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Summary. This chapter investigates the capabilities of XCS for mining imbalanced
datasets. Initial experiments show that, for moderate and high class imbalances, XCS
tends to evolve a large proportion of overgeneral classifiers. Theoretical analyses
are developed, deriving an imbalance bound up to which XCS should be able to
differentiate between accurate and overgeneral classifiers. Some relevant parameters
that have to be properly configured to satisfy the bound for high class imbalances are
detected. Configuration guidelines are provided, and an algorithm that automatically
tunes these XCS’s parameters is presented. Finally, XCS is tested on a large set
of real-world problems, appearing to be highly competitive to some of the most
well-known machine learning techniques.

1 Introduction

Learning Classifier Systems (LCSs) [13] are complex machine learning meth-
ods that combine reinforcement learning and evolutionary computation tech-
niques to evolve novel knowledge. Initially designed regarding the animal
learning and cognitive psychology, some LCSs, and specially XCS [32, 33],
have been adapted to solve ambitious machine learning problems, facing new
challenges. Among them, learning from datasets that contain rare objects has
been identified as one of the biggest challenges to many well-known learners
in the machine learning realm. Many examples of real-world domains that
contain rare objects can be found, such as fraudulent credit card transac-
tions [11], learning word pronunciation [12], and detection of oil spills from
satellite images [21].

Research on the detection of rare objects has been conducted from two
different perspectives. The first perspective, associated mainly to supervised
tasks, focuses on the drawbacks caused by training the learner with datasets
that contain different proportion of instances per class. As many learners tend
to minimize a global measure of error, they might be biased toward the most
numerous classes in the training dataset [19,20]. The second perspective, asso-
ciated to both non-supervised and supervised tasks, is concerned about the
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distribution of examples around the feature space. It analyzes the difficulties
of learning from datasets that contain rare cases around the feature space,
which cause small disjuncts [17]. Both perspectives are really close, since
imbalanced datasets usually present rare cases. In fact, rare cases or small
disjuncts have been addressed as within-class imbalances [18]. In this paper
we analyze the effect of class imbalances as a whole, but also the difficulties
induced in learning classifiers systems due to small disjuncts.

Some studies have analyzed the behavior of LCSs on imbalanced datasets,
and some approaches have been proposed to boost their learning capabilities
on imbalanced data. Holmes addressed this topic in the context of epidemio-
logical data, enhanced EpiCS [14] with a strategy based on disproportionate
reinforcement per class [15], and lately built EpiXCS [16], an XCS-like system
derived from EpiCS. Other studies [22,23] empirically analyzed the effects of
imbalanced data on UCS [3], a learning classifier system derived from XCS
specialized for classification tasks. Results evidenced that UCS was biased
towards the majority class in highly imbalanced domains, and resampling
techniques were presented as effective methods to alleviate the problem. Not
until recently the first analyses of XCS’s performance on imbalanced data
have been done [24], showing that XCS is quite robust to class imbalances if
it is properly configured.

The understanding of a complex system as XCS is crucial before applying
it to solve real-world tasks. Aiming at this objective, this paper extends the
study of XCS on imbalanced domains made in [24]. We provide a bound on the
maximum amount of imbalance with which XCS can correctly deal, and we
identify relevant XCS’s parameters that need to be set properly to satisfy this
bound in highly imbalanced datasets. Guidelines on how to tune these param-
eters are provided, and new experiments reveal that an appropriate setting
of XCS’s parameters drastically improves XCS’s performance for high class
imbalances. However, configuration guidelines depend on characteristics that
may be unknown for real-world problems. Therefore, we present a method
that automatically configures XCS’s parameters, based on information col-
lected during learning. The conclusions obtained from the analysis of XCS in
artificial imbalanced domains are then applied to XCS so that it can efficiently
mine imbalanced data from real-world datasets. Specifically, the algorithm of
XCS’s self-adaptation gives competitive results compared to learners such as
C4.5, which is particularly known for yielding good performance in imbalanced
datasets, as well as SMO and IBk.

The remainder of this chapter is organized as follows. Section 2 briefly
introduces XCS for data mining. Next, we test XCS on an artificially imbal-
anced domain (Sect. 4). We model classifier’s error, identify XCS’s relevant
parameters and provide guidelines on how to configure them in Sect. 4. Then,
XCS is compared to other highly-competent learners on a large set of real-
world problems. Finally, Sect. 7 summarizes, concludes and discusses further
work.



Mining Imbalanced Data with Learning Classifier Systems 125

2 Description of XCS

XCS is an online accuracy-based LCS that solves a problem by evolving a
set of sub-solutions distributed in niches around the problem space. This
section provides a brief description of XCS restricted to classification tasks.
For further details, the reader is referred to [32, 33]; besides, an algorithmic
description can be found in [10].

2.1 Knowledge Representation

XCS evolves a population of classifiers [P], where each classifier consists of a
production rule of the form condition → action and a set of parameters. The
most important parameters are: (a) the prediction p, which estimates the pay-
off that the classifier will receive when the rule is fired and its action is chosen
as the output, (b) the prediction error ε, which estimates the error between
the prediction and the received payoff, (c) the fitness F , which evaluates the
accuracy of the classifier with respect to other classifiers in the same action
set, and (d) the numerosity num, which counts the number of copies of the
classifier in the population.

The condition representation was originally represented in the ternary
alphabet: {0, 1, #}�, where � is the length of the input instance. The symbol
#, called don’t care, allows to express generalizations in the classifier’s con-
dition. For real attributes, the input is codified as a set of intervals [li, ui]�,
where li and ui represent the lower and upper values that the attribute can
take to apply the rule.

2.2 Performance Component

At each time step t, an input instance st is sampled, and XCS builds the
match set [M], which contains all the classifiers in [P] that match the input
instance. If the classifiers in [M] predict less that θmna different actions, the
covering operator is activated, which creates new classifiers with a condition
generalized from st and an action chosen from the ones not represented in
[M] until θmna different actions are covered. For each action ai in [M], XCS
computes the payoff prediction P (st, ai) as a fitness weighted average of the
prediction of all classifiers in [M] advocating ai. Then, XCS selects an action
to perform. Different selection regimes can be applied: from a pure-explore
regime, in which the action is randomly selected, to a pure-exploit regime, in
which the action with the highest prediction is chosen. Under classification
problems, typically, the pure-explore regime is used during training, while the
pure-exploit regime is used when the system predicts new unknown instances.
Finally, XCS creates the action set [A], consisting of all classifiers in [M] that
predict the chosen action.
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2.3 Parameter’s Update

The chosen action is sent to the environment, which returns a reward R that
is used by XCS to update the parameters of the classifiers in [A]. First, the
prediction p is adjusted: p = p + β(R − p), where β is the learning rate
(0 < β ≤ 1). Next, the error ε is updated: ε = ε + β(|R − p| − ε). To update
the classifier’s fitness, XCS first computes the accuracy κ as follows:

κ =

{
1 if ε < ε0

α(ε/ε0)−ν otherwise
(1)

where ε0 is the maximum error that a classifier can take to be considered
accurate, and α and ν are constants that control the rate of decline in accuracy
(0 < α ≤ 1 and ν > 0). κ is used to compute the relative accuracy κ′ of the
classifier in [A]: κ′ = κ/

∑
[A] κi. Finally, the fitness is updated from the

relative accuracy: F = F + β(κ′ − F ). Note that the fitness is shared among
the classifiers in the same action set since it is calculated from the relative
accuracies.

2.4 Discovery Component

In XCS, the genetic algorithm (GA) is applied to the action set with a
frequency fixed by the parameter θGA. It selects two parents from [A] (fol-
lowing either a proportionate selection scheme [32] or a tournament selection
scheme [9]) and copies them creating two new classifiers, which are crossed
and mutated with probabilities χ and µ respectively. The resulting offspring
are introduced in the population, applying subsumption if required [33], and
two classifiers are deleted to keep the population size constant.

3 XCS and Class Imbalances

In this section, we investigate how different amounts of class imbalance affect
XCS. For this purpose, we designed a problem that permits to vary the com-
plexity along the imbalance dimension: the imbalanced multiplexer [24].

3.1 The Imbalanced Multiplexer

The multiplexer [32] is a completely-balanced problem defined for binary
strings of size �, where the first log2 � bits are the address bits and the remain-
ing bits are the position bits. The output is the value of the position bit
indicated by the decimal value of the address bits. The imbalanced multi-
plexer [24] permits to control the imbalance complexity of the multiplexer by
undersampling the class labeled as ‘1’. In the remainder of this paper, we use
the imbalance ratio – i.e., the ratio between the number of instances sampled
of the majority and the minority class – to refer to the imbalance complexity.
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3.2 XCS on the Imbalanced Multiplexer

We ran XCS on the 11-bit multiplexer with the following configuration1: N =
800, β = 0.2, θGA = 25, ε0 = 1, α = 0.1, ν = 5, χ = 0.8, µ = 0.04, θdel = 20,
δ = 0.1, θsub = 200, P# = 0.6. We used roulette wheel selection, two-point
crossover, and niched mutation [10] for the genetic algorithm. Subsumption
was applied in the GA, but not in the action set. Figure 1 shows the percentage
of correct classifications of the majority class (TN rate) and the percentage of
correct classifications of the minority class (TP rate) obtained by XCS with
imbalance ratios from ir = 1 to ir = 512. Curves are averaged over ten runs.
Note that, for ir = 1, the same proportion of instances per class is sampled;
on the other hand, for ir = 512, there are 512 instances of the majority class
sampled for each instance of the minority class.

Figure 1a, shows that the TN rate quickly raises to 100% for any imbalance
ratio tested. On the other hand, Fig. 1b illustrates that XCS only achieves
100% TP rate for ir ≤ 16. For ir = 32, the TP rate is about 95% after 106

iterations, reaching 100% after 2·106 explore trials (not shown in the graph for
a better visibility). However, for higher imbalance ratios, XCS cannot achieve
100% of TP rate. For ir = 64, the TP rate remains below 20%, and increasing
the number of learning iterations does not provide any improvement. For
ir > 64, the system classifies all the inputs as they belonged to the majority
class.

To explain the degradation of the TP rate with ir, we checked the final
populations for the different imbalance ratios. For the lowest imbalance ratios
(ir ≤ 16), the final populations contained few overgeneral classifiers – clas-
sifiers that match training instances of different classes –, all of them with
high error. For ir > 16, the numerosity of overgeneral classifiers increased
exponentially with the imbalance ratio. For ir = 64, overgeneral rules repre-
sented about 15% of the final population; for ir = 128 (see Table 1), they
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Fig. 1. TN rate (a) and TP rate (b) of XCS in the 11-bit multiplexer with imbalance
ratios from ir = 1 to ir = 512

1 For notation details, the reader is referred to [10,32,33].
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Table 1. Most numerous rules evolved in a run of XCS with the 11-bit multiplexer
for ir = 128. Cond. in the classifier’s condition, A. the action it predicts, and p, ε.,
F and num are the prediction, error, fitness and numerosity of the classifier

Cond. A. p ε F num

########### 0 1,000 1.2 · 10−4 0.98 385
########### 1 1.2 · 10−4 7.4 · 10−5 0.98 366

represented about 90% of the population, and for ir = 256, all the classifiers
in the population were overgeneral. Moreover, for the highest ir, the error of
overgeneral rules was lower than ε0, and so, XCS considered these rules as
accurate. For example, Table 1 shows that the error of the most overgeneral
rules for ir = 128 is practically zero. In the next section, we theoretically
analyze the effect of ir on the classifiers’ error.

4 Modeling Parameter’s Bounds

In this section, we theoretically relate the expected error of overgeneral classi-
fiers with the imbalance ratio, and derive a bound on ir beyond which XCS will
consider overgeneral classifiers as accurate. To derive the model, we assume
that the imbalance ratio of the training dataset equals the imbalance ratio
of the niches in the solution space (this assumption will be latter removed
in Sect. 5). That is, we assume that instances of the minority class activate
starved niches, and instances of the majority class trigger nourished niches.
This assumption permits us to consider that there is a direct mapping between
the imbalance ratio of the training set and the small disjuncts in the feature
space.

4.1 Imbalance Bound

In balanced datasets, overgeneral classifiers will have a high error since they
will cover, approximately, the same proportion of instances per class. Thus,
the evolutionary pressures will discard them as long as more accurate classi-
fiers exist in the population. However, as ir increases, these overgeneral rules
receive less examples of the minority class, and so, they tend to have a lower
error. At a given imbalance ratio, the error of these overgeneral rules will be
less than ε0; thus, they will be considered as accurate. We seek to derive the
bound on the imbalance ratio to guarantee that overgeneral classifiers will be
identified as inaccurate.

According to [8], the prediction p of a classifier can be approximated by:

p = Pc(cl) · Rmax + (1 − Pc(cl)) · Rmin (2)



Mining Imbalanced Data with Learning Classifier Systems 129

where Pc(cl) is the probability that a classifier predicts the matching input
correctly, Rmax is the maximum reward, and Rmin the minimum reward given
by the environment. Then, the error of a classifier can be approximated by:

ε = |p − Rmax| · Pc(cl) + |p − Rmin| · (1 − Pc(cl)) (3)

For classification problems, Rmin is usually 0, so that the prediction of a
classifier can be estimated by: p = Pc(cl) · Rmax. Substituting p into (3), we
get the following prediction error estimate:

ε = 2Rmax · (Pc(cl) − Pc(cl)
2) (4)

Now, let’s relate Pc(cl) with ir. In average, overgeneral classifiers will match
ir examples of the majority class for each example of the minority class.
Assuming that p is correctly estimated, a classifier would correctly predict
the output for the ir instances of the majority class, and would give an erro-
neous prediction for the example of the minority class. Thus, Pc(cl) can be
approximated as:

Pc(cl) =
ir

1 + ir
(5)

and its error estimate as:

ε = 2 · Rmax
ir

(1 + ir)2
(6)

An overgeneral classifier will be considered inaccurate as long as:

ε ≥ ε0 (7)

Using (6), we obtain that:

2 · Rmax
ir

(1 + ir)2
≥ ε0 (8)

which can be written as:

−ir2ε0 + 2ir(Rmax − ε0) − ε0 ≥ 0 (9)

This represents a parabola where ε takes values higher than ε0 for ir ranging
between irl and iru, where irl < iru. We are concerned about the maximum
imbalance ratio up to which XCS would consider overgeneral classifiers as
inaccurate; that is, iru. Solving (9), and assuming that ε0 << Rmax, we
obtain the following expression:

iru ≈ 2Rmax

ε0
(10)
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That is, the maximum imbalance ratio up to which XCS will be able to detect
overgeneral classifiers depends proportionally on Rmax and inversely propor-
tionally on ε0. Substituting ε0 = 1 and Rmax = 1,000, the maximum imbalance
ratio is: iru ≈ 2,000. Nonetheless, our experiments at ir = 128 showed that
the final populations evolved by XCS consisted mostly of overgeneral classi-
fiers, indicating that XCS was not able to maintain accurate classifiers. In the
following we analyze the potential causes of these deviations.

4.2 Theoretical and Experimental Bounds: Analysis
of the Deviation

We investigate the potential causes of the deviation between the experiments
and the theory. The theoretical bound shows that XCS should be able to learn
up to an imbalance ratio of 2,000. However, the results obtained were far from
this bound.

The theoretical bound is derived from (7), where we specify that the error
of the classifier should be higher than ε0. Thus, we assumed that the error of
the classifiers is well estimated. Since XCS learns incrementally and updates
parameters based on a windowed weighted average, the effect of some rewards
may be forgotten if some examples come very infrequently. In the next section,
we revise the method of error estimation and whether it can suffer from high
imbalance ratios.

XCS’s genetic algorithm is activated on a frequency basis, which may also
be prone to high imbalance ratios. As ir increases, instances of the minority
class are sampled more infrequently; so, starved niches (which are matched
by these instances) are activated more infrequently with respect to nourished
niches. This means that nourished niches tend to receive a higher number
of genetic events, having more offspring which may overtake the population.
This effect is uncorrelated with the parameter estimation. Even though param-
eters are well estimated, XCS’s genetic algorithm may be responsible for the
deviation between the experiments and the theoretical bound. Section 4.4
analyses the mechanism of occurrence-based reproduction and suggests ways
to counterbalance the effects.

4.3 Learning Rate and Error Estimates

In XCS, classifier’s parameters are adjusted using the standard Widrow–Hoff
delta rule [31] with learning rate parameter β, where 0 < β ≤ 1 (see Sect. 2 for
details). Thus, classifier’s parameters are updated incrementally at learning
rate β; they are expected to be stabilized to their theoretical average values
after the classifier receives a certain number of updates. Nonetheless, in the
experiments with high imbalance ratios, the parameters of overgeneral clas-
sifiers did not converge to their theoretical values. Note that, for ir = 128
(see Table 1), the population basically consisted of two overgeneral classi-
fiers: (a) cl1:###########:0 with P = 1,000 and ε practically 0, and (b)
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cl2:###########:1 with both the error and the prediction really close to 0.
The values of p and ε do not correspond to their theoretical ones, which can
be approximated as follows (see (2) and (3)):

pcl1 = 992.24 pcl2 = 7.75 (11)
εcl1 = 15.38 εcl2 = 15.38 (12)

The difference between the theoretical estimates and the real values taken
in the experiments may be due to the value of the learning rate β. In fact, β
determines the amount of update in the parameter estimates. High values of β
produce big corrections of the classifier’s parameters. Usually, this allows for a
faster convergence of the classifier’s parameters to their real values. Low values
of β would cause small corrections and so a slower convergence; for very small
values, accurate offspring classifiers may loose against overgeneral parents at
the beginning of the run, since their fitness increases slowly. In the reported
experiments, we set β = 0.2, which is a typical value used for XCS [8, 32, 33].
In all these cases, XCS received a uniform distribution of samples, and so,
classifiers of any class were updated with a similar frequency. In case of high
imbalance ratios, overgeneral classifiers match one instance of the minority
class every ir instances of the majority class. Consequently, high values of β
may produce oscillations on the parameter estimates when the minority class
instance is sampled. Small values of β may reduce the oscillations, but then
the convergence time will be increased.

To check if the parameters of overgeneral classifiers oscillated, we moni-
tored the error of the classifier ###########:0 along a single run of XCS for
β = 0.2 and β = 0.002. The population was initialized with the two maximum
overgeneral classifiers, and both covering and GA were switched off. The error
of the classifier was sampled every 1,000 iterations. Figure 2 shows the distri-
bution of the error for β = 0.2 (Fig. 2a and β = 0.002 (Fig. 2b)). For β = 0.2,
the error of the classifier was almost zero most of the time, while the theoretical
value is 7.75; moreover, there are some peaks in the distribution density, which
indicate that the error momentarily changed when it received an example of
the minority class, but quickly recovered the value of 0. Note that as ε ≈ 0, it
satisfies that ε < ε0, and so, the classifier is considered accurate most of the
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time. Decreasing β to 0.002 smoothes the density curves and the distribution
becomes closer to the theoretical value of the error. Although not shown for
brevity, the same conclusions can be drawn for the classifier’s prediction.

The experiments herein point out that the deviation caused by the online
update of classifier parameters is significant for high imbalance ratios and
high values of β. Thus, we could rewrite (7) but considering the deviation
with respect to the theoretical bound as follows:

ε ± σ > ε0 (13)

where σ is the maximum deviation in the parameters of overgeneral classifiers
caused by the online update mechanism.

We decreased β to 0.002 to minimize the effect of the deviations and reran
XCS with the 11-bit multiplexer. We found that the classifier parameters were
better estimated, but the global TP rate was not improved as overgeneral clas-
sifiers persisted in the population for higher imbalance ratios. This indicates
that there are more complexities affecting XCS for high class imbalances.

4.4 Occurrence-Based Reproduction

The imbalance ratio affects the proportion of reproductive opportunities that
the different classifiers receive. As ir increases, starved niches are activated
less frequently, and so, accurate classifiers that belong to these niches receive
a minor number of genetic events. On the other hand, accurate classifiers that
form nourished niches and overgeneral classifiers covering several input states
get a higher number of genetic events. Thus, there is a disproportion, which
increases with ir, on the number of genetic events that classifiers belonging to
starved niches receive with respect to those of overgeneral classifiers and clas-
sifiers that belong to nourished niches. Since reproduction is niche-based, but
deletion is population-based, an excessive disproportion may hinder starved
niches from being evolved, and eventually, accurate classifiers contained in
starved niches may be removed from the population. In this section, we the-
oretically model the genetic opportunities of these classifiers, and suggest a
method to counterbalance this disproportion.

For this purpose, we focus on the reproduction opportunities that receive
(a) accurate classifiers belonging to nourished niches, (b) accurate classifiers
belonging to starved niches, and (c) the most overgeneral classifiers. As the
selection in XCS is niche-based, we first compute the classifier’s probability
of belonging to an action set, which we denote as Pocc.

Instances of the minority class are sampled with probability 1/(1 + ir).
As XCS chooses the class to explore randomly, the niches activated by
these instances (referred as starved niches) are activated with the following
probability:

Poccstarved
=

1
n · ms

· 1
1 + ir

(14)
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where n is the number of classes, and ms the number of starved niches.
Similarly, recognizing that instances of the majority class are sampled with
probability ir/(1 + ir), the niches activated by these instances (addressed as
nourished niches) have the following probability of occurrence:

Poccnourished
=

1
n · mn

· ir

1 + ir
(15)

where mn is the number of nourished niches. Finally, the most overgeneral
classifiers always participate in the match set, and the action set they advocate
is randomly selected with probability 1/n:

Poccovg =
1
n

(16)

Once an action set is activated, the parameter update procedure is trig-
gered, and the parameter values are adjusted according to the reward received.
Thus, overgeneral classifiers and classifiers that belong to nourished niches
would be updated more frequently, and so, they would have more reliable
estimates. In the remainder of this analysis we consider that all classifier’s
parameters are accurate.

An action set receives a genetic event if the average time since the last
application of the GA on this action set is greater than θGA. If the period of
activation Tocc of a niche is higher than θGA, the classifiers that belong to that
niche will receive a genetic event every time the action set is formed; thus,
the period of application of the GA (TGA) will be TGA = Tocc. Otherwise, if
Tocc < θGA, the period of application of the GA will be: TGA ≈ θGA.

The period of occurrence Tocc of the three types of classifiers is:

Toccstarved
= n · ms · (1 + ir) (17)

Toccnourished
= n · mn · 1 + ir

ir
(18)

Toccovg = n (19)

Assuming that (a) ir is high (i.e., ir/(ir+1) → 1), and (b) mn ·n ≤ θGA, and
not considering overlapping classifiers, we derive the period of GA application
TGA for the three types of rules:

TGAstarved
≈ n · ms · (1 + ir) (20)

TGAnourished
≈ θGA (21)

TGAovg ≈ θGA (22)

Note that the time between genetic events of starved niches increases linearly
with the imbalance ratio and the number of classes. For the other classifiers,
TGA depends only on θGA. The relation between the number of genetic oppor-
tunities received by classifiers that belong to starved niches with respect to
the other classifiers is:
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TGAstarved

TGAnourished

≈ TGAstarved

TGAovg

≈ n · ms · (1 + ir)
θGA

(23)

If θGA << ir, overgeneral classifiers and classifiers that belong to nourished
niches will receive an increasing amount of genetic opportunities with respect
to classifiers belonging to starved niches, and so, they will have more offspring.

To counterbalance the number of genetic opportunities that the different
niches receive, we require the following condition:

TGAnourished
= TGAstarved

(24)

Using (20) and (21), we obtain that:

θGA ≈ n · ms · (1 + ir) (25)

In O−notation, and disregarding the effect of n and ms:

θGA = O(ir) (26)

This indicates that θGA should be set according to the imbalance ratio ir
to guarantee that nourished niches and starved niches will receive a similar
proportion of genetic events. Also note that, under this condition, the classi-
fiers belonging to nourished niches and overgeneral classifiers will receive more
parameter’s updates than the classifiers that belong to starved niches, and so,
will have more accurate estimates.

4.5 Guidelines for Parameters Configuration

The above analysis provided insight into the role of some XCS’s parameters
and their influence on learning from imbalanced data. In the following, we
derive some guidelines on how to set these parameters depending on the
imbalance ratio.

First, ε0 and Rmax determine the maximum imbalance ratio up to which
XCS will consider overgeneral classifiers as inaccurate classifiers (see (9)).
Thus, these parameters set the threshold between negligible noise and imbal-
ance. Regarding (7), if the error of an overgeneral classifier (ε > 0) is smaller
than ε0, XCS will consider the classifier as accurate. Therefore, the few exam-
ples responsible for the error are considered as noise. Otherwise, if the error
of an overgeneral classifier is higher than ε0, XCS takes the classifier as inac-
curate. So, the examples that make the classifier erroneous are considered as
relevant examples and the classifier should not overgeneralize them.

XCS updates classifiers’ parameters as a time-weighted average of their
values. The learning rate parameter β adjusts the importance of the recent
rewards in the parameter update mechanism. Low values of β mean that
classifiers’ parameters suffer small corrections every time they are updated.
High values of β imply big corrections in classifier’s parameters; so, param-
eter’s estimates reflect the weighted average of few instances. In this case, we
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showed that the parameters of overgeneral classifiers can fluctuate, and so,
overgeneral classifiers can be considered accurate during most of the learning
time. Our suggestion to avoid this is to set β according to the activation
frequency of the most starved niche (fmin) and the most nourished niche
(fmaj), ensuring that the rewards provided when sampling instances of the
minority class will be reflected in the parameters’ values:

β = k1 · fmin

fmaj
(27)

where k1 is an arbitrary constant. Under the initial assumptions of only hav-
ing two types of niches, the starved and the nourished niches, the ratio of
frequencies equals the inverse of the imbalance ratio: fmin/fmax = 1/ir. Thus:

β =
k1

ir
(28)

Finally, Sect. 4.4 argued that θGA should increase linearly with the imbal-
ance ratio to ensure that nourished and starved niches received a similar
number of genetic events. Generalizing, we write the following equation:

θGA = k2 · ir (29)

where k2 is an arbitrary constant. For k2 = 1, all niches will receive,
approximately, the same number genetic events.

We ran the same experiments with the 11-bit multiplexer but setting XCS
as indicated by the configuration guidelines. We only changed the parameters
of the runs that failed: ir = {64, 128, 256, 512}. Specifically, we set θGA =
{200, 400, 800, 1,600} and β = {0.04, 0.02, 0.01, 0.005} for each imbalance ratio
respectively. Figure 3 shows the results obtained. It can be observed that
XCS solves the 11-bit multiplexer up to an imbalance ratio of ir = 256,
which supposes a big improvement with respect to the initial experiments.
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Fig. 3. (a) TN rate and (b) TP rate of XCS in the 11-bit multiplexer with imbalance
ratios from ir = 1 to ir = 512. Parameters are configured according to the guidelines
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The theoretical bound derived in Sect. 4.1 indicates that XCS might be able
to solve the problem up to ir = 2,000. We got closer to this bound with
appropriate parameter settings. However, we are still far from ir = 2,000. We
hypothesize that the gap between the theoretical and the empirical maximum
ir may be due to an insufficient number of classifiers of the minority class in
the initial population. This would prevent XCS to settle the minority class
niches and let them grow. As future work, we will analyze population sizing
to guarantee the initial supply of classifiers belonging to starved niches at
extremely high class imbalances.

5 Online Configuration of XCS to Handle Imbalanced
Problems

The analysis in the last section was done assuming that there were only two
types of niches in the solution space, the nourished niches and the starved
niches, and that they were activated with a frequency directly proportional to
the imbalance ratio. This was the case of the multiplexer problem. Nonethe-
less, in real-world problems, niches are unknown before running the system;
consequently, niche frequencies cannot be estimated and may not be related to
the imbalance ratio. In fact, the imbalance ratio reports about the proportion
of examples per class, but does not provide any information about the distri-
bution of the niches in the solution space. For example, even with a balanced
dataset (i.e., ir = 1), there might be starved niches in the feature space.

Thus, we are concerned about the ratio between the frequencies of nour-
ished niches and starved niches that lay closely in the feature space, rather
than about the imbalance ratio of the training dataset. In this context, the
guidelines proposed in Sect. 4.5 still hold, but now replacing the imbalance
ratio of the training dataset ir by the niche imbalance ratio irn, defined as
the ratio between the frequencies of the most nourished and the most starved
niche. However, obtaining an accurate estimate of irn poses a big challenge
to XCS, since the niches that XCS has to evolve and their frequencies are
completely unknown in a real-world problem. Next, we present an approach,
addressed as the online adaptation algorithm, that estimates irn from infor-
mation gathered during XCS’s learning; then, it substitutes this estimate in
the formulas presented in the previous section to adapt XCS’s parameters
online.

5.1 Online Adaptation Algorithm

The online adaptation algorithm benefits from the potential information con-
tained in the overgeneral classifiers to estimate the niche imbalance ratio irn

of an unknown problem, and then use this estimate to tune β and θGA. Over-
general classifiers are activated in different niches, which tend to be close in
the solution space. From these overgeneral classifiers, we estimate irn with
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Algorithm 5.1: Pseudocode for the online adaptation algorithm
Algorithm: OnlineAdaptation ( cl is classifier )1

if cl is overgeneral then2

irn :=
expmaj(cl)

expmaj+expmin(cl)3

if ( irn < 2Rmax
ε0

∧ expcl > θir ∧ numcl > num[P ]) then4

Adapt β (cl)5

Adapt θGA (cl)6

end7

end8

the relative imbalance ratio in the region of the feature space that they cover,
by computing the ratio between the number of instances of each class that
the overgeneral classifier matches.

Algorithm 5.1 shows the pseudocode for the online adaptation algorithm.
After every parameter update, the algorithm is triggered for each classifier cl
in the match set. The first condition of the algorithm checks if cl is overgeneral.
In this case, irn is calculated as the number of instances of the majority class
with respect to the number of instances covered by the classifier. Then, the
algorithm checks if irn is smaller than the maximum imbalance ratio up to
which XCS should be able to distinguish an overgeneral classifier (see (10)).
If the condition is satisfied, it indicates that the overgeneral rule has a higher
error than what is considered as negligible noise. In this case, if the classifier
has sufficient experience and high numerosity, β and θGA are adapted following
the guidelines derived in Sect. 4.5.

β is adjusted so that the real prediction value of the overgeneral classifier is
close to the theoretical one. To do that, we consider the worst case: we suppose
that the classifier receives one example of the minority class, and then, irn

examples of the majority class. We compute the error value that the classifier
will have after receiving these irn+1 instances with the correspondent β value
using the following series:

pirβ0
= Rmax · (1 − β) (30)

∀1 < i ≤ ircl : pirβi
= β(Rmax − pirβi−1

) (31)

If pirβi
is far from the theoretical value, we decrease β by a proportion

ζ < 1 and repeat the same process. Consequently, the algorithm guarantees
that, even in the worst case, the estimate of the classifiers parameters will be
close to their real values.

Finally, the algorithm uses irn to tune θGA by applying (29):

θGA = k2 · irn ≈ k2 · expmaj

expmin + expmaj
(32)
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Fig. 4. (a) TN rate and (b) TP rate of XCS with online adaptation of parameters
in the 11-bit multiplexer with imbalance ratios from ir = 1 to ir = 512

where k2 fixes the minimum number of minority class examples that the
starved niche has to match before going through a genetic event. This allows
to counterbalance the genetic opportunities between starved and nourished
niches. k2 = 1 means that the classifiers belonging to starved niches are
updated only once before receiving a genetic event. Higher values of k2

allow better parameter estimates since these classifiers receive more updates
between GA applications. In the experiments made in this section, we set
k2 = 5.

5.2 Results

Figure 4 shows the results obtained by XCS with online adaptation of param-
eters. The initial configuration reported in Sect. 3 was used. As β and θGA are
adapted online, their initial value was set to θGA = 25 and β = 0.2. The results
are similar to those shown for XCS configured following the guidelines (see
Fig. 3), where XCS could solve the 11-bit multiplexer up to ir = 256. With
the online adaptation algorithm, the convergence is a little delayed since XCS
needs some time to realize the existence of overgeneral classifiers, estimate irn,
tune β and θGA, and let the evolutionary search remove overgeneral classifiers
and discover accurate ones.

Let’s note that this approach is essential in real-world problems, since
there is not previous information about niche frequencies. In such a situa-
tion, the online adaptation algorithm introduces a significant improvement in
imbalanced datasets.

6 LCS for Mining Imbalanced Datasets

XCS with online adaptation of parameters has demonstrated to be able to
handle high amounts of class imbalance in artificially imbalanced problems.
In this section, we investigate the capabilities of XCS for mining imbalanced
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data. Thus, we test XCS on a set of real-world problems with different imbal-
ance ratios, and compare the system with other well-known machine learning
techniques.

6.1 Methodology

We created a testbed consisting of 25 real-world two-class problems with differ-
ent characteristics and imbalance ratios as follows. First, the following twelve
problems were chosen: balance-scale, bupa, glass, heart disease, pima indian
diabetes, tao, thyroid disease, waveform, Wisconsin breast cancer database,
Wisconsin diagnostic breast cancer, wine recognition data, and Wisconsin
pronostic breast cancer. All these problems where obtained from the UCI
repository [7], except from tao, which was selected from a local repository [6].
For datasets with more than two classes, the discrimination of each pair of
classes was considered as an individual problem. Thus,

(
n
2

)
two-class problems

were created from any problem with n classes (where n > 2), resulting in a
testbed that consisted of 25 two-class real-world problems. Table 2 gathers
the most relevant features of the problems.

The performance of XCS was compared to three of the most competent
machine learning techniques: C4.5 [26], SMO [25] and IBk [1]. C4.5, derived
from ID3, is one of the best representative decision trees which has been widely
applied to tackle highly imbalanced problems. SMO is a fast method to train
support vector machines [30] which has been able to handle very large training
datasets [25]; in our experiments we used a linear kernel. IBk [1] is a nearest
neighbor algorithm which decides that the output of a new input instance is
the majority class of its k nearest neighbors; in the experiments, we set k = 5.
All these machine learning methods were run using WEKA [34].

The metric of performance used in the comparison was the product of the
TN rate and the TP rate, since this metric is not influenced by the imbalance
ratio of the training dataset. To have good estimates of the TN rate and the TP
rate, we ran the experiments on a ten-fold cross-validation [28]. After verifying
that the results satisfied the condition of normality with the Kolmogorov-
Smirnov test [29], the parametric statistical test of repeated measures ANOVA
[27] was used to check if all the learning methods performed the same in
average. Moreover, the performance of each pair of algorithms was compared
using a paired Student t-test [28]. Next section shows the comparison among
the four systems.

6.2 Results

Table 3 compares the performance of the four learners on the 25 datasets. The
repeated-measures ANOVA did not permit to reject the null hypothesis that
all the learners performed the same in average. This result is not surprising;
in fact, the no-free-lunch theorem [35,36] justifies that, if no knowledge about
the domain is used, no learning algorithm can systematically outperform the
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Table 2. Description of the datasets properties. The columns describe the dataset
identifier (Id.), the original name of the dataset (Dataset), the number of problem
instances (#Ins.), the number of attributes (#At.), the proportion of minority class
instances (%Min.), the proportion of majority class instances (%Maj.), and the
imbalance ratio (ir)

Id. Dataset #Ins. #At. %Min. %Maj. ir

bald1 balance-scale disc. 1 625 4 7.84 92.16 11.76
bald2 balance-scale disc. 2 625 4 46.08 53.92 1.17
bald3 balance-scale disc. 3 625 4 46.08 53.92 1.17
bpa bupa 345 6 42.03 57.97 1.38
glsd1 glass disc. 1 214 9 4.21 95.79 22.75
glsd2 glass disc. 2 214 9 6.07 93.93 15.47
glsd3 glass disc. 3 214 9 7.94 92.06 11.59
glsd4 glass disc. 4 214 9 13.55 86.45 6.38
glsd5 glass disc. 5 214 9 32.71 67.29 2.06
glsd6 glass disc. 6 214 9 35.51 64.49 1.82
h-s heart-disease 270 13 44.44 55.56 1.25
pim pima-inidan 768 8 34.90 65.10 1.87
tao tao-grid 1,888 2 50.00 50.00 1.00
thyd1 thyroid disc. 1 215 5 13.95 86.05 6.17
thyd2 thyroid disc. 2 215 5 16.28 83.72 5.14
thyd3 thyroid disc. 3 215 5 30.23 69.77 2.31
wavd1 waveform disc. 1 5,000 40 33.06 66.94 2.02
wavd2 waveform disc. 2 5,000 40 33.84 66.16 1.96
wavd3 waveform disc. 3 5,000 40 33.10 66.90 2.02
wbcd Wis. breast cancer 699 9 34.48 65.52 1.90
wdbc Wis. diag. breast cancer 569 30 37.26 62.74 1.68
wined1 wine disc. 1 178 13 26.97 73.03 2.71
wined2 wine disc. 2 178 13 33.15 66.85 2.02
wined3 wine disc. 3 178 13 39.89 60.11 1.51
wpbc wine disc. 4 198 33 23.74 76.26 3.21

others. However, we are interested in learners that are robust in average. For
this purpose, we applied statistical pairwise comparisons (on a significance
level of 0.99), which are shown as follows. The • and ◦ symbols indicate a
significant degradation/improvement of the method with respect to another
learner in the specific dataset. The last row of the table counts the number of
times that a method has significantly degraded/improved the performance of
another method.

Several observations can be drawn from the results. The overall degrada-
tion/improvement count shows that XCS is one of the most robust methods,
specially for the most imbalanced datasets. Its performance is only degraded
in eight occasions, the majority of which are concentrated in the problems:
bald2, bald3 and tao. bald2 and bald3 are two of the three datasets obtained
from the discrimination of classes of the balance-scale problem. Both problems
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Table 3. Comparison of the learning performance of C4.5, SMO, IBk, and XCS on
the 25 real-world problems testbed. The • and ◦ symbols indicate that the correspon-
dent learning algorithm performed significantly worst/better on a significance level
of 0.99 (pairwise t-test) than another learning algorithm for the concrete problem.
The row Avg. averages the performance of each method over all the 25 datasets, and
the row Score counts the number of times that a method has performed worst-better
than another for a specific problem

C4.5 SMO IBk XCS

bald1 0,00 0,00 0,00 0,00
bald2 69,28 •• 83,98 ◦◦ 81,16 ◦◦ 71,22 ••
bald3 71,21 •• 85,69 ◦◦ 82,11 ◦◦ 70,07 ••
bpa 33,50 ◦ 0,00 • • • 32,40 •◦ 47,22 ◦◦
glsd1 79,60 ◦◦ 0,00 •• 69,32 ◦ 20,00 •
glsd2 33,95 15,00 24,13 59,40
glsd3 28,78 0,00 0,00 0,00
gls2c4 73,36 80,33 77,07 80,33
gls2c5 65,35 ◦ 9,58 • • • 62,26 ◦ 67,82 ◦
gls2c6 52,03 ◦ 0,00 • • • 61,74 ◦ 61,08 ◦
h-s 63,70 68,80 64,40 60,32
pim 44,96 48,36 46,91 46,06
tao 91,00 • ◦ ◦ 70,57 • • • 94,25 ◦ ◦ ◦ 82,90 • • ◦
thyd1 87,53 76,67 76,67 78,69
thyd2 93,12 ◦ 54,17 • 77,90 82,50
thyd3 87,31 ◦ 33,81 • • • 81,12 ◦ 89,74 ◦
wavd1 67,80 • • • 78,65 ◦◦ 72,28 • • ◦ 80,43 ◦◦
wavd2 62,54 • • • 72,35 ◦◦ 67,49 • • ◦ 73,48 ◦◦
wavd3 68,61 • • • 79,61 ◦◦ 74,14 • • ◦ 81,01 ◦◦
wbcd 89,10 92,72 92,72 92,29
wdbc 88,83 94,27 ◦ 93,47 90,30 •
wined1 85,58 98,46 94,98 99,23
wined2 91,83 97,51 97,50 99,17
wined3 87,64 97,14 87,94 93,43
wpbc 33,96 ◦ 9,37 •• 28,98 ◦ 20,99

Avg. 66,02 53,88 65,64 60,17

Score 14–10 20–11 7–16 8–12

have nearly the same proportion of instances per class (ir = 1). The reason
why XCS is outperformed by SMO and IBk is not explainable, and can-
not be caused by the imbalance ratio; thus, there may be other complexities
affecting XCS’s behavior. The tao problem is a completely balanced dataset
(ir = 1) in which the boundary between classes is curved. In [4] it is shown
that curved boundaries pose a challenge in XCS due to its hyperrectangular
representation, which tends to concentrate high proportions of error.

On the other hand, XCS outperforms other methods in twelve occasions;
from them, the datasets for which XCS outperforms more than one learner
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are: bpa, wavd1, wavd2, and wavd3. bpa is a quasi-balanced problem (ir =
1.38), and wavd1, wavd2, and wavd3 are the three parwise discriminations
of classes of the waveform problem, which present imbalance ratios of 2.02,
1.96, and 2.02 respectively. Besides, the waveform problem has the largest
number of instances (5,000) and attributes (40) in the testbed. Although the
difference between XCS and the other learners cannot be easily explained,
these results indicate that XCS performs really competitively even when the
size of the dataset increases. Let’s also note that these results could be further
explained by extracting the complexity of the training datasets. This approach
was followed in [4,5], evidencing a high correlation between some geometrical
indicators of the training datasets and XCS’s performance measured by the
test error.

Let’s now compare the learners in terms of imbalance robustness. To do
that, we consider the problems with the highest ir; specifically, we analyze
the performance on problems with ir > 5: bald1, glsd1, glsd2, glsd3, glsd4,
thyd1, and thyd2. In all these problems, XCS performs really competitively.
XCS is only outperformed in the problem glsd1 by C4.5. In all the other
problems, XCS performs equivalently to IBk and C4.5. SMO presents the
worst performance. It has widely been shown in several works that C4.5 is
able to deal with really imbalanced data [2, 19, 20]. Thus, the comparison
indicates that XCS is robust (comparable to C4.5) for datasets with high
disproportions of instances per class.

Finally, it is worth noting that there is not a direct mapping between
the imbalance ratio in the learning dataset and the niche imbalance ratio,
although both measures are related. Thus, even completely balanced datasets
could cause small niches or small disjuncts to occur. As further work, we aim
at designing metrics that, given a dataset, evaluate the presence of small dis-
juncts. This would allow to investigate the relationship between the classifiers’
behavior and the presence of small disjuncts, and provide better understanding
of the classifiers’ performance on imbalanced datasets.

7 Summary and Conclusions

This work investigated the behavior of XCS on imbalanced classification prob-
lems. First, we empirically showed that XCS with a standard configuration
can solve the multiplexer problem for moderate class imbalances (ir ≤ 32).
We identified that the number of overgeneral rules in the population tends
to increase quickly with the imbalance ratio beyond a certain threshold of
imbalance. For ir > 64, overgeneral rules represented near 100% of the
population.

To provide further explanations on this tendency, we theoretically analyzed
how the imbalance ratio affected the error of overgeneral classifiers, deriving a
bound on the imbalance ratio under which XCS should be able to distinguish
between accurate and overgeneral classifiers. As the theoretical bounds did not
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agree with the experimental observations, we analyzed the potential motifs of
discordance. We detected that (a) the learning rate parameter β should be
properly configured to ensure that overgeneral classifiers will have accurate
estimates of their parameters, and (b) the GA (whose application rate is
controlled by θGA) should be applied with a similar frequency to all niches to
avoid that the offspring of classifiers that belong to nourished niches overtake
the population. The analysis resulted in a set of recommendations on how
to set β and θGA depending on the imbalance ratio, and results evidenced a
significant improvement of XCS’s behavior. We further argued the necessity
of focusing on the niche imbalance ratio rather than in the imbalance ratio of
the learning dataset to deal with real-world problems that may present small
disjuncts. So, we proposed a method that estimates the niche imbalance ratio
and automatically adjusts β and θGA from this estimate.

Finally, XCS was compared to C4.5, SMO and IBk on 25 real-world
problems. The overall results showed that, although no learner performed
statistically better than the others, XCS turned up to be really competitive
to the other three machine learning techniques. The comparative analysis also
denoted some differences in the performance of the learners that could not be
easily explained by simply looking at the imbalance ratio. In fact, the imbal-
ance ratio in the training dataset does not directly determines the presence
of small disjuncts. Even completely balanced datasets can present small dis-
juncts depending on the distribution of instances around the feature space
and the knowledge representation used by the learner. As further work, we
propose to design metrics that evaluate the presence of small disjuncts, relat-
ing the performance of XCS with these indicators. Moreover, this information
may be used in a corrective way, resampling the training dataset to diminish
the presence of the small disjuncts.
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