
Can Evolution Strategies Improve
Learning Guidance in XCS? Design and

Comparison with Genetic Algorithms
based XCS

Sergio MORALES-ORTIGOSA, Albert ORRIOLS-PUIG, and
Ester BERNADÓ-MANSILLA

Grup de Recerca en Sistemes Intel·ligents
Enginyeria i Arquitectura La Salle, Universitat Ramon Llull

Quatre Camins 2, 08022, Barcelona (Spain)

Abstract. XCS is a complex machine learning technique that combines credit ap-
portionment techniques for rule evaluation with genetic algorithms for rule discov-
ery to evolve a distributed set of sub-solutions online. Recent research on XCS has
mainly focused on achieving a better understanding of the reinforcement compo-
nent, yielding several improvements to the architecture. Nonetheless, studies on the
rule discovery component of the system are scarce. In this paper, we experimentally
study the discovery component of XCS, which is guided by a steady-state genetic
algorithm. We design a new procedure based on evolution strategies and adapt it
to the system. Then, we compare in detail XCS with both genetic algorithms and
evolution strategies on a large collection of real-life problems, analyzing in detail
the interaction of the different genetic operators and their contribution in the search
for better rules. The overall analysis shows the competitiveness of the new XCS
based on evolution strategies and increases our understanding of the behavior of
the different genetic operators in XCS.

Keywords. Evolutionary Algorithms, Genetic Algorithms, Evolution Strategies,
Learning Classifier Systems, Supervised Learning, Data Mining.

Introduction

Learning Classifier Systems (LCSs) [8] are machine learning techniques that learn rule
sets on-line through the interaction with an environment that represents a stream of la-
beled examples. In the recent years, XCS [13], the most influential LCS, has arisen as a
promising technique for classification tasks and data mining, showing its competitiveness
with respect to highly-used machine learning techniques such as the decision tree C4.5
and support vector machines [10]. XCS consists of a complex architecture that evolves
a rule set by means of the interaction of two main components: (i) a rule evaluation
system and (ii) a rule discovery procedure. The rule evaluation system, based on credit
apportionment techniques, is responsible for evaluating the quality of the rules on-line
with the information provided by the environment. This component has received an in-



creasing amount of attention during the last few years, resulting in several improvements
that enabled the system to solve problems that previously eluded solution [3]. The rule
discovery procedure, driven by a genetic algorithm (GA), is responsible for providing
new promising rules to the system. Whereas the evaluation component has been stud-
ied in detail, the discovery component has received little attention, remaining practically
unchanged from its initial conception.

In this paper, we aim at analyzing the behavior of the discovery component in XCS.
For this purpose, we design a new discovery procedure based on evolution strategies
(ESs) [12] to drive the discovery of new rules in the on-line learning architecture. We
modify the interval-based rule representation of XCS [14] by introducing a vector of
strategy parameters and adapt the selection, recombination, and mutation operators of
ESs to let them deal with interval-based rules. Both original XCS and XCS based on
evolution strategies are compared on a collection of real-life problems. The interaction
of different genetic operators, i.e., the combination of selection and mutation and the
combination of selection, crossover, and mutation, is carefully studied for each one of
the two systems. This study not only shows the performance improvements due to the
new discovery component, but also enables us to increase our comprehension of how the
evolutionary genetic process works.

The remainder of this paper is structured as follows. Section 1 gives a brief descrip-
tion of XCS. Section 2 presents the new ES-based discovery component introduced to
XCS, detailing the modifications introduced to XCS representation and to the different
genetic operators. Section 3 provides the methodology followed in the experimentation
and Section 4 analyzes the obtained results, especially highlighting the interaction of
different genetic operators. Finally, Section 5 summarizes, concludes, and presents some
future work lines that will be followed in light of the results presented in the current
study.

1. XCS in a Nutshell

As follows, we provide a brief description of XCS focused on classification tasks. For an
algorithmic description the reader is referred to [5].

1.1. Knowledge Representation

XCS evolves a population [P] of classifiers. Each classifier consists of a production rule
and a set of parameters. The production rule takes the following form: if x 1 ∈ [l1, u1] ∧
. . . x� ∈ [l�, u�] then class. That is, each variable of the condition x is represented by an
interval [�i, ui]� (� is the number of input attributes of the problem). Then, a rule matches
an input instance e = (e1, e2, . . . , e�) if ∀i�i ≤ ei ≤ ui.

Each classifier has three main parameters: (i) the payoff prediction p, an estimate of
the reward that the system will receive if the class of the rule is selected as output, (ii) the
prediction error ε, which estimates the error of the payoff prediction, and (iii) the fitness
F , which is computed as and inverse function of the prediction error.



1.2. Process Organization

XCS learns the data model on-line by means of the interaction with an environment
which represents a stream of examples. That is, at each learning iteration, XCS receives
a new training example e = (e1, e2, . . . , e�) and the system creates a match set [M],
which consist of all the classifiers in [P] whose condition matches e. If any of the classes
is not represented in [M], the covering operator is triggered, creating a new classifier that
predicts the missing class and whose condition is generalized from the input as ∀ �

i : li =
ei − rand(0, r0) and ui = ei + rand(0, r0), where r0 (0 < r0 < 1) is a configuration
parameter that determines the initial generalization degree. The next step depends on
whether the system is in exploration (training) mode or in exploitation (test) mode. In
exploration mode, the system randomly chooses one of the possible classes and builds the
action set [A] with all the classifiers in [M] that advocate the selected class. The action set
represents the niche of similar classifiers where both the parameter update procedure and
the genetic algorithm take place. The parameters of all the classifiers in [A] are updated
according to a generalized version of Q-learning (see [13]). The genetic algorithm is
applied as explained in the next subsection. In exploitation mode, the classifiers in [M]
vote, according to their fitness, for the class they predict. The most voted class is selected
as output.

1.3. Discovery Component

XCS applies a steady-state niche genetic algorithm (GA) [7] to discover new promising
rules. The GA is triggered on [A] when the average time since its last application to the
classifiers in [A] exceeds a certain threshold θGA. Then, the system selects two parents
from [A]. So far, two selection schemes have been studied: proportionate selection [13],
in which each classifier in [A] has a probability proportional to its fitness to be chosen;
and tournament selection [4], in which tournaments are held among a set of randomly
selected classifiers and the best classifier of the tournament is chosen as a parent. Then,
the parents are crossed and mutated with probabilities χ and μ respectively. Crossover
shuffles the condition of the two parents by cutting the chromosomes by two points.
Mutation decides whether each variable has to be changed; in this case, it adds a random
amount to the lower or to the upper bound of the variable interval. The resulting offspring
are introduced into the population, removing potentially poor classifiers if there is not
room for them [9].

2. Introducing Evolution Strategies to XCS: Representation and New Operators

Evolution Strategies [12], like GAs, are optimization algorithms that take inspiration
from biology to solve complex optimization problems. The main differences between
GAs and ESs is that ESs incorporate a vector of strategy parameters that are used by the
mutation operator to guide the local search towards the objective. Therefore, mutation is
the primary operator of ESs. The vector of strategy parameters is self-adapted during the
evolutionary process with the aim of applying more precise mutations to the classifier’s
conditions. As follows, we explain the new representation, as well as the new genetic
operators, proposed to adapt ESs to the interval-based rule representation of XCS.



2.1. Knowledge Representation for Evolution Strategies

Now, the classifier representation is enriched with a vector of strategy parameters
s = (σ1, σ2, . . . , σ�), which is used to adapt the intervals of the variables of the rules
condition (the rules condition is referred to as object parameters in ESs terms). Covering
initializes each strategy parameter σi as σi = rand(0, μ), where μ is initially chosen in
the range [1/N, 1/�] (N is the population size and � is the number of attributes of the
problem). The strategy parameters undergo recombination and mutation during learn-
ing; therefore, they self-adapt with the aim of letting mutation perform a more precise
local search. All the genetic operators, i.e., selection, mutation, and recombination, are
redefined as explained in the following sections.

2.2. Selection

In evolution strategies, the typical selection operator is truncation selection, which se-
lects the classifiers of [A] with highest fitness. Since this selection strategy can be quite
aggressive, especially in steady state algorithms, we also use proportionate and tourna-
ment selection as defined in the previous section.

2.3. Gaussian Mutation

The mutation operator of XCS is redefined as follows. First, we mutate the intervals of
each rule variable xi as xi = xi+z, where z = (σ1N1(0, 1), σ2N2(0, 1), . . . , σ�N�(0, 1))
are independent random samples from Gaussian normal distribution.

The strategy parameters are self-adapted along the XCS run. After mutation, the new
vector of strategy parameters s′ is updated as s′ = eτ0N0(0,1)

(
σ1e

τN1(0,1),...,τN�(0,1)
)
,

where τ indicates the precision of self-adaption, τ0 weights the global effect of mutation,
and Ni(0, 1) returns a Gaussian number with σ = 1. In our experiments, we configured

τ0 = 1/
√

2� and τ = 1/
√

2
√

� as usually done in the ESs literature.

2.4. Recombination

We consider two classes of recombination in ESs: (i) discrete/dominant recombination
and (ii) intermediate recombination. Discrete recombination produces a new rule where
each variable and strategy parameter is randomly selected from one of the parents. Inter-
mediate recombination calculates the center of mass of the parents; thus, this recombi-
nation operator pushes towards the average value per attribute among all classifiers.

3. Experimental Methodology

The main concern of this work is to analyze in detail the effect of the different genetic
operators on the genetic search as well as the interaction among themselves. Moreover,
the advantages and disadvantages of the new operators will be carefully studied. For this
purpose, we start examining XCS’s behavior with selection and mutation with the aim of
analyzing the search capabilities provided by the combination of the two operators. Then,
we add crossover to the study, showing the benefits supplied by this operator. Moreover,



Table 1. Properties of the data sets. The columns describe: the identifier of the data set (Id.) the name of
the data set (dataset), the number of instances (#Inst), the total number of features (#Fea), the number of real
features (#Re), the number of integer features (#In), the number of nominal features (#No), the number of
classes (#Cl), and the proportion of instances with missing values (%MisInst).

Id. dataset #Inst #Fea #Re #In #No #Cl %MisInst

bal Balance 625 4 4 0 0 3 0

bpa Bupa 345 6 6 0 0 2 0

gls Glass 214 9 9 0 0 6 0

h-s Heart-s 270 13 13 0 0 2 0

irs Iris 150 4 4 0 0 3 0

pim Pima 768 8 8 0 0 2 0

tao Tao 1888 2 2 0 0 2 0

thy Thyroid 215 5 5 0 0 3 0

veh Vehicle 846 18 18 0 0 4 0

wbcd Wisc. breast-cancer 699 9 0 9 0 2 2.3

wdbc Wisc. diagnose breast-cancer 569 30 30 0 0 2 0

wne Wine 178 13 13 0 0 3 0

in all the cases, the results of GA-based XCS (referred to as XCSGA) are compared with
those obtained with ES-based XCS (referred to as XCSES), providing some interesting
insights on the differences between evolution strategies and genetic algorithms in the
context of on-line learning.

For the study, we used a collection of 12 real-life data sets extracted from the UCI
repository [1], whose characteristics are summarized in Table 1. The different configu-
rations of XCSGA and XCSES were ran on these data sets and the quality of the results
was compared in terms of the performance (test accuracy) of the final models. To obtain
reliable estimates of these metrics we used a ten-fold cross-validation procedure. XCS
was configured as follows (see [5] for notation details): iter. = 100,000, N = 6400, θ GA

= 50, χ = 0.8, μ = 0.04, r0 = 0.6, m0 = 0.1.
We statistically analyzed the performance of each learner following the procedure

pointed out in [6]. We first applied the multi-comparison Friedman test to contrast the
null hypothesis that all the learning algorithms performed the same on average. If the
Friedman test rejected the null hypothesis, the post-hoc Bonferroni-Dunn test was used.
Moreover, when required, we also applied pairwise comparisons by means of the non-
parametric Wilcoxon signed-ranks test.

4. Experimental Results

As follows, we present the results obtained with the combinations of (i) selection and
mutation operators and (ii) selection, crossover, and mutation operators.

4.1. Analysis of the Effect of Selection + Mutation

Our first concern was to analyze the behavior of XCS with both GAs and ESs when only
the selection operator and the mutation operator were considered. For this purpose, Ta-
ble 2 supplies the test accuracies and the ranks obtained by XCSGA and XCSES with



Table 2. Comparison of the test performance and rank obtained with XCSGA and XCSES with proportionate
selection (ps) and tournament selection (ts). Moreover, the results of XCSES with truncation selection (tr) and
weighted XCSES are also provided. In all the runs, crossover was switched off. The last three rows provide
the average performance, the average rank, and the position of each learner in the ranking.

Dataset XCSGA-ps XCSES-ps XCSGA-ts XCSES-ts XCSES-tr weig. XCSES

bal 82.35 (2) 82.08 (3) 81.55 (5) 81.71 (4) 81.12 (6) 82.93 (1)

bpa 62.51 (5.5) 64.15 (2) 62.80 (3) 65.12 (1) 62.70 (4) 62.51 (5.5)

gls 66.51 (6) 67.13 (4) 66.98 (5) 69.94 (1) 67.29 (3) 67.91 (2)

h-s 41.23 (4) 43.46 (1) 41.60 (3) 42.72 (2) 37.78 (6) 39.63 (5)

irs 94.89 (3) 93.33 (6) 95.33 (1) 94.89 (3) 94.89 (3) 94.44 (5)

pim 70.83 (4) 71.05 (2) 69.99 (6) 72.87 (1) 70.88 (3) 70.53 (5)

tao 89.32 (6) 92.90 (3) 89.79 (5) 93.80 (1) 93.01 (2) 89.90 (4)

thy 94.73 (6) 95.50 (4) 95.66 (2.5) 96.28 (1) 94.88 (5) 95.66 (2.5)

veh 65.52 (3) 66.00 (2) 64.50 (4) 67.26 (1) 63.83 (6) 64.34 (5)

wbcd 80.88 (6) 85.84 (1) 81.26 (5) 85.65 (2) 82.50 (4) 82.93 (3)

wdbc 78.68 (2) 75.28 (3) 80.20 (1) 74.93 (4) 67.60 (6) 69.13 (5)

wne 80.71 (5) 86.70 (1) 82.21 (2) 82.02 (3) 78.09 (6) 81.65 (4)

avg. 75.68 76.95 75.99 77.26 74.55 75.13

rnk. 4.38 2.67 3.54 2.00 4.50 3.92

pos. 5 2 3 1 6 4

proportionate and tournament selection (see from the 2nd to the 5th column). Moreover,
we also included truncation selection for XCSES , since it is a selection operator widely
used in the ESs field (6th column). The average rank of each learner shows that two
schemes based on ESs are the best ranked methods in the comparison. The Friedman
test permitted to reject the hypothesis that all the learners were statistically equivalent
at α = 0.01. The Bonferroni-Dunn test, at α = 0.05, indicated that XCSES with tour-
nament selection significantly outperformed XCSGA with both proportionate and tour-
nament selection. Besides, XCSES with proportionate selection was significantly better
than XCSGA proportionate selection.

Three important observations can be drawn from these results. Firstly, the XCS ES

based on truncation selection resulted in the poorest performance of the comparison. We
hypothesize that this behavior is because truncation selection is an excessively elitist op-
erator that makes a strong pressure toward the fittest individuals, which goes in detri-
ment of the population diversity. Secondly, the schemes based on tournament selection
yielded better results than those schemes based on proportionate selection for XCS GA

and XCSES . These results show the superiority of tournament selection with respect pro-
portionate selection, confirming the theoretical studies presented in [11] and [4]. There-
fore, our analysis enables us to extend these conclusions to real-life problems. Thirdly,
XCSES presents brilliant results in the tao, wbcd, and wne data sets, significantly out-
performing the results obtained by XCSGA according to a Wilcoxon signed-ranks test
at α = 0.05. To our knowledge, XCSES obtained, by far, the best ever reported perfor-
mance in the tao data set, a problem which is especially complicated for XCS since the
hyper rectangular representation can barely approximate the decision boundaries of the
problem accurately [2].

The overall results indicated that the mutation introduced by XCS ES , i.e., Gaussian
mutation, has a greater freedom of action due to a more disruptive behavior introduced



Table 3. Comparison of the test performance and rank obtained with XCSGA and XCSES with proportionate
selection (ps) and tournament selection (ts). Moreover, the results of XCSES with truncation selection (tr)
and XCSES are also provided. In all runs, we applied selection, crossover, and mutation. The last three rows
provide the average performance, the average rank, and the position of each learner in the ranking.

Dataset XCSGA-ps XCSES-ps XCSGA-ts XCSES-ts XCSES-tr

bal 83.20 (1) 82.77 (2.5) 82.72 (4) 82.77 (2.5) 82.13 (5)

bpa 68.21 (1) 67.05 (2) 65.22 (4) 65.70 (3) 64.06 (5)

gls 72.12 (2) 71.18 (4) 73.21 (1) 71.65 (3) 69.00 (5)

h-s 46.91 (4) 51.23 (1) 47.04 (3) 49.13 (2) 44.32 (5)

irs 95.33 (1.5) 95.33 (1.5) 94.89 (4.5) 95.11 (3) 94.89 (4.5)

pim 72.53 (5) 74.43 (2) 73.39 (4) 73.83 (3) 74.74 (1)

tao 91.22 (4) 93.52 (3) 91.19 (5) 94.35 (1) 94.17 (2)

thy 95.81 (2) 95.50 (5) 96.43 (1) 95.66 (3.5) 95.66 (3.5)

veh 71.79 (2) 71.75 (3) 71.20 (4.5) 72.89 (1) 71.20 (4.5)

wbcd 94.85 (3) 95.47 (1.5) 93.51 (4) 95.47 (1.5) 92.61 (5)

wdbc 91.09 (4) 91.80 (3) 92.44 (2) 92.85 (1) 89.51 (5)

wne 95.50 (4) 96.25 (1.5) 95.69 (3) 96.25 (1.5) 91.38 (5)

avg. 81.55 82.19 81.41 82.14 80.31

rnk. 2.79 2.5 3.33 2.17 4.21

pos. 4 2 3 1 5

by the random Gaussian variables. This enables Gaussian mutation to assume tasks of
innovation, which has been typically performed by the recombination operator in the GA
realm. In order to confirm the hypothesis, we designed a new Gaussian mutation operator,
which we addressed as weighed Gaussian mutation. This new operator normalized 95%
of the values of Gaussian distribution with the aim of softening the behavior presented
by Gaussian mutation. The results obtained with the new operator are shown in the last
column of Table 2. The results are similar to those showed by XCSGA, which confirms
that non-weighed Gaussian mutation has more freedom of action than random mutation,
aspect that promotes the global search capabilities of the system.

4.2. Analysis of the Effect of Selection + Crossover + Mutation

After evaluating the behavior of XCSES with Gaussian mutation with respect to XCSGA,
we now compare the systems with the complete genetic cycle. That is, we ran the same
experiments, but adding the crossover operator to each scheme. More specifically, we
used two point crossover for XCSGA and a combination of discrete recombination for
object parameters and intermediate recombination for strategy parameters for XCS ES .
We considered these two crossover methods for each configuration since they were the
schemes that maximized the average rank in each case.

Table 3 shows the test accuracy of the different configurations of XCS on the same
collection of real-life problems. Several observations can be drawn from the results.
Firstly, it is worth noting that the inclusion of crossover improves the test accuracy
achieved by XCS in most of the data sets not only for XCSGA, but also XCSES . There-
fore, although theoretical studies that show the benefits of crossover in XCS are lack-
ing, these results support its use to solve complex classification real-life problems. Sec-
ondly, as in the previous section, the XCS’s schemes based on ESs are the best ranked



in the comparison. The multi-comparison test rejected the null hypothesis that all learn-
ers performed the same on average at α = 0.01. The post-hoc Bonferroni-Dunn test, at
α = 0.05, identified that XCSES with proportionate and tournament selection outper-
formed XCSES with truncation selection. No further significant differences were de-
tected. That is to say, differently from the comparison in the previous section, the results
obtained by the XCS schemes based on ESs were not significantly better than those based
on GAs. This confirms our previous hypothesis that the mutation operator introduced by
the ESs permitted a more guided search toward highly fit classifiers in our population,
which can be simulated in the GA realm by the use of crossover. Notwithstanding, notice
that XCSES continues being the best ranked learner on average. Finally, let us highlight
the brilliant performance presented by XCSES with any configuration in the tao data set,
which is even higher than the one obtained in the previous section and than the accuracy
reached by XCSGA. In this case, the guidance provided by the evolution strategy seems
to be crucial to learn the decision boundaries accurately.

5. Summary, Conclusions, and Further Work

In this paper, we introduced an evolution strategy as a mechanism to discover new
promising rules in XCS. We extended the XCS’s representation by introducing new pa-
rameters required by the evolution strategy and compared XCS with genetic algorithms
and XCS with evolution strategies in detail. The effect of the different operators was
analyzed carefully. The experimental results evidenced that XCS with evolution strate-
gies presented the best results on average. Moreover, different insights on the role of the
different operators were provided.

The overall study presented in this paper served to increase our understanding of
how genetic operators work in XCS, especially highlighting the role of crossover and mu-
tation. In addition to all the notes provided while discussing the results, the experimen-
tation highlighted two crucial aspects that should be addressed as further work. Firstly,
the results clearly showed that XCS could benefit from new genetic operators. There-
fore, more research must be conducted on this regard, designing new operators that con-
sider more information that is available during the genetic evolution. Secondly, results
also indicated that different problems benefited from different genetic operators. That is,
the performance in problems such as tao was impressively increased by the use of an
ES. Nonetheless, XCSGA obtained slightly better results than XCSES in other problems.
Therefore, as further work, we will study different strategies to extract characteristics
from the training data sets and link these characteristics to the type of operators used dur-
ing search with the aim of designing hyper-heuristics that enable the system to self-tune
its operators depending on the apparent complexity of each particular problem.

Acknowledgements

The authors would like to thank Enginyeria i Arquitectura La Salle, Universitat Ra-
mon Llull, as well as the Ministerio de Educación y Ciencia for its support under
project TIN2005-08386-C05-04 and Generalitat de Catalunya for its support under
grants 2005FI-00252 and 2005SGR-00302.



References

[1] A. Asuncion and D. J. Newman. UCI Machine Learning Repository:
[http://www.ics.uci.edu/∼mlearn/MLRepository.html]. University of California, 2007.

[2] E. Bernadó-Mansilla and T.K. Ho. Domain of competence of XCS classifier system in complexity
measurement space. IEEE Transactions on Evolutionary Computation, 9(1):1–23, 2005.

[3] M. V. Butz, D. E. Goldberg, and P. L. Lanzi. Gradient descent methods in learning classifier systems:
Improving XCS performance in multistep problems. IEEE Transactions on Evolutionary Computation,
9(5):452–473, 2005.

[4] M. V. Butz, K. Sastry, and D. E. Goldberg. Strong, stable, and reliable fitness pressure in XCS due to
tournament selection. Genetic Programming and Evolvable Machines, 6(1):53–77, 2005.

[5] M. V. Butz and S. W. Wilson. An algorithmic description of XCS. In P. L. Lanzi, W. Stolzmann, and
S. W. Wilson, editors, Advances in Learning Classifier Systems: Proceedings of the Third International
Workshop, volume 1996 of Lecture Notes in Artificial Intelligence, pages 253–272. Springer, 2001.

[6] J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7:1–30, 2006.

[7] D. E. Goldberg. Genetic algorithms in search, optimization & machine learning. Addison Wesley, 1
edition, 1989.

[8] J. H. Holland. Adaptation. In R. Rosen and F. Snell, editors, Progress in Theoretical Biology, volume 4,
pages 263–293. New York: Academic Press, 1976.

[9] T. Kovacs. Deletion schemes for classifier systems. In GECCO’99: Proceedings of the 1999 Genetic
and Evolutionary Computation Conference, pages 329–336. Morgan Kaufmann, 1999.

[10] A. Orriols-Puig and E. Bernadó-Mansilla. Evolutionary rule-based systems for imbalanced datasets.
Soft Computing Journal, 2008.

[11] A. Orriols-Puig, K. Sastry, P.L. Lanzi, D.E. Goldberg, and E. Bernadó-Mansilla. Modeling selection
pressure in XCS for proportionate and tournament selection. In GECCO’07: Proceedings of the 2007
Genetic and Evolutionary Computation Conference, volume 2, pages 1846–1853. ACM Press, 2007.

[12] I. Rechenberg. Evolution Strategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen
Evolution. Frommann-Holzboog, 1973.

[13] S. W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation, 3(2):149–175, 1995.
[14] S. W. Wilson. Get real! XCS with continuous-valued inputs. In Learning Classifier Systems. From

Foundations to Applications, LNAI, pages 209–219, Berlin, 2000. Springer-Verlag.


