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Improving energy efficiency in buildings represents one of the main challenges faced by engineers. In

fields like lighting control systems, the effect of low quality sensors compromises the control strategy

and the emergence of new technologies also degrades the data quality introducing linguistic values.

This research analyzes the aforementioned problem and shows that, in the field of lighting control

systems, the uncertainty in the measurements gathered from sensors should be considered in the

design of control loops. To cope with this kind of problems Hybrid Intelligent methods will be used.

Moreover, a method for learning equation-based white box models with this low quality data is

proposed. The equation-based models include a representation of the uncertainty inherited in the data.

Two different evolutive algorithms are use for learning the models: the well-known NSGA-II genetic

algorithm and a multi-objective simulated annealing algorithm hybridized with genetic operators. The

performance of both algorithms is found valid to evolve this learning process. This novel approach is

evaluated with synthetic problems.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Improving energy efficiency represents a big challenge in
modern engineering [1–3], and more specifically, in the field of
lighting control systems included in building automation. In a
lighting control system, the typical lighting control loop includes
a light sensor, the light ballasts and a light controller. The light
sensor measures the amount of light in a room, although the
measurements lack hysteresis and saturation [2]. Moreover,
recent studies show that the measurements obtained from light
sensors are highly dependent on the light sensor unit [4]. This
meta information in the data gathered from processes is rarely
used, and it is mainly related to non-stochastic noise.

In our opinion, learning models using the meta information in
the data will result in more robust models and better control
design. Hybrid Intelligent methods [5,6] will be used to cope with
this kind of problems. This study shows the presence of such meta
information and presents a novel method for learning with this
kind of data. The method has been developed for learning
equation-based models (hereinafter EB models) but can be easily
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extended to different models, including neural networks. To
evolve the models, two different evolutionary learning strategies
have been used: the well-known NSGA-II genetic algorithm [7]
and the Multi-Objective simulated annealing hybridized with
genetic operators [8] (hereinafter MOSA).

The remainder of this manuscript is as follows. Firstly, the
problem description and the uncertainties in real-world problems
such as the simulation of lighting control systems are presented.
A review of the literature concerned with learning models with
low quality data (hereinafter LQD) is then shown. In Section 4 the
novel method is described. Section 5 deals with the experimenta-
tion and results obtained with the proposal. Finally, some con-
clusions and future work are outlined.
2. Low quality data in real-world processes

The aim of lighting control systems is to control the electrical
power consumption of the ballasts in the installation so that the
luminance complies with the regulations [9]. In these systems,
the luminance is measured through light sensors and variables
such as the presence of inhabitants are analyzed, as well. How-
ever, the relevance of the former is higher as it is used as the
feedback in the lighting control loop.

Nevertheless, the output of such sensors is highly dependent
on a number of factors: the amount of sunlight, the fact that
measurements vary from one sensor to another or that the
repeatability could be compromised, among others. The values
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Fig. 1. On the left panel, the lighting system to simulate is shown. Different places for the light sensor could be proposed; the light measured will differ from one case to

another. On the right panel, the results obtained in a previous study are depicted and the normalized output of the different light sensors is drawn. The up/down cycle was

repeated twice for each one, so the dashed lines correspond to the second run. Ten samples were considered for each step. No transient was considered, the sample rate

was 1 sample/second.
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gathered from this kind of source are denoted as LQD, that is, data
with low degree of accuracy. Consequently, the output of the
sensors is usually filtered and then used as the feedback of the
control loop, but always as a crisp value.

Lighting system simulations to set and tune PID controllers for
lighting control systems use models to estimate the response of the
light sensors. These simulations, which have been widely studied
[2], need to simulate the light sensors in a room when a certain
amount of electrical power is applied for lighting. In the studied
literature, when obtaining models for simulation, only crisp values
are regarded as the measurements obtained from light sensors.
Obviously, the inputs and outputs of the light sensor models
obtained are also crisp variables. In the study presented in [4],
the behavior of the light sensors measurements were analyzed (see
Fig. 1). This experiment analyzed the step response of the light
sensor unit in a room with a light controller. Up to four power
levels were applied and the measurements obtained from the light
sensor units were registered. For this experiment, the available
blind was closed, the step response was recorded twice for each
unit, and up to five different sensor units were used. As can be
seen, the measurements obtained are highly dependent on the
sensor itself, but also the hysteresis behavior and the lack of
repeatability can be perceived. A controller designed without
considering these issues will fail in reaching the fixed set point
and, as a result, it will also fail in minimizing the electrical energy
consumption when the sensor differs from the assumed mean
behavior. Therefore, light controllers cannot be optimum if they are
obtained from crisp sensors which are affected with uncertainty. In
general cases, controllers must be valid for any available light
sensor unit, regardless of their behavior. Consequently, the simula-
tion models of the sensors need to be learned considering the
meta-information within the data. It is expected that the energy
efficiency in lighting control systems can be improved if LQD is
analyzed. More specifically, the methodology from classical control
theory proposed by different authors (e.g. [2]) should make use of
the meta-information aware models for designing the controllers.
3. Algorithms managing low quality data

The need for algorithms capable of facing LQD is a well-known
fact in the literature. As analyzed in [10], several studies have
presented the decrease in the performance of crisp algorithms as
uncertainty in data increases.
On the other hand, [11] analyzes the complex nature of the
data sets in order to choose the best Fuzzy Rule Based System.
Several measures are proposed to deal with the complexity of the
data sets and the Ishibuchi fuzzy hybrid genetic machine learning
method is used to test the validity of these measures. This
research also concludes that there is a need to extend the
proposed measures to deal with LQD.

By LQD, we refer to the data sampled in the presence of non-
stochastic noise or obtained from imprecise sensors. It is worth
noting that the main part of the information acquired with
sensors and industrial instrumentation can be regarded as LQD.
In our opinion, one of the most successful researches in soft
computing dealing with LQD is detailed in [12]. These studies
show the mathematical basis for learning uncertainty aware
genetic fuzzy systems – both classifiers and models. The LQD is
assumed as fuzzy data, where each a-cut represents an interval
value for each data.

Finally, it is worth pointing out that the fitness functions to
train classifiers and models with LQD are also fuzzy valued
functions. Hence the learning algorithms should be adapted to
such fitness functions [13]. The ideas and principles previously
shown have been used in several applications, with both realistic
and real-world data sets [14–16]. In the next section, some of these
ideas are used in learning EB white box models where imprecise
data, such as the data gathered from the light sensors, is available.
4. Learning models with low quality data

As stated in previous sections, data gathered from light sensors
is imprecise, behaves with hysteresis and lacks repeatability.
Obviously, we can represent this kind of data as non-crisp
granules of information (i.e., an interval or a probable radius,
etc.), but this approach would introduce higher computational
costs and complexity in the model learning process.

Conversely, we will assume that the data set used for learning
the models contains imprecise crisp values only. Besides, we will
consider the variables responsible for representing the uncer-
tainty inherent in the data. Let us assume that white box EB
models are to be learned from LQD; these models contain the
equation that relates the output variable with the input features
(see Fig. 2).

Genetic programming (GP) is typically used in problems where
the learning of equations is dealt with [17]. While GP evolves
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Fig. 2. The representation of an EB model. The tree on the left corresponds with

y¼ 0:5nx1þx0=x1. Each model contains a tree of nodes for storing the structure of

the equation and a vector of numerical constants. On the right, the evaluation of a

crisp variable and of an imprecise variable is depicted. When evaluating a crisp

variable, the corresponding value from the data set is returned. When evaluating

an imprecise variable, a parameterized fuzzy number is returned.

J.R. Villar et al. / Neurocomputing 75 (2012) 219–225 221
equations that are self-contained (that is, the equation contains
the values of the constants that eventually appear in the for-
mulae) these are usually avoided to reduce the diversity and the
time consumption in finding good solutions. Instead of including
the constants in the equation, GP is generally hybridized with
genetic algorithm (GA): the GP learning for evolving the structure
of a model and the GA for evolving its numeric constants [8]. In
the latter case, when a constant is to be used in an equation, the
node that represents the constant links to a valid position in the
vector of constants of the individual.

Learning EB models with LQD using GP hybridized with GA
(hereinafter, GAP) has been barely studied [18,19]. Obviously, if
we want the vagueness in this meta-information in the data to be
learned then EB models should be extended with a representation
of the uncertainty while the evolutionary algorithm should
manage to learn the uncertainty from the available LQD.

This study proposes a solution to learn uncertainty aware EB
models with LQD. The following subsections present the descrip-
tion of a solution. Firstly, the representation of the uncertainty is
detailed and, secondly, how the way the uncertainty management
influences the learning algorithm is shown. Section 4.2 describes
the EB individuals, while Section 4.3 explains the fitness function
calculation. The genetic operators used to evolve the EB models
are detailed in Section 4.4. Finally, Sections 4.5 and 4.6 outline the
proposed learning algorithms: the multi-objective simulated
annealing algorithm and the NSGA-II, respectively.

4.1. Representation of vagueness in a GP model

As far as we are learning white box models, we can represent
information related with vagueness in the models. According to
[12], LQD can be represented with fuzzy numbers. Let us assume
we have a priori knowledge of the features of the data set that are
considered imprecise. Then, we can assign constants to each
imprecise variable to bind its vagueness, as presented in Fig. 2.

For each imprecise variable we assign two constants C� and
Cþ , which are to be evolved in the learning process. These
constants represent the limits of a triangular membership func-
tion for a a-cut¼ 1 which is associated with each imprecise
variable. On the left panel of Fig. 2 an imprecise variable is
presented with C� ¼ 0:01 and Cþ ¼ 0:01, both at the beginning of
the constants vector.

Let us suppose that X1 is the imprecise variable and that we
are to evaluate the model depicted in the mentioned figure. If the
training data set is the set fdj

ig, with i¼ f0, . . . ,ðD�1Þg for each
input variable (where D stands for the dimension of the input
space, D¼2 in the example in Fig. 2), and j¼ f1, . . . ,Ng (with N the
number of examples in the data set) then, whenever X1 is
evaluated for the example j, a fuzzy number with a triangular
fuzzy membership defined through the three following values
½dj

1�C�,dj
1,dj

1þCþ � is returned.
It is interesting to mention that if symmetrical membership

functions are adopted, then only one constant per imprecise
variable is needed. Consequently, for each imprecise variable in
the feature space, one or two constants are reserved and positioned
as the former constants in the constants vector. Obviously, vague-
ness can be extended also to the numerical constants of the models
although for this study only uncertainty in variables is analyzed.

If imprecise variables are defined a priori and the above
detailed representation is used, the evaluation of the nodes in
the tree will produce fuzzy numbers, and the output of the model
should be calculated using both fuzzy numbers and crisp data. As
in classical fuzzy literature, crisp values are extended to fuzzy
singletons, so only operations with fuzzy numbers are required. In
order to reduce the computational cost, the solution presented in
[16] is used, and evaluations are calculated only for certain
predefined a-cuts.

As a result, we are to learn EB models using LQD, and the
representation of vagueness detailed in this section applies to
this. Besides, two major consequences in learning EB models
arise. Firstly, the representation of uncertainty is based on the
introduction of constants in the constant vector. Thus the number
of constants is greater, and greater is the time needed for the
convergence of the algorithm. Secondly, as it is explained in the
following subsections, the evaluation function of models with
imprecise variables is not crisp but fuzzy; therefore, fuzzy opera-
tions are to be used instead of classical operations. Both con-
sequences highly increase the computational costs and time
needed to converge. In order to reduce the computational costs
of calculating with fuzzy numbers simulated annealing is pro-
posed as the evolutionary strategy [8].

4.2. Representation of an individual

An individual in this study is compounded of the equation
representation, the constants vector and the specification of the
uncertainty. Readers must recall the assumption that there is a
priori knowledge of which variables behave with uncertainty. The
specification of uncertainty is provided with, firstly, the number of
constants used to represent the uncertainty and, secondly, with the
specification of the imprecise variables that must deal with LQD.

The number of constants to represent the uncertainty in each
variable could be 0 if no imprecise variable is assumed, 1 if
symmetrical triangular membership functions are used or 2 if
asymmetrical triangular membership functions are assumed. The
specification of which variables behave with uncertainty is a
parameter that contains the list of the indexes of the imprecise
input variables. If at least one input variable is to deal with LQD,
then the output of the models is fuzzy, as well. Obviously, once
this parameter is given, the number of imprecise variables is
known. The uncertainty specification remains unchanged during
an experiment and it is the same for all the individuals.

As in GAP models, the equation representation consists of a
nodes tree, each internal node corresponds with a valid operator,
and the leaf nodes correspond with a variable index or a constant
index. The number of constants is predefined, so the constant
vector in all individuals has the same size, although the constants
may not be used in one individual, readers can just imagine the
equation output¼X1. The first group of constants in the constant
vector is assigned to the uncertainty management; in other
words, let n be the number of imprecise variables and nc the
number of constants to represent the uncertainty, then the first
nnnc constants are reserved for uncertainty management and the
remainder are free to be indexed in the equations. The position of
the uncertainty constants in the vector is related with the
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position of the corresponding variable in the data set. Fig. 3 shows
the representation of an individual.

Although better approaches have been described in the litera-
ture, for the sake of simplicity, individuals are generated ran-
domly. Finally, an upper bound to limit the span of the
uncertainty constants is predefined as a percentage of the range
of values of the variable in the data set. The uncertainty values are
randomly fixed within the bound limit.

4.3. The fitness function

Evaluating a variable when LQD is given generates a fuzzy
number. Subsequent nodes, that is, operator nodes in the tree of
nodes representing the equation, need to operate with both crisp
and fuzzy numbers. Crisp values are converted to fuzzy singleton
numbers. Therefore, the output of an individual when an example
from the data set is given is a fuzzy number. As stated in [13],
extended measures of the error should be used in order to
evaluate the effectiveness of a model and to avoid the use of
multi-objective algorithm in single objective problems. In this
study, once again for the sake of simplicity, we propose the
evaluation of the models for a given a-cut [16]. Therefore, the
output of a model is an interval and we calculate the mean square
error (MSE) using Eq. (1) with interval arithmetic and bounding
the MSE to positive values. Further studies should consider the
use of more elaborated MSE measures:

MSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðx�x̂Þ2

q

sqrtn
ð1Þ

The MSE measure given by (1) when dealing LQD generates
interval values, thus only the individuals with null intersection
would be ordered. To cope with individuals with similar MSE we
propose the use of the non-specificity of the error as a second
fitness function, the lower the non-specificity the better the
model. Finally, we proposed the use of a third fitness function
measuring the number of desired values covered by the fuzzy
output [16], the higher the number of desired values covered by
the model, the better it is.

4.4. Genetic operators

Evolving EB individuals involves using four genetic operators:
two from GP evolution (the GP crossover and mutation) and two
from GA (GA crossover and mutation). The GP operators introduce
variability in the structure of the model, that is, the equation
itself. The GA operators modify the vector of constants. In all the
cases, there is a predefined probability of carrying out each of
these genetic operations.

The GP operators are involved in searching the structural space
by interchanging nodes in the tree. The crossover is defined as
follows: two parents are chosen to be crossed using binary
tournament; then, for each one an index is randomly generated
(the index is in the range from 1 to the number of nodes in the
tree); finally, the nodes at the index positions are interchanged.
The GP crossover, as usually implemented in GAP, does not
interchange the equation constants. It must be remembered that
a constant used in an equation is only referred to by its position in
the constants vector, so the index, not the constant, is inter-
changed. As a result, the GP crossover generates two new
individuals for which the validity should be checked.

The GP mutation operator makes use of the following semantic
grammar to mutate an operator, provided that mutation only varies
from one operator type to another operator type of the same arity. A
node indexing an equation constant mutates varying its index
among the valid indexes for equation constants in the constants
vector of the individual. Finally, a node indexing a variable mutates
varying its index among the valid indexes of the variables:

EXP/MonoOperand 9 BiOperand 9 Constant 9 Variable

MonoOperand /ðsin EXPÞ9ðcos EXPÞ9ðdelay EXPÞ

BiOperand /ðþEXP EXPÞ 9ð�EXP EXPÞ 9 ðnEXP EXPÞ

9ð=EXP EXPÞ 9ðmin EXP EXPÞ 9ðmax EXP EXPÞ

The GA crossover is a classical two point crossover (the constants
vector is then divided in three parts: the initial, the central and the
ending parts) that interchanges the constants vector of both
individuals. The first offspring contains a constants vector including
the first and the ending parts of the first parent and the central part
of the second parent and vice versa for the second offspring: its
constants vector includes the first and the ending parts of the
second parent and the central part of the first one.

On the other hand, for each constant in the constants vector of
an individual, the GA mutation operator evaluates whether to
mutate or not, according to a predefined probability, and if so the
constant is assigned with a random value in the also predefined
range of the constant values.

4.5. Simulated annealing and the multi-objective approach

Simulated annealing is an optimization technique with a very
small computational cost. It has been shown as a good meta-
heuristic technique to evolve the model learning when multi-
objective problems arise [8,16,20]. In this study, the MOSA
presented in [8] is used as the evolutionary strategy. The algo-
rithm makes use of Pareto dominance operators to establish the
partial order relations. The only variation is that in each run, that
is, in each generation, the type of operation to carry out is chosen.
So in each run only GP or GA operations can take place, but never
both in the same run. The distance measure between individuals
is the edition distance [17,19] normalized with the sum of the
number of nodes of the two compared trees.

4.6. NSGA-II adaptation to LQD learning

The non-dominated sorting genetic algorithm [7] is a well-
known multi-objective genetic algorithm that has been widely
used, i.e., in [16]. This algorithm sorts the population in different
surfaces according to the Pareto dominance operator, but also



J.R. Villar et al. / Neurocomputing 75 (2012) 219–225 223
using the so-called crowding distance. This latter measure reflects
the density of the population in each individual. As this measure
is detailed for crisp data, this study should use a natural extension
to learn the EB models with LQD. This simple extension makes use
of the interval arithmetic, sorts the population using the interval
relations of order and binds each of the accumulative operations
greater than 0.
Table 1
Formulas for the data sets generation.

f1 ¼ x1þx0nðx2�0:5Þ t ¼ f1, . . . ,100g

f2 ¼ 2nx1nx2 x0 ¼ absðcosðtÞÞ

f3 ¼ cosðx0Þnðx2�x1Þ x1 ¼ absðsinðtÞÞ

f4 ¼ 2nx2ndelayðf4Þ x2 ¼ absðcosðtÞnsinðtÞÞ

f5 ¼ cosðx0Þnðdelayðf5Þnðx2þx1ÞÞþ0:1 x3¼ random in the range [0, 1]

m1P n1P m1I n1I m2P n2P m2I n2I m3P n3P
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Fig. 4. Boxplot of the central points of the MSE for the best individuals considering on

number for the data set identification and a final letter to state whether the precise (P

Table 2
Experimentation results mean values. MSE value of the mean central point of the MSE fu

and the closest to the origin individual in the populations, considering the 10 runs of ea

to MOSA and NSGA-II; capital letters P and I refer to whether the model use precise v

Precise data set

Problem M-P M-I N-P

f1 MSE 0.1156 0.1941 0.2101

Closest 0.1 1.5 0.2

f2 MSE 0.0042 0.0519 0.1319

Closest 0.2 0.4 0.1

f3 MSE 0.0008 0.0057 0.0852

Closest 0.0 0.7 0.2

f4 MSE 0.4718 0.6301 0.6744

Closest 1.4 3.9 1.8

f5 MSE 0.0476 0.0747 0.0751

Closest 0.1 2.6 0.1
5. Experiments and results

To test our proposal five different synthetic problems are
proposed. The formulas for generating the data sets are presented
in Table 1. The input variables {x0,y,x3} evolve with the time. The
formulates {f1,f2,f3} are intended to deal with regression problems,
while {f4, f5} represent time series problems. For each problem
two data sets of 100 examples each are generated: the precise and
the imprecise data sets. The former is obtained directly from the
equations, while the latter is obtained by adding a random value
in the range ½�1%SPAN, 2n1%SPAN�, where 1%SPAN is the 1% of
span of the corresponding variable. Specifically, variable x1 is
imprecise for the three regression problems, while x2 is imprecise
for the time series problem. Both MOSA and NSGA-II are analyzed
with the two families of data sets (the precise and the imprecise
data sets). The two opposite cases are compared when learning EB
m3I n3I m4P n4P m4I n4I m5P n5P m5I n5I

ly the MSE function. Each box is identified using m for MOSA or n for NSGA-II, a

) or the imprecise (I) data set is used.

nction for the individuals of lowest MSE value individual in the populations (MSE)

ch experiment. All values should be multiplied by 10�3. Capital letters M or N refer

ariables (P) or imprecise variables (I).

Imprecise data set

N-I M-P M-I N-P N-I

0.2142 0.1421 0.2468 0.2333 0.2358

0.4 0.1 0.9 0.2 0.5

0.0091 0.0086 0.0387 0.1269 0.0972

0.0 0.0 0.7 0.1 0.2

0.0038 0.0035 0.0064 0.1004 0.1014

0.0 0.0 1.6 0.1 0.5

0.5061 0.5188 0.6599 0.6584 0.4996

2.0 1.2 2.8 1.3 2.9

0.0639 0.0622 0.0747 0.0737 0.0768

0.5 0.1 3.2 0.1 1.0
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models without imprecise variables and considering all the input
variables as imprecise. Consequently, for each problem eight
different experiments have been designed and 10 runs of each
experiment have been carried out for statistics purposes. In all the
runs, the number of model evaluations have been fixed to 50 000
and kept the same for all the experiments.

The experiments use an a-cut 0.95, a population size of 50
individuals, 10 000 iterations for the NSGA-II (and a much bigger
number of iterations for the MOSA). The mutation probabilities are
0.25 while crossovers are always carried out. The maximum number
of nodes is set to 10, while the maximum depth is 5. Only one
constant per imprecise variable is used, and the number of constants
is set to 7. The maximum bias of imprecise variables is set to 0.01%.
MOSA uses D¼ 0:1, T0¼1 and T1¼0. Results are shown in Table 2
and in the boxplot of Fig. 4. In the former, the eight different
possibilities are compared for the best individual error found and
for the individual closest to the origin. As seen, the use of the
uncertainty representation does not punish the learning of the
models, and the error measure keeps similar to that of the experi-
ments without it. Although some differences have been found, both
the MOSA and the NSGA-II are valid to learn the models. Finally, the
difference between the results from the precise experiments and
those with uncertainty in data and in models are not relevant. Thus,
the uncertainty representation does not penalize the model learning.
6. Conclusions

This study proposes learning EB models to deal with LQD. The
EB models include a representation of the uncertainty and evalu-
ating a model generates a fuzzy value. The learning of models is
defined as a multi-objective problem using Fuzzy fitness functions
and two evolutionary learning strategies are proposed. The propo-
sal has been analyzed with synthetic problems. The results show
that the uncertainty representation in the EB models learned with
the two evolutionary heuristic techniques keeps the same perfor-
mance index even though LQD is given, although NSGA-II performs
with a higher dispersion in the fitness space. Learning EB models
with the representation of the uncertainty seems to be valid for
modeling real-world LQD sensors. Thus these models could be
used in obtaining more robust controllers. Finally, the mentioned
extended error measures should be implemented to avoid the use
of multi-objective algorithm in single objective problems.
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