Berlin (2006)

2. Bernadó-Mansilla, E., Garrell, J.M.: Accuracy-Based Learning Classifier Systems:
Models, Analysis and Applications to Classification Tasks. Evolutionary Compu-
tation 11(3), 209–238 (2003)

3. Butz, M.V.: Rule-Based Evolutionary Online Learning Systems: A Principled Ap-
proach to LCS Analysis and Design. In: Studies in Fuzziness and Soft Computing,
vol. 109. Springer, Heidelberg (2006)

4. Butz, M.V., Pelikan, M., Llorà, X., Goldberg, D.E.: Automated Global Structure
Extraction for Effective Local Building Block Processing in XCS. Evolutionary
Computation 14(3), 345–380 (2006)

5. Drapper, N.R., Smith, H.: Applied Regression Analysis. John Wiley & Sons, New
York (1966)

6. Gibson, J.J.: The Ecological Approach to Visual Perception. Lawrence Erlbaum
Associates, Mahwah (1979)

7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization & Machine Learning,
1st edn. Addison Wesley, Reading (1989)

8. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic
Algorithms, 1st edn. Kluwer Academic Publishers, Dordrecht (2002)

9. Harik, G.: Linkage Learning via Probabilistic Modeling in the ECGA. Technical
report. University of Illinois at Urbana-Champaign, Urbana, IL (January 1999)
(IlliGAL Report No. 99010)

Substructural Surrogates for Learning Decomposable Classification Problems 253

10. Harik, G.R., Lobo, F.G., Sastry, K.: Linkage Learning via Probabilistic Modeling in
the ECGA. In: Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable Optimization
via Probabilistic Modeling: From Algorithms to Applications ch. 3, pp. 39–61.
Springer, Berlin (2006) (Also IlliGAL Report No. 99010)

11. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of
Michigan Press (1975)

12. De Jong, K.A., Spears, W.M.: Learning Concept Classification Rules Using Genetic
Algorithms. In: Proceedings of the International Joint Conference on Artificial
Intelligence, Sidney, Australia, pp. 651–656 (1991)

13. Keerthi, S.S., Lin, C.J.: Asymptotic Behaviors of Support Vector Machines with
Gaussian Kernel. Neural Computation 15(7), 1667–1689 (2003)

14. Korst, J., Aarts, E.: Simulated Annealing and Boltzmann Machines. Wiley-
Interscience, New York (1997)

15. Kovacs, T.: Deletion Schemes for Classifier Systems. In: GECCO 1999: Proceedings
of the Genetic and Evolutionary Computation Conference, pp. 329–336. Morgan
Kaufmann, San Francisco (1999)

16. Llorà, X., Sastry, K., Goldberg, D.E., de la Ossa, L.: The χ-ary extended com-
pact classifier system: Linkage learning in Pittsburgh LCS. In: Proceedings of
the 2006 Genetic and Evolutionary Computation Conference Workshop Program.
ACM Press, Berlin (2006) (Also IlliGAL Report No. 2006015)

17. Llorà, X., Sastry, K., Yu, T.-L., Goldberg, D.E.: Do not match, inherit: Fitness
surrogates for genetics-based machine learning. In: Proceedings of the 2007 Genetic
and Evolutionary Computation Conference, vol. 2, pp. 1798–1805 (2007)

18. Pelikan, M.: Hierarchical Bayesian Optimization Algorithm: Toward a new Gener-
ation of Evolutionary Algorithms. Springer, Berlin (2005)

19. Pelikan, M., Sastry, K.: Fitness inheritance in the Bayesian optimization algorithm.
In: Proceedings of the 2004 Genetic and Evolutionary Computation Conference,
vol. 2, pp. 48–59 (2004) (Also IlliGAL Report No. 2004009)

20. Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.): Scalable Optimization via Prob-
abilistic Modeling: From Algorithms to Applications. Studies in Computational
Intelligence, vol. 33. Springer, Heidelberg (2006)

21. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal
Optimization. In: Advances in Kernel Methods - Support Vector Learning, pp.
557–563. MIT Press, Cambridge (1998)

22. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers, San Mateo (1995)

23. Rao, C.R., Toutenburg, H.: Linear Models: Least Squares and Alternatives.
Springer, Berlin (1999)

24. Recktenwald, G.: Numerical Methods with MATLAB: Implementations and Ap-
plications. Prentice Hall, Englewood Cliffs (2000)

25. Sastry, K., Goldberg, D.E.: Probabilistic Model Building and Competent Genetic
Programming. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and
Practise, ch. 13, pp. 205–220. Kluwer, Dordrecht (2003)

26. Sastry, K., Lima, C.F., Goldberg, D.E.: Evaluation Relaxation Using Substructural
Information and Linear Estimation. In: GECCO 2006: Proceedings of the 8th an-
nual Conference on Genetic and Evolutionary Computation, pp. 419–426. ACM
Press, New York (2006)

27. Sastry, K., Pelikan, M., Goldberg, D.E.: Efficiency enhancement of genetic algo-
rithms via building-block-wise fitness estimation. In: Proceedings of the IEEE In-
ternational Conference on Evolutionary Computation, pp. 720–727 (2004) (Also
IlliGAL Report No. 2004010)

254 A. Orriols-Puig et al.

28. Simon, H.A.: Sciences of the Artificial. MIT Press, Cambridge (1969)
29. Dietterich, T.G.: Approximate Statistical Tests for Comparing Supervised Classi-

fication Learning Algorithms. Neural Comp. 10(7), 1895–1924 (1998)
30. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
31. Wilson, S.W.: Quasi-Darwinian Learning in a Classifier System. In: 4th IWML,

pp. 59–65. Morgan Kaufmann, San Francisco (1987)
32. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computa-

tion 3(2), 149–175 (1995)
33. Wilson, S.W.: Generalization in the XCS Classifier System. In: 3rd Annual Conf.

on Genetic Programming, pp. 665–674. Morgan Kaufmann, San Francisco (1998)
34. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
35. Yu, T.-L.: A matrix approach for finding extrema: Problems with modularity, hi-

erarchy, and overlap. PhD thesis, University of Illinois at Urbana-Champaign, Ur-
bana, IL (2006)

	Introduction
	Methodology for Learning -Ary Input Problems
	Structural Model Layer
	Surrogate Model Layer
	Classification Model Layer

	Implementing the Methodology: gESMC
	Test Problems
	Lower Level of the Hierarchy
	Higher Level of the Hierarchy

	Results
	Experimental Methodology
	Results with 2-Bit Low Order Blocks
	Results Increasing the Low Level Block Size

	Discussion
	Lack of Guidance from Lower-Order Substructures
	Non-linearities in the High Order Functions
	Creating Structural Models with Overlapping Substructures

	Summary and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

