
Revisiting UCS: Description, Fitness Sharing,
and Comparison with XCS

Albert Orriols-Puig and Ester Bernadó-Mansilla

Grup de Recerca en Sistemes Intel·ligents
Enginyeria i Arquitectura La Salle

Universitat Ramon Llull
Quatre Camins 2, 08022 Barcelona (Spain)

{aorriols,esterb}@salle.url.edu

Abstract. This paper provides a deep insight into the learning mecha-
nisms of UCS, a learning classifier system (LCS) derived from XCS that
works under a supervised learning scheme. A complete description of the
system is given with the aim of being useful as an implementation guide.
Besides, we review the fitness computation, based on the individual ac-
curacy of each rule, and introduce a fitness sharing scheme to UCS. We
analyze the dynamics of UCS both with fitness sharing and without fit-
ness sharing over five binary-input problems widely used in the LCSs
framework. Also XCS is included in the comparison to analyze the dif-
ferences in behavior between both systems. Results show the benefits
of fitness sharing in all the tested problems, specially those with class
imbalances. Comparison with XCS highlights the dynamics differences
between both systems.

1 Introduction

UCS [1] is a learning classifier system (LCS) derived from XCS [22,23] that
works under a supervised learning scheme. UCS inherits the main components
and structure of XCS, which are adapted for supervised learning. The main
differences between both systems are related to 1) classifier’s parameters and
their update, and to 2) the lack of a prediction array in UCS. UCS’s fitness is
based on accuracy, computed as the percentage of correct classifications. This
leads UCS to explore the consistently correct classifiers and thus evolve only
best action maps.

Previous studies on artificial problems showed that UCS could overcome the
fitness dilemma [6] that appeared in some problem categories in XCS, whose
effect is a misleading pressure that tends to guide search in the wrong direction.
Also evolution of best action maps was proved to be an efficient way of searching
the search space, specially in large search spaces. UCS also showed to be com-
petitive in real-world problems with XCS, as well as with some non-evolutionary
learners such as C4.5 [19] and SMO [21].

Although UCS’s results seem promising, there are still some open issues to
be addressed. In [1], UCS’s lack of fitness sharing was identified as a potential

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 96–116, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 97

weakness. Fitness sharing is attributed to allow for better resource distribution
among the different niches. Without fitness sharing, premature good rules can
overtake the population, preventing potential niches from being explored and
maintained in the population. Although this effect was not strongly observed in
previous analyses, we acknowledge that, as current challenges such as unbalanced
class problems are posed to UCS [18], the effect may become important. The
literature has also proved that fitness sharing is beneficial for LCSs [3,7]. Other
advances of the GA and LCS fields such as tournament selection [4] are also
introduced in UCS to further optimize performance.

The aim of this paper is two-fold. Firstly, we want to provide a deeper descrip-
tion of all UCS components, detailed enough to be used as an implementation
guide. The description also assembles other operators from XCS such as specify
and includes new improvements of LCSs such as tournament selection. Also, a
fitness sharing scheme is designed for UCS.

Secondly, the paper makes a comparison of UCS without fitness sharing, UCS
with fitness sharing, and XCS. We use a testbed consisting of five binary-input
classification problems that gather different complexity factors. Three of them
were already used in [1]: a) the parity, b) the decoder, and c) the position
problem. They represent respectively two cases of strong specialization with
two classes (a) and multiple classes (b), and a case with multiple classes and
non-uniform distribution of examples per class (c). We further add the imbal-
anced multiplexer problem and the multiplexer problem with noise. The designed
testbed provides representative conditions of real-world problems for analyzing
whether fitness sharing improves performance. By comparing UCS with XCS we
update and enhance the previous comparison performed in [1] to the current
settings. We seek to understand the dynamics of each approach and analyze
conditions where each approach is better suited. The paper aims at enhancing
our current comprehension of LCSs, and UCS in particular, and at providing a
framework for further UCS system investigations and developments.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces XCS. Next, UCS is described in detail, including UCS’s fitness sharing
version. Section 4 analyzes UCS with both fitness sharing and non-sharing, also
compared to XCS. Finally, Section 5 summarizes the main differences observed,
and Section 6 provides the main conclusions of our work. Appendix A provides
a full explanation of all problems used in the comparison.

2 XCS in a Nutshell

This section provides a brief introduction to the XCS classifier system. The
reader is referred to [22,23] for a detailed explanation and to [8] for an algorith-
mic description. Although XCS is applicable to several domains, such as rein-
forcement learning tasks [15] and function approximations [24], we will restrict
our description to XCS as a pure classifier system.

XCS is an accuracy-based learning classifier system introduced by S.W. Wilson
[22]. The main difference between XCS and previous strength-based LCSs is that

98 A. Orriols-Puig and E. Bernadó-Mansilla

XCS bases fitness on the accuracy of the rewardprediction instead of on the reward
itself. This led XCS to avoid the presence of strong overgenerals that appeared
in strength-based LCS [11]. The accuracy-based approach makes XCS evolve a
complete action map (denoted as [O]) of the environment, evolving not only high-
rewarded rules (i.e., consistently correct rules), but also consistently incorrect
rules (i.e., rules with zero prediction and low error.).

XCS works as an online learner. For each input example, XCS forms the
match set [M] consisting of all classifiers with matching condition. If not enough
classes are covered in [M] XCS triggers the covering operator, which creates
new classifiers with uncovered classes. Under pure exploration, a class is selected
randomly, and all classifiers predicting that class form the action set [A]. The
class is sent to the environment and the received reward is used to update the
parameters of the classifiers in [A]. Eventually, the genetic algorithm is triggered
inside the action set [A], and subsumption may be applied to favor accurate and
general classifiers. Under exploit mode, XCS predicts the most voted class for
each input example. The class vote is computed as a fitness weighted average of
the predictions of all classifiers advocating that class.

3 Description of UCS

3.1 UCS Components

UCS is an accuracy-based learning classifier system introduced in [1]. It inherits
the features of XCS, but specializes them for supervised learning tasks. UCS
mainly differs from XCS in two respects. Firstly, the performance component
is adjusted to a supervised learning scheme. As the class is provided with each
new example, UCS only explores the class of the input examples. This implies
that UCS only evolves high-rewarded classifiers, that is, the best action map
[B]. Secondly, accuracy is computed differently in both systems. UCS computes
accuracy as the percentage of correct classifications instead of computing it from
the prediction error.

In the following, we give a deeper insight into UCS by explaining each com-
ponent of the system.

Classifier’s Parameters. In UCS, classifier’s parameters are the following:
a) accuracy acc; b) fitness F ; c) correct set size cs; d) numerosity num; and e)
experience exp. Accuracy and fitness are measures of the quality of the classifier.
The correct set size is the estimated average size of all the correct sets where the
classifier participates. Numerosity is the number of copies of the classifier, and
experience is the number of times a classifier has participated in a match set.

Performance Component. UCS is an online learner that receives a new input
example x = (x1, ..., xn) at each learning iteration. As it works under a super-
vised learning scheme, also the class c of the example is provided. Then, the
system creates the match set [M], which contains all classifiers in the population
[P] whose condition matches x. Next, all the classifiers in [M] that predict the

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 99

class c form the correct set [C]. If [C] is empty, the covering operator is activated,
creating a new classifier with a generalized condition matching x, and predicting
class c. The remaining classifiers form the incorrect set ![C].

In test mode, a new input example x is provided, and UCS must predict
the associated class. To do that, the match set [M] is created. All classifiers in
[M] emit a vote, weighted by their fitness, for the class they predict. The vote of
young classifiers (i.e., exp < θdel) is decreased by multiplying its vote by exp/θdel

to avoid that poorly evaluated classifiers emit a strong vote if more experienced
classifiers exist. The most-voted class is chosen. New inference schemes have been
proposed in [2]. Under test mode, the population of UCS does not undergo any
change. All update and search mechanisms are disabled.

Parameter Updates. Each time a classifier participates in a match set, its
experience, accuracy and fitness are updated. Firstly, the experience is increased.
Then, the accuracy is computed as the percentage of correct classifications:

acc =
number of correct classifications

experience
(1)

Thus, accuracy is a cumulative average of correct classifications over all matches
of the classifier. Next, fitness is updated according to the following formula:

Fmicro = (acc)ν (2)

where ν is a constant set by the user that determines the strength pressure
toward accurate classifiers (a common value is 10). Thus, fitness is calculated
individually for each microclassifier, and it is not shared. The fitness of a macro-
classifier Fmacro is obtained by:

Fmacro = Fmicro · num (3)

Finally, each time the classifier participates in [C], the correct set size cs is
updated. cs is computed as the arithmetic average of all sizes of the correct sets
in which the classifier has taken part.

Discovery Component. The genetic algorithm (GA) is used as the primary
search mechanism to discover new promising rules. The GA is applied to [C],
following the same procedure as in XCS. It selects two parents from [C] with
a probability that depends on classifier’s fitness. The same selection schemes
applied in XCS can be used in UCS, such as proportional selection or tournament
selection. The two parents are copied, creating two new children, which are
recombined and mutated with probabilities χ and μ respectively.

Finally, both children are introduced into the population. First, each offspring
is checked for subsumption with its parents. The subsumption mechanism is
adapted from XCS as follows: if one of the parents is sufficiently experienced
(exp > θsub), accurate (acc > acc0) and more general than the offspring, then
the offspring is not introduced into the population and the numerosity of this
parent is increased. If the offspring cannot be subsumed for any of its parents, it
is inserted in the population, deleting another classifier if the population is full.

100 A. Orriols-Puig and E. Bernadó-Mansilla

Specify. The specify operator [14] is also adapted from XCS. At each learn-
ing iteration, the accuracy of the correct set acc[C] is compared to the average
accuracy of the whole population acc[P]. If acc[C] ≤ acc[P]

2 and the average ex-
perience of the classifiers in [C] is greater than NSp (exp[C] ≥ NSp), a classifier
is randomly selected from [C], with probability inversely proportional to its ac-
curacy. Then, the classifier is copied, and its don’t care symbols are specified
—to the value of the input example— with probability PSp. Finally, the new
classifier is introduced in the population, removing potentially poor classifiers if
the population is full.

Deletion. The deletion probability of each rule is calculated as:

pdel =

{
cs·num·F[P]

Fmicro
if exp > θdel and Fmicro < δF[P]

cs · num otherwise
(4)

where δ and θdel are parameters set by the user, and F[P] is the average fitness
of the population. In this way, deletion will tend to balance resources among the
different correct sets, while removing low-fitness classifiers from the population.
As fitness is computed from the percentage of correct classifications of a classifier,
classifiers that predict wrong classes are not maintained in the population, and
so, only the best action map evolves.

Classifier Parameters Initialization. UCS is very robust to parameter ini-
tialization since the initial value of most of the parameters is lost the first time
that the classifier participates in a match set. When a classifier is created by
covering, its parameters are set to: exp = 1, num = 1, cs = 1, acc = 1 and F
= 1. If a classifier is created by the GA, its parameters are initialized to: exp =
1, num = 1, cs = (csp1 + csp2)/2 (where p1 and p2 denote each of the parents),
acc = 1 and F = 1.

3.2 Why Should We Not Share Fitness?

UCS showed to perform competitively with other machine learning techniques in
both artificial and real-world domains [1], even without fitness sharing. However,
there are some analyses in the literature that demonstrate the advantages of shar-
ing fitness in learning classifier systems [3] and, in general, in genetic algorithms [9].

Thus, we introduce a new fitness computation scheme that shares fitness,
similarly to XCS, with the aim of comparing its advantages and disadvantages
with a non sharing scheme. In the remainder of the paper, UCS without sharing
is referred as UCSns, and UCS with sharing as UCSs.

Parameters update with fitness sharing works as follows. Experience, correct
set size and accuracy are computed as in UCSns. However, fitness is shared
among all classifiers in [M]. Firstly, a new accuracy k is calculated, which dis-
criminates between accurate and inaccurate classifiers. For classifiers belonging
to ![C], kcl∈![C] = 0. For classifiers belonging to [C], k is computed as follows:

kcl∈[C] =

⎧⎨
⎩

1 if acc > acc0

α(acc/acc0)ν otherwise

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 101

Then, a relative accuracy k′ is calculated:

k′
cl =

kcl · numcl∑
cli∈[M] kcli · numcli

(5)

And fitness is updated from k′:

F = F + β · (k′ − F) (6)

Let’s note that, under this scheme, the computed fitness corresponds to the
macroclassifier’s fitness, as numerosities are involved in the formulas. Whenever
the microclassifier’s fitness is needed (e.g., in the deletion algorithm), we use the
relation of formula 3.

4 XCS and UCS in Binary-Input Problems

4.1 Methodology

The aim of this section is to analyze different aspects of UCS and XCS learning
behavior. We base our analysis on five artificial problems that gather some com-
plexity factors said to affect the performance of LCSs [12,1]: a) a binary-class
problem; b) a multiclass problem; c) an imbalanced binary-class problem; d) an
imbalanced multiclass problem; and e) a noisy problem. For a detailed descrip-
tion of each problem the reader is referred to appendix A. Each problem was
run with UCSns, UCSs and XCS.

If not stated differently, we used the following standard configuration for XCS:
P# = 0.6, β = 0.2, α = 0.1, ν = 5, θGA = 25, selection = tournament, χ = 0.8,
μ = 0.04, θdel = 20, δ = 0.1, GAsub = true, [A]sub = false, θsub = 20. When
specify was enabled, Ns = 0.5 and Ps = 0.5. Parameters for UCS had the same
values as in XCS, with acc0=0.999 and ν=10.

The maximum population size of XCS and UCS was configured depending on
the size of the optimal population that the systems were expected to evolve. XCS
evolves a complete action map [O] [12], which consist of both highly rewarded
rules1 and poorly rewarded rules2 with low error. On the other hand, UCS
evolves the best action map [B] [1], which includes only highly rewarded rules.
As proposed in [1], we set population sizes to N = 25 · |[O]| in XCS, and to
N = 25 · |[B]| in UCS For each problem, we sought to find the parameters’
configuration that permitted to obtain the best results. Thus, any changes on
the parameter settings will be properly stated.

Different metrics were used to evaluate performance. We discarded accuracy
as the measure of performance, since it does not provide enough evidence of ef-
fective genetic search, as pointed out in [13]. Instead of accuracy, the proportion

1 Rules with high prediction and low error.
2 Rules with low prediction and low error.

102 A. Orriols-Puig and E. Bernadó-Mansilla

of the optimal action map achieved %[O] [12] was proposed as being a better in-
dicator of the progress of the genetic search [13]. However, UCS and XCS evolve
different optimal populations: XCS creates the complete action map [O], whereas
UCS represents a best action map [B]. To allow a fair comparison, we only con-
sider the proportion of best action map %[B] achieved by each system. That is, we
only count the percentage of consistently correct rules. Besides, the proportion of
correct classifications of the minority class (TP rate) is also used in imbalanced
binary-class problems.

4.2 Binary-Class Problem: Parity

We tested the LCSs on the parity problem. The parity problem is a binary-
class problem, whose class is 1 if the number of ones in the input is odd and
0 otherwise. The problem does not allow any generalization in the condition
rules. Please, see appendix A.1 for the details. We ran the parity problem with
condition lengths from 3 to 9 and the standard configuration. To stress specificity,
we enabled the specify operator in XCS and UCS.

Figure 1 depicts the proportion of the best action map %[B] achieved by
UCSns, UCSs and XCS. Curves are averages of ten runs. The plots show that
UCSs converges earlier than UCSns, which shows up the advantages of fitness
sharing. This is specially observed for larger input lengths, such as for 8 and
9 inputs. UCSs also improves XCS, and in turn XCS slightly improves UCSns.
Next, we discuss these results in more detail.

Table 1. Accuracy and fitness of UCSns’s classifiers along the generality-specifity
dimension, depicted for the parity problem with � = 4

Condition Class Accuracy Fitness
1 #### 0 0.5 0.00097
2 0### 0 0.5 0.00097
3 00## 0 0.5 0.00097
4 000# 0 0.5 0.00097
5 0000 0 1 1

a) Why is the Parity Problem Difficult for Both Systems?
The parity problem appears to be a hard problem for both learners. Its main dif-
ficulty can be attributed to the lack of fitness guidance toward optimal classifiers.
As some generalization is introduced by the covering operator, XCS and UCS have
to drive the population from generality to specificity. However, the fitness pressure
does not correctly lead to specificity. That is, specifying one bit of an overgeneral
classifier does not increase its accuracy unless all bits are specified. Table 1 shows
the evolution that would suffer the most overgeneral classifier to become an opti-
mal classifier in UCSns in the parity problem with �=4. At each step, one of the
don’t care bits is specified. Note that accuracy, and so, fitness, remain constant
during all the process until the optimal classifier is achieved. However, we would
expect that the specification of one bit should result in a fitter classifier, since it

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 103

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Par

Par3
Par4
Par5
Par6
Par7
Par8
Par9

(a) UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Par

Par3
Par4
Par5
Par6
Par7
Par8
Par9

(b) UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Par

Par3
Par4
Par5
Par6
Par7
Par8
Par9

(c) XCS

Fig. 1. Proportion of the best action map achieved by UCSns (a), UCSs (b) and XCS
(c) in the parity problem with condition lengths from �=3 to �=9

approaches the optimum classifier (in which all the bits are specified). Therefore,
the fitness is not guiding toward optimal optimal solutions, and so, an optimal
classifier can only be obtained randomly. This example is also generalizable to
XCS, for which fitness guidance is carefully analyzed in [6].

b) Exploring Only High-Rewarded Niches
Under a pure explore regime, XCS uniformly explores niches containing high-
rewarded rules and niches with consistently incorrect rules (provided that ex-
amples come uniformly). Actually, the system maintains a complete action map.
On the other hand, UCS explores only the high rewarded niches, i.e., the best
action map.

Thus, UCS is expected to evolve the best action map in half the time XCS
does. However, results show that both systems need a similar number of learn-
ing iterations to converge. Our hypothesis is that the exploration of consistently
incorrect rules may help XCS to discover consistently correct rules. For exam-
ple, if XCS evolves a consistently incorrect classifier such as 0001:0, XCS may
discover the consistently correct classifier 0001:1 by mutation of the class bit.
Thus, XCS can discover parts of [B] while exploring low-rewarded niches.

104 A. Orriols-Puig and E. Bernadó-Mansilla

c) The Advantages of Sharing Fitness
The results show that the convergence curves in UCSs and XCS are steeper
than in UCSns. After some initial iterations, the systems start to evolve some
optimal classifiers. In the case of UCSs and XCS, once the first optimal classifiers
are discovered, the convergence curves raise quickly. This effect is due to fitness
sharing. Under fitness sharing, the discovery of a new optimal classifier makes the
fitness of overgeneral classifiers that participate in the same action/correct set
decrease quickly. This produces a) a higher pressure toward overgeneral deletion
and b) a higher selective pressure toward specific classifiers in the GA. Thus,
the GA is likely to produce new specific, and so, optimal classifiers. Without
fitness sharing, overgeneral classifiers maintain the same fitness along the whole
learning process. This effect is specially strong in imbalanced data sets, where
overgeneral classifiers have higher accuracy.

4.3 Multiclass Problem: Decoder

In this section we aim at analyzing the behavior of XCS and UCS on multiclass
problems. For this purpose, we use the decoder problem, which has � + 1 classes,
being � the string length. The best action map contains 2� specific classifiers, while
the complete action map has (�+1)·2� classifiers. See appendix A.2 for the details.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Dec

Dec3
Dec4
Dec5
Dec6

(a) UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Dec

Dec3
Dec4
Dec5
Dec6

(b) UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Dec

Dec3
Dec4
Dec5
Dec6

(c) XCS

Fig. 2. Proportion of the best action map achieved by UCSns (a), UCSs (b) and XCS
(c) in the decoder problem with condition lengths from �=3 to �=6. Note that UCS is
shown for 50,000 explore trials, while XCS is shown for 100,000 trials.

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 105

Figure 2 depicts the proportion of the best action maps achieved by UCSns,
UCSs and XCS. The results evidence a much better performance of UCS,
specially for higher condition lengths. With a condition length �=6, UCSs needs
up to 5,000 learning iterations to discover the complete best action map, whereas
XCS discovers only 40% of it in 100,000 iterations. This huge difference between
XCS and UCS could mainly be explained by a) the explore regime and b) the
accuracy guidance toward the optimal population.

a) Explore Regime
The first aspect that hinders the performance of XCS is the explore regime
used. As XCS explores uniformly each class, only 1 of each � + 1 explores will
be made on the class of the input instance. The other � explores will be focused
on classifiers that predict wrong classes. This issue, which appeared to have
low effect in the parity problem, now takes importance since the number of
classes increases. Moreover, the hamming distance between consistently incorrect
classifiers and correct classifiers is bigger than in the parity problem. So, in the
decoder problem, it is more difficult to create a high-rewarded classifier while
exploring a low-rewarded niche.

b) Accuracy Guidance Toward Optimal Population
The second point that influences the convergence of XCS is the way in which
fitness guides to the solution. This issue was initially termed by Butz et al.
as the fitness dilemma [6]. Let’s suppose we have the overgeneral classifier cl1
1###:8, whose estimated parameters are P=125 and ε = 218.75 [6]. XCS is
expected to drive cl1 to the classifier 1000:8. Imagine now that, either mutation
or specify generates the classifier cl2 10##:8, whose parameter estimates are
P=250 and ε = 375. That is, as the classifier approaches the optimal one, the
error increases. As long as the classifier moves towards the right direction, it gets
smaller fitness, which consequently means fewer genetic event opportunities and
higher deletion probabilities. Thus, there is no effective fitness pressure towards
optimal classifiers.

UCS overcomes the fitness dilemma, because the accuracy is calculated as the
percentage of correct classifications. Therefore, classifier cl2 would have higher
accuracy than cl1. In that way, UCS’s accuracy guidance does not mislead the
search.

Finally, it can be observed that UCSs converges slightly quicker than UCSns.
As in the parity problem, we ascribe this behavior to the fact that fitness sharing
makes a stronger pressure toward the optimal classifiers as long as they are
discovered.

4.4 Imbalanced Binary-Class Problem: Imbalanced Multiplexer

Real-world problems often have smaller proportion of examples of one class than
the others. It has been widely accepted that this issue, addressed as the class
imbalance problem [10], could hinder the performance of some well-known learn-
ers. Recent studies [16,18] have shown that UCSns suffers from class imbalances,

106 A. Orriols-Puig and E. Bernadó-Mansilla

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

T
P

 r
at

e

Learning Iterations

UCSns in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(a) TP rate in UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(b) %[B] in UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

T
P

 r
at

e

Learning Iterations

UCSs in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(c) TP rate in UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(d) %[B] in UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

T
P

 r
at

e

Learning Iterations

XCS in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(e) TP rate in XCS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(f) %[B] in XCS

Fig. 3. TP rate and % of [B] achieved by UCSns, UCSs and XCS in the 11-bit multi-
plexer problem with imbalance levels from i=0 to i=9

while different mechanisms acting at the classifier level or at the sampling level
can alleviate the effect. On the other hand, XCS has shown to be highly robust to
class imbalances if its parameters are set appropriately (see [17]). In this section
we compare the behavior of XCS and UCS in a controlled imbalanced problem,
and besides, analyze the influence of fitness sharing in such conditions.

We used the imbalanced 11-bit multiplexer (see appendix A.4), where minority
class instances were sampled with a proportion Paccept. In the remainder of the
paper we use i to refer to the imbalance level, that is, Paccept = 1

2i .

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 107

We ran XCS and UCS with the 11-bit multiplexer and imbalance levels from
i=0 to i=9. Parameters were set as suggested in [17]: for high imbalance levels, β
should be increased to allow more reliable parameter estimates, while θGA should
be decreased to allow more uniform genetic opportunities among the different
niches. Moreover, we only apply subsumption when the involved classifiers have
received, at least, 2i parameter updates. Thus, for XCS we used the standard
configuration but setting β = {0.04, 0.02, 0.01, 0.005}, θGA = {200, 400, 800,
1600}, and θsub = {64, 128, 256, 512} for i={6, 7, 8, 9} respectively. As UCS
appeared to be less sensitive to parameters’ settings in previous experiments
(not reported here), we maintained the standard configuration. Only for i≥6,
θGA = 50 and β = 0.02.

Figure 3 shows the proportion of correct classifications of the minority class
(TP rate) and the proportion of the best action map achieved by each system.
We do not show the proportion of correct classifications of the majority class
since it raises to 100% in few iterations. The results show that UCSns fails at low
imbalance levels (it only converges for i≤3), whereas XCS solves the problem up
to i=8, and UCSs up to i=9.

Let’s analyze the behavior of UCSns. Figure 3(b) shows that, for i≥4, UCSns
evolves only half of the best action map. Looking at the populations evolved
(see table 2 for i = 6) we observed that UCSns discovered all optimal clas-
sifiers predicting the minority class (class 1). However, optimal classifiers pre-
dicting the majority class were replaced by the most overgeneral classifier clovg:
###########:0. This behavior is related to the accuracy computation and the
lack of fitness sharing in UCSns. At any imbalance level, the accuracy expected
for clovg is accclovg = 1 − Paccept, and the fitness is computed as a power of the
accuracy. For i=6, accclovg = 0.9843, which gives a high fitness value. The classi-
fier’s accuracy is still lower than acc0 (recall that acc0 is set to 0.999); thus, the
classifier would be considered as inaccurate for subsumption purposes. However,
since clovg participates in 1 − Paccept of all correct sets, the classifier receives
many genetic opportunities, and finally overtakes the population. Increasing ν

Table 2. Most numerous rules evolved in a single run of UCSns with the 11-bit imbal-
anced multiplexer for i=6. Cond. is the classifier’s condition, C. the class it predicts,
and Acc., F., and Num. are the accuracy, fitness and numerosity of the classifier.

Cond. C. Acc. F. Num.
########### 0 0.98 0.86 142
0001####### 1 1.00 1.00 55
001#1###### 1 1.00 1.00 74
010##1##### 1 1.00 1.00 60
011###1#### 1 1.00 1.00 63
100####1### 1 1.00 1.00 57
101#####1## 1 1.00 1.00 69
110######1# 1 1.00 1.00 57
111#######1 1 1.00 1.00 68

...

108 A. Orriols-Puig and E. Bernadó-Mansilla

to make a stronger pressure toward accuracy does not significantly improve the
results for high imbalance levels.

This effect does not appear in XCS and UCSs with appropriate parameter
settings. As both systems share fitness, the fitness of overgeneral classifiers would
considerably diminish when an optimal classifier is discovered. Figures 3(c)-3(f)
show the improvement obtained with UCSs and XCS. UCSs shows to perform
slightly better at high imbalance levels, being able to solve the 11-bit multiplexer
even for i=9, in which XCS fails. At these regimes of such low supply of minority
class examples, exploring only the correct class is crucial to maximally benefit
from exploration. In fact, as XCS explores half of the correct actions for a given
number of iterations (with respect to UCS), one could expect that UCSs solves
the multiplexer up to one imbalance level greater than XCS does.

4.5 Imbalanced Multiclass Problem: Position

After analyzing the effects of class imbalance on an artificially imbalanced prob-
lem, we introduce the position problem, which intrinsically has unequal distribu-
tion of examples per class, and a number of classes that increases linearly with
the condition length (see appendix A.3 for a description of the problem).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Pos

Pos3
Pos4
Pos5
Pos6
Pos7
Pos8
Pos9

(a) UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Pos

Pos3
Pos4
Pos5
Pos6
Pos7
Pos8
Pos9

(b) UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Pos

Pos3
Pos4
Pos5
Pos6
Pos7
Pos8
Pos9

(c) XCS

Fig. 4. Proportion of the best action map achieved by UCSns (a), UCSs (b) and XCS
(c) in the position problem with condition lengths from l=3 to l=9

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 109

We ran UCSns, UCSs and XCS with the position problem and the standard
configuration. Specify was disabled to introduce more generalization pressure.
Figure 4 shows the proportion of the best action map achieved.

The position problem combines the effects of class imbalances and fitness
dilemma in a single problem. The best action map consists of classifiers with
different levels of generality. Thus, the most specific rules are expected to suffer
from fewer genetic opportunities, since they are activated less often [1]. The
results obtained support this hypothesis. In all cases, the shape of the curves have
a steep increase at the beginning —where the most general rules are discovered—,
and afterward, the curves improve slowly. Examining the populations (not shown
for brevity), we confirmed that the most specific rules were difficult to discover.

In addition, the results obtained with XCS are poorer than with UCS. This
can be again ascribed to the fitness dilemma, as in the decoder problem. That is,
there is a misleading pressure toward optimal rules. Figure 5 shows an example of
how the prediction error increases when driving the overgeneral rule ## . . . # : 0
to the optimal classifier 00 . . . : 0 for different input lengths �. This, coupled
together with the few genetic opportunities that the most specific classifiers
receive, makes the discovery of these classifiers very hard.

Finally, UCSs slightly outperforms UCSns. For position with � = 9, after
100,000 iterations, UCSs is able to discover all the best map while UCSns dis-
covers 90% of the best action map. Again, fitness sharing helps to discover the
most specific classifiers.

4.6 Noisy Problem: Multiplexer with Alternating Noise

To conclude the study, we analyze the effects of training XCS and UCS on noisy
environments. To do that, we used the 20-bit multiplexer introducing alternating
noise (denoted as muxan). That is, the class of a input instance was flipped with
probability Px, as proposed in [5].

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

Length of the position problem

E
rr

or

Increase of Error with specificity

Fig. 5. Error of XCS’s classifiers along the generality-specificity dimension. The curve
depicts how the error of the most overgeneral classifier ## . . . # : 0 evolves until
obtaining the maximally accurate rule 00 . . . : 0.

110 A. Orriols-Puig and E. Bernadó-Mansilla

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(a) Calt1 UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(b) Calt2 UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(c) Calt3 UCS ns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(d) Calt1 UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(e) Calt2 UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(f) Calt3 UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(g) Calt1 XCS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(h) Calt2 XCS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(i) Calt3 XCS

Fig. 6. Proportion of the best action map achieved by UCSns, UCSs, and XCS in
the 20-bit multiplexer with alternating noise and with configurations Calt1 , Calt2 , and
Calt3

The effect of noise may be related to the effect of undersampled classes to
some extent. The system receives wrongly labeled instances in a percentage Px

of the explore trials. The key difference here is that each instance is correctly
labeled in a high proportion of samples (1 - Px), and only in small proportion of
cases (Px), the instance comes with the wrong class. Thus, we aim at analyzing
the ability of each system to obviate noisy instances in favor of non-noisy ones.

We ran UCSns, UCSs and XCS in the 20-bit multiplexer with alternating
noises Px = {0.05, 0.10, 0.15} and three different parameter configurations Calt1 ,
Calt2 and Calt3 . Calt1 is the standard configuration with specify disabled. Calt2

sets β=0.01 and θGA = 100 to have more reliable parameters estimates before
the GA triggers. Finally, Calt3 is based on Calt1 , setting acc0 = 1 − Px and
ε0 = Px ∗ Rmax to let the system admit the noise of the data. In all runs, the
population size was set to 2,000 in both UCS and XCS3. Figure 6 shows the
percentage of optimal population achieved for each setting.

3 UCS population size is equal to XCS, because the effect of wrongly labeled instances
makes UCS try to evolve consistently incorrect rules to fit to noise.

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 111

With Calt1 setting, UCSns gets higher performance than UCSs and XCS,
specially for the highest levels of noise (see figures 6(a), 6(d) and 6(g)). This
behavior can be attributed to the way that classifier parameters are estimated.
Both XCS and UCSs compute a windowed average of fitness by means of the
learning parameter β. In noisy environments, the parameter averages oscillate
and cannot stabilize properly. So, high levels of noise require low values of β.
As UCSns computes fitness as a power of the accuracy, parameter values of
experienced classifiers remain steady.

Figures 6(b), 6(e) and 6(h) show the proportion of the best action map
achieved with Calt2 setting, which is configured to lead to more stable param-
eters estimates. The results show a clear improvement of UCSs and XCS with
respect to configuration Calt1 . This proves our hypothesis that higher levels of
noise require lower β values to allow for better parameter stabilization, coupled
with higher θGA to let the genetic algorithm operate with better estimates. UCSs
specially benefits from that, nearly reaching 100% of the best action map in few
iterations. Results of UCSns are the same as those obtained with Calt1 setting,
as it does not use β in the fitness estimate.

Finally, figures 6(c), 6(f) and 6(i) show the experiments with Calt3 setting,
which fits acc0 and ε0 to consider noise as negligible. This setting allows op-
timal classifiers, which include a certain percentage of noise, to be considered
as accurate. This lets optimal classifiers have higher accuracy estimates (in the
case of UCSs and XCS). Besides, subsumption would be applied toward optimal
classifiers increasing the pressure toward them. Results appear better to those
obtained with Calt1 in all LCSs. With respect to Calt2 , we obtained better results
than with Calt3 in UCSns and XCS. Combining Calt2 and Calt3 benefits from
the advantages of each approach (not shown for brevity).

5 Summing Up

In this section, we briefly sum up the differences observed when sharing is intro-
duced in UCS, as well as the different dynamics between UCS and XCS.

Explore Regime. Exploring only the class of the input instance (as UCS does)
appeared to be beneficial in problems with high number of classes, e.g., decoder
and position. Moreover, it helped to solve the imbalanced multiplexer up to one
imbalance level higher than XCS, in an extreme low supply of minority class
instances. Finally, the effects were nearly imperceptible in the parity problem,
since the exploration of the low-rewarded niches could lead to discover high-
rewarded optimal classifiers.

We used a pure explore regime in XCS, where each available class is uniformly
explored for each possible input. Since UCS proves that a more directed search
toward the correct class generally speeds up convergence, we could also think
of other explore regimes in XCS. Training in XCS could be based on an explo-
ration regime that gradually changes from pure exploration toward increasing
exploitation, similarly to schemes such as softmax [20]. This remains an open
issue for further work.

112 A. Orriols-Puig and E. Bernadó-Mansilla

Accuracy Guidance. The results of XCS in some domains showed the lack of
fitness guidance toward accurate classifiers. This problem, already observed in
previous studies [1,6], was termed the fitness dilemma in [6]. The problem does
not exist in UCS since accuracy is computed directly as the percentage of correct
classifications. We showed that XCS strongly suffers from the fitness dilemma in
the decoder, and to a lower degree, in the position. In these cases, UCS clearly
outperformed XCS. To alleviate this effect, bilateral accuracy was proposed for
XCS [6]. As a future work, we aim to investigate how this approach compares
with UCS.

Fitness Sharing. Fitness sharing speeds up the convergence in all problems
tested. Specially, it appears to be crucial in highly imbalanced data sets to
deter overgeneral classifiers from overtaking the population. UCSns only gave
better performance when parameter estimates were unstable in UCSs due to an
inappropriate setting of the learning parameter β. Anyway, this effect cannot be
attributed to the presence or absence of fitness sharing, but rather to the way
in which fitness is estimated. Recall that UCSns computes fitness as a power
of accuracy, while UCSs computes fitness as a weighted windowed average with
learning parameter β.

Population Size. In the tested problems, UCS evolved best action maps with
less learning iterations. Also smaller population sizes were used in UCS in all
the tested problems, except for the noisy problem. The population evolved by
XCS is generally larger, but comparable to that of UCS in terms of legibility. In
fact, by removing low-rewarded classifiers from XCS’s final population, we get a
set of rules similar to that of UCS (not shown for brevity). Thus, the advantage
of having smaller populations in UCS lies in the reduction of computational
resources.

6 Conclusions

This paper provided insight into the UCS learning classifier system. We improved
the original UCS system as introduced in [1] by including tournament selection
and fitness sharing. Robustness of the modified UCS was proved across different
artificial domains. Specially, fitness sharing was necessary in the imbalanced
multiplexer problem. We suspect that this behavior can be also generalizable
to other imbalanced problems, where overgeneral classifiers can easily become
strong. Using sharing, we allow overgenerals until optimal classifiers start to
evolve. When this happens, fitness of overgeneral classifiers decreases fast by the
effect of sharing fitness with better competing solutions.

The comparison with XCS allowed for a better understanding of the differ-
ences between the two approaches of accuracy-based classifier systems. UCS has
an architecture specifically designed for supervised learning problems. XCS is
more general, and can be applied to multi-step problems, learning only from the
feedback about action consequences. Thus, it is reasonable that XCS does not
perform as well as UCS in supervised environments.

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 113

Two key differences provide UCS with better results in some classification
domains: exploration focuses on best action maps and correct fitness pressures
towards accuracy. Suggestions to improve XCS’s convergence are made, such as
using search regimes with more exploitation guidance. Some methods such as
those based on ε-greedy action-selection or softmax action-selection [20] have
already been tested on reinforcement learners. Their introduction to XCS could
lead to performance similar to UCS. To avoid the effects of the fitness dilemma
in XCS, the use of bilateral accuracy is proposed, as suggested in [6].

The experiments on a noisy problem showed high performance for the LCSs.
Both UCS and XCS could achieve optimal populations with a level of noise up
to 15%. Future work could enhance this study by analyzing LCSs’ tolerance to
increasing levels of noise. Our experiments performed in noisy and imbalanced
problems showed that UCS was less sensitive to parameter settings. In XCS, two
parameters became critical for optimal performance: the learning rate β and the
GA triggering threshold θGA.

Although our results and conclusions are limited to artificial problems, our
experimental testbed contained many complexity factors present in real-world
problems: multiple classes, noisy instances and imbalanced classes, among others.
In this sense, the paper provided some guidelines for further improving learning
classifier systems in increasingly challenging problems.

Acknowledgements

The authors thank the support of Enginyeria i Arquitectura La Salle, Ramon
Llull University, as well as the support of Ministerio de Ciencia y Tecnoloǵıa un-
der project TIN2005-08386-C05-04, and Generalitat de Catalunya under Grants
2005FI-00252 and 2005SGR-00302.

References

1. Bernadó-Mansilla, E. and Garrell, J.M. Accuracy-Based Learning Classifier Sys-
tems: Models, Analysis and Applications to Classification Tasks. Evolutionary
Computation, 11(3):209–238, 2003.

2. Brown, G., Kovacs, T., and Marshall, J.A.R. UCSpv: principled voting in UCS rule
populations. In GECCO’07, pages 1774–1781, New York, NY, USA, 2007. ACM
Press.

3. Bull, L. and Hurst, J. ZCS Redux. Evolutionary Computation, 10(2):185–205,
2002.

4. M.V. Butz, K. Sastry, and D.E. Goldberg. Strong, stable, and reliable fitness
pressure in XCS due to tournament selection. Genetic Programming and Evolvable
Machines, 6(1):53–77, 2005.

5. Butz, M.V. Rule-Based Evolutionary Online Learning Systems: A Principled Ap-
proach to LCS Analysis and Design, volume 109 of Studies in Fuzziness and Soft
Computing. Springer, 2006.

6. Butz, M.V., Goldberg, D., and Tharankunnel, K. Analysis and improvement of
fitness exploration in XCS: Bounding models, tournament selection, and bilateral
accuracy. Evolutionary Computation, 11(3):239–277, 2003.

114 A. Orriols-Puig and E. Bernadó-Mansilla

7. Butz, M.V., Goldberg, D.E., and Lanzi, P.L. Effect of pure error-based fitness in
XCS. In Learning Classifier Systems, volume 4399/2007 of LNCS, pages 104–114.
springer, 2007.

8. Butz, M.V. and Wilson, S.W. An algorithmic description of XCS. In P.L. Lanzi,
W. Stolzmann, and S.W. Wilson, editors, Advances in Learning Classifier Systems:
Proceedings of the Third International Workshop, volume 1996 of Lecture Notes in
Artificial Intelligence, pages 253–272. Springer, 2001.

9. Harik, G. Finding Multiple Solutions in Problems of Bounded Difficulty. Technical
report, IlliGAL Report No. 94002, Urbana-Champaign IL 61801, USA, May 1994.

10. Japkowicz, N. and Stephen, S. The Class Imbalance Problem: A Systematic Study.
Intelligent Data Analisis, 6(5):429–450, November 2002.

11. Kovacs, T. Strength or Accuracy? Fitness Calculation for Classifier Systems. In
In Lanzi, Stolzmann, and Wilson Eds, Learning Classifier Systems. From Founda-
tions to Applications. Lecture Notes in Artificial Intelligence 1813, pages 143–160.
Springer-Verlag, 2000.

12. Kovacs, T. and Kerber, M. What makes a problem hard for XCS. In Lanzi, P. L.,
Stolzmann, W., & Wilson, S. W. (Eds.), Advances in Learning Classifier Systems:
Third International Workshop, IWLCS, pages 80–99. Springer-Verlag, 2000.

13. Kovacs, T. and Kerber, M. High Classification Accuracy does not Imply Effective
Genetic Search. In GECCO’04, pages 785–796, Seattle, WA, USA. 26-30 June,
2004. Springer, LNCS 3103.

14. Lanzi, P.L. A Study of the Generalization Capabilities of XCS. In Thomas Bäck,
editor, Proc. of the Seventh Int. Conf. on Genetic Algorithms, pages 418–425, San
Francisco, CA, 1997. Morgan Kaufmann.

15. Lanzi, P.L. Learning Classifier Systems: A Reinforcement Learning Perspective,
volume 183/2005 of Studies in Fuzziness and Soft Computing, pages 267–284.
Springer, 2005.

16. Orriols-Puig, A. and Bernadó-Mansilla, E. The Class Imbalance Problem in UCS
Classifier System: Fitness Adaptation. In Congress on Evolutionary Computation,
volume 1, pages 604–611, Edinburgh, UK, 2-5 September 2005. IEEE.

17. Orriols-Puig, A. and Bernadó-Mansilla, E. Bounding XCS Parameters for Unbal-
anced Datasets. In GECCO’06, pages 1561–1568. ACM Press, 2006.

18. Orriols-Puig, A. and Bernadó-Mansilla, E. The Class Imbalance Problem in UCS
Classifier System: A Preliminary Study. In Learning Classifier Systems, volume
4399/2007 of LNCS, pages 161–180. Springer, 2007.

19. Quinlan, J.R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers, San Mateo, California, 1995.

20. Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction. Cam-
bridge, MA: MIT Press, 1998.

21. Vapnik, V. The Nature of Statistical Learning Theory. Springer Verlag, New York,
1995.

22. Wilson, S.W. Classifier Fitness Based on Accuracy. Evolutionary Computation,
3(2):149–175, 1995.

23. Wilson, S.W. Generalization in the XCS Classifier System. In Genetic Program-
ming: Proceedings of the Third Annual Conference, pages 665–674. Morgan Kauf-
mann, 1998.

24. Wilson, S.W. Classifiers that approximate functions. Journal of Natural Comput-
ing, 1(2):211–234, 2002.

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 115

A Problem Definitions

In this section, we introduce the problems used in the paper. For each one, a
short explanation of its characteristics and the sizes of the best action map %[B]
and the complete action map %[O] are provided.

A.1 Parity

The parity is a problem that has widely been used as a benchmark in LCS since
it was originally introduced in [12] to show the dependence of XCS’s performance
on the optimal population size. Given a binary string of length �, the number
of ones modulo two determines the output. Thus, the problem does not permit
any generalization.

The best action map size consists of all the specific rules predicting the correct
class, that is, |[B]| = 2�. The complete action map doubles the best action map,
as it also maintains specific rules predicting the wrong class. Then |[O]| = 2�+1.

A.2 Decoder

The decoder problem is an artificial problem with binary inputs and multiple
classes. Given an input of length �, the output is determined by the decimal
value of the binary input. The number of classes increases exponentially with the
condition length — numclasses = 2�. The best action map consists of all possible
binary inputs |[B]| = 2� with their corresponding decimal value as output. The
complete action map adds � consistently incorrect rules per each consistently
correct rule of the best action map. Thus, |[O]| = 2� · (� + 1).

A.3 Position

Position is an imbalanced multiclass problem defined as follows. Given a binary-
input instance of length �, the output is the position of the left-most one-valued
bit.

The best action map consists of � + 1 rules with different levels of general-
ization. The complete action map needs to maitain a set of wrong-labeled rules.
The size of this set depends on the level of generalization of each class. Table 3
shows the best and the complete action map for position with � = 6.

A.4 Multiplexer

The multiplexer problem is one of the most used benchmarks in accuracy-based
learning classifier systems [22]. The multiplexer is defined for binary strings of
size �, where � = k + 2k. The first k bits of the conditions are the position bits.
The output of the multiplexer is the value of the bit referred by the position
bits.

116 A. Orriols-Puig and E. Bernadó-Mansilla

Table 3. Best action map (first column) and complete action map (all columns) of
position with �=6

000000:0 1#####:0 #1####:0 ##1###:0 ###1##:0 ####1#:0 #####1:0
000001:1 1#####:1 #1####:1 ##1###:1 ###1##:1 ####1#:1 #####0:1
00001#:2 1#####:2 #1####:2 ##1###:2 ###1##:2 ####1#:2
0001##:3 1#####:3 #1####:3 ##1###:3 ###0##:3
001###:4 1#####:4 #1####:4 ##0###:4
01####:5 1#####:5 #0####:5
1#####:6 0#####:6

Imbalanced Multiplexer. The imbalanced multiplexer was introduced in [17]
to analyze the effects of undersampled classes in XCS. Departing from the orig-
inal multiplexer problem, the imbalanced multiplexer undersamples one of the
classes —labeled as the minority class— in the following way. When required,
a new input example is selected randomly. If the example belongs to the class
labeled as the majority class, it is given to the system. Otherwise, it is ac-
cepted with probability Paccept. If it is discarded, a new input example is chosen,
which undergoes the same process. Regarding the notation used in the paper,
Paccept = 1

2i .

Multiplexer with Alternating Noise. The multiplexer with alternating noise
was firstly used in [5] to show that XCS with tournament selection is able to
handle data sets with inconsistent data. The problem is as follows. When a new
input instance corresponding to the multiplexer problem is sampled, its action
is flipped with probability Px.

	Introduction
	XCS in a Nutshell
	Description of UCS
	UCS Components
	Why Should We Not Share Fitness?

	XCS and UCS in Binary-Input Problems
	Methodology
	Binary-Class Problem: Parity
	Multiclass Problem: Decoder
	Imbalanced Binary-Class Problem: Imbalanced Multiplexer
	Imbalanced Multiclass Problem: Position
	Noisy Problem: Multiplexer with Alternating Noise

	Summing Up
	Conclusions
	Problem Definitions
	Parity
	Decoder
	Position
	Multiplexer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

