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Abstract. The detection of thermal insulation failures in buildings in operation 
responds to the challenge of improving building energy efficiency. This 
multidisciplinary study presents a novel four-step soft computing knowledge 
identification model called IKBIS to perform thermal insulation failure detection. It 
proposes the use of Exploratory Projection Pursuit methods to study the relation 
between input and output variables and data dimensionality reduction. It also applies 
system identification theory and neural networks for modeling the thermal dynamics 
of the building. Finally, the novel model is used to predict dynamic thermal biases, 
and two real cases of study as part of its empirical validation. 

1. Introduction 

Predicting the thermal dynamics of a building is a complex task. The 

dynamic thermal performance of a building has mainly been used to 

estimate its power requirements. As an example, the difficulties in 

obtaining a black-box model for a generic building are documented 

[72, 20]. Assessing thermal insulation is a well-known problem that has 
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not as yet been fully resolved [31, 80]. Several different techniques are 

proposed in the literature. In [33], thermal insulation leaks are found by 

measuring thermal resistance and infrared (IR) thermography, while in 

[12, 59] only IR thermography is used to locate thermal insulation 

failures. As the main drawback of using IR thermography is the high 

cost of equipment, it is interesting to analyze alternatives using 

different technologies. 

Local regulations generally stipulate how thermal insulation should 

be calculated in new buildings. In the case of Spain, building and 

heating system regulations are adapted to five winter climate zones and 

five summer climate zones across the entire country. Building 

materials, insulation thickness, materials, and so on, are calculated 

according to each climate zone.  

In this research, a novel four-step methodology is presented, which 

aims to generate a model for estimating the behaviour of indoor 

temperature in a building of a specific configuration. This methodology 

is called IKBIS, which stands for Intelligent Knowledge-Based 

Identification System. Firstly, the dynamic thermal behaviour of a 

specific configuration is obatined. Then, a post-processing step should 

be carried out to obtain suitable datasets. In this methodology, the 

dataset should be analysed using several statistical methods, 
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Exploratory Projection Pursuit (EPP) [24], Principal Component 

Analysis (PCA) [56, 38, 77, 76, 27, 78], Maximum Likehood Hebian 

Learning [16, 26] and Cooperative Maximum-Likelihood Hebbian 

Learning (CMLHL) [17]. This analysis extracts the main relationships 

between the variables. A model is then generated to estimate the indoor 

temperature at a specific configuration; this step is based on the 

application of system identification theory [39, 11, 40]. Finally, the 

thermal insulation failure is identified when the temperature error, 

measured as the difference between the indoor temperature and the 

model output temperature, rises above a pre-set threshold. 

The remainder of this paper is organized as follows. The following 

Sub-Section 1.1 details the problem description. Section 2 introduces 

unsupervised connectionist techniques for analysing the datasets in 

order to extract their relevant internal structures. Section 3 presents the 

knowledge-based approach for system identification. Section 4 

describes the multi-step procedure. In Section 5, the experiments and 

results are presented and commented on. Finally, the conclusions are 

set out and comments are made on future lines of research.  
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1.1. Spanish Regulations and the Problem Description 

In 2007, several regulations on buildings and construction were 

approved in Spain dealing with energy efficiency [2], project 

development and specifications [6, 5, 3], the energy consumption 

limitation in buildings [6, 1], heating systems in buildings is the RITE 

(Reglamento de las Instalaciones Térmicas en los Edificios) [4], and 

certifying energy efficiency in new buildings is detailed in [7].  

As established in [7], the energy efficiency of a new building that is 

being designed should be calculated using the CALENER software 

package [8]. The energy efficiency in the case of buildings in operation 

(during the lifetime of the building) is still an open issue, and the 

assumption is that it will be based on heat flux and conductivity 

measurement. Such a procedure would have to comply with the 

aforementioned Spanish Regulations by considering the different 

climate zones, the different building materials, etc..  

2. Soft Computing for Feature Selection 

Soft computing is [43, 57, 10, 45] a set of various technologies which 

are used to solve inexact and complex problems [82]. It investigates, 

simulates, and analyzes complex issues and phenomena in an attempt 
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to solve real-world problems [73].  

Feature Selection and extraction [30, 46] involve feature 

construction, space dimensionality reduction, and sparse 

representations among others. These are all commonly used pre-

processing tools in soft computing that undertake pattern recognition. 

Our approach to feature selection is based on the dimensionality 

reduction issue. Initially, we apply the following three projection 

methods: PCA [56, 38], MLHL [16, 26] and CMLHL [17]. They are 

applied again in a second step to analyse the internal structure of a data 

set that is representative of a case of study. If after applying these 

models a clear internal structure may be identified, it means that the 

data are sufficiently informative. Otherwise, further data must be 

collected again. In a third step, these models are used to perform space 

dimensionality reduction in order to identify interesting dimensions or 

projections. 

2.1. Data structure analysis using connectionist techniques 

Principal Component Analysis (PCA) [56, 38] is a statistical method 

which aims to find the orthogonal basis which maximizes the 

projection variance of the data for a given basis dimensionality. It may 

be used as a dimension reduction technique which preserves as much 
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information as possible in the remaining dimensions. If we consider 

only the largest eigenvalues corresponding to the principal components, 

we can also find those components that contain most information, 

which may provide insight into the structure of the data.  

Exploratory Projection Pursuit (EPP) [24, 16] is a recent statistical 

method which centres on solving the difficult problem of how to 

identify structure in complex high dimensional data. There is an index 

that measures the “interestingness” of a given projection, and which 

then represents the data in terms of projections that maximise that 

index.  

Maximum-Likelihood Hebbian Learning (MLHL) [16, 26] is an 

implementation of EPP. The MLHL-based method has been widely 

used in the field of pattern recognition [16, 26, 17, 18] as an extension 

of PCA. It identifies interestingness [24, 16, 26] by maximising the 

probability of the residuals using specific probability density functions 

that are non-Gaussian, which analyse the fourth-order statistic or the 

kurtosis. Cooperative Maximum-Likelihood Hebbian Learning model 

(CMLHL) [17] is based on MLHL [16, 26] but adds lateral connections 

[17, 18] which have been derived from the Rectified Gaussian 

Distribution [66]. Let consider an N-dimensional input vector (

! 

x), and 

an M-dimensional output vector (

! 

y), with 

! 

Wij  being the weight 
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(linking input j to output i). CMLHL is computed by using four 

equations: where Eq. (1) corresponds to the feed-forward step, Eq. (2) 

with the lateral activation passing, Eq. (3) represents the feedback step 

and Eq. (4) is the rule for updating the weights. In these equations, 

! 

"  is 

the "strength" of the lateral connections, 

! 

" is the learning rate, b the 

bias parameter, p is a parameter in order to choose a function to 

maximise the likelihood of the residuals under particular models of 

probability density functions and 

! 

A  is a symmetric matrix used to 

modify the response to the data according to the distances between the 

output neurons. Finally, []+  is necessary to ensure that the y-values 

remain within the positive quadrant. 
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3. System Identification  

System identification is concerned with obtaining a model that best 

suits a certain process behaviour (see Figure  1) [47]. Firstly, several 

are sampled from the process. The data is then analysed to obtain a 

model that estimates the desired process behaviour. The model is then 

used to optimize the process output. Finally, the process is modified to 

enhance its outcome. If more adjustments are needed the cycle is 

repeated.  

The system identification procedure includes the experimental 

design, data visualisation and analysis, and the learning, testing, and 

validation of the model [47, 70, 65, 79, 52, 60].  

When the data set is prepared, several tasks should be carried out: 

eliminating missing data and outliers [28, 29, 14, 21] scaling and 

normalizing the data [67], etc.  

Selection of the model structure, its training and validation 

represents the core of the system identification. According to [47], 

several measures have been proposed in the literature to evaluate the 

goodness of a model, i.e., the one-step ahead prediction error (FIT1), 

the ten-step ahead prediction error (FIT10), or the simulation error, 

(FIT), the loss or the error function (V), the generalization error value 
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(the numeric value of the normalized sum of squared errors, NSSE), or 

the final prediction error (FPE) among others. 

Choosing the most suitable model structure requires a degree of 

expertise. Model structures range from classical black-box models –

such as FIR (finite impuse response), OE (output error), autoregressive 

models ((ARMA, ARX, ARMAX, ARARX, ARARMAX, etc.) and the 

BJ (box-Jenkins) models- to fuzzy systems [81], neural networks [22] 

and support vector regressions [25], including the N4SID (numerical 

algorithm for subspace state space) [55], the MOESP (multivariable 

output error state-space model) [71], the Laguerre models [75], the 

nonlinear models from the Volterra series [42], the NARMAX model 

[15], and ANN models with a set of regressors NARX, NOE, 

NARMAX, NFIR, NSSIF [54, 64, 58]. 

The Artificial Neural Networks (ANN) are well-known universal 

approximators or predictors [19, 37]. A Multilayer Perceptron (MLP) 

network [69] with two layers is shown in Figure  2. Several well-

known model structures are used when merging system identification 

with ANN. If the ARX model is used as the regression vector θ, the 

model structure is called NNARX (neural network for ARX model). 

Likewise, NNFIR, NNARMAX and NNOE structures, are also 

extensively used [54]. 
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4. IKBIS: an intelligent knowledge-based identification method for 

detecting thermal insulation failures in buildings 

IKBIS is a hybrid approach based on a knowledge-based tool applying 

system identification and Exploratory Pursuit methods. Its purpose is to 

detect thermal insulation failures in buildings in operation, that is, in a 

certain moment during the lifetime of the building. 

IKBIS is presented in Figure  3. Firstly, the thermal evolution of the 

building should be obtained by means of simulation. Then the data is 

processed, the relevant relationships shall be found inducind a feature 

selection step. With the dimensional reduced data set the models for the 

temperature evolution in each space are generated. Finally, 

mesaurements of the selected features are carried out, the models 

estimate the temperatures in the spaces which are to be compared with 

the real temperature. Insulation failures are proposed when the bias are 

higher that expected. A description of each step is in the following 

subsections. 

4.1. Experiment design  

The required output of this first step is the thermal dynamics of the 

building, which should be recorded in the building under operating 

conditions. For this reason, the experiments should consider the 
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specific building regulations, and the real metereological historical data 

on the climate zone in which the building is based. 

A network of sensors would be necessary to measure and to gather 

data from a building in operation [13]. Nevertheles, it is not always 

feasible to install a sensor network, but also it is anoreous and no 

advantages are obtained with respect to IR thermography. 

Alternatively, simulation software allows  to obtain realistic data from 

modelled buildings [44]. Realistic simulations should consider the 

different profiles, i.e. the occupancy and the lighting profiles, as close 

as possible to the currently used in the building. Also, the model should 

use exactly the same building materials and dimensions, the geometry, 

etc. Finally, the simulation should accomplish with the country specific 

building regulations, establishing the suitable climate zone, the same 

building topology, the use of historical metereological data for the 

same season and period of the year, etc.   

The simulation sofware tool should accept all of this parameters and 

manage them so the calculations would be realistic. Also, the output 

data set should include information about heat flux, sun radiation, the 

state of the heating system and the indoor temperature for all the 

spaces. In this method we propose the use of HTB2 [44] as it 

accomplishes with all the requirements. 
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From the point of view of IKBIS, the process is represented by a 

data set in which each column contains values of a certain variable 

[48]. 

4.2. Data pre-processing and analysing 

The data set gathered in the previous step includes information on a set 

of variables for each space in the building; consequently, data set 

dimensionality should be reduced. IKBIS completely defines the data 

pre-processing and analysing step as shown in Figure  4.; although it is 

not completely automated yet. Firstly, Data Transformation is carried 

out to generate a valid data set –elimination of missing data, etc. Then, 

dimensionality reduction is performed in the data analysis step. Finally, 

Data partitioning is considered in the case of a data set with a reduced 

number of examples. For sake of brevity, the different techniques that 

can be used are not enumerated in this research.  

IKBIS performs the data analysis using Exploratory Pursuit 

methods, which are described as follows. Firstly, the internal structure 

analysis is conducted, after which  a feature selection stage is 

performed. 
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4.2.1. Internal structure analysis 

EPP models are applied to visualize the internal structure of a data set 

(Figure 5) helping to identify any clear structure or patterns, which are 

the sign of a robust data gathering process. Otherwise, the experiment 

to collect a representative data set should be performed again. 

4.2.2. Feature selection 

Once a satisfactory internal data set structure is identified, the 

underlying features are selected (Figure 5) by using a EPP model to 

perform dimensionality reduction. 

4.3. The system identification module 

This IKBIS step establishes the best model structure, its parameters and 

delays. It was implemented in Matlab and made use of several 

toolboxes: the System Identification Toolbox [48], the Neural network-

based System Identification Toolbox [53], and the Control System 

Toolbox [50].  

Thus, IKBIS performs as follows. Firstly, the user establishes the 

required criteria. Then, the IKBIS estimates the model structure and the 

learning method, although the user can also choose both manually. 
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Using the above mentioned toolboxes, a total of 76 methods are used, 

which include the following techniques: 

• the frequency response analysis based on spectrum analysis 

and the Fourier Fast Transform (FFT), 

• correlation analysis, finite impulse response method (FIR),  

• the estate space analysis, with 6 different models and 

parameters, such as the N4SID algorithm by Van Overschee 

and de Moor, CVA algorithm by Larimore or the MOESP 

algorithm by Verhaegen, 

• the black-box model analysis, with 31 different models and 

parameters, such as the least squares method, (QR 

factorization) ARX, or the recursive normalized gradient 

algorithm RARMAX,  

• the ANN models, with 31 different models and training 

methods [23, 32, 34, 36], 

• the residual analysis based on cross correlation between the 

residual ( )!"

N
R
)

, between the residual and the input ( )!"

N

u
R
)

, 

and the non-linear residual correlation ( )!
"

N

u
R 22

)
. 

Then, the IKBIS generates a search of the structural parameters of 

the model using the chosen criteria to analyse all possible model 
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structures. IKBIS proceeds with the validation of the models and the 

most satisfactory models are visualised and their criteria values are 

shown. The user can choose from among them the most appropriate 

system model for the input data set. 

4.4. Detection of thermal insulation failures 

Once the model has been obtained, then it is used as a reference model 

to compare with the measurements sampled in the building in normal 

operation conditions. If building performance is similar to the reference 

model output then its thermal insulation is satisfactory; otherwise, a 

failure in the thermal insulation will have been detected. A soft 

computing model should be developed to automatically detect the 

insulations failure detection. Developing this model requires real 

experiments to validate the approach, and is now in research.  

4.5. Discussion on knowledge-based identification and KB maintenance 

The IKBIS is a KBS that searches in the model space trying to find the 

model that is best suited to a given problem. As stated by [61, 49, 51], 

data mining techniques can improve the performance of KBS, while 

also helping to manage the knowledge base.  
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The main problem in these approaches is the generation of 

comprehensive and exhaustive data sets to learn the classifiers. The 

classifiers represents the knowledge base, such that if a new problem 

needs to be solved, the classifiers assist in reducing the search space. 

This is the step where the advantages of the IKBIS become fully 

apparent, as it will incoporate typical signal processing measurements -

mutual information, information gain, largest Lyapunov exponent, etc.  

Moreover, IKBIS may also generate information on each of the 

models in the search process. This information, can then be used for 

training classifiers that would be incorporated in the knowledge base of 

a second release. Heuristics such as Case-Based Reasoning [9, 41, 74, 

68], or Genetic Fuzzy rule Systems [35, 63, 62], appear to be valid for 

this purpose.  

Finally, IKBIS has no graphic human machine interface (HMI) but 

is based on a sequence of line commands. This is due to the fact that 

IKBIS is at an early stage of development, and it is better to continue 

developing more reliable knowledge bases following the above 

mentioned ideas than to design an HMI that would probably have to be 

re-designed in the short term as the knowledge base evolves. The right 

time to design an HMI will be when the knowledge base is stabilized. 
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5. Cases of study and results 

In this work, the method is applied in Spain. As seen in Sub-Section 

1.1, Spanish building regulations establish several winter/summer 

zones, from E1 (more severe climate zones) to A3 (gentler climate 

zone). The typical values that each variable could take for a C winter 

climate zone of maximum severity in Spain -i.e. the cities of Bilbao, 

San Sebastian, and La Coruña, among others- are shown in Table  1 

and are the following six variables: air temperature of the house, 

exterior air temperature, heater gain, small power and occupancy gain, 

lighting gain and ventilation gain. 

Two case studies have been analysed in this research to illustrate the 

IKBIS procedures. Both correspond to Spanish cities in different 

climatic zones as defined by Spanish regulations. The first case of 

study is the city of Santander (in the north coast of Spain). The second 

case of study is the city of Avila, in central Spain, which experiences 

some of the lowest temperatures on the Meseta. Both cases were 

analysed in February over a simulation period of ten days. Real 

metereological data was used and the materials were arranged 

according to the Spanish regulations. Realistic profiles for occupancy, 

lighting and the operation of small power devices operation were 
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employed. The HTB2 output dataset includes 14,400 features -the 

indoor temperature, the instantaneous heating power, the lightning 

power, and so on. 

5.1. Results 

5.1.1. Case of study: the city of Santander  

The IKBIS procedure (see Figure  3) was applied to data gathered in 

the city of Santander. The HTB2 output data set was analysed in order 

to select the features that best describe the relationships with indoor 

temperature. PCA, MLHL and CMLHL were applied to analyse the 

data. The best results, which came from the application of CMLHL, are 

shown in Figure  5. It can be concluded that CMLHL identified two 

different clusters ordered by small power and occupancy. Inside each 

cluster there are further classifications by lighting and heater power 

output and the dataset may be said to have an interesting internal 

structure. The initial data set is then represented by these four variables. 

Finally, the system identification module is applied to find the most 

appropriate model. 

Table  2 shows the results obtained for different model structures. It 

may be seen that the NNARX is the most appropriate model for 

monitoring the thermal dynamics of the building. As the heating 
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process exhibits nonlinear behaviour between output and inputs, the 

linear modelling techniques do not behave properly except in the linear 

behaviour zones of the process. Consequently, ANN-based models are 

the most appropriate when using the IKBIS.  

Figure  6 and Figure  7 show the time responses of the indoor 

temperature - ( )ty
1

- and of the estimated indoor temperature - ( )mty |ˆ
1 - 

for the NNARX model. The former corresponds to the training data set, 

while the latter corresponds to the validation data set. The X-axis 

shows the number of samples used in the estimation and validation of 

the model and the Y-axis represents the normalized indoor temperature 

of the house. The training and the validation data sets include 388 and 

336 samples, respectively, and have a sampling rate of 1 

sample/minute.  

It can be concluded from Table  2 that the pruned network NNARX 

model is able to predict the behaviour of indoor temperature in the 

building. This model may not only be used to predict indoor 

temperature but can also determine the normal operating conditions of 

thermal insulation in buildings. 
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5.1.2. Case of study: the city of Avila 

The same features chosen for the first case of study and the same model 

structure are used for this second case of study, so the validity of the 

method can be tested. This means that the corresponding HTB2 

simulation was carried out and the same features used in the first case 

of study were chosen. Figure  8 and Figure  9 show the time responses 

of the indoor temperature - ( )ty
1

- and of the estimated indoor 

temperature - ( )mty |ˆ
1 - for the NNARX model. The former corresponds 

to the training data set, while the latter corresponds to the validation 

data set. The X-axis shows the number of samples used in the 

estimation and validation of the model and the Y-axis represents the 

normalized indoor temperature of the house. The training and the 

validation data sets include 2,000 and 1,126 samples, respectively, and 

have a sampling rate of 1 sample/minute.  

The performance of the pruned network NNARX model is shown in 

Table  3. As in the previous case of study, this model is able to simulate 

and predict the behaviour of the indoor temperature of the house and it 

can be used to predict the indoor temperature and to determine the 

normal operating conditions of thermal insulation in buildings. 
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6. Conclusions and Future Work 

Effective thermal insulation is an essential component of energy 

efficient heating systems in buildings. The more effective the insulation 

in the buildings, the lower the energy losses due to insulation failures. 

Thus, the possibility of improving the detection of thermal insulation 

failures represents a challenge in building energy management.  

IKBIS represents a novel method for detecting thermal insulation 

failures, although its validation in a preliminar phase. This procedure 

makes use of several different techniques, such as Exploratory Pursuit 

methods, and neural networks modelling, among others. 

Future work will cover finishing the validation of the method, but 

also modeling the heat flux crossing through the walls of the building –

a regulatory test in the evaluation of the energy efficiency in buildings 

in Spain-, and the development of an automatic thermal insulation 

failure detection system, which will improve overall performance. 

Finally, this method would also be applied in other countries. 
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Table  1 Typical values of each variable in a C winter climate zone city in Spain 

 

 

 

 

Variable (Units) Range of 

values 

Transmittance level (W/m2K) 

Air temperature of the house (ºC), y1(t). 17 to 24 

Exterior air temperature in February (ºC ), u1(t). 8 to 10 

Heater gain (W), u2(t). 0 to 4,250 

Small power and occupancy gain (W), u3(t). 0 to 1,200 

Lighting gain (W), u4(t). 0 to 500 

Ventilation gain (m3/min), u5(t). 0.5 to 7.5 

-External cavity wall: 0.68 

-Double glazing: 2.91 

-Floor/ceiling: 1.96 

-Party wall between buildings: 0.96 

-Others party wall: 1.050  

-Internal partition: 2.57 
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Table  2 Case of study: the city of Santander. The values of the quality indexes for the obtained models. 

Model Indexes 

Black-box ARX model with na=3, nb1=1, nb2=3, nb3=2, nb4=2, nb5=1, 

nk1=2, nk2=10, nk3=10, nk4=10, nk5=1, [3 1 3 2 2 1 2 10 10 10 1]. The 

model is estimated using the least squares method, QR factorization, the 

degree of the model selection is carried out with the best Akaike 

information criterion (AIC) -the structure that minimizes AIC-. 

FIT1:73.93% 

FIT10: 26.6% 

V: 0.15 

FPE:0.165 

NSSE:0.11 

Black-box ARMAX model with  na=3, nb1=1, nb2=3, nb3=2, nb4=2, 

nb5=1,  nC=3, nk1=2, nk2=10, nk3=10, nk4=10, nk5=1, [3 1 3 2 2 1 3 2 10 

10 10 1]. The model is estimated using the prediction error method, 

the choice of the model order is Realized from the best AIC criterion 

of the ARX model. 

 

FIT1:73.90% 

FIT10: 19.5% 

V: 0.163 

FPE:0.177 

NSSE:0.112 
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Table  2 (cont.) Case of study: the city of Santander. The values of the quality indexes for the obtained 

models. 

 

Model Indexes 

ANN model for the heating process, NNARX regressor, the order of the 

polynomials of the initial fully connected structure are  na=3, nb1=1, 

nb2=3, nb3=2, nb4=2, nb5=1, nk1=2, nk2=10, nk3=10, nk4=10, nk5=1, [3 1 3 

2 2 1 2 10 10 10 1]. The model was obtained using the regularized 

criterion. This model was optimised by CMLHL analysis, residual 

analysis and the pruned network, using optimal brain surgeon (OBS). 

The model structure has 10 hidden hyperbolic tangent units and 1 linear 

output unit. The network is estimated using the Lenvenberg-Marquardt 

method, and the model order is decided on the basis of the best AIC 

criterion of the ARX model. 

FIT1:92.23% 

V: 0.022 

FPE:0.14 

NSSE:0.01 

 

ANN model for the heating process, NNARMAX regressor, the order of 

polynomials of the initial fully connected structure are na=3, nb1=1, 

nb2=3, nb3=2, nb4=2, nb5=1, nc=3, nk1=2, nk2=10, nk3=10, nk4=10, nk5=1, 

[3 1 3 2 2 1 3 2 10 10 10 1].  The model was obtained using the 

regularized criterion and was optimised by CMLHL analysis, residual 

analysis and the pruned network, using OBS. The model structure has 10 

hidden hyperbolic tangent units and 1 linear output unit. The network is 

estimated using the Lenvenberg-Marquardt method, and the model order 

is decided on the basis of the best AIC criterion of the ARX model. 

FIT1:84.2% 

V: 0.041 

FPE:0.142 

NSSE:0.043 
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Table  3 Case of study: the city of Ávila. The values of the quality indexes for the NNARX model. 

 

Model Indexes 

ANN model for the heating process, NNARX regressor, the order of the 

polynomials of the initial fully connected structure are na=3, nb1=2, 

nb2=3, nb3=3, nb4=3, nb5=2, nk1=5, nk2=5, nk3=5, nk4=5, nk5=2, [3 2 3 3 3 

2 5 5 5 5 2]. The model was obtained using the regularized criterion. 

This model was optimised by CMLHL analysis, residual analysis and the 

pruned network, using OBS. The model structure has 10 hidden 

hyperbolic tangent units and 1 linear output unit. The network is 

estimated using the Lenvenberg-Marquardt method, and the model order 

is decided on the basis of the best AIC criterion of the ARX model. 

FIT1:93.42% 

V: 0.0056 

FPE:0.102, 

NSSE:0.0036 
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Figure  1. The data source cycle: the data is gathered through the sensors from a process in operation –the 

set of valves and the tanks in the figure. This data is then processed and a better controller is found. The 

controller is then used. Whenever the behaviour of the system may be improved the cycle is repeated. 
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Figure  2. A MLP network with two layers, with two nodes per layer, and three inputs. Wij is the weight 

matrix between the hidden and output layer, while wij is the weight matrix between the inputs and the 

hidden layer. The network has two bias nodes with value 1. 
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Figure  3. The schema of the IKBIS to detect thermal insulation failures. The relevance of CMLHL is 

apparent in two ways  as it allows the relevant features to be selected i.e., to reduce the variables used to 

train and to analyse the internal structure of the data set. 
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Figure  4 The data pre-processing and analysis step flowchart. On the left, the main algorithm; each box in 

the main algorithm is unfolded on the right. 
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Figure  5. The CMLHL projection. As can be seen, there are four relevant features that allow the indoor 

temperature to be modelled: the occupancy, the small power devices total power, the lighting electrical 

power and the heating system power. 
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Figure  6. Case of study: the city of Santander. Output response of NNARX model for the training data set. 

The actual output (solid line) is graphically presented with one-step-ahead prediction (dotted line).  The X-

axis represents the time steps, the Y-axis represents the signal value. 
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Figure  7. Case of study: the city of Santander. Output response of NNARX model for the validation data 

set. The actual output (solid line) is graphically presented with one-step-ahead  prediction (dotted line). The 

X-axis represents the time steps, the Y-axis represents the signal value. 
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Figure  8. Case of study: the city of Ávila. Output response of NNARX model for the training data set. The 

actual output (solid line) is graphically presented with one-step-ahead prediction (dotted line).  The X-axis 

represents the time steps, the Y-axis represents the signal value. 
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Figure  9. Case of study: the city of Ávila. Output response of NNARX model for the validation data set. 

The actual output (solid line) is graphically presented with one-step-ahead prediction (dotted line). The X-

axis represents the time steps, the Y-axis represents the signal value. 

 

 

 


