
ARTICLE IN PRESS

Neurocomputing 72 (2009) 2731–2742
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

� Corr

E-m

(C. Herv

(J.C. Fer
journal homepage: www.elsevier.com/locate/neucom
Combined projection and kernel basis functions for classification in
evolutionary neural networks
P.A. Gutiérrez a,�, C. Hervás a, M. Carbonero b, J.C. Fernández a

a Department of Computer Science and Numerical Analysis, University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
b Department of Management and Quantitative Methods, ETEA, Escritor Castilla Aguayo 4, 14005 Córdoba, Spain
a r t i c l e i n f o

Available online 16 April 2009

Keywords:

Classification

Projection basis functions

Kernel basis functions

Evolutionary neural networks
12/$ - see front matter & 2009 Elsevier B.V. A

016/j.neucom.2008.09.020

esponding author. Tel.: +34 957 218 349; fax:

ail addresses: pagutierrez@uco.es (P.A. Gutiér

ás), mariano@etea.com (M. Carbonero), jcfern

nández).
a b s t r a c t

This paper proposes a hybrid neural network model using a possible combination of different transfer

projection functions (sigmoidal unit, SU, product unit, PU) and kernel functions (radial basis function,

RBF) in the hidden layer of a feed-forward neural network. An evolutionary algorithm is adapted to this

model and applied for learning the architecture, weights and node typology. Three different combined

basis function models are proposed with all the different pairs that can be obtained with SU, PU and RBF

nodes: product–sigmoidal unit (PSU) neural networks, product–radial basis function (PRBF) neural

networks, and sigmoidal–radial basis function (SRBF) neural networks; and these are compared to the

corresponding pure models: product unit neural network (PUNN), multilayer perceptron (MLP) and the

RBF neural network. The proposals are tested using ten benchmark classification problems from well

known machine learning problems. Combined functions using projection and kernel functions are

found to be better than pure basis functions for the task of classification in several datasets.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Some features of neural networks (NNs) make them particu-
larly attractive and promising for applications in the modelling
and control of nonlinear systems: (1) universal approximation
abilities, (2) parallel distributed processing abilities, (3) learning
and adaptation, (4) natural fault tolerance and (5) feasibility for
hardware implementation [47]. NNs have been an important tool
for classification since recent research activities identified them as
a promising alternative to conventional classification methods
such as linear discriminant analysis or decision trees [31].

Different types of NNs are now being used for classification
purposes [31], including, among others: multilayer perceptron
(MLP) NNs, where the transfer functions are sigmoidal unit (SU)
basis functions; radial basis function (RBF) NNs with kernel
functions, where the transfer functions are usually Gaussian [7];
general regression neural networks proposed by Specht [46];
and a class of multiplicative NNs, namely product unit neural
networks (PUNNs) [16]. The network is chosen depending on the
conditions involved and the prior knowledge about the system
under study. The most widely used NN models are MLPs and RBF
networks. One distinctive characteristic of all these models is the
ll rights reserved.

+34 957 218 630.

rez), chervas@uco.es

andez@uco.es
combination of transfer and activation functions used in the
hidden layer or the hidden layers of the NN. This pair of functions
(transfer and activation function) will be jointly referred as the
basis function further on this paper.

The combination of different basis functions in the hidden
layer of a NN has been proposed as an alternative to traditional
NNs. For example, Donoho demonstrated that any continuous
function can be decomposed into two mutually exclusive type of
functions [13], one associated with projection functions (PU or SU)
and the other associated with kernel functions (RBF).

This paper aims to obtain empirically a response to the
following question: Is the combination of several projection-
based and kernel-based functions appropriate for optimizing
the accuracy of a NN classifier? In order to answer this question,
this paper compares the performance of pure basis function
models to the performance of combined basis function models.
Three kinds of hidden nodes are considered (SU, PU and RBF)
and the three different associated pairs of combined basis
function models are proposed: product–sigmoidal unit (PSU)
NNs, product–radial basis function (PRBF) NNs, and sigmoidal–
radial basis function (SRBF) NNs; these are compared to the
corresponding pure models (PUNNs, MLPs and RBF NNs). A hybrid
neural network model is proposed, maintaining the linear
structure between the hidden and the output layer. Therefore,
although the model is complex (it is composed of two different
types of basis functions), it keeps a linear structure. In this
way, this idea is similar to that proposed by Friedman and Stuetzle
[20].

www.sciencedirect.com/science/journal/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2008.09.020
mailto:pagutierrez@uco.es
mailto:chervas@uco.es
mailto:chervas@uco.es
mailto:mariano@etea.com
mailto:jcfernandez@uco.es
mailto:jcfernandez@uco.es


ARTICLE IN PRESS

P.A. Gutiérrez et al. / Neurocomputing 72 (2009) 2731–27422732
The problem of finding a suitable architecture and the
corresponding weights for a neural network is a very complex
task (for an interesting review of this subject, the reader can
consult the review of Yao [53]). This complexity increases
significantly when considering different basis functions, which
justifies the use of an evolutionary algorithm (EA) to design the
structure and training of the weights. This EA is presented in this
paper with the aim of optimizing simultaneously the weights
and the structure of the two types of basis functions considered in
the hidden layer.

Consequently, the objectives of the study are the following:
�
 To develop an EA capable of overcoming the difficulties
associated with the training of NNs containing combinations
of the different basis functions considered in a single hidden
layer.

�
 To experimentally check the duality of kernel and projection

basis functions introduced by Donoho [13] and determine the
most adequate projection function (PU or SU) for this
hybridization.

�
 To check if the hybridization of two projection basis functions

(PSU) is suitable for building a classifier.

�
 To compare the performance and the network size of the

combined basis function models to their corresponding pure
networks.

The rest of the paper is structured as follows. Section 2 analyzes
previous works which are related to the training of projection
based NNs, kernel based NNs or to the hybridization of both
neural network basis functions. Section 3 formally presents the
combined basis function model for classification considered in
this work, and analyzes some important properties that have to be
considered when combining the different basis functions pro-
posed. The main characteristics of the algorithm used for training
the hybrid models are described in Section 4. Section 5 presents
the experiments carried out and discusses the results obtained.
Finally, Section 6 completes the paper with the main conclusions
and future directions suggested by this study.
2. Related works

In this section, different works related to the optimization
and the designing of neural network models are presented. First,
the main projection basis function neural network methods are
described; next, the kernel basis function neural networks and the
associated methods are introduced; and finally, the analysis of
some works that combine both functional models is performed.
2.1. Neural networks based on projection basis functions

The MLP with the developed efficient back-propagation
training algorithm [42] is probably the most frequently used
type of neural network model in practical applications. However,
due to its multilayer structure and the limitations of the back-
propagation algorithm, the training process often settles in
undesirable local minima of the error surface or converges too
slowly. Adaptation or learning is a major focus of MLP research
that provides the NN model with a degree of robustness.
Additionally, building a MLP model is complex due to the presence
of many training factors. Training factors traditionally involved in
building a MLP model may include: the number of hidden nodes,
training tolerance, initial weight distribution and the function
gradient.
Product unit neural networks (PUNNs) introduced by Durbin
and Rumelhart [16] are another promising alternative [25,34].
PUNN models are a class of high-order neural networks which
only have unidirectional interlayer connections. In contrast to
sigmoidal neural networks, PUNNs are based on multiplicative
nodes instead of additive ones. PUs in the hidden layer of PUNNs
provide a powerful mechanism for these models to efficiently
learn higher-order combinations of inputs. Durbin and Rumelhart
determined empirically that the information capacity of PUs
(measured by their capacity for learning random Boolean
patterns) is approximately 3N, compared to the 2N of a network
with additive units for a single threshold logic function, where N

denotes the number of inputs to the network [16]. Besides that, it
is possible to obtain the upper bounds of the Vapnik Chervonenkis
(VC) dimension [50] in PUNNs, these bounds being similar
to those obtained in sigmoidal neural networks [44]. It is a
straightforward consequence of the Stone–Weierstrass theorem to
prove that PUNNs are universal approximators [33] (observe that
polynomial functions in several variables are a subset of PU
models).

Despite these advantages, product-unit based networks have a
major drawback. Networks based on PUs have more local minima
and a higher probability of becoming trapped in them [33]. The
main reason for this difficulty is that small changes in the exponents
can cause large changes in the total error surface. Because of this
reason, their training is more difficult than the training of standard
MLPs. For example, it is well known that back-propagation is not
efficient for the training of PUNNs [41]. Several efforts have been
made to carry out learning methods for PUs: Janson and Frenzel
[25] developed a genetic algorithm for evolving the weights of a
PUNN with a predefined architecture. The major problem with
this kind of algorithm is how to obtain the optimal architecture
beforehand. Leerink et al. [27] tested different local and global
optimization methods for PUNNs. Ismail and Engelbrecht [22]
applied four different optimization methods to train PUNNs:
random search, particle swarm optimization, genetic algorithms,
and LeapFrog optimization. They concluded that random search is
not efficient to train this type of network, and that the other three
methods show an acceptable performance in three problems of
function approximation with low dimensionality.
2.2. Neural networks based on kernel basis functions

RBF NNs have been used in the most varied domains, from
function approximation to pattern classification, time series
prediction, data mining, signals processing, and nonlinear system
modelling and control. They have some useful properties which
render them suitable for modelling and control. First, such
networks are universal approximators [40]. In addition, they
belong to a class of linearly parameterized networks where the
network output is connected to tuneable weights in a linear
manner. The RBF uses, in general, hyper-ellipsoids to split the
pattern space. This is different from MLP networks which build
their classifications on hyper-planes, defined by a weighted sum.
Due to their functional approximation capabilities, RBF networks
have been seen as a good solution for interpolation problems.
RBF NNs can be considered a local average procedure, and the
improvement in both its approximation ability as well as in the
construction of its architecture has been note-worthy [6].

Their simple architecture allows the application of fast
and efficient learning algorithms [38]. However, they are only
applied for some problems in the theory of interpolation, because
strict interpolation may sometimes not be a good strategy for
the training of RBF networks due to possibly poor resulting
generalization ability. In addition, if the size of the training set is



ARTICLE IN PRESS

P.A. Gutiérrez et al. / Neurocomputing 72 (2009) 2731–2742 2733
too large, and/or if there is a large number of redundant data
(linearly dependent vectors) in this set, the likelihood of obtaining
an ill-conditioned correlation matrix is higher and hinders the
training procedure. Moreover, the constraint of having as many
RBFs as data points makes the problem over-determined. To
overcome these computational difficulties, the complexity of the
network has to be reduced, requiring an approximation to a
regularized solution [18,37]. This approach involves the search for
a suboptimal solution in a lower dimensional space [8].

The number and positions of the basis functions, which
correspond to the nodes in the hidden layer of the network, have
an important influence on the performance of the RBF neural net.
Both problems have been tackled using a variety of approaches.
For instance, the number and position of the RBFs may be fixed
and defined a priori [21]; they may be determined by unsuper-
vised clustering algorithms [12]; or they can be evolved using
evolutionary algorithms [8,29] or a hybrid algorithm [55].

In order to solve the problem of selecting a proper size for the
hidden layer, a new category of algorithms has been introduced to
automatically determine the structure of the network. These
include the orthogonal least squares algorithm [9]; constructive
methods, where the structure of the network is built incremen-
tally [56]; pruning methods that start with an initial selection of a
large number of hidden units which is reduced as the algorithm
proceeds [36]; and the simultaneous selection of network
structure and parameters by employing optimization methods
based on genetic algorithms [5].
2.3. Neural networks based on hybrid basis functions

Hybrid models have also been proposed, where different
activation/transfer functions are used for the nodes in the hidden
layer. Several authors have proposed the hybridization of different
basis functions, using either one single hybrid hidden layer or
several connected pure layers.

According to Duch and Jankowski [15], mixed transfer func-
tions within one network may be introduced in two ways. In the
first way, a constructive method selects the most promising
function from a pool of candidates in RBF-like architecture and
add it to the network [14]. In the second approach, starting from a
network that already contains several types of functions (such as
Gaussian and sigmoidal functions), pruning or regularization
techniques are used to reduce the number of functions [15].

Optimal transfer function networks were presented as a
method for selecting appropriate functions for a given problem
[24], creating architectures that are well matched for some given
data and resulting in a very small number of hidden nodes.

In the functional link networks of Pao [39], a combination
of various functions, such as polynomial, periodic, sigmoidal and
Gaussian functions is used. The basic idea behind a functional link
network is the use of functional links, adding nonlinear transfor-
mation of the input variables to the original set of variables, and
suppressing the hidden layer, only performing a linear transfor-
mation of this derived input space. In this way, the first nonlinear
mapping is fixed and the second linear mapping is adaptive.

A more complex approach considers several layers or models,
each one containing a basis function structure, resulting in
a modular system. For example, Iulian proposes a methodology
including three distinct modules implementing a hybrid feed-
forward neural network, namely a Gaussian type RBF network, a
principal component analysis (PCA) process, and a MLP NN [23].
Another proposal of Lehtokangas and Saarinen considers two
hidden layers in the model [28], the first one composed of
Gaussian functions and the second one made up of SU basis
functions.
Neural networks using different transfer functions should use
fewer nodes, enabling the function performed by the network to be
more transparent. For example, one hyperplane may be used to divide
the input space into two classes and one additional Gaussian function
to account for local anomaly. Analysis of the mapping performed by
an MLP network trained on the same data will not be so simple.

In this context, it is worth emphasizing the paper by Cohen and
Intrator [11], which is based on the duality and complementary
properties of projection-based functions (SU and PU) and kernel
typology (RBF). This hybridization of models has been justified
theoretically by Donoho [13], who demonstrated that any
continuous function can be decomposed into two mutually
exclusive functions, such as radial (kernel functions) and crest
ones (based on the projection). Although theoretically this
decomposition is justified, in practice it is difficult to apply
gradient methods to separate the different locations of a function
(in order to adjust them by means of a combination of RBFs) and
then to estimate the residual function by means of a functional
approach based on projections, all without getting trapped in local
optima in the procedure of error minimization [19].

Recently, Wedge and collaborators [52] have presented a
hybrid RBF and sigmoidal neural network using a three step
training algorithm for function approximation, aiming to achieve
an identification of the aspects of a relationship that are
universally expressed separately from those that vary only within
particular regions of the input space.
3. Combined basis function model for classification

The combined basis function (CBF) model used in the
classification process is proposed in this section and it is
represented by means of a neural network structure. First of all,
it is important to formally define the classification task. In a
classification problem, measurements xi, i ¼ 1;2; . . . ; k, of a single
individual (or object) are taken, and the individuals are to be
classified into one of the J classes based on these measurements.
A training dataset D ¼ fðxn; ynÞ;n ¼ 1;2; . . . ;Ng is available, where
xn ¼ ðx1n; . . . ; xknÞ is the random vector of measurements taking
values in O � Rk, and yn is the class level of the n-th individual.
The representation of the class level is performed using the
common technique of a ‘‘1-of-J’’ encoding vector, y ¼ ðyð1Þ;
yð1Þ . . . ; yðJÞÞ, and the correctly classified rate (CCR) is used as an
accuracy measure defined by CCR ¼ 1

N

PN
n¼1IðCðxnÞ ¼ ynÞ, where Ið:Þ

is the zero–one loss function. A good classifier tries to achieve the
highest possible CCR in a given problem.

In order to tackle this classification problem, the outputs of the
CBF model have been interpreted from the point of view of
probability through the use of the softmax activation function [7],
which is given by

glðx;hlÞ ¼
exp f lðx; hlÞPJ

j¼1 exp f jðx; hjÞ
; l ¼ 1;2; . . . ; J (1)

where J is the number of classes in the problem, f lðx; hlÞ is t
he output of the l output node for pattern x and glðx; hlÞ the
probability a pattern x has of belonging to class l. The hybrid CBF
model to estimate the function f lðx; hlÞ is given by a weighted
combination of a pair of basis functions

f lðx; hlÞ ¼ bl
0 þ

Xm1

j¼1

bl;1
j B1

j ðx;w
1
j Þ

þ
Xm2

j¼1

bl;2
j B2

j ðx;w
2
j Þ; l ¼ 1;2; . . . ; J (2)



ARTICLE IN PRESS

P.A. Gutiérrez et al. / Neurocomputing 72 (2009) 2731–27422734
where hl ¼ ðb
l;w1

1; . . . ;w
1
m1
;w2

1; . . . ;w
2
m2
Þ, bl

¼ ðbl
0;b

l;1
1 ; . . . ;b

l;1
m1
;

bl;2
1 ; . . . ;b

l;2
m2
Þ and wi

j is the weight vector of the connections

between the input layer and the j-th hidden node of type i. In
order to simplify the following expressions, Bjðx;wjÞ will be used

in a general way to substitute both B1
j ðx;w

1
j Þ or B2

j ðx;w
2
j Þ. Two

types of projection basis functions are considered in (2) to replace

B1
j or B2

j :
�
 Sigmoidal units in the form:

Bjðx;wjÞ ¼
1

1þ expð�wj0 �
Pk

i¼1wjixiÞ

where wj ¼ ðwj0;wj1; . . . ;wjkÞ, wj0 being the bias.

�

Fig. 1. Combined basis function model for classification.
Product units have the following expression:

Bjðx;wjÞ ¼
Yk

i¼1

x
wji

i

where wj ¼ ðwj1; . . . ;wjkÞ, not considering bias in the inputs.

�
 Kernel basis functions replacing B1

j or B2
j in (2) are RBFs, in the

form:

Bjðx; ðcjjrjÞÞ ¼ exp �
jx� cjj

2

2r2
j

 !

where wj ¼ ðwj0;wj1; . . . ;wjkÞ, and cj ¼ ðwj1; . . . ;wjkÞ and rj ¼

wj0 are, respectively, the centre and width of the Gaussian basis
function of the j-th hidden unit.

Using the softmax activation function presented in Eq. (1), the
class predicted by the neural net corresponds to the node in the
output layer whose output value is the greatest. In this way,
the optimum classification rule CðxÞ is the following:

CðxÞ ¼ l̂ where l̂ ¼ arg max
l

glðx; ĥÞ for l ¼ 1;2; . . . ; J (3)

The function used to evaluate the CBF model is the function of
cross-entropy error and is given by the following expression for J

classes:

lðhÞ ¼ �
1

N

XN

n¼1

XJ

l¼1

yðlÞn log glðxn; hlÞ (4)

where h ¼ ðh1; . . . ;hJÞ. Moreover, because of the normalization
condition

XJ

l¼1

glðx; hlÞ ¼ 1,

the probability for one of the classes does not need to be
estimated. There is a redundancy in the functions f lðx;hlÞ, since
adding an arbitrary hðxÞ to each output leaves the decision (3)
unchanged. Traditionally one of them is set to zero ðf Jðx;hJÞ ¼ 0Þ
which reduces the number of parameters to estimate. With all
these considerations, Fig. 1 represents the general scheme of the
CBF model, not considering bias in the input layer.

From a statistical point of view, with the softmax activation
function defined in (1) and the cross-entropy error defined in
(4), the neural network model can be seen as a multilogistic
regression model. Nevertheless, the nonlinearity of the model
with respect to parameters h, and the indefinite character of the
associated Hessian matrix do not recommend the use of gradient-
based methods to minimize the negative log-likelihood function
(for example, Iteratively Reweighted Least Squares, which is
commonly used in the optimization of log-likelihood in linear
multinomial logistic regression). Thus, an evolutionary algorithm
is used to determine both the number of nodes in the hidden layer
as well as the weights of the nets.

3.1. Basis function complexity and generalization capability

The first consideration when using NNs in a classification
problem is the type of projection or kernel basis function to be
selected. When the underlying cross-entropy function is un-
bounded, the PU basis functions are very adequate for classifica-
tion, because, if the whole space Rk is considered to be the input
domain, an MLP basis function model has the following upper and
lower bounds:

jf MLPðxÞj ¼
Xm
j¼1

bj

1

1þ e�hx;wi

������
������p
Xm
j¼1

jbjj

where h; i is the inner product.
In the same way, a Gaussian RBF has the following bounds:

jf RBF ðxÞj ¼
Xm

j¼1

bje
�kx�cjk=rj

������
������p
Xm

j¼1

jbjj

where k k is the norm.
However a PU basis function model is unbounded, as if f PUðxÞ ¼Pm

j¼1bj

Qp
i¼1x

wji

i then:

lim
kxk!þ1

f PUðxÞ ¼ lim
kxk!þ1

Xm

j¼1

bj

Yp

i¼1

x
wji

i ¼ 1

considering certain values for the parameters of the model.
In general, the training data available for solving a classifica-

tion problem belongs to a compact set, which is the set where the
parameters of the model are adjusted. In this set, the MLP models
can always be applied. However, the bounded functions do not
show a good generalization capability for data which do not
belong to the training compact set. Consequently, the behaviour of
the basis functions at the training set domain borders is a
characteristic which influences the decision about which basis
functions are the most adequate.

The second consideration to take into account is the general-
ization capability of the combined basis function models. For this
purpose, the combined models formed by PU projection basis
functions and kernel RBFs (PRBF models) and those formed by SU
basis functions and RBFs (SRBF models) are considered first. If a
family of functions is an average of projection and kernel basis
function, this structure enhances the capability to reduce



ARTICLE IN PRESS

Generate a 
random

population

Evaluate and 
rank (using 

cross-entropy) 

Select and store 
best cross-

entropy and 
CCR

individuals

The best 10% 
replaces the 
worst 10% 

Parametric 
mutation to the 

best 10% of 
individuals

Structural
mutation to the 
remaining 90% 
of individuals 

Best cross-
entropy and 
CCR copies 

replace the two 
worst

individuals

Return best 
cross-entropy 

and CCR 
individuals

Check
stopping
criterion

No

Yes

Fig. 2. Combined basis function evolutionary programming scheme.

1 Java Class Library for Evolutionary Computation (http://jclec.sourcepforge.

net).
2 Knowledge Extraction base on Evolutionary Learning (http://www.keel.es).

P.A. Gutiérrez et al. / Neurocomputing 72 (2009) 2731–2742 2735
empirical risk, that is, the error obtained with the generalization
patterns. The reason for this reduction is that this kind of model
can be consider to be an ensemble of the two models it is made up
of, a simple average of the outputs obtained from two individual
classifiers using two different structures, PU or SU, and RBF.
Most of the existing ensemble learning algorithms [4,49] can be
interpreted to be building diverse base classifiers implicitly. When
projection basis functions and kernel basis functions are used, the
ensemble results in a high degree of diversity because the
individual PU or SU submodel contributes a global recognition
structure and will disagree with the RBF submodel in the
composed network, as this model contributes a local recognition
structure. Using this kind of models, generalization capability is
related to the VC dimension [50]. Particularly, when a model is of
high complexity, the VC dimension is higher and its generalization
capacity decreases. Schmitt [45] established a super-linear lower
bound on the VC dimension for a RBF neural network with W

parameters, and one hidden layer of k RBF nodes, of at least
ðW=12Þ logðk=8Þ. On the other hand, MLP neural networks have a
VC dimension that is also super-linear in the number of network
parameters W, and when there is one hidden layer with k MLP
nodes, the VC dimension is at least ðW=18Þ logðk=4Þ [43]. Thus, the
cooperative network effect enhancing the computational power of
sigmoidal networks is also confirmed for RBF networks, and,
consequently, for SRBF and PRBF hybrid models. The latter occurs
since the upper bounds of the VC dimension in a PUNN are similar
to those obtained for an MLP [34].

The capacity for generalization of this ensemble-like typology
using basis functions with sufficiently diverse global-local
discriminator characteristics (i.e. SRBF or PRBF models) is similar
to or greater than the generalization capability of pure PU, SU or
RBF models, which is proven empirically in this study.

The next point is the generalization capacity of the combined
models formed by product and sigmoidal projection basis
functions (PSU models). In general and considering the bias-
variance trade-off, the higher the complexity obtained by the
models, the lower their generalization capability. In this respect, it
is interesting to point out that Schmitt [44] obtains the upper
bounds of VC dimension using networks where SUs and PUs are
combined, and that these upper bounds are similar to those
obtained for pure PU or SU neural networks. This fact guarantees
good generalization capability for the PSU model, this general-
ization being similar to the capability of MLPs or PUNNs. However
both basis functions have a projection characteristic which
prevents their global discrimination characteristics from contri-
buting sufficient diversity in some datasets, the generalization
capability of these models being similar to that obtained with
their corresponding pure models. This will be analyzed in the
experimental section.
4. The combined basis function evolutionary programming
algorithm

In this section, the evolutionary algorithm used to estimate the
parameters and the structure (including the number of hidden
nodes of each basis function type) of the CBF models is presented.

The objective of the algorithm is to design a CBF neural
network with optimal structure and weights for each classifica-
tion problem tackled. The population is subject to the operations
of replication and mutation, and crossover is not used due to its
potential disadvantages in evolving artificial networks [2,54].
With these features the algorithm falls into the class of
evolutionary programming (EP) [17]. It is an extension of the
neural net evolutionary programming (NNEP) algorithm proposed
in previous works [33,34], adding the necessary functionalities to
consider CBF neural networks with different basis functions in the
hidden layer and resulting in what we have called combined basis

function evolutionary programming (CBFEP). NNEP is a software
package developed in JAVA by the authors, as an extension of the
JCLEC1 framework [51] and it is available in the noncommercial
JAVA tool named KEEL2 [1].

The general framework of CBFEP is shown in Algorithm 1. The
CBFEP algorithm starts by generating a random population of CBF

http://jclec.sourcepforge.net
http://jclec.sourcepforge.net
http://www.keel.es


ARTICLE IN PRESS

Population

Generation i

Best Cross-Entropy

Best CCR

Worst 10%

Best 10%

Replace

Double Elitism

Parametric

Mutation

Structural

Mutation

G
eneration i+

1

Add Double 
Elitism 

Individuals
To be 
sorted

Fig. 3. Double elitism procedure scheme.

P.A. Gutiérrez et al. / Neurocomputing 72 (2009) 2731–27422736
models and makes them evolve by applying different muta-
tion and replication operations. A graphical representation of the
algorithm has been included in Fig. 2, where the different stages of
the algorithm are more clearly differentiated.

Algorithm 1. General framework of combined basis function
evolutionary programming algorithm.
(1)
 Generate a random population of size NP, where each
individual presents a combined basis function structure.
(2)
 Repeat until the stopping criterion is fulfilled.
(2.1) Calculate the fitness (decreasing transformation of

cross-entropy error) of every individual in the popula-
tion and rank the individuals with respect to their cross-
entropy error.

(2.2) Select and store best cross-entropy individual and best
CCR individual (double elitism).

(2.3) The best 10% of population individuals are replicated
and substitute the worst 10% of individuals.

(2.4) Apply mutations:
(2.4.1) Parametric mutation to the best 10% of indivi-

duals.
(2.4.2) Structural mutation to the remaining 90% of

individuals, using a modified add node mutation
in order to preserve the combined basis function
structure.

(2.5) Add best cross-entropy individual and best CCR indivi-
dual from previous generation and substitute the two
worst individuals.
(3)
 Select the best CCR individual and the best cross-entropy
individual in the final population and consider both as
possible solutions.
The fitness measure is a strictly decreasing transformation
of the cross-entropy error lðhÞ given by AðgÞ ¼ 1=1þ lðhÞ, where g is
a CBF model given by the multivaluated function gðx; hÞ ¼
ðg1ðx; h1Þ; . . . ; gJðx; hJÞÞ and lðhÞ is the cross-entropy error, defined
in (4). The severity of mutations depends on the temperature TðgÞ

of the neural network model, defined by TðgÞ ¼ 1� AðgÞ;

0pTðgÞp1. For further details about the general characteristics
of the NNEP algorithm, the reader can consult previous works
[32–34].
One specific characteristic of this algorithm is the double

elitism. As can be observed, the proposed algorithm returns both
the best cross-entropy and the best CCR individuals as feasible
solutions (step 3, Algorithm 1). In general, the relationship
between CCR and cross-entropy error strongly depends on the
dataset structure. Hence, regarding experimental results, using
cross-entropy elitism is more suitable for some datasets in order
to result in higher generalization accuracy, but using CCR elitism
can be more appropriate for some other datasets. For this reason,
the algorithm returns the best CCR and the best cross-entropy
individuals as solutions, the best approach for each problem being
difficult to ascertain a priori. In generation i, both the best cross-
entropy individual and the best CCR individual are stored (step
2.2, Algorithm 1). Then, the selection and the mutations are
applied (steps 2.3 and 2.4, Algorithm 1). Finally, the population of
the next generation is formed merging the double elitism
individuals and the mutated individuals (step 2.5, Algorithm 1)
and they will be sorted in the next generation by using the cross-
entropy error function (step 2.1, Algorithm 1). In Fig. 3, it can be
observed graphically how the double elitism procedure works and
how the different steps are applied.

Next, there is an explanation of the specific details of the CBFEP
algorithm which concern to the optimization of the CBF structure.
We will refer to the two types of hidden nodes considered in CBF
topology as t1 and t2.

In order to define the topology of neural networks generated in
the evolution process, three parameters are considered: m, ME and
MI . They correspond to the minimum and the maximum number
of hidden nodes in the whole evolutionary process and the
maximum number of hidden nodes in the initialization process,
respectively. In order to obtain an initial population formed by
models simpler than the most complex model possible, para-
meters must fulfil the condition mpMIpME.

An initial population of size 10NP is generated, where NP ¼

1000 is the size of the population during the evolutionary
process. Then the best NP neural networks are selected (step 1,
Algorithm 1). For the generation of a network, the number of
nodes in the hidden layer is taken from a uniform distribution in
the interval ½m;MI�. Once the number of hidden nodes is decided,
each hidden node is generated using a probability of 0.5 to decide
if the node corresponds to t1 or t2. For PU and SU hidden nodes,
the number of connections between each node in the hidden layer
and the input nodes is determined from a uniform distribution in



ARTICLE IN PRESS

Table 1
Main characteristics of each dataset tested and non-common parameter values.

Dataset # Instances # Inputs Distribution # Classes # Gen. m MI ME

Balance 625 4 (288,49,288) 3 500 3 4 5

Card 690 51 (307,383) 2 50 1 2 3

German 1000 61 (700,300) 2 300 2 3 4

Glass 214 9 (17,76,13,29,70,9) 6 500 7 8 9

Heart 270 13 (150,120) 2 100 1 1 2

Ionosphere 351 34 (126,225) 2 300 3 4 5

Newthyroid 215 5 (150,35,30) 3 100 1 1 4

Pima 768 8 (500,268) 2 160 1 2 3

Vote 435 16 (267,168) 2 10 1 1 2

Zoo 101 16 (41,20,5,13,4,8,10) 7 400 2 3 3

P.A. Gutiérrez et al. / Neurocomputing 72 (2009) 2731–2742 2737
the interval ð0; k�, where k is the number of independent variables.
For RBF hidden nodes, the number of connections is always k,
since these connections represent the coordinates of the centre of
the node. The number of connections between each hidden node
and the output layer is determined from a uniform distribution in
the interval ð0; J � 1�.

Weights are initialized differently depending on the type of
hidden node generated. For PU and SU hidden nodes, weights
are assigned using a uniform distribution defined throughout two
intervals: ½�5;5� for connections between the input layer and
hidden layer and, for all kinds of nodes, ½�10;10� for connections
between the hidden layer and the output layer. For RBF hidden
nodes, the connections between the input layer and hidden layer
represent the centre of the associated Gaussian distribution and
these centres are initialized using a clustering algorithm, so the EA
can start the evolutionary process with well positioned centres.
The main idea is to cluster input data in k groups, k being the
number of hidden RBF nodes. In this way, each hidden RBF node
can be positioned in the centroid of its corresponding cluster.
Finally, the radius of the RBF hidden node is calculated as the
geometric mean of the distance to the two closest centroids. The
clustering technique chosen (similar to that proposed by Cohen
and Intrator [10]) is a modification of the classic k-means
algorithm, in which the initial centroids are calculated using a
specific initialization algorithm that avoids local minima, increas-
ing the probability that the initial k cluster centres not be from a
smaller number of clusters.

Parametric mutation (step 2.4.1, Algorithm 1) is accomplished
for PU, SU and RBF hidden nodes by adding a Gaussian noise
represented by a one-dimensional normally distributed random
variable with mean 0 and adaptive variance, where variances are
updated throughout the evolution of the algorithm. Radius ri of
RBF hidden nodes are mutated using a similar procedure.

On the other hand, structural mutation (step 2.4.2, Algorithm
1) implies a modification in the neural network structure and
allows the exploration in different regions of the search space
while helping to keep up the diversity of the population. There are
different structural mutations, similar to the mutations in the
GNARL model [2], including connection deletion, connection
addition, node deletion, node addition and node fusion. There is
no reason for connection deletion and connection addition if the
node mutated is a RBF. Therefore, these mutations are not taken
into consideration with this kind of nodes.

In node fusion, two randomly selected hidden nodes, a and b,
are replaced by a new node c, which is a combination of the two. a

and b must be of the same type in order to accomplish this
mutation. The connections that are common to both nodes are
kept and the connections that are not shared by the nodes are
inherited by c with a probability of 0.5, their weight being
unchanged. The weight resulting from the fusion of common
connections depends again on the type of hidden node chosen. For
PU and SU nodes, the resulting weights are given by

bl
c ¼ bl

a þ bl
b; wjc ¼

wja þwjb

2

� �

while for RBF nodes, the fact that RBFs can be interpreted as
circumferences with a perfectly identified center and radius
obliges the resulting weights to be considered as

cc ¼
ra

ra þ rb
ca þ

rb

ra þ rb
cb; rc ¼

ra þ rb

2

cj being the center defined by the hidden node j, which is
cj ¼ ðwj1;wj2; . . . ;wjkÞ, and rj being its radius.

In node addition, once the number of hidden nodes to be added
has been decided, each hidden node is generated using a
probability of 0.5 to assign its type (t1 or t2). If the number of
hidden nodes in the neural net is ME, no hidden nodes are added.
5. Experiments

In order to analyze the performance of the CBF model and the
corresponding training algorithm CBFEP, 10 datasets in the UCI
repository have been tested [3]. The experimental design was
conducted using a holdout cross-validation procedure with 3n/4
instances for the training set and n/4 instances for the general-
ization set, where the size of the dataset is n. All parameters of the
CBFEP algorithm are common to these ten problems, except the m,
MI, ME and the number of generations (#Gen.) values, which are
represented in Table 1 together with the main characteristics
of each dataset. An analysis of the results obtained for all pure (SU,
PU and RBF) or combined (PSU, PRBF and SRBF) basis functions
used in the neural network model is performed for every dataset.

Table 2 shows the mean value and standard deviation
(mean7SD) results of the correctly classified rate for the
training (CCRT) and generalization (CCRG) sets and the mean and
standard deviation of the number of net connections (#links) of
the best models obtained in 30 runs of all the experiments
performed. As the algorithm returns both the best CCR and cross-
entropy individuals, two averages and standard deviations
are obtained for each dataset. However, in order to reduce
the extension of the table, the results included in Table 2
correspond only to the best performing variant in each CBF
model, since the suitability of each elitism depends on the
characteristics of the dataset and the basis function structure
applied. It can be observed that the combination of basis functions
produces good results with respect to CCRG. In fact, from a purely
descriptive point of view, the best result is obtained using CBF
models in six out of the ten datasets analyzed, and the second best
result is obtained in three out of the four remaining datasets.
Moreover, in two of the 10 datasets analyzed, the first and second
best results have been obtained using combined basis functions.



ARTICLE IN PRESS

Table 2
Statistical results (mean7SD) of the correctly classified rate for 10 datasets and for the training (CCRT) and generalization (CCRG) sets and number of connections (#links) for

30 executions of the CBFEP algorithm using pure or combined basis functions and CCRT (C) or cross-entropy (E) elitism.

Dataset Func. Elit. CCRT CCRG # Links Dataset Func. Elit. CCRT CCRG # Links

Mean7SD Mean7SD Mean7SD Mean7SD Mean7SD Mean7SD

Balance PU C 99.3070.34 96.4571.28 23.172.6 Card PU E 84.4072.02 87.5072.75 24.6714.7

SU C 96.8971.49 95.1171.58 31.971.8 SU E 86.8270.94 87.7171.42 52.1710.8

RBF C 90.6770.61 90.7771.31 29.773.0 RBF C 78.5171.90 76.6973.33 124.2724.1

PSU C 99.4470.61 98.0170.96 29.374.5 PSU E 86.7171.00 87.3871.17 43.3715.9

PRBF C 98.7470.69 97.4171.11 26.673.9 PRBF C 84.4072.17 86.4374.09 61.4732.5

SRBF C 93.8371.85 92.9171.61 32.672.0 SRBF E 86.1670.93 88.0271.01 62.2721.0

German PU C 74.1371.37 71.2471.52 47.9719.5 Glass PU C 75.9074.74 65.1674.17 62.477.1

SU C 81.2171.39 73.0771.64 93.9721.8 SU E 75.2272.52 67.6773.49 83.876.0

RBF C 73.7170.88 71.6971.32 213.0730.4 RBF C 66.2972.81 64.9174.74 108.179.4

PSU E 79.4071.60 73.1271.71 86.0721.9 PSU E 75.7872.13 66.2373.91 82.876.5

PRBF E 72.6071.65 71.2571.45 119.6743.9 PRBF C 74.7672.96 65.0373.96 89.379.5

SRBF E 79.1172.05 73.4471.61 105.7734.0 SRBF C 74.3572.53 67.1774.36 97.977.5

Heart PU C 86.4471.57 83.5872.15 11.072.6 Ionos PU E 96.7971.13 91.1572.20 39.179.8

SU E 86.0670.90 86.9172.06 17.272.0 SU E 98.8370.75 92.6171.56 73.9710.2

RBF C 85.7870.79 81.3772.54 27.674.2 RBF C 91.3971.27 90.4272.60 158.5718.9

PSU C 88.2770.95 85.9372.27 16.972.6 PSU C 99.0770.55 92.1171.88 67.9712.6

PRBF E 84.1471.64 82.7972.57 20.474.4 PRBF E 94.2972.18 91.3472.41 93.9716.4

SRBF E 85.8671.63 85.4971.96 18.974.3 SRBF C 98.1370.88 93.2271.61 100.2716.6

Newth PU C 99.2570.55 96.8572.71 16.473.2 Pima PU E 77.2770.65 78.4571.29 12.572.1

SU C 98.7270.65 94.8872.26 22.173.6 SU E 76.8870.60 79.9871.53 18.672.0

RBF C 95.6770.62 95.0072.01 24.273.8 RBF C 74.8171.54 75.6672.56 26.873.1

PSU E 99.3670.60 96.3672.77 20.373.7 PSU E 76.9570.77 78.8971.87 17.072.8

PRBF E 98.6370.97 97.9672.45 19.773.8 PRBF E 77.4670.51 78.5471.44 17.071.5

SRBF C 94.7071.38 95.6272.20 23.573.3 SRBF E 77.4070.48 79.6471.29 22.673.0

Vote PU E 95.1470.97 95.5272.26 5.972.4 Zoo PU C 98.2071.74 94.8074.48 29.772.8

SU E 95.8870.68 94.2671.91 14.074.5 SU C 99.3471.02 92.6774.34 49.974.5

RBF C 91.5571.52 87.5072.77 30.477.6 RBF C 78.4672.73 75.0775.00 66.071.5

PSU E 95.5970.63 94.5771.96 12.874.3 PSU C 98.4671.80 92.1375.09 42.276.8

PRBF C 95.8870.45 96.0270.88 13.378.2 PRBF E 95.4473.60 91.3375.95 35.376.0

SRBF C 96.2670.42 94.5472.23 16.077.3 SRBF E 97.0273.86 90.4074.77 48.675.2

Elit.: Elitism; the represented results correspond only to the best performing final mean (E: best training cross-entropy individual; C: best CCRT individual). The best result

in the generalization set has been represented in bold face and the second best result in italic face.

Table 3
p-value of the Levene test (L) and the F test of ANOVA I applied to the CCRG and #

links values.

Dataset p-Value

CCRG #links

L test F test L test F test

Balance 0.048� 0.000� 0.008� 0.000�

Card 0.000� 0.000� 0.000� 0.000�

German 0.935 0.000� 0.000� 0.000�

Glass 0.948 0.033� 0.013� 0.000�

Ionos 0.033� 0.000� 0.001� 0.000�

Newthyroid 0.033� 0.000� 0.538 0.000�

Vote 0.000� 0.000� 0.000� 0.000�

Pima 0.000� 0.000� 0.013� 0.000�

Heart 0.591 0.000� 0.004� 0.000�

Zoo 0.425 0.000� 0.000� 0.000�

� Statistically significant differences with p-valueo0.05.

P.A. Gutiérrez et al. / Neurocomputing 72 (2009) 2731–27422738
To ascertain the statistical significance of the differences
observed in each dataset performance, an analysis of variance
(ANOVA) test [35] with the CCRG of the best models as the test
variable has been carried out (previously evaluating if the CCRG

values follow normal distribution, using a Kolmogorov–Smirnov
test). Based on the hypothesis of normality, ANOVA examines the
effects of some quantitative or qualitative variables (called
factors) on one quantitative response. Here, the objective of this
analysis is to determine if the influence of the basis function used
in the hidden layer of the neural nets is significant in mean with
respect to the CCRG obtained by the CBFEP algorithm. Thus, the
linear model for CCRG has the form

CCRGij
¼ mþ Bi þ eij

for i ¼ 1; . . . ;6 and j ¼ 1,2,y,30. Factor Bi analyzes the effect on
the CCRG in the i-th level of that factor, where Bi represents the
typology of the basis functions used in the hidden layer of the net,
with levels: ði ¼ 1Þ for pure PUs; ði ¼ 2Þ for pure SUs; ði ¼ 3Þ for
pure RBFs; ði ¼ 4Þ for combined PSU; ði ¼ 5Þ for combined PRBF;
ði ¼ 6Þ for combined SRBF. The term m is the fixed effect that is
common to all the populations. The term eij is the influence on the
result of everything that could not be otherwise assigned, or of
random factors.

Thus, 180 simulations were carried out for each dataset,
corresponding to the 30 runs of each of the six levels for the
factor. First, a Levene test (L) [30] is performed to evaluate the
equality of variances (if aop-value, then the variances of CCRG are
equal) and then the Snedecor’s F tests is performed for assessing if
the influence of the basis function used in the hidden layer of the
neural nets is significant in mean with respect to the CCRG. The
p-value of both tests are presented in Table 3. The F test shows
that the effect of basis function typology used in the hidden layer
is statistically significant in all datasets for the CCRG and the #
links at a significance level of 5%, i.e., a4p-value in all datasets
(see third column in Table 3).

After carrying out these tests, a post-hoc multiple comparison
test has been performed on the average CCRG obtained. If the
hypothesis that the variances are equal is accepted (using the
Levene test presented in Table 3), a Tukey test [35] is carried out,



ARTICLE IN PRESS

Table 4
p-value of the Tamhane and Tukey tests for CCRG and ranking of the different basis function proposal based on this multiple comparison test.

H0 � m̂ðIÞ ¼ m̂ðJÞ p-Value

(I) (J) Balance Tam. Card Tam. German Tukey Glass Tukey Heart Tukey Ionos. Tam. Newth. Tam. Pima Tam. Vote Tam. Zoo Tukey

PU SU 0.009� 1.000 0.000� 0.176 0.000� 0.110 +0� 0.002� 0.289 0.558

RBF 0.000� 0.000� 0.866 1.000 0.003� 0.986 0.059 0.000� 0.000� 0.000�

PSU 0.000� 1.000 0.000� 0.916 0.001� 0.690 1.000 0.995 0.735 0.303

PRBF 0.043� 0.984 1.000 1.000 0.763 1.000 0.799 1.000 0.991 0.080

SRBF 0.000� 0.998 0.000� 0.412 0.017� 0.002� 0.592 0.012� 0.771 0.010�

SU PU 0.009� 1.000 0.000� 0.176 0.000� 0.110 0.050� 0.002� 0.289 0.558

RBF 0.000� 0.000� 0.009� 0.103 0.000� 0.007� 1.000 0.000� 0.000� 0.000�

PSU 0.000� 0.998 1.000 0.752 0.552 0.999 0.340 0.218 1.000 0.998

PRBF 0.000� 0.839 0.000� 0.136 0.000� 0.371 0.000� 0.006� 0.001� 0.904

SRBF 0.000� 0.998 0.937 0.997 0.153 0.676 0.967 0.998 1.000 0.489

RBF PU 0.000� 0.000� 0.866 1.000 0.003� 0.986 0.059 0.000� 0.000� 0.000�

SU 0.000� 0.000� 0.009� 0.103 0.000� 0.007� 1.000 0.000� 0.000� 0.000�

PSU 0.000� 0.000� 0.006� 0.816 0.000� 0.083 0.409 0.000� 0.000� 0.000�

PRBF 0.000� 0.000� 0.880 1.000 0.153 0.928 0.000� 0.000� 0.000� 0.000�

SRBF 0.000� 0.000� 0.000� 0.279 0.000� 0.000� 0.989 0.000� 0.000� 0.000�

PSU PU 0.000� 1.000 0.000� 0.916 0.001� 0.690 1.000 0.995 0.735 0.303

SU 0.000� 0.998 1.000 0.752 0.552 0.999 0.340 0.218 1.000 0.998

RBF 0.000� 0.000� 0.006� 0.816 0.000� 0.083 0.409 0.000� 0.000� 0.000�

PRBF 0.360 0.980 0.000� 0.872 0.000� 0.944 0.271 1.000 0.010� 0.989

SRBF 0.000� 0.341 0.967 0.949 0.975 0.226 0.988 0.701 1.000 0.755

PRBF PU 0.043� 0.984 1.000 1.000 0.763 1.000 0.799 1.000 0.991 0.080

SU 0.000� 0.839 0.000� 0.136 0.000� 0.371 0.000� 0.006� 0.001� 0.904

RBF 0.000� 0.000� 0.880 1.000 0.153 0.928 0.000� 0.000� 0.000� 0.000�

PSU 0.360 0.980 0.000� 0.872 0.000� 0.944 0.271 1.000 0.010� 0.989

SRBF 0.000� 0.515 0.000� 0.342 0.000� 0.013� 0.004� 0.043� 0.025� 0.978�

SRBF PU 0.000� 0.998 0.000� 0.412 0.017� 0.002� 0.592 0.012� 0.771 0.010�

SU 0.000� 0.998 0.937 0.997 0.153 0.676 0.967 0.998 1.000 0.489

RBF 0.000� 0.000� 0.000� 0.279 0.000� 0.000� 0.989 0.000� 0.000� 0.000�

PSU 0.000� 0.341 0.967 0.949 0.975 0.226 0.988 0.701 1.000 0.755

PRBF 0.000� 0.515 0.000� 0.342 0.000� 0.013� 0.004� 0.043� 0.025� 0.978

Dataset Means ranking of the CCRG

Balance lPSUXmPRBF XmPU 4 mSU 4 mSRBF 4 mRBF; mPSU 4 mPU;

Card lSRBFXmSU X mPU X mPSU X mPRBF 4 mRBF

German lSRBFXmPSUXmSU 4 mRBFXmPRBFXmPRBF

Glass lSUXmSRBFXmPSUXmPUXmPRBFXmRBF

Heart lSUXmPSUXmSRBF4mPUXmPRBFXmRBF; mPU4mRBF

Ionos. lSRBFXmSUXmPSUXmPRBF X mPUXmRBF; mSRBF4mPRBF; mSU4mRBF

Newth. lPRBFXmPUXmPSUXmSRBFXmRBFXmSU; mPRBF4mSRBF; mPU4mRBF

Pima lSUXmSRBFXmPSUXmPRBFXmPU4mRBF; mSU4mPRBF

Vote lPRBFXmPUXmPSUXmSRBFXmSU4mRBF; mPRBF4mPSU

Zoo lPUXmSU XmPSUXmPRBFXmSRBF4mRBF; mPU4mSRBF

� Statistically significant differences with p-valueo0.05; Tam.: Tamhane test; Tukey: Tukey test. mAXmB: topology A yields better results than topology B, but the

differences are not significant; mA4mB: topology A yields better results than topology B with significant differences. The binary relation X is not transitive.

P.A. Gutiérrez et al. / Neurocomputing 72 (2009) 2731–2742 2739
and if not, a Tamhane test [48] is done. Both tests aim to rank the
average of each level in each factor, in order to locate the level
whose mean CCRG is significantly better than the mean CCRG of all
the other levels.

Table 4 shows the results obtained following the above
methodology, including the test performed (Tukey or Tamhane)
and the performance ranking of the different basis functions. For
the Balance dataset, the best result is obtained for PSU or PRBF
combined basis functions. That is, the average CCRG obtained with
PSU is better than the averages obtained with the other combined
models, except PRBF. For Card, German and Ionos, the most
descriptive result is obtained with the combined model SRBF,
although it is not significantly better than all the others in any
case: it results in a multiple draw with four of the remaining
methods for the Card dataset, and with two methods for German
and Ionos. Very similar conclusions can be obtained from the
analysis of almost all the other datasets, except for the Zoo
dataset, where the procedures based on a single basis function
type result in significantly better results than those based on CBF
models.

Table 5 represents the results obtained following a similar
methodology with the number of links (# links) of the obtained
models, including the test performed (Tukey or Tamhane) and the
number of link ranking for different basis functions. The models
that have the significantly lowest number of connections are pure
PU models, while pure RBF models have the highest number of
connections. In this way, when using pure basis function models,
the number of PU model connections is always lower than that of
all the others, and when using CBF models, the number of
connections of those models formed with PUs (PRBF and PSU) is
also always lower than the number obtained with SRBF. This fact
is due to the properties of PU basis function: PUs have the ability
to capture interactions between input variables, which means
they do not need so many connections.

In some datasets, the hybridization of projection type basis
functions with RBFs yields better generalization results than



ARTICLE IN PRESS

Table 5
p-values of the Tamhane and Tukey tests for #links and ranking of the different basis function proposal based on this multiple comparison test.

H0 � m̂ðIÞ ¼ m̂ðJÞ p-Value

(I) (J) Balance Tam. Card Tam. German Tam. Glass Tam. Heart Tam. Ionos. Tam. Newth. Tukey Pima Tam. Vote Tam. Zoo Tam.

PU SU 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000�

RBF 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000�

PSU 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.001� 0.000� 0.000� 0.000�

PRBF 0.003� 0.000� 0.000� 0.000� 0.000� 0.000� 0.006� 0.000� 0.001� 0.001�

SRBF 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000�

SU PU 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000�

RBF 0.025� 0.000� 0.000� 0.000� 0.000� 0.000� 0.224 0.000� 0.000� 0.000�

PSU 0.102 0.206 0.938 1.000 1.000 0.544 0.392 0.208 0.997 0.000�

PRBF 0.000� 0.911 0.091 0.151 0.012� 0.000� 0.112 0.016� 1.000 0.000�

SRBF 0.907 0.312 0.843 0.000� 0.621 0.000� 0.668 0.000� 0.964 0.996

RBF PU 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000�

SU 0.025� 0.000� 0.000� 0.000� 0.000� 0.000� 0.224 0.000� 0.000� 0.000�

PSU 1.000 0.000� 0.000� 0.000� 0.000� 0.000� 0.001� 0.000� 0.000� 0.000�

PRBF 0.020� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000�

SRBF 0.001� 0.000� 0.000� 0.000� 0.000� 0.000� 0.976 0.000� 0.000� 0.000�

PSU PU 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.001� 0.000� 0.000� 0.000�

SU 0.102 0.206 0.938 1.000 1.000 0.544 0.392 0.208 0.997 0.000�

RBF 1.000 0.000� 0.000� 0.000� 0.000� 0.000� 0.001� 0.000� 0.000� 0.000�

PRBF 0.249 0.128 0.008� 0.052 0.008� 0.000� 0.988 1.000� 1.000 0.002�

SRBF 0.013� 0.004� 0.146 0.000� 0.451 0.000� 0.010 0.000� 0.498 0.003�

PRBF PU 0.003� 0.000� 0.000� 0.000� 0.000� 0.000� 0.006� 0.000� 0.001� 0.001�

SU 0.000� 0.911 0.091 0.151 0.012� 0.000� 0.112 0.016 1.000 0.000�

RBF 0.020� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000�

PSU 0.249 0.128 0.008� 0.052 0.008� 0.000� 0.988 1.000� 1.000 0.002�

SRBF 0.000� 1.000 0.945 0.004� 0.948 0.901 0.001� 0.000� 0.946 0.000�

SRBF PU 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000� 0.000�

SU 0.907 0.312 0.843 0.000� 0.621 0.000� 0.668 0.000� 0.964 0.996

RBF 0.001� 0.000� 0.000� 0.000� 0.000� 0.000� 0.976 0.000� 0.000� 0.000�

PSU 0.013� 0.004� 0.146 0.000� 0.451 0.000� 0.010 0.000� 0.498 0.003�

PRBF 0.000� 1.000 0.945 0.004� 0.948 0.901 0.001� 0.000� 0.946 0.000�

Dataset Means Ranking of the # Links

Balance mPUomPRBFomPSUpmRBFpmSUp mSRBF; mPSUomSU; mRBFomSRBF

Card mPUomPSUpmSUpmPRBFpmSRBFomRBF; mPSUomPRBF

German mPUomPSU p mSU p mSRBF p mPRBF omRBF; mSUo mPRBF

Glass mPUomPSU p mSU p mPRBFomSRBF omRBF; mPSUo mPRBF

Heart mPUomPSUpmSU p mSRBF p mPRBFomRBF; mSUomPRBF

Ionos mPUomPSUpmSUomPRBF p mSRBF omRBF

Newth. mPUomPRBFpmPSU p mSU pmSRBF p mRBF; mPSUo mSRBF

Pima mPUomPSUpmPRBF p mSUomSRBF omRBF

Vote mPUomPSUpmPRBFpmSUpmSRBFomRBF

Zoo mPUomPRBFomPSUomSRBFpmSUomRBF

� Statistically significant differences with p-valueo0.05; Tam.: Tamhane test; Tukey: Tukey test. mAXmB: topology A results in a lower number of connections than

topology B, but the differences are not significant; mA4mB: topology A results in a lower number of connections than topology B with significant differences. The binary

relation X is not transitive.

P.A. Gutiérrez et al. / Neurocomputing 72 (2009) 2731–27422740
corresponding pure RBF models, with a significantly lower
number of connections. In general, there is no definite conclusion
about the type of basis function applicable to a given dataset,
based on the statistical tests. Hybridization enhances general-
ization accuracy in Balance and Ionosphere datasets, while using
pure basis function models are suggested for Heart and Zoo
datasets. Moreover, CCRG values are significantly more homo-
geneous using hybrid models for the Balance, Card and Vote
datasets and there are no significant differences in the remaining
datasets.
6. Conclusions

A hybrid CBF neural network model has been proposed, using a
possible combination of two different transfer projection func-
tions (SU and PU) and/or kernel functions (RBF) in the hidden
layer of a feed-forward neural network. The different CBF models
proposed have been designed with an EA (CBFEP) constructed
specifically for the typology of a combination of basis functions,
taking into account the specific characteristics of each pure and
CBF model. The performance in the different datasets has been
improved by considering the best individuals both in CCR and
cross-entropy training errors (double elitism). The evaluation of
the model an the algorithm for ten datasets has shown results that
are comparable to those of other classification techniques found in
machine learning literature [26].

The results obtained confirm the theory that a classification
task can be performed using a model with two different
components [13]: one associated with projection functions (PU
or SU) and the other associated with kernel functions (RBF).
Determining the most adequate projection function strongly
depends on the dataset tackled, but, in general, the SRBF hybrid
models have better accuracy than PRBF, especially in those
datasets with two classes where only one discriminant function
exists. The capacity for generalization using basis functions with



ARTICLE IN PRESS

P.A. Gutiérrez et al. / Neurocomputing 72 (2009) 2731–2742 2741
sufficiently diverse global-local discriminator characteristics (i.e.
SRBF or PRBF models) is similar to or greater than the general-
ization capability of pure PU, SU or RBF models. Moreover, the
hybridization of the two projection basis functions (PU and SU)
did not present better accuracy than the remaining hybridizations
but it presented a significantly lower number of connections
(allowing smaller and more interpretable models) in the Card,
German, Glass, Heart, Ionosphere and Vote datasets. The general-
ization capability of PSU models is similar to that obtained with
their corresponding pure models.

The CBF models and the CBFEP algorithm maintain the
performance and the number of links of corresponding pure
models in several problems, or they even improve accuracy and/or
model sizes. In general, the number of connections of pure models
formed by PUs is always lower than that of all the others, and the
number of connections of those CBF models using PUs (PRBF and
PSU) is also lower than the number obtained with SRBF.

We are currently working on a hypothesis about the case in
which a modelling structure using combined PU and RBF basis
functions could possibly fit better than SU and RBF pure basis
functions, associated to the existence of a big difference between
the values of a relatively small number of data at the domain
borders and in-domain inner data. This hypothesis is going to be
evaluated empirically using a noise level measurement obtained
for each dataset, and, in this way, the best combined model (SRBF
or PRBF) would be determined according to the characteristics of
the dataset in question.
Acknowledgments

This work has been partially subsidized by TIN 2008-06681-
C06-03 project of the Spanish Inter-Ministerial Commission of
Science and Technology (MICYT), FEDER funds and the P08-TIC-
3745 project of the ‘‘Junta de Andalucı́a’’.

References

[1] J. Alcalá-Fdez, L. Sánchez, S. Garcı́a, M.J. del Jesús, S. Ventura, J.M. Garrell, J.
Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernández, F. Herrera, KEEL: a
software tool to assess evolutionary algorithms for data mining problems,
Soft Computing 13 (3) (2007) 307–318.

[2] P.J. Angeline, G.M. Saunders, J.B. Pollack, An evolutionary algorithm that
constructs recurrent neural networks, IEEE Transactions on Neural Networks
5 (1) (1994) 54–65.

[3] A. Asuncion, D.J. Newman, UCI Maching Learning Repository, /http://
www.ics.uci.edu/�mlearn/MLRepository.htmlS, Irvine, CA: University of
California, School of Information and Computer Science, 2007

[4] A.S. Atukorale, T. Downs, P.N. Suganthan, Boosting HONG networks,
Neurocomputing 51 (2003) 75–86.

[5] S.A. Billings, G.L. Zheng, Radial basis function network configuration using
genetic algorithms, Neural Networks 8 (1995) 877–890.

[6] C.M. Bishop, Improving the generalization properties of radial basis function
neural networks, Neural Computation 3 (4) (1991) 579–581.

[7] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University
Press, 1995.

[8] L.N. Castro, E.R. Hruschka, R.J.G.B. Campello, An evolutionary clustering
technique with local search to design RBF neural network classifiers, in:
Proceedings of the IEEE International Joint Conference on Neural Networks,
2004, pp. 2083–2088.

[9] S. Chen, S.A. Billings, C.F.N. Cowan, P.W. Grant, Practical identification of
NARMAX models using radial basis functions, International Journal of Control
52 (1990) 1327–1350.

[10] S. Coen, N. Intrator, Global optimization of RBF networks, Technical Report,
S.o.C. Science, Tel-Aviv University.

[11] S. Cohen, N. Intrator, A hybrid projection-based and radial basis function
architecture: initial values and global optimization, Pattern Analysis and
Applications 5 (2002) 113–120.

[12] C. Darken, J. Moody, Fast adaptive K-means clustering: some empirical results,
in: Proceedings of the IEEE INNS International Joint Conference on Neural
Networks, 1990, pp. 233–238.

[13] D. Donoho, Projection based in approximation and a duality with kernel
methods, The Annals of Statistics 17 (1989) 58–106.
[14] W. Duch, R. Adamczak, G.H.F. Diercksen, Constructive density estimation
network based on several different separable transfer functions, in: Proceed-
ings of the 9th European Symposium on Artificial Neural Networks, Bruges,
Belgium, 2001, pp. 107–112.

[15] W. Duch, N. Jankowski, Transfer functions hidden possibilities for better
neural networks, in: Proceedings of the 9th European Symposium on Artificial
Neural Networks, Bruges, Belgium, 2001, pp. 81–94.

[16] R. Durbin, D. Rumelhart, Products units: a computationally powerful and
biologically plausible extension to backpropagation networks, Neural Com-
putation 1 (1989) 133–142.

[17] D.B. Fogel, A.J. Owens, M.J. Wals, Artificial Intelligence Through Simulated
Evolution, Wiley, New York, 1966.

[18] J.A.S. Freeman, D. Saad, Learning and generalization in radial basis function
networks, Neural Computation 7 (5) (1995) 1000–1020.

[19] J. Friedman, Multivariate adaptive regression splines (with discussion), The
Annals of Statistics 19 (1991) 1–141.

[20] J.H. Friedman, W. Stuetzle, Projection pursuit regression, Journal of the
American Statistical Association 76 (1981) 817–823.

[21] K.J. Hunt, D. Sbarbaro, R. Zbikowski, P.J. Gawthrop, Neural networks for
control system—a survey, Automatica 28 (1992) 1083–1112.

[22] A. Ismail, A.P. Engelbrecht, Global optimization algorithms for training
product units neural networks, in: Proceedings of the International Joint
Conference on Neural Networks IJCNN’2000, Italy, 2000, pp. 132–137.

[23] B.C. Iulian, Hybrid feedforward neural networks for solving classification
problems, Neural Processing Letters 16 (1) (2002) 81–91.

[24] N. Jankowski, W. Duch, Optimal transfer function neural networks, in:
Procedings of the 9th European Symposium on Artificial Neural Networks,
Bruges, Belgium, 2001, pp. 101–106.

[25] D.J. Janson, J.F. Frenzel, Training product unit neural networks with genetic
algorithms, IEEE Expert 8 (5) (1993) 26–33.

[26] N. Landwehr, M. Hall, Logistic model trees, Machine Learning 59 (2005)
161–205.

[27] L.R. Leerink, Learning with products units, Advances in Neural Networks
Processing Systems 7 (1995) 537–544.

[28] M. Lehtokangas, J. Saarinen, Centroid based Multilayer Perceptron Networks,
Neural Processing Letters 7 (1998) 101–106.

[29] F.H.F. Leung, H.K. Lam, S.H. Ling, P.K.S. Tam, Tuning of the structure and
parameters of a neural network using an improved genetic algorithm, IEEE
Transactions on Neural Networks 14 (1) (2003) 79–88.

[30] H. Levene, In Contributions to Probability and Statistics, Stanford University
Press, 1960.

[31] R.P. Lippmann, Pattern classification using neural networks, IEEE Commu-
nications Magazine 27 (1989) 47–64.

[32] A.C. Martı́nez-Estudillo, C. Hervás-Martı́nez, F.J. Martı́nez-Estudillo, N. Garcı́a,
Hybridation of evolutionary algorithms and local search by means of a
clustering method, IEEE Transaction on Systems, Man and Cybernetics, Part.
B: Cybernetics 36 (3) (2006) 534–546.

[33] A.C. Martı́nez-Estudillo, F.J. Martı́nez-Estudillo, C. Hervás-Martı́nez, N. Garcı́a,
Evolutionary product unit based neural networks for regression, Neural
Networks 19 (4) (2006) 477–486.

[34] F.J. Martı́nez-Estudillo, C. Hervás-Martı́nez, P.A. Gutiérrez, A.C. Martı́nez-
Estudillo, Evolutionary product-unit neural networks classifiers, Neurocom-
puting 72 (1–3) (2008) 548–561.

[35] R.G. Miller, Beyond ANOVA, Basics of Applied Statistics, Chapman & Hall,
London, 1996.

[36] M.T. Musavi, W. Ahmed, K.H. Chan, K.B. Farms, D.M. Hummels, On the
training of radial basis function classifiers, Neural Networks 5 (1992)
595–603.

[37] M.J.L. Orr, Regularisation in the selection of radial basis function centres,
Neural Computation 7 (3) (1995) 606–623.

[38] C. Panchapakesan, M. Palaniswami, D. Ralph, C. Manzie, Effects of moving the
centers in an RBF network, IEEE Transactions on Neural Networks 13 (6)
(2002) 1299–1307.

[39] Y.H. Pao, Y. Takefuji, Functional-link net computing: theory, system
architecture, and functionalities, IEEE Computer 25 (5) (1992) 76–79.

[40] J. Park, I.W. Sandberg, Universal approximation using radial basis function
networks, Neural Computation 3 (2) (1991) 246–257.

[41] R. Reed, Pruning algorithms. A survey, IEEE Transactions on Neural Networks
4 (1993) 740–747.

[42] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by
backpropagating errors, Nature 323 (1986) 533–536.

[43] A. Sakurai, Tighter bounds of the VC-dimension of three layer networks, in:
Proceedings of the World Congress on Neural Networks, Erlbaum, Hillsdale,
New Jersey, 1993, pp. 540–543.

[44] M. Schmitt, On the complexity of computing and learning with multiplicative
neural networks, Neural Computation 14 (2001) 241–301.

[45] M. Schmitt, Radial basis function neural networks have superlinear VC
dimension, in: Proceedings of the COLT/EuroCOLT2001, Lecture Notes in
Artificial Intelligence, vol. 2111, 2001, pp. 14–30.

[46] D.F. Specht, A general regression neural network, IEEE Transactions on Neural
Networks 2 (6) (1991) 568–576.

[47] J.A.K. Suykens, J.P.L. Vandewalle, B.L.R.D. Moor, Artificial Neural Networks for
Modelling and Control of Non-linear Systems, Kluwer Academic Publishers,
USA, 1996.

[48] A.C. Tamhane, D.D. Dunlop, Statistics and Data Analysis, Prentice Hall,
Englewood Cliffs, NJ, 2000.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html


ARTICLE IN PRESS

P.A. Gutiérrez et al. / Neurocomputing 72 (2009) 2731–27422742
[49] E.K. Tang, P.N. Suganthan, X. Yao, An analysis of diversity measures, Machine
Learning 65 (2006) 247–271.

[50] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, Berlin,
1999.

[51] S. Ventura, C. Romero, A. Zafra, J.A. Delgado, C. Hervás-Martı́nez, JCLEC: a JAVA
framework for evolutionary computation, Soft Computing 12 (4) (2007)
381–392.

[52] D. Wedge, D. Ingram, D. McLean, C. Mingham, Z. Bandar, On global-local
artificial neural networks for function approximation, IEEE Transactions on
Neural Networks 17 (4) (2006) 942–952.

[53] X. Yao, Evolving artificial neural networks, Proceedings of the IEEE 87 (9)
(1999) 1423–1447.

[54] X. Yao, Y. Liu, A new evolutionary system for evolving artificial neural
networks, IEEE Transactions on Neural Networks 8 (3) (1997) 694–713.

[55] Z.Q. Zhao, D.S. Huang, A mended hybrid learning algorithm for radial basis
function neural networks to improve generalization capability, Applied
Mathematical Modelling 31 (2007) 1271–1281.

[56] Q. Zhu, Y. Cai, L. Liu, A global learning algorithm for a RBF network, Neural
Networks 12 (1999) 527–540.
Pedro A. Gutiérrez-Peña was born in Cordoba, Spain,
in 1982. He received his B.S. degree in Computer
Science from the University of Seville, Seville, Spain, in
2006. He is currently working toward his Ph.D. degree
in the Department of Computer Science and Numerical
Analysis (University of Cordoba, Spain), in the area of
computer science and artificial intelligence. His current
interests include neural networks and their applica-
tions, evolutionary computation and hybrid algo-
rithms.
César Hervás-Martı́nez was born in Cuenca, Spain. He
received his B.S. degree in Statistics and Operating
Research from the Universidad Complutense, Madrid,
Spain, in 1978 and his Ph.D. degree in Mathematics
from the University of Seville, Seville, Spain, in 1986.
He is a Professor with the University of Córdoba in the
Department of Computing and Numerical Analysis in
the area of computer science and artificial intelligence
and an Associate Professor in the Department of
Quantitative Methods in the School of Economics. His
current research interests include neural networks,
evolutionary computation, and the modelling of nat-

ural systems.
Mariano Carbonero-Ruz was born in Córdoba, Spain.
He received his M.Sc. degree in Mathematics in 1987
and his Ph.D. degree in Mathematics in 1995, speciality
Statistics and Operational Research, both from the
University of Seville, Seville, Spain. Later, he received
his M.Sc. degree in Economics Sciences in 2000 from
UNED, Spain. He develops his research in applied
statistics in machine learning and Economic Sciences.
He is currently a Professor in the Department of
Management and Quantitative Methods in ETEA,
University of Córdoba, Spain.
Juan C. Fernández-Caballero was born in Peñarroya-
Pueblonuevo, Córdoba, Spain, in 1980. He received the
B.S. degree in Computer Science from the University of
Granada, Spain, in 2005. He is currently a Ph.D. Student
in the Department of Computing and Numerical
Analysis, University of Córdoba, Spain, in the area of
computer science and artificial intelligence. His current
areas of interest include neural networks and applica-
tions, evolutionary computation and multiobjective
optimization.


	Combined projection and kernel basis functions for classification in evolutionary neural networks
	Introduction
	Related works
	Neural networks based on projection basis functions
	Neural networks based on kernel basis functions
	Neural networks based on hybrid basis functions

	Combined basis function model for classification
	Basis function complexity and generalization capability

	The combined basis function evolutionary programming algorithm
	Experiments
	Conclusions
	Acknowledgments
	References




