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Abstract. The class imbalance problem has been said recently to hinder
the performance of learning systems. In fact, many of them are designed
with the assumption of well-balanced datasets. But this commitment is
not always true, since it is very common to find higher presence of one
of the classes in real classification problems. The aim of this paper is to
make a preliminary analysis on the effect of the class imbalance problem
in learning classifier systems. Particularly we focus our study on UCS, a
supervised version of XCS classifier system. We analyze UCS’s behavior
on unbalanced datasets and find that UCS is sensitive to high levels of
class imbalance. We study strategies for dealing with class imbalances,
acting either at the sampling level or at the classifier system’s level.

1 Introduction

Learning Classifiers Systems (LCSs) [11,12] are rule-based systems that have
been demonstrated to be highly competitive in classification problems with re-
spect to other machine learning methods. Nowadays, XCS [28,27], an evolution-
ary online learning system, is one of the best representatives of LCSs.

The performance of XCS on real classification problems has been tested ex-
tensively in many contributions [18,19,3,5,17]. In addition, some analyses on the
factors that make a problem hard for XCS have been made [15], and some theo-
ries have been formulated [5]. This work focuses on one of the complexity factors
which is said to hinder the performance of standard learning methods: the class
imbalance problem.

The class imbalance problem corresponds to classification domains for which
one class is represented by a larger number of instances than other classes. The
problem is of great importance since it appears in a large number of real do-
mains, such as fraud detection [9], text classification [6], and medical diagnosis
[20]. Traditional machine learning approaches may be biased towards the ma-
jority class and thus, may predict poorly the minority class examples. Recently,
the machine learning community have paid increasing attention to this problem
and how it affects the learning performance of some well-known classifier sys-
tems such as C5.0, MPL, and support vector machines [22,23,10]. In the LCS’s
framework, some approaches have been proposed to deal with class imbalances
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in epidemiological data [13]. The aim of this paper is to enhance the analysis
on class imbalances into the LCS’s framework, and debate whether this problem
affects LCSs, to what degree, and, if it is necessary, study different methods to
overcome the difficulties.

Our analysis is centered on Michigan-style learning classifier systems. We
choose UCS [7] as the test classifier system for our analysis, with the expectation
that our results and conclusions can also be extended to XCS and other similar
LCSs. UCS is a version of XCS that learns under a supervised learning scheme. In
order to isolate the class imbalance problem and control its degree of complexity,
we designed two artificial domains. We study UCS’s behavior on these problems
and identify factors of complexity when the class imbalance is high, which makes
us to analyze different approaches to deal with these difficulties.

The remainder of this paper is organized as follows. Section 2 describes the
UCS classifier system, focusing on the differences with XCS. Section 3 gives the
details on the domain generation. In section 4, UCS is trained in the designed
problems, and the class imbalance effects are analyzed. Section 5 describes the
main approaches for dealing with the class imbalance problem, and sections 6 and
7 analyze these approaches under UCS’s framework. Finally, we summarize our
main conclusions, give limitations of the current study, and provide directions
for further work.

2 Description of UCS

UCS [18,7] is a Michigan-style classifier system derived from XCS [28,27]. The
main difference is that UCS was designed under a supervised learning scheme,
while XCS follows a reinforcement learning scheme. In the following, we give a
brief description of UCS, emphasizing the main differences with XCS. For more
details, the reader is referred to [7].

2.1 Representation

UCS evolves a population of [P] classifiers. Each classifier has a rule of type
condition → class, as in XCS, and a set of parameters estimating the quality
of the rule.

The main parameters of a rule are: a) the rule’s accuracy acc, b) the fitness F ,
c) the experience exp, d) the niche size ns, f) the last time of the GA activation
ts, and g) the numerosity num.

2.2 Performance Component

UCS learns incrementally according to a supervised learning scheme. During
learning, examples are provided to the system. Each example comes with its
attributes x = (x1,... xn) and its corresponding class c. Then, the system creates
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a match set [M] consisting of those classifiers whose conditions match the input
example. From [M], the classifiers that correctly predict the class c form the
correct set [C]. The remaining classifiers belong to [!C]. If [C] is empty, the cov-
ering operator is activated, creating a new classifier with a generalized condition
matching x and class c.

In exploit or test mode, an input x is presented and UCS must predict its
associated class. In this case, the match set [M] is formed, and the system selects
the best class from the vote (weighted by fitness) of all classifiers present in [M].

2.3 Parameter Updates

In learning mode, the classifier parameters are updated. First of all, the classi-
fier’s accuracy is updated:

acc =
number of correct classifications

experience

Fitness is calculated as a function of accuracy:

F = (acc)ν

where ν is a parameter set by the user. A typical value is 10. Thus, accuracy
accumulates the number of correct classifications that each classifier has done,
and fitness scales exponentially with accuracy.

The experience of a classifier exp is updated every time a classifier participates
in a match set. The niche set size ns stores the average number of classifiers in
[C]; it is updated each time the classifier belongs to a correct set.

2.4 Discovery Component

In UCS, the genetic algorithm (GA) is used as the search mechanism in a similar
way to that in XCS. The GA is applied to [C] instead of all the population. It
selects two parents from [C] with a probability proportional to fitness and copies
them. Then, the copies are recombined and mutated with probabilities χ and μ
respectively. The resulting offspring are introduced into the population. First,
each offspring is checked for subsumption. In an offspring can not be subsumed, it
is inserted in the population, deleting potentially poor classifiers if the population
is full. The deletion probability is computed in the same way as in XCS (see [14]).

3 Dataset Design

In order to isolate the class imbalance problem from other factors that affect
UCS’s performance [15], two artificial domains were generated. Each one tries
to highlight different traits of the system. These are the checkerboard problem
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(denoted as chk) and the position problem (denoted as pos). They are described
in the following.

3.1 Chk Domain Generation

The chk problem is based on the balanced checkerboard problem, used as a
benchmark in [8,26]. It has two real attributes (x and y) that can take values
from zero to one (x, y ∈ [0, 1]). Instances are grouped in two non-overlapping
classes, drawing a checkerboard in the feature space.

The complexity of the problem can be varied along three different dimensions
(similarly to [23]): the degree of concept complexity (c), the dataset size (s),
and the imbalance level between the two classes (i). Concept complexity defines
the number of class boundaries, pointed as a complexity factor in XCS [8]. The
dataset size is the size of the balanced dataset. The imbalance level determines
the ratio between the number of minority class instances and the number of
majority class instances.

The generation process creates a balanced two-class domain, and then pro-
ceeds to unbalance it by removing some of the minority class instances. The
original balanced problem is defined by the dataset size s, and the concept com-
plexity c, which defines c2 alternating squares. We randomly drew points into
the feature space so that each checkerboard square received s/c2 instances. For
the balanced dataset, i=0.

An imbalance degree i corresponds to the case where the minority class has
1/2ith of its normally entitled points, while the majority class maintains the
same points as in the original dataset. This means that the ratio between the
minority class instances and the majority class instances is 1/2i. Given s, c, and
an imbalance level i, each square of the majority class has s/c2 instances, while
each square of the minority class has s/(c2 ·2i) instances. For example, for c = 4,
s = 4096, and i = 3, each square of the majority class is represented by 256
examples, and each square of the minority class is represented by 32 examples.
The domain generation unbalances the dataset iteratively. For i = 1, it takes the
balanced dataset and removes half of the instances from the minority class. For
i = 2, it takes the dataset obtained in the previous step and again removes half
of the minority class instances, and so on.

3.2 Pos Domain Generation

The pos problem [7] has multiple classes and different proportions of examples
per class. Given a binary input x of fixed length l, the output class corresponds
to the position of the leftmost one-valued bit. If there is not any one-valued bit,
the class is zero. The length of the string l determines both the complexity of
the problem and the imbalance level.

In the position problem, the most specific rules are activated very sparsely and
thus they have very few opportunities to reproduce. Our motivation to include
such an extreme domain in the current analysis, rather than trying to solve this
particular problem, is to validate our findings in the checkerboard domain.
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Fig. 1. Training datasets for the chk problem, generated with parameters s=4096, c=4,
and imbalance levels from 0 to 7

4 UCS’s Behavior on Unbalanced Datasets

In this section we analyze UCS’s performance with unbalanced datasets, using
the artificial problems described in the last section.

4.1 Chk Problem

We ran UCS in the checkerboard problem with a fixed dataset size s =4096 and
concept complexity c=4, which corresponds to sixteen alternating squares. We
varied the imbalance level from i=0 to i=7. For i=0, the dataset is balanced,
with 2048 instances per class. For increasing i values we took out half of the
instances of the minority class. Thus, the last configuration (i=7) corresponds to
256 instances per square belonging to the majority class, and only two instances
for each square of the minority class. Figure 1 depicts all the datasets generated,
showing the location of each training point in the feature space.

Since there is not overlapping among instances of different classes, the minority
class instances should not be dealt as noise. Even in the most unbalanced dataset
(figure 1(h)), all the minority class instances are isolated from the regions con-
taining the majority class instances, and this should be enough to let the system
discover the minority class regions. However, it is reasonable to expect that some
regions will be more difficult to evolve, depending on the distance of the training
points of the minority class to the training points of the majority class.
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Fig. 2. Boundaries evolved by UCS in the chk problem with imbalance levels from 0 to
7. Plotted in black are the regions belonging to the minority class and plotted in gray
are the regions of the majority class.

UCS was trained with each of the datasets for 200,000 learning iterations,
with the following parameter settings (see [21] for the notation): N=4001, α=0.1,
β=0.2, δ=0.1, ν=10, θdel=20, θsub = 20, acc0=0.99, χ=0.8, μ=0.04, θGA=25,
GASub = true, [A]Sub=false. Specify was enabled with parameters NsP =20
and PsP =0.5 (see [16]).

Figure 2 shows the classification boundaries obtained by UCS in all the
datasets. Figure 2(a) corresponds to the balanced dataset. As expected, UCS
is able to discover the optimal ruleset. A similar behavior is shown for imbalance
levels i={1,2,3}, as seen in figures 2(b), 2(c), and 2(d) respectively. In these cases,
the class imbalance does not prevent UCS from evolving the correct boundaries.

The problem arises with imbalance levels equal or greater than 4. Figure 2(e)
shows that the system is not able to classify correctly any of the minority class
squares. Looking at the training dataset, shown in figure 1(e), it seems feasible
that UCS could learn the minority class regions since the number of instances
representing these regions define a distinguished space in the eyes of a human
beholder. In addition, any model evolved with higher imbalance levels is not able
to discover any minority class region, as shown in figures 2(f), 2(g), and 2(h).
This abrupt change in the UCS’s behavior led us to make a deeper analysis.

Table 1 shows the rules evolved by UCS in the chk problem for imbalance
level i=4. The table shows, to our surprise, that UCS evolved accurate and
maximally general classifiers that cover the minority class regions. Actually, the

1 The value was set to sixteen times the optimal population size, as suggested in [7].
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Table 1. Most numerous rules evolved by UCS in the chk problem with imbalance
level i=4, sorted by class and numerosity. Columns show respectively: the rule number,
the condition and class of the classifier, where 0 is the majority class and 1 the minority
class, the accuracy (acc), fitness (F), and numerosity (num).

id condition class acc F num
1 [0.509, 0.750] [0.259, 0.492] : 1 1.00 1.00 39
2 [0.000, 0.231] [0.252, 0.492] : 1 1.00 1.00 38
3 [0.000, 0.248] [0.755, 1.000] : 1 1.00 1.00 35
4 [0.761, 1.000] [0.000, 0.249] : 1 1.00 1.00 34
5 [0.255, 0.498] [0.520, 0.730] : 1 1.00 1.00 33
6 [0.751, 1.000] [0.514, 0.737] : 1 1.00 1.00 31
7 [0.259, 0.498] [0.000, 0.244] : 1 1.00 1.00 27
8 [0.501, 0.743] [0.751, 1.000] : 1 1.00 1.00 18
9 [0.500, 0.743] [0.751, 1.000] : 1 1.00 1.00 9

10 [0.751, 1.000] [0.531, 0.737] : 1 1.00 1.00 8
. . .

18 [0.509, 0.750] [0.246, 0.492] : 1 0.64 0.01 1
19 [0.000, 1.000] [0.000, 1.000] : 0 0.94 0.54 20
20 [0.000, 1.000] [0.000, 0.990] : 0 0.94 0.54 13
21 [0.012, 1.000] [0.000, 0.990] : 0 0.94 0.54 10

. . .
64 [0.012, 1.000] [0.038, 0.973] : 0 0.94 0.54 1

eight most numerous rules are those that cover the eight minority class regions,
and all of them are accurate. Besides these rules, the table also shows some less
numerous rules predicting the majority class. These are overgeneral rules; they
cover inaccurately almost all the feature space. From these results two questions
arise. Why does UCS evolve these overgeneral rules? And why the system does
not properly use the specific rules to classify the minority class regions instead
of these overgeneral rules?

To explain UCS’s tendency to evolve these overgeneral rules, other populations
evolved with lower imbalance levels were checked. We found that all populations
evolved with an imbalance level higher than 1 contained the most general rule
(at1 ∈ [0, 1] and at2 ∈ [0, 1]), as shown in figure 2 for imbalance level i=3.

We hypothesize that the generalization pressure produced by the GA induces
the creation of these overgeneral rules. Once created, these rules are activated
in nearly any action set, because of its overgeneral condition. In balanced or
low-unbalanced datasets, these overgeneral rules tend to have low accuracy and
consequently, low fitness. For example, the most general rule has a 0.50 of ac-
curacy in a balanced dataset. Thus, overgeneral rules with low fitness tend to
have low probabilities of participating in reproductive events and finally, they
are removed from the population. The problem comes out with high imbalance
levels, where overgeneral rules have a high tendency to be maintained in the pop-
ulation. The reason is that the data distribution does not allow to penalize the
classifier’s accuracy so much, as long as the minority class instances are sampled
in a lower frequency. So, the higher the imbalance level, the more accurate an
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Table 2. Most numerous rules evolved by UCS in the chk problem with imbalance
level i=3, sorted by class and numerosity. Columns show respectively: the rule number,
the condition and class of the classifier, where 0 is the majority class and 1 the minority
class, the accuracy (acc), fitness (F), and numerosity (num).

id condition class acc F num
1 [0.251, 0.498] [0.000, 0.244] : 1 1.00 1.00 39
2 [0.501, 0.751] [0.760, 1.000] : 1 1.00 1.00 37
3 [0.000, 0.246] [0.259, 0.500] : 1 1.00 1.00 36
4 [0.259, 0.499] [0.504, 0.751] : 1 1.00 1.00 33
5 [0.506, 0.746] [0.263, 0.498] : 1 1.00 1.00 30
6 [0.751, 1.000] [0.502, 0.749] : 1 1.00 1.00 29
7 [0.752, 1.000] [0.000, 0.240] : 1 1.00 1.00 27
8 [0.000, 0.246] [0.759, 1.000] : 1 1.00 1.00 20

. . .
25 [0.000, 0.233] [0.584, 1.000] : 1 0.13 0.00 1
26 [0.000, 1.000] [0.000, 1.000] : 0 0.89 0.31 13
27 [0.010, 1.000] [0.000, 1.000] : 0 0.89 0.31 12

. . .
60 [0.051, 1.000] [0.017, 0.926] : 0 0.89 0.31 1

overgeneral classifier is considered (and also the higher fitness it has). This effect
is clearly seen in tables 2 and 1. Observe that for i=3 (table 2), overgeneral rules
have accuracies of 0.89. Similar overgeneral rules for i=4 (table 1) have 0.94 of
accuracy. Consequently, in high imbalance levels overgeneral rules tend to have
higher accuracies, presenting more opportunities to be selected by the GA, and
also lower probabilities of being removed by the deletion procedure.

After analyzing why overgeneral rules are created and maintained in the pop-
ulation as the imbalance level increases, let’s consider why the system does not
predict the minority class even though it evolved the appropriate rules. For i=3,
UCS was able to predict the minority class regions but not for i=4, although
apparently the populations evolved were similar. For i=3, there are several nu-
merous and overgeneral rules, but their vote in the prediction array is not enough
to overcome the vote of the accurate rules predicting the minority class. There-
fore, UCS is able to predict accurately the minority class. The problem arises
at a certain point in the imbalance level that makes the vote of the overgeneral
rules higher than the vote of the accurate rules. In our datasets, this happens at
imbalance level 4. The population evolved in this dataset consists of 64 macro-
classifiers, 46 of them predicting the majority class and only 18 predicting the
minority class. Taking into account the classifiers’ numerosities, there are more
than 100 microclassifiers covering all the feature space with the majority class,
and only 32 microclassifiers in average for each of the minority class squares.
When an instance belonging to a minority class region is shown to UCS, the
prediction vote for the majority class is greater, and this makes UCS to classify
this instance wrongly.
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Fig. 3. Percentage of optimal population evolved by UCS in the pos problem. Each
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4.2 Pos Problem

UCS was trained with the pos problem with condition lengths l from 8 to 15.
We ran UCS for 400000 iterations with the the following parameter settings:
N=25·(l+1), α=0.1, β=0.2, δ=0.1, ν=10, θdel=20, θsub = 20, acc0=0.99, χ=0.8,
μ=0.04, θGA=25, GASub = true, [A]Sub=false, Specify=true, NsP =20, PsP

=0.5. The experiments were averaged over five different runs.
To analyze UCS’s behavior on this problem, we show the curves of perfor-

mance of UCS during training. We consider here the percentage of optimal clas-
sifiers (%[O]) [15] achieved by UCS along the iterations. We use this metric
instead of accuracy, because accuracy is biased towards the majority classes.
Since we aim to evaluate the system’s capability to evolve all the classes, we use
a measure that gives equal importance to each of the classes independently of
the a priori probabilities of each class. Alternatively, a measure of cost per class
could be used.

Figure 3 depicts the percentage of optimal population achieved during train-
ing. Each curve represents a different level of complexity in the pos problem,
ranging from l=8 until l=15. It shows that UCS has difficulties in learning all
the optimal classifiers as the condition length grows. Table 3 shows an example
of the population evolved by UCS for the pos problem at l=12. Note that the
system can discover the most general optimal rules, being not able to discover
the three most specific ones. This behavior is also observed in other evolved
populations. As expected, more general rules have higher numerosities. This be-
havior is attributed to the fact that specific rules activate less often than more
general ones, and thus they have fewer reproductive opportunities. Therefore,
in a problem with class imbalances the system has more opportunities to learn
rules that cover the majority class than those that cover the minority class [7].

5 How to Deal with Class Imbalances

This section reviews different strategies for dealing with the class imbalance prob-
lem. The first two are general methodologies applicable to any type of classifier
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Table 3. Most numerous rules evolved by UCS in the pos problem for l=12, sorted
by numerosity. Columns show respectively: the rule number, the condition and class of
the classifier, the accuracy (acc), fitness (F), and numerosity (num).

condition class acc F num
1########### :12 1.00 1.000 56
0001######## : 9 1.00 1.000 49
01########## :11 1.00 1.000 46
001######### :10 1.00 1.000 43
00001####### : 8 1.00 1.000 32
000001###### : 7 1.00 1.000 24
0000001##### : 6 1.00 1.000 16
00000001#### : 5 1.00 1.000 11
000000001### : 4 1.00 1.000 10
0000000001## : 3 1.00 1.000 5
00#00#00000# : 1 0.20 0.000 4
0000000#01## : 3 0.70 0.028 2
0000000000#0 : 2 0.66 0.017 2

since they are based on dataset resampling. The aim of resampling is to balance
the a priori probabilities of the classes. The last methods are specially designed
for UCS, although they can also be adapted to other classifier schemes.

Oversampling. This method consists of oversampling the examples of the mi-
nority class until their number is equal to the number of instances in the majority
class [22]. Two variants can be considered. Random oversampling resamples at
random the minority class examples. Focused resampling oversamples mainly
those instances closer to class boundaries.

Undersampling. Undersampling consists of eliminating some of the majority
class instances until we reach the same number of majority class instances as
minority class instances [22]. Two classic schemes are random undersampling,
which removes at random majority class instances, and focused resampling, which
removes only those instances further away from class boundaries.

Adaptive sampling. This method, initially proposed in [4], is inspired in over-
sampling and in the way boosting [25] works. It proposes to maintain a weight
for each dataset instance (initially set to 1), which indicates the probability that
the sample process selects it. Weights are updated incrementally when the sys-
tem makes a prediction under exploit mode. Depending on whether the system
has made a correct prediction or not on a given example, the weight for that ex-
ample will be decreased or increased by a factor α (in the experiments we fixed
α = 0.1).

Class-sensitive accuracy. Class-sensitive accuracy modifies the way in which
UCS computes accuracy so that each class is considered equally important re-
gardless of the number of instances representing each class. UCS was slightly



The Class Imbalance Problem in UCS Classifier System 171

modified to compute the experience of a classifier per each class. The proportion
of examples covered per each class is taken in account to calculate the classi-
fier’s fitness, counterbalancing the bias produced by class imbalances. See [1] for
further details.

Selected techniques. We chose to analyze three main representative
approaches: random oversampling, adaptive sampling, and class-sensitive ac-
curacy with weighted experience. Undersampling was not considered for being
too extreme in the case of highly imbalanced datasets. Under our point of view,
undersampling majority class instances to the same degree as minority class
instances may produce a loss of valuable information and may change class
boundaries unnecessarily. The problem may degenerate into a problem of spar-
sity, for which classifier schemes in general are expected to show poor general-
ization capability. Next section compares each of the selected strategies under
the checkerboard problem.

6 UCS in the Chk Problem

We run UCS in the checkerboard problem for imbalance levels from i=0 to i=7
using the three aforementioned strategies. We use the same parameter settings
as those in section 4, adding the new parameter θacc for the case of class-sensitive
computation. θacc is set to 50 to protect the fitness decrease of young classifiers.

6.1 Random Oversampling

Figure 4 shows the boundaries evolved by UCS under random oversampling. Note
that UCS was able to evolve some boundaries for the minority class examples
even for the highest imbalance levels. In many cases, these boundaries do not
reach the real boundaries of the original balanced dataset. But this result is
reasonable since the distribution of training points has changed with respect to
the original dataset.

Under oversampling, UCS works as the problem was a well balanced dataset,
because the proportion of minority class examples has been adjusted a priori.
UCS sees a dataset with the same number examples per class, but with some
gaps in the feature space that are not represented by any example. These gaps
are mostly covered by rules predicting the majority class rather than by minority
class rules. In fact, what happens is that rules from both classes tend to expand
as much as possible into these gaps until they reach points belonging to the
opposite classes. That is, rules tend to expand as long as they are accurate. Thus,
there are overlapping rules belonging to different classes in the regions that are
not covered by any example. When we test UCS in these regions, the majority
class rules have higher numerosities and their vote into the prediction array is
higher. The reason why majority class rules have higher numerosities is that
their boundaries are less complex, so in many cases a single rule suffices for all
the region. This rule tends to cover all the examples of a majority class square
and benefits from long experience and numerosity. On the contrary, minority
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Fig. 4. Class boundaries evolved by UCS with random oversampling in the chk problem
with imbalance levels from 0 to 7

class regions are more complex, and rules covering these regions tend to have
less experience and numerosity.

6.2 Adaptive Sampling

Figure 5 shows the results obtained by UCS under the adaptive sampling strat-
egy. UCS evolved part of the squares belonging to the minority class. For i=4
and i=5, the boundaries evolved by UCS almost approximate the real bound-
aries of the original problem. In these cases, adaptive sampling allowed UCS to
evolve fairly good approximations with respect to the original results shown in
figure 2. For higher imbalance levels, UCS found more difficulties in finding good
approximations for the minority class squares. In these cases, the result achieved
under the adaptive sampling strategy is worse than that achieved by UCS under
oversampling (see figure 4).

We tried to use a more disruptive function for the weight computation of the
adaptive sampling strategy but we found no improvements. On the contrary,
trying to use a higher α parameter so that weights could be further increased if
instances were poorly classified led to oscillations in the weights and difficulties
to stabilize the boundaries evolved.

Analyzing the behavior of UCS under these two strategies (not detailed for
brevity), we found that under adaptive sampling there is less generalization
pressure towards the minority class rules than with oversampling. The reason
is that, with adaptive sampling, once all instances are well classified, weights
stabilize and then, all instances are sampled as the original a priori probabilities.
Under oversampling, minority class instances are always sampled at the same
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Fig. 5. Class boundaries evolved by UCS with adaptive sampling in the chk problem
with imbalance levels from 0 to 7

a priori probability as majority class instances, keeping the same generalization
pressure towards both classes. This may justify why, under adaptive sampling,
UCS finds more difficulties in the generalization of rules covering the minority
class instances, especially for the highest imbalance levels.

6.3 Class-Sensitive Accuracy

Figure 6 shows the results of UCS under class-sensitive accuracy. Note that the
boundaries evolved in all imbalance levels are better at discovering minority
class regions than those evolved by raw UCS. However, for the lowest imbalance
levels (i.e., i=[1-3]), there is a little tendency to leave some blank spaces near the
class boundaries. These gaps predominantly belong to the minority class regions.
The reason is that rules covering minority class regions easily get inaccurate
when they overpass slightly into the majority class regions. Rules classifying
the majority class squares and getting inside minority class squares have less
probability to cover minority instances (because they are less frequent) so that
their accuracy is not penalized as much. This gap effect in the class boundaries
was even stronger for class-sensitive accuracy without the weighted experience
modification, as shown in [1]. Note that for the balanced dataset, i.e., i=0, the
gap effect is also present although with few incidence. These gaps also appeared
slightly under oversampling and adaptive sampling, although in the latter to a
lower extent.

For imbalance levels i=4 and i=5, UCS with class-sensitive accuracy clearly
improves raw UCS in terms of the boundaries evolved. Furthermore, the
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Fig. 6. Boundaries evolved by UCS with class-sensitive accuracy for 0 to 7. Black
regions are those classified as minority class. Grey regions are regions classified as
majority class. White regions are non-covered domain regions.

tendency of evolving overgeneral rules is restrained. Table 4 depicts the most
numerous rules evolved by UCS for imbalance level i=4. Note that overgeneral
rules are not evolved. Instead there are maximally general rules covering each of
the alternating squares.

Finally, figures 6(g) and 6(h) show the models evolved with imbalance levels
i=6 and i=7. As the imbalance level increases, the system finds it harder to evolve
the minority class regions. For the highest class imbalances, UCS can only draw
partially four of the minority class regions. Looking at the evolved population,
not shown for brevity, we confirm that the problem is not attributable to the
evolution of overgeneral rules but to the fact that the imbalance ratio is so high
(1:128) that it could be considered as an sparsity problem. There are so few
representatives of the minority class regions that we may debate whether these
points are representative of a sparse class region or whether they belong to noisy
cases. In the latter case, we would acknowledge that UCS should not find any
distinctive region.

7 Contrasting Results with Pos Problem

In last section, we isolated and analyzed the imbalance class problem under the
chk domain. Now, we analyze the pos problem, which combines jointly differ-
ent complexity factors. Increasing the condition length increases not only its
imbalance level but also other identified complexity factors such as the number
of classes, the size of the training dataset and the condition length itself. Our
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Table 4. Most numerous rules evolved by UCS with class-sensitive accuracy in the chk
problem for imbalance level i=4, sorted by numerosity. Columns show respectively: the
rule number, the condition and class of the classifier, where 0 is the majority class
and 1 the minority class, the accuracy for each class (acc0 and acc1), fitness (F), and
numerosity (num).

id condition class acc0 acc1 F num
1 [0.000 - 0.200] [0.492 - 0.756] :0 1 - 1.00 34
2 [0.754 - 1.000] [0.757 - 1.000] :0 1 - 1.00 32
3 [0.000 - 0.253] [0.000 - 0.242] :0 1 - 1.00 26
4 [0.730 - 1.000] [0.260 - 0.527] :0 1 - 1.00 15
5 [0.491 - 0.759] [0.480 - 0.753] :0 1 - 1.00 12
6 [0.000 - 0.250] [0.770 - 1.000] :1 - 1 1.00 20
7 [0.519 - 0.748] [0.260 - 0.483] :1 - 1 1.00 19
8 [0.751 - 1.000] [0.000 - 0.247] :1 - 1 1.00 17
9 [0.257 - 0.454] [0.510 - 0.722] :1 - 1 1.00 15
10 [0.000 - 0.246] [0.253 - 0.460] :1 - 1 1.00 15
11 [0.763 - 1.000] [0.526 - 0.740] :1 - 1 1.00 13
12 [0.482 - 0.786] [0.000 - 0.241] :0 1 0 0.39 19
13 [0.264 - 0.565] [0.699 - 1.000] :0 1 0 0.87 18
14 [0.114 - 0.547] [0.156 - 0.529] :0 1 0 0.66 15

. . .
69 [0.156 - 0.547] [0.201 - 0.507] :0 1 0 0.43 1

purpose here is to analyze the three strategies under a more difficult problem,
as a previous step to the analysis of real-world problems which will be left as a
future work.

7.1 Oversampling

UCS was run under oversampling with the same parameter settings as in the
original pos problem (see section 4.2). Figure 7 shows the percentage of optimal
population achieved by UCS in the pos problem for condition-lengths l from 8
to 15. Curves are averages of five runs. The figure shows high oscillations in the
learning curves of UCS. Note that the learning curves have worsened significantly
with respect to the original results with UCS (as shown in figure 3).

Making a deeper analysis, some harmful traits of oversampling, which were
not observed in the chk problem, come out. In the pos problem, changing the
a priori probabilities of examples makes accurate generalizations very hard to
be evolved. UCS learns accurate and maximally general rules by the presence of
the appropriate examples and counter-examples. While the presence of numer-
ous examples favor the generalization of rules, counter-examples set the limit for
these generalizations. If rules overgeneralize, the presence of counter-examples
makes the rule inaccurate. Therefore rules generalize as long as they cover all the
examples of the same class and cover no counter-examples. In the pos problem,
we oversample minority class examples. Thus, the system gets a higher num-
ber of examples for the minority class rules, but on the contrary receives few
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Fig. 7. Percentage of optimal population evolved by UCS under oversampling in the
pos problem for l=8 until l=15

proportion of counter-examples for these rules. The result is that UCS tends to
overgeneralize the rules covering the minority class examples. And the discovery
of specific rules for the minority class examples remains unsolved.

We wonder why this effect did not arise in the chk problem. The reason is
that the chk problem has originally the same generalization for each of the rules.
Oversampling makes each rule to receive the same proportion of examples and
counter-examples. So it is easier to find accurate generalizations.

The results of oversampling on the position problem suggest that this method
could be harmful depending on the topology of the problem. So this is a method
that should be applied with caution in real-world problems, at least for classifier
schemes using similar learning patterns to those of UCS.

7.2 Adaptive Sampling

Figure 8 shows the percentage of optimal population achieved by UCS under
adaptive sampling. Curves are averages of five runs. See that the oversampling
effect does not appear here. If a rule is inaccurate because it does not classify
properly an example, the probability of sampling that example is increased.
Thus, this example will serve as a counter-example for overgeneral rules, and as
an example to help discover rules covering it accurately. Note that the learning
curves have improved with respect to the original problem (figure 3), although
there is still a high difficulty in discovering the optimal populations for the
highest complex levels.

7.3 Class-Sensitive Accuracy

Figure 9 shows the percentage of optimal population evolved by UCS with class-
sensitive accuracy. The figure does not reveal significant improvements with re-
spect to raw UCS, as shown in figure 3. The problem here is that UCS is receiving
very few instances of the most specific classes, i.e., it receives exactly the same
instances as in the original problem. For example, for l=15, UCS receives only
one instance of class 0 each 32768 instances. Thus, even though UCS weighs
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Fig. 9. Percentage of optimal population evolved by UCS with class-sensitive accuracy
in the pos problem, from l=8 to l=15

the contribution of each class equally, if the minority class instances come very
sparsely, rules covering them have few reproductive events. We find it interest-
ing to analyze a hybrid strategy between adaptive sampling and class-sensitive
accuracy so that the benefits of each approach could be combined.

8 Conclusions

We analyzed the class imbalance problem in UCS classifier system. We found
that UCS has a bias towards the majority class, especially for high degrees of
class imbalances. Isolating the class imbalance problem by means of artificially
designed problems, we were able to explain this bias in terms of the population
evolved by UCS.

In the checkerboardproblem, we identified the presence of overgeneral rules pre-
dicting the majority class which covered almost all the feature space. For a given
imbalance level, these rules overcame the vote of the most specific ones and thus,
UCS predicted all instances as belonging to the majority class. Different strategies
were analyzed to prevent the evolution of these overgeneral rules. We found that all
tested strategies (oversampling, adaptive sampling, and class-sensitive accuracy)
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prevented UCS from evolving these overgeneral rules, and class boundaries —for
both the minority and majority classes— were approximated fairly better than
with the original setting. However, the analysis on the position problem revealed
many inconveniences in the oversampling strategy which make UCS’s learning un-
stable. This leads us to discard this method for real-world datasets.

The study would be much enhanced with the analysis of the class imbalance
problem on other LCSs. Preliminary experiments made with two other evolution-
ary learning classifier systems, GAssist [2] and HIDER [24], showed that they
are even more sensitive to the class imbalance problem. Moreover, the analysis of
the class imbalance problem in other classifier schemes such as nearest neighbors,
support vector machines and C4.5, and their comparison with LCSs, could give
higher understanding on how imbalance class problems affect classifier schemes,
and whether they affect LCSs to a higher degree than others.

Also, we would like to extend this analysis to other artificial problems, as well
as to real-world datasets. We suspect that the proposed strategies may be very
sensitive in noisy problems, i.e, in problems having misclassified instances. The
combination of noisy instances and strategies for dealing with class imbalances
may worsen significantly the generalization of learners, resulting in too overfitted
boundaries. As this is a feature often present in real-world datasets, this should
be analyzed in detail as a previous step to understand the behavior of these
strategies on real-world datasets.
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