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Abstract. This paper presents Fuzzy-UCS, a Michigan-style Learning
Fuzzy-Classifier System designed for supervised learning tasks. Fuzzy-
UCS combines the generalization capabilities of UCS with the good
interpretability of fuzzy rules to evolve highly accurate and understand-
able rule sets. Fuzzy-UCS is tested on a large collection of real-world
problems, and compared to UCS and three highly-used machine learn-
ing techniques: the decision tree C4.5, the support vector machine SMO,
and the fuzzy boosting algorithm Fuzzy LogitBoost. The results show
that Fuzzy-UCS is highly competitive with respect to the four learners in
terms of performance, and that the fuzzy representation permits a much
better understandability of the evolved knowledge. These promising re-
sults of the online architecture of Fuzzy-UCS allow for further research
and application of the system to new challenging problems.

1 Introduction

Michigan-style Learning Classifier Systems (LCSs) [19] are online machine learn-
ing techniques that use Genetic Algorithms (GAs) [T9/18] to evolve a rule-based
knowledge. Among the different uses, several LCSs have been designed for per-
forming supervised learning tasks [34[4l3]. Typically, LCSs deal with numerical
attributes by means of evolving a set of interval-based rules that cooperate to pre-
dict the output of new unlabeled examples. Although the competence of LCSs in
terms of accuracy has been widely shown, this excellence has been hindered by a
poor interpretability of the evolved rule sets, which typically consist of large sets
of overlapping interval-based rules that can hardly be read by human experts.
During the last decade, the interest in Fuzzy Rule-Based Systems (FRBSs)
[11] has increased since they provide a robust, flexible, and powerful methodology
to deal with noisy, imprecise, and incomplete data. Besides, the fuzzy representa-
tion allows for a better interpretability of the classification models. This has led
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to the first analyses and designs of Learning Fuzzy-Classifier Systems (LFCSs).
Since the introduction of the first LFCS [30], several new architectures have
been proposed [23T7I32I6/7[9], which have been mostly applied to reinforcement
learning and control tasks. One of the first proposals of LFCS for pattern clas-
sification was presented in [20]. These first successful steps toward the design of
competent LFCS warrants for further investigation, especially in the supervised
learning paradigm.

In this paper, we address the problem of interpretability in LCSs, and propose
Fuzzy-UCS, an online accuracy-based LFCS architecture that works under a su-
pervised learning paradigm. We depart from the UCS classifier system, which
has been shown to be highly competitive with respect to some of the most used
machine learning techniques [3]. We introduce a linguistic fuzzy representation
to UCS, and redesign most of its components to permit the system to deal with
fuzzy rules. With the inclusion of fuzzy rules, we seek for a better interpretabil-
ity of the evolved knowledge, as well as a reduction in the search space, while
maintaining a performance similar to the one obtained with an interval-based
representation. Moreover, we also prepare the system to be able to deal with
vague and uncertain data.

The remaining of this paper is organized as follows. Section [2] deeply explains
the proposed Fuzzy-UCS architecture, especially focusing on the differences from
the original UCS. In Sect. Bl we analyze the behavior of Fuzzy-UCS on a large
collection of real-world problems, and compare the performance an interpretabil-
ity of the models evolved by Fuzzy-UCS to those created by UCS and three other
machine learning techniques: C4.5, SMO, and Fuzzy LogitBoost. Finally, Sect. [
concludes, highlights the differential traits of Fuzzy-UCS, and enumerates new
opportunities that will be addressed as further work.

2 Description of Fuzzy-UCS

Figure [ schematically shows the learning process of Fuzzy-UCS. The learner
works in two different modes: training or exploration mode and testing or ez-
ploitation mode. During explore, Fuzzy-UCS evaluates online the quality of the
rule-based knowledge, and evolves it by means of a GA. During test, Fuzzy-
UCS uses the rules to infer the output of a given input instance. The different
components of the system are detailed as follows.

2.1 Representation

Fuzzy-UCS evolves a population [P] of classifiers, where each classifier consists
of a linguistic fuzzy rule and a set of parameters. The fuzzy rule is represented
as follows:

IF 2, is A} and --- and z, is Ak THEN ¢* WITH F* (1)

where each input variable ; is represented by a disjunction (T-conorm operator)

of linguistic terms Af = {41 V ...V A, }. In our experiments, all the input
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Fig. 1. Schematic illustration of Fuzzy-UCS

variables share the same semantics. The variables are defined by triangular-
shaped fuzzy membership functions (see examples of these semantics with three
and five linguistic terms per variable in Fig. 2]).

The consequent of the rule internally maintains one weight for each of the m
classes {w¥,---  wk }. Each weight w}“ indicates the soundness with which the
rule k predicts class j for an example that fully matches this rule. These weights
are incrementally updated with the learning interaction (see Sect.2.3), and serve
to calculate the class of the rule. That is, the class c® predicted by the rule is
the class that has associated the weight with maximum value.

Each classifier has four main parameters: a) the fitness F, which estimates
the accuracy of the rule, b) the correct set size cs, which averages the sizes
of the correct sets in which the classifier has participated, c¢) the experience
exp, which reckons the contributions of the rule to classify the input instances,
and d) the numerosity num, which counts the number of copies of the classi-
fier in the population. All these parameters are updated online as specified in
Sect.

To implement this representation, we propose to use a binary coding for the
antecedent of the rule. That is, a one-valued allele indicates that the corre-
sponding linguistic term is used in this variable. The class predicted by the rule
is codified as an integer, and the fitness as a float number. For instance, if we
have three linguistic labels {S [small], M [medium], L [large]} for each input and
two possible classes {c1, c2}, the fuzzy rule

IF 2 is S and x5 is {S or L} THEN ¢; WITH 0.8 (2)

is encoded as: [100[101]|c1]0.8].
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Fig. 2. Representation of a fuzzy partition for a variable with (a) three and (b) five
triangular-shaped membership functions

2.2 Performance Component

The performance component of Fuzzy-UCS is inherited from UCS and adapted to
deal with the new fuzzy representation. UCS learns under a supervised learning
scheme. Given an input example e with its associated class ¢, UCS creates the
match set [M] with all the classifiers in [P] that match the input instance. Then,
[M] is used differently depending on whether the system is running on explore or
on exploit mode. In explore mode, UCS forms the correct set [C], which consists
of all the classifiers in [M] that advocate the class of the input example. If [C]
is empty, covering is triggered. In exploit mode, the best action selected from
the vote (weighted by fitness) of all classifiers in [M] is returned as the predicted
output.

Fuzzy-UCS follows this process, but the role of the matching and the inference
processes changes as they are adapted to deal with linguistic terms. In the fol-
lowing, the matching degree calculation and the phases followed in explore mode
are detailed. The inference mechanism used during test is explained in Sect.

Calculation of the matching degree. The matching degree p4x(e) of a rule
k with an example e is computed as follows. For each variable x; of the rule, we
compute the membership degree for each of its linguistic terms, and aggregate
them by means of a T-conorm (disjunction). Then, the matching degree of the
rule is determined by the T-norm (conjunction) of the matching degree of all the
input variables. In our implementation, we used a bounded sum (min{l,a+ b})
as T-conorm and the product (a - b) as T-norm. Note that we used a bounded
sum instead of other typical operators for the T-conorm to emulate the don’t
care used in the crisp representation. That is, with the bounded sum, a variable
will have no influence if all its linguistic terms are set to ‘1’.

Creation of the match set. Given the input e, all the classifiers with a match-
ing degree greater than zero form the match set.

Creation of the correct set. Next, the correct set [C] is created with all
the classifiers in [M] that advocate the class c. If there is not any rule in [C]
that matches e with the maximum matching degree, the covering operator is
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triggered. We create the rule that matches e with maximum degree as follows.
For each variable x;, the linguistic term with maximum matching with e; is
activated. Then, the rule is generalized by setting each linguistic term to ‘1’
with probability Px. The parameters of the classifier are initialized to: F'=1,
exp=0, num=1, and cs is set to the size of [C]. Finally, this rule is introduced
in the population if there is not any rule in [C] with the same matching degree.

2.3 Parameters Update

At the end of each learning iteration, the parameters of all the classifiers that
belong to the match set are updated according to their matching degree with
the input example e of class c. First, the experience of each rule is incremented
according to the current matching degree:

expfyy = expy + par(e) (3)

Then, for each class j, we compute the sum of correct matchings cm; of each
classifier k:

le?
Jt+1

= cmft +m(k,7) (4)

where

m(k, j) = {MAk(e) if j=c (5)

0 otherwise

That is, we compute separately the sum of matching degrees of every rule with
the examples of different classes. Next, the weight of each class is computed as:

k
cm’”
w.?t+1 = J]:7+1 (6)
expy |

For example, if a rule k only matches examples of class j, the weight w;“ will
be 1 and the remaining weights 0. Rules that match instances of more than one
classes will have the corresponding weights ranging from 0 to 1. In all cases, the
sum of all the weights is 1.

Then, the fitness is computed from the class weights with the aim of favoring
classifiers that match instances of only one class. For this purpose, we compute
the fitness as follows:

Ftlil = wﬁzazprl - Z ’LU;-Ct+1 (7)
jli#maz

The equation selects the weight w’ . with maximum value and substract the

values of the other weights. Note that this formula can result in classifiers with

zero or negative fitness (for example, if the class weights are equal). Finally, the

correct set size cs¥ is calculated as the arithmetic average of the sizes of all the

correct sets to which the classifier has belonged.
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2.4 Discovery Component

Similarly to UCS, Fuzzy-UCS uses a genetic algorithm for discovering new
promising rules. The GA is applied on a correct set if the average time since
its last application on the classifiers that form this correct set is greater than
O 4. In this case, two parents are selected from [C] with probability proportional
to their fitness and the matching degree of their fitness. That is,

o, = (FF)Y - pax (e)
ey risoF)Y - par(e)

where v > 0 is a constant that fixes the pressure toward maximally accurate
rules (in our experiments, we set ¥=10). Rules with negative fitness are not
considered for selection. The fitness of young classifiers is decreased since they
receive a minimum number of updates. That is, if expr < 8ezp, the fitness of the
classifier k is multiplied by 1/8cqp.

Next, the parents are crossed and mutated with probabilities P, and P, re-
spectively. The consequent of the rule and the parameters of the offspring are
initialized as in covering.

The crossover operator crosses the rule antecedent by two points selected
randomly. This could result in classifiers containing variables with no linguistic
terms, which would indicate that the rule is not applicable. If this is the case,
we copy a linguistic term from one of the parents. Crossover does not modify
the consequent of the rule.

The mutation operator randomly decides if a variable has to be mutated.
If a variable is selected, three types of mutation can be applied: expansion,
contraction, or shift. Expansion chooses a linguistic term not represented in the
corresponding variable and adds it to this variable; thus, it can only be applied
on variables that do not have all the linguistic terms. Contraction is the opposite
process: is removes a linguistic term from one variable; so, it can only be applied
if the variable has more than one linguistic term. Shift changes a linguistic term
for its immediately inferior or superior.

Finally, the new offspring are inserted into the population. First, each offspring
is checked for subsumption with its parents. If either of the parents is enough
experienced (exp > Osyp), highly accurate (F' > Fp), and more general than the
offspring, its numerosity is incremented. If the offspring cannot be subsumed by
any of its parents, the same process is used to find a subsumer in [C]. If there is
no subsumer, the offspring is inserted in the population. A classifier is deleted if
the population is full; in this case, each classifier is given a deletion probability of

(®)

where

dn — csk - num® - % if exp? > 04¢ and (F*)” < 6F
k csk - num® otherwise
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where F is the average fitness of classifiers in [P], and 6 and 64; are two param-
eters set by the user (0 < § < 1 and 04, >0). Thus, this method gives higher
deletion probabilities to numerous classifiers that belong to large correct sets;
moreover, it also penalizes experienced classifiers with low fitness.

2.5 Fuzzy-UCS in Test Mode

Fuzzy-UCS aims at obtaining a highly accurate rule set of minimum size. To
obtain high accuracy, we need to define an effective reasoning method that infers
the output class from the final population. To obtain a reduced rule set, some
reduction strategies may be applied to remove classifiers that are not important
for the reasoning. In the following, we discuss two reasoning approaches which
lead to two different rule set reduction mechanisms.

Class Inference. In test mode, given a new unlabeled instance e, several rules
can match (with different degrees) this instance, each having a certain fitness
F*. Thus, a reasoning process needs to be applied to decide the output. Here,
we propose two fuzzy-inference approaches:

1. Weighted average inference. In this approach, all rules vote to infer the
output. Each rule k emits a vote vy for class j it advocates, where

v = F* - puar(e) (11)

The votes for each class j are added:

N
Vj : vote; = Z Uk (12)

k|ck=j

and the most-voted class is returned as the output. Note that this strategy
is analogous to the inference scheme of UCS.

2. Action winner inference. This approach proposes to select the rule & that
maximizes F'* - 14+ (e), and choose the class of the rule as output [20]. Thus,
the knowledge of overlapping rules is not considered in this inference scheme.

Ruleset Reduction. At the end of the learning, the population is reduced to
obtain a minimum set of rules with the same training accuracy as the original
rule set. The reduction strategy depends on the type of inference used.

1. Reduction based on weighted average. Under the weighted average inference,
the final population is reduced by removing all the rules that a) are not
experienced enough (exp < fegpioit) Or b) have zero or negative fitness.

2. Reduction based on action winner. If action winner inference is used, it is
only necessary to maintain the rules that maximize the prediction vote for
each training example. Thus, after training, this reduction scheme infers the
output for each training example. The rule that maximizes the vote v; for
each example is copied to the final population.
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Next section compares Fuzzy-UCS with the two inference and reduction mech-
anisms to UCS and other machine learning techniques. For notation, these
schemes will be addressed as: weighted average inference (wavg), and action
winner inference (awin).

3 Experimentation

In this section, we analyze the competence of Fuzzy-UCS in classification tasks.
The main goal of data classification is to obtain highly accurate models that
provide comprehensible explanations for human experts. For this purpose, we
compare the performance and rule set interpretability of Fuzzy-UCS with respect
to UCS and three other well-known machine learning techniques: the decision
tree C4.5 [25], the support vector machine SMO [24], and the boosting algorithm
based on a fuzzy representation Fuzzy LogitBoost [22]. In the following, we first
detail the methodology followed in the comparison and then present the results
obtained.

3.1 Methodology

Experimentation Problems. We selected a collection of twenty real-world
problems. This collection includes problems with different characteristics (see
Table [[) which may pose particular challenges to the different learning tech-
niques. All these problems were obtained from the UCI repository [5], except for
tao, which was chosen from a local repository [4].

Machine Learning Techniques Included in the Comparison. We com-
pared Fuzzy-UCS with the two inference mechanisms to four machine learning
techniques: UCS, C4.5, SMO, and Fuzzy LogitBoost. UCS [3] is the learning
classifier system from which Fuzzy-UCS was derived; so, we want to analyze
whether the fuzzy representation permits to achieve similar performance and
improves the interpretability of the rule sets evolved by UCS. C4.5 [25] is a de-
cision tree that enhances ID3 by introducing methods to deal with continuous
variables and missing values. C4.5 is one of the most used learners in the realm
of pattern classification, since it usually results in accurate tree-based models
which are quite interpretable by human experts. SMO [24] is a widely-used im-
plementation of support vector machines [31]; SMO implements the Sequential
Minimization Algorithm to solve the dual problem. We included both C4.5 and
SMO into the analysis to compare Fuzzy-UCS to two top-notch machine learn-
ing techniques. Fuzzy LogitBoost [22] is a boosting algorithm that iteratively
invokes a genetic algorithm to extract simple fuzzy rules that are combined to
decide the output of new examples. We selected Fuzzy LogitBoost to be in the
comparison since it is a modern method which relies on statistics theory, and
S0, it is a good representative of fuzzy learners. Table Pl summarizes the main
characteristics of the learners.

C4.5 and SMO were run using WEKA [35]. For Fuzzy LogitBoost, we used
KEEL [2]. For UCS, we ran our own code. All the open source methods were
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Table 1. Properties of the data sets. The columns describe: the identifier of the data
set (Id.), the name of the data set (dataset), the number of instances (#Inst), the total
number of features (#Fea), the number of real features (#Re), the number of integer
features (#In), the number of nominal features (#No), the number of classes (#Cl),
and the proportion of instances with missing values (%Miss)

1d. || dataset #Inst #Fea #Re #In #No #Cl %Miss
ann ||Annealing 898 38 6 0 32 5 0
aut ||Automobile 205 25 15 0 10 6 22.4
bal ||Balance 625 4 4 0 0 3 0
bpa ||Bupa 345 6 6 0 0 2 0
cme ||Contraceptive method choice 1473 9 2 0 7 3 0
col ||Horse colic 368 22 7 0 15 2 98.1
gls ||Glass 214 9 9 0 0 6 0
h-c ||Heart-c 303 13 6 0 7 2 2.3
h-s ||Heart-s 270 13 13 0 0 2 0
irs ||Iris 150 4 4 0 0 3 0
pim ||Pima 768 8 8 0 0 2 0
son ||Sonar 208 60 60 0 0 2 0
tao | Tao 1888 2 2 0 0 2 0
thy ||Thyroid 215 5 5 0 0 3 0
veh ||Vehicle 846 18 18 0 0 4 0
wbed || Wisc. breast-cancer 699 9 0 9 0 2 2.3
wdbc||Wisc. diagnose breast-cancer 569 30 30 0 0 2 0
wne ||Wine 178 13 13 0 0 3 0
wpbc||Wisc. prognostic breast-cancer 198 33 33 0 0 2 2
z00 ||Zoo 101 17 0 1 16 7 0

Table 2. Summary of the main characteristics of the learners included in the compar-
ison: C4.5, SMO, UCS, and Fuzzy LogitBoost (Bst)

| | Paradigm

|Knowledge Rep. and Inference Method

C4.5

Decision-tree induction

Decision-tree.
Inference: class given by the corresponding
leaf.

SMO

Neural networks (support vec-
tor machines)

Weights of the support vector machines.
Inference: The class is determined by the de-
cision function represented by the SVM.

ucs

Michigan-style GBML

Population of intervalar rules with a fitness
value.

Inference: The output is the most voted class
among the matching classifiers.

Bst

Statistical Learning Theory
and GBML

Population of linguistic fuzzy rules with a
strength per class.

Inference: The output is the most voted class
among the matching classifiers.
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configured with the parameters values recommended by default, with the fol-
lowing exceptions. The model for SMO was selected by choosing the kernel that
maximized the global accuracy with respect to the other learners. That is, we
ran SMO with polynomial kernels of order 1, 3, 5, and 10, and with a Gaussian
kernel. Then, we ranked the results obtained with the three polynomial kernels
and chose the model that maximized the average rank: SMO with polynomial
kernels of order 3. We followed a similar strategy to select the maximum popu-
lation size of Fuzzy LogitBoost, for which we did not find a set of recommended
values in the literature. We tried population sizes of N={8,25,50,100} for all the
data sets, and provide the results of N=>50 since they permitted to achieve, in
general, higher performance ratios than N=8 and N=25, and did not significantly
differ from the results obtained with N=100.

UCS was configured with the following parameters (see [3I2I] for notation
details): numIter=100,000, N=6400, acco = 0.99, v=10, {04, Odel, Osup }=50,
P,=0.8, P,=0.04, 6=0.1, P»=0.6. These are typical configuration parameters
for UCS. No extra experimentation was made to improve the performance re-
sults, so that the reported results could be even improved with a further tun-
ing of configuration parameters. Similar configuration parameter values were
chosen for Fuzzy-UCS, that is: numlter=100,000, N=6400, Fy, = 0.99, v =
10, {0ca,0der,Osup}t = 50, Oczproir = 10, P, = 0.8, P, = 0.04, 6=0.1, and
Py = 0.6. Both fuzzy based learners, i.e., Fuzzy-UCS and Fuzzy LogitBoost,
used five linguistic terms per variable defined by triangular-shaped membership
functions.

Comparison Metrics. The data models built by each learner were evaluated
in terms of performance and interpretability. We measured the performance of
the method with the test accuracy, i.e., the proportion of correct classification
on previously unseen examples. To obtain reliable estimates of test accuracies,
we ran the experiments on a ten-fold cross validation [29]. For the stochastic
methods, the results provided correspond to the average of ten runs with different
random seeds.

The comparison of the interpretability of the models is more complicated since
the methods included in the comparison use different knowledge representations.
Whilst UCS, Fuzzy-UCS, and Fuzzy LogitBoost use a rule-based representation,
C4.5 builds a decision tree, and SMO represents the data model with the weights
(ranging from 0 to 1) of a support vector machine. For this reason, we gathered
some indicators of the model sizes, i.e., number of rules for the rule-based sys-
tems, number of leaves for the trees, and number of weights for the support
vector machines. In the next section, we qualitatively discuss the advantages
and disadvantages of the different representations.

Statistical Analysis. We followed the methodology pointed in [12] to statisti-
cally analyze the differences in performance among learners. As suggested by the
author, we avoided to use any parametric statistical test since they require that
the data satisfy several strong conditions. Instead, all the statistical analysis is
based on non-parametric tests.
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We first applied a multi-comparison statistical procedure to test whether all
the learning algorithms performed the same on average. Specifically, we used the
Friedman test [I5JT6], the non-parametric equivalent to the analysis of variance
test ANOVA [I4]. As indicated in [12], if the Friedman test rejects the hypothesis
that all the learners perform the same on average, several post-hoc tests can be
used to detect significant differences between groups of learners. As our aim
was to compare Fuzzy-UCS to the other learners (that is, one control learner
against the others) we used the non-parametric Bonferroni-Dunn test [I3]. The
Bonferroni-Dunn test defines that one learner performs significantly differently
than a control learner if the corresponding average rank differs by, at least, a
critical difference C'D, which is computed as

ne(ng + 1)

CD = q, oy

(13)

where ny is the number of learners in the comparison, ngs is the number of data
sets, and ¢, is the critical value based on the Studentized range statistic [28]. We
illustrate the results of this test by showing the group of learners that perform
equivalently to the control learner.

The Bonferroni-Dunn test is said to be conservative, especially as the number
of learners increases or the number of data sets decreases, so that it may not de-
tect significant differences although they actually exist. Nonetheless, we use this
test in the first stage of our analysis since it permits to detect groups of learn-
ers that truly perform differently from other learners. We latter apply pairwise
comparisons to detect further significant differences between learners that be-
long to the same group, assuming the risk of increasing the error of rejecting null
hypotheses when they are actually true. We used the non-parametric Wilcoxon
signed-ranks test [33] for pairwise comparisons, and provide the approximative
p-values computed as indicated in [28§].

3.2 Results

Comparison of the Performance. Table [B] shows the average performance
obtained with the six learners on the twenty real-world problems. The last two
rows of the table supply the average rank and the position of each learner in the
ranking. The procedure to calculate the ranks is the following. For each data set,
we ranked the learning algorithms according to their performance; the method
with the highest accuracy was the first in the ranking, while the learner with the
poorest results holds the last position of the ranking. If a group of learners had
the same accuracy, we assigned the average rank of the group to each of those
learners.

The experimental results evidence the competitiveness of Fuzzy-UCS with re-
spect to the other machine learning techniques, especially when all the rules are
used in the inference process. That is, Fuzzy-UCS with weighted average infer-
ence is the third method of the ranking; it is only outperformed by SMO with
polynomial kernels and UCS, the method from whom Fuzzy-UCS was inspired.
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Table 3. Comparison of the accuracy rate of Fuzzy-UCS with weighted average (wavg)
and action winner (awin) inference schemes to UCS, C4.5, SMO, and Fuzzy LogitBoost
(LBoost). The two last rows of the table report the average rank of each learning
algorithm (Rnk), and its position in the rank (Pos).

Fuzzy-UCS
wavg awin

ann 99.05 9890 99.34 76.20 98.85  97.39
aut 77.41  80.94  78.09 32.63 74.42  67.42
bal 7732 7742 91.20 88.30 88.65  84.40
bpa 67.59  62.31 59.97 64.46 59.82  59.42
cme 50.27  52.62  48.75 51.10 51.72  49.67
col 96.26  85.32 75.59 63.06 85.01  82.46
gls 70.04 66.15  66.15 68.18 60.65  57.21
h-c 79.72  78.45 78.59 62.09 84.39  82.62
h-s 74.63  79.26  78.89 59.33 81.33  80.78
irs 95.40 94.00 92.67 95.33 95.67  95.47
pim 74.61 7423  76.70 71.84 74.88  74.11
son 76.49  71.07  85.52 53.38 80.78  73.71
tao 87.00 9592  84.22 91.73 81.71  83.02
thy 95.13 94.91 88.91 97.08 88.18  89.49
veh 7140 71.14  83.30 37.25 67.68  65.35
wbed 96.28  94.99  96.42 94.12 96.01  95.73
wdbc 95.96 94.40 97.58 62.74 95.20 94.61
wne 96.13 93.89  97.75 85.02 94.12  94.86
wpbc 69.40 71.61 81.25 76.35 76.06  76.05
200 96.78  92.81 97.83 41.89 96.50  94.78
Rnk 2.80 3.63 2.68 4.55 3.20 4.15
Pos 2 4 1 6 3 5

UCS C4.5 SMO LBoost

These results indicate that, even though the granularity limitations that the
linguistic fuzzy representation may impose compared to an interval-based rep-
resentation, Fuzzy-UCS presents a similar performance than UCS. Besides, note
that Fuzzy-UCS with weighted average achieves a better average rank than C4.5,
one of the most used machine learning techniques. Similarly, Fuzzy-UCS with
weighted average also outperforms Fuzzy LogitBoost, indicating that Fuzzy-UCS
can evolve more accurate fuzzy rules than Fuzzy LogitBoost.

The average rank worsens when only the information of the best rules is used
for inferring the class of new input instances. That is, Fuzzy-UCS with action
winner inference holds the fifth position of the ranking. These results confirm the
advantages of combining the information of all the fuzzy rules in the inference
process [10]. However, the next section shows that Fuzzy-UCS with action winner
results in much more reduced rule sets than Fuzzy-UCS with weighted average,
which opens an accuracy-interpretability trade-off. Moreover, Fuzzy-UCS with
action winner also outperforms the other fuzzy learner, Fuzzy LogitBoost.

We analyzed statistically the results to identify significant differences among
learners. Friedman test for multiple comparisons rejected the null hypothesis



Evolving Fuzzy Rules with UCS: Preliminary Results 69

Table 4. Pairwise comparison of the performance of the six learners by means of a
Wilcoxon signed-ranks test. The above diagonal contains the approximate p-values.
The below diagonal shows a symbol @ / © if the method in the row significantly
outperforms/degrades the method in the column at a significance level of .05 and
+/=/— if there is no significant difference and performs better/equal/worse.

| UCS C4.5 SMO LogitBoost | wavg awin

ucCs 2043 .6542 .0072 4330 .0674
C4.5 - .4209 .0111 7938 .3905
SMO + + .0072 1672 .0400
LogitBoost © O =) .0100 .0276
wavg - + - @ .0032
awin - = © D =)

that the six learners performed the same on average with p = 0.006. To evalu-
ate the differences between Fuzzy-UCS with the two inference schemes and the
other learners, we applied the Bonferroni-Dunn test at a = 0.10. Figure[3 places
each method according to its average rank. Furthermore, it connects with a line
the methods that perform equivalently to (1) Fuzzy-UCS with weighted average
inference, and (2) Fuzzy-UCS with action winner inference. The statistical anal-
ysis indicates that Fuzzy-UCS with weighted average significantly outperforms
Fuzzy LogitBoost. Besides, Fuzzy-UCS with action winner performs equivalently
to all the methods except for SMO.

As the Bonferroni test is said to be conservative [28], so that it may not detect
all the significant differences, we complemented the statistical study by compar-

Bonferroni-Dunn Test at «=0.10

SMO uCs wavg C4.5 awin LBoost
1| | | | |
1 T T T T
268 2.8 3.2 3.63 4.15 4.55
| |
N {
h
@ t i
. CD=1.376 i
i i i i i i
2 25 3 35 4 45 5

Fig. 3. Comparisons of one leaner against the others according to a Bonferroni-Dunn
test at a significance level of 0.10. All the learners are compared to two different control
groups: (1) Fuzzy-UCS with weighted average and (2) Fuzzy-UCS with action winner.
The methods connected are those that perform equivalently to the control learner.
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ing each pair of learners. Note that with this approach we are increasing the risk
of rejecting hypothesis that are actually true [I2]; nonetheless, we do not base
the statistical analysis on pairwise comparisons, but use them to complement
the conclusions drawn above. The above diagonal of Table [d] shows the approxi-
mate p-values of the pairwise comparison according to a Wilcoxon signed-ranks
test. The below diagonal indicates with the symbols @ and © that the method
in the row significantly outperforms/degrades the performance obtained with
the method in the column. Similarly, the symbols + and - are used to denote
a non-significant improvement/degradation. The symbol = indicates that each
method outperforms and degrades the other the same number of times.

The pairwise analysis confirms the conclusions pointed by the Bonferroni-
Dunn test, and it detects additional significant differences among learners. The
test supports that Fuzzy-UCS with weighted average inference does not degrade
the performance of any other learner and significantly improves Fuzzy Logit-
Boost and Fuzzy-UCS with action winner inference. On the other hand, it in-
dicates that Fuzzy-UCS with action winner inference outperforms Fuzzy Logit-
Boost; besides, it degrades the results obtained by SMO and Fuzzy-UCS with
weighted average. Finally, note that Fuzzy-UCS with action winner inference is
statistically equivalent to C4.5; that is, it outperforms and degrades the results
of C4.5 in the same number of the data sets.

Comparison of the Interpretability. The analysis made in the previous
section highlights that Fuzzy-UCS is able to evolve highly accurate models, es-
pecially when the weighted average inference is used. Herein, we analyze the
readability of the models evolved by Fuzzy-UCS, and qualitatively compare them
to the models built by the other learners. To evaluate the readability of the final
model, we consider two aspects: (i) the intrinsic interpretability of the model,
i.e., if the knowledge representation can be easily understood by human experts;
and (ii) the size of the model.

First, we compare the type of rules evolved by Fuzzy-UCS to the other knowl-
edge representations. Figure [d] depicts partial examples of the models created by
each learner for the two-dimensional problem tao. Fuzzy-UCS evolves a set of
linguistic fuzzy rules with a fitness value (see Fig. . UCS creates a popu-
lation of interval-based rules; the lower and upper bounds of the intervals can
take any valid value for the attribute (see Fig. . C4.5 builds a decision tree
where each node establishes a decision over one variable (see Fig. . SMO
creates (g) support vector machines (where n is the number of classes of the
classification problem), each one consisting of a set of continuous weights rang-
ing from 0 to 1 (see Fig. . Fuzzy LogitBoost evolves a set of linguistic fuzzy
rules (see Fig. . These rules are similar to the ones of Fuzzy-UCS, with the
following two exceptions. In Fuzzy-UCS, rule’s variables can take a disjunction
of linguistic terms; differently, in Fuzzy LogitBoost the variables are represented
by a single linguistic term. Furthermore, the rules of Fuzzy-UCS predict a sin-
gle class with a certain fitness, whilst the rules of Fuzzy LogitBoost maintain a
weight for each class, and use these weights in the inference process.
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if x is XL then blue with F=1.00
if x is XS then red with F=1.00
if x is {XS or S} and y is {XS or S} then red with F=0.87

(a) Fuzzy-UCS

if x is [-6.00, -0.81] and y is [-6.00, 0.40] then red with acc= 1.00
if x is [2.84, 6.00] and y is [-5.26, 4.91] then blue with acc =1.00
if x is [-6.00, -0.87] and y is [-6.00, 0.74] then red with acc =1.00

(b) UCS

x <=-2.75
x <=-3.25: red (308.0)
x >-3.25
y <= 1.75: red (55.0)
y > 1.75
| x<=-3:red (11.0/1.0)
| x>-3
Il y <= 4.25: blue (6.0)
[ y >4.25: red (4.0)

- 1.000  *<0.229 0.875 > * X]

|
|
|
|
|
|
: - 0298  *<0.708 0.437 > * X]

(c) C4.5 (d) SMO

if xisL and yis L then blue with -5.42 and red with 0.0
if x is M and y is XS then blue with 2.21 and red with 0.0
if x is M and y is XL then blue with -2.25 and red with 0.0

(e) Fuzzy LogitBoost

Fig. 4. Examples of part of the models evolved by (a) Fuzzy-UCS, (b) UCS, (c) C4.5,
(d) SMO, and (e) Fuzzy LogitBoost for the two-dimensional tao problem

This first analysis permits us to draw several observations concerning the read-
ability of the representation itself. In the following, we distinguish between three
types of learners depending on the inherent interpretability of their knowledge
representation:

1. SMO presents the least readable knowledge representation, since the weights
of the support vector machines provide poor information for human experts.
Thus, SMO is not suitable when the interpretability of the models is important.

2. The trees created by C4.5 and the rules evolved by UCS can be easily inter-
preted by human experts given models of moderate size. However, note that
both the decision nodes and the rules codify the decision over input vari-
ables with continuous numbers. This permits to precisely define the decision
boundaries, but may hinder the interpretability of the models, especially
when the number of nodes or rules increases.

3. Fuzzy-UCS and Fuzzy LogitBoost use a linguistic representation. As the
input variables are represented by linguistic terms, individual rules can be
read more easily than interval-based rules and decision trees. Nonetheless,
linguistic terms imply a discretization of the feature space, which may result
in a loss of precision to define the class boundaries.
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Next, we analyze the sizes of the models evolved by the different learners. For
this purpose, we used the following metrics. For rule-based systems, i.e., Fuzzy-
UCS, UCS, and Fuzzy LogitBoost, we counted the number of rules evolved. For
the tree-based system, i.e., C4.5, we reckoned the number of leaves, since each
path from the root of the tree to one leaf can be regarded as a complex rule.
Note that these measures are not directly comparable due to the differences in
the knowledge representations. However, we use these metrics to qualitatively
analyze the differences among learners.

Table [l depicts the model sizes of the rule-based and tree-based systems.
These results show that:

1. Fuzzy-UCS with weighted average inference evolves smaller rules sets than
UCS in most of the problems; besides, the fuzzy rule representation is more
readable. However, the still large amount of rules may hinder the inter-
pretability of the final rule set.

2. Fuzzy-UCS with action winner inference creates a much smaller rule sets
than UCS and Fuzzy-UCS with weighted average. These big differences per-
mit to significantly improve the readability of the final rule set, at a cost of
slightly decreasing the test performance as shown in the previous section.

3. Fuzzy LogitBoost creates rule sets of moderate size. Actually, the size of the
rule sets is determined by a configuration parameter. In our experiments,

Table 5. Average sizes of the models built by UCS, C4.5, Fuzzy LogitBoost (LBoost),
and Fuzzy-UCS with weighted average and action winner inference

UCS C4.5 LBoost | 1uzzy-UCS
wavg awin

ann_ || 4410 38 50 2769 75
aut 4064 44 50 3872 114
bal 1712 45 50 1212 114
bpa 2603 25 50 1440 73
eme || 3175 162 50 1881 430
col 3446 5 50 4135 154
gls 3013 24 50 2799 62
h-c 2893 29 50 3574 113
h-s 3499 17 50 3415 117
irs 634 5 50 480 18
pim || 3225 19 50 2841 192
son 5999 14 50 3042 178
tao 609 36 50 111 19
thy 1283 8 50 1283 37
veh 4601 69 50 3732 332
whed || 1799 12 50 3130 138
wdbe || 5079 11 50 5412 276
wne || 3413 5 50 3686 95
wpbe || 5078 12 50 3772 156
200 1244 11 50 773 16
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we set the maximum population size to 50 since it maximized the average
performance rank of the algorithm. Smaller population sizes could be set for
particular problems without loss of performance. However, we are interested
in robust methods that do not present a high dependency on their configu-
ration parameters. For this reason, we used the same parameters in all the
runs, and did not search for the best configuration for each specific data set
(in fact, we did not follow this approach for any learner).

The rule sets evolved by Fuzzy LogitBoost are slightly smaller than those
evolved by Fuzzy UCS. However, note that the rules created by LogitBoost
maintain a weight per each class (see Fig. [4(e)), whilst Fuzzy-UCS’s rules
only maintain a single fitness value (see Fig.. Furthermore, Fuzzy-UCS
evolves different number of rules depending on the intrinsic complexities of
the domain, while Fuzzy LogitBoost needs to know beforehand the number
of rules to be created.

4. C4.5 evolves trees of moderate size. The number of leaves is sligthly inferior
than the number of rules of Fuzzy-UCS with action winner.

The whole analysis provided in this section showed the competitivity of Fuzzy-
UCS with respect to the other machine learning techniques. In terms of perfor-
mance, Fuzzy-UCS with weighted average inference was one of the best methods
in the ranking. In terms of interpretability, we showed that Fuzzy-UCS with
action winner inference resulted in rule sets much more reduced than those
evolved by UCS—and Michigan-style Learning Classifier Systems in general—at
the cost of slightly decreasing the test performance. This evidenced an accuracy-
interpretability trade-off: the more information is used in the inference, the more
accurate the prediction of the class of test examples is. The next section empha-
sizes the advantages of the online learning architecture and the many opportu-
nities that Fuzzy-UCS offers, which are left for further work.

4 Conclusions and Further Work

In this paper, we proposed Fuzzy-UCS, a Michigan-style Learning Fuzzy-Classifier
System for supervised learning. Fuzzy-UCS was derived from UCS with the aim of
achieving more understandable models. For this reason, we replaced the interval-
based rule representation of UCS with a linguistic fuzzy representation, and de-
signed two inference mechanisms that offer different levels of rule set reduction.
We tested the system on a large collection of real-world problems, and com-
pared the performance and interpretability of the models evolved by Fuzzy-
UCS—with the two types of inference—to the models created by UCS, and three
other machine learning techniques: the decision tree C4.5, the support vector
machine SMO, and the statistic classifier based on a fuzzy representation Fuzzy
LogitBoost. The results highlighted the competence of Fuzzy-UCS, which was
able to evolve highly accurate and interpretable rule sets. Moreover, it showed
an accuracy-interpretability trade-off. As expected, the more information is used
for the inference process, the highest the accuracy of the models is; however, the
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readability of these models also worsens, since there are more rules in the final
populations. In further work, deeper research will be conducted to understand
more carefully the actual limitations imposed by the linguistic representation
and the inference scheme used, and fuzzy approximative representations will be
studied.

Besides its good behavior, Fuzzy-UCS presents two differential traits with
respect to the other learners in the comparison, which lead to several opportu-
nities concerning different challenges of data mining. Fuzzy-UCS, and in general
Michigan-style LCSs, evolve the rule set incrementally. This differs from many
learners which go several times through all the data set to create the classifica-
tion model. Due to the online architecture, Fuzzy-UCS could be applied to two
topics of increasing interest: (i) learning from large data sets [8], and, (ii) learn-
ing from data streams [I]. Furthermore, the use of fuzzy logic allows Fuzzy-UCS
to be adapted for learning from vague and uncertain data, which is frequent in
real-world classification problems [26/27]. The research on these three topics is
left as further work.
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