
ORIGINAL PAPER

CO2RBFN: an evolutionary cooperative–competitive RBFN
design algorithm for classification problems

Marı́a D. Perez-Godoy Æ Antonio J. Rivera Æ
Francisco J. Berlanga Æ Marı́a José Del Jesus

Published online: 16 September 2009

� Springer-Verlag 2009

Abstract This paper presents a new evolutionary coop-

erative–competitive algorithm for the design of Radial

Basis Function Networks (RBFNs) for classification prob-

lems. The algorithm, CO2RBFN, promotes a cooperative–

competitive environment where each individual represents

a radial basis function (RBF) and the entire population is

responsible for the final solution. The proposal considers,

in order to measure the credit assignment of an individual,

three factors: contribution to the output of the complete

RBFN, local error and overlapping. In addition, to decide

the operators’ application probability over an RBF, the

algorithm uses a Fuzzy Rule Based System. It must be

highlighted that the evolutionary algorithm considers a

distance measure which deals, without loss of information,

with differences between nominal features which are very

usual in classification problems. The precision and com-

plexity of the network obtained by the algorithm are

compared with those obtained by different soft computing

methods through statistical tests. This study shows that

CO2RBFN obtains RBFNs with an appropriate balance

between accuracy and simplicity, outperforming the other

methods considered.

Keywords Radial Basis Function Networks �
Evolutionary Algorithms � Cooperative–Competitive

Evolutionary Design � Classification �
Fuzzy Rule Base Systems

1 Introduction

Radial Basis Function Networks (RBFNs) are one of the

most important Artificial Neural Network (ANN) para-

digms in the machine design field. An RBFN is a feed-

forward ANN with a single layer of hidden units, called

radial basis functions (RBFs). The first research on neural

networks based on RBFs (Broomhead and Lowe 1988;

Powell 1985; Moody and Darken 1989) was carried out at

the end of the 1980s. From then until now the overall

efficiency of RBFNs has been proved in many areas like

pattern classification (Buchtala et al. 2005), function

approximation (Park and Sandberg 1991), time series pre-

diction (Whitehead and Choate 1996) and multiple specific

applications such as credit assessment (Lacerda et al.

2005), face recognition (Er et al. 2005), process control

(Huang et al. 2008), medical diagnosis (Maglogiannis et al.

2008; Marcos et al. 2008), and time series forecasting (Sun

et al. 2005), among others.

The main features of an RBFN are:

• It is composed of a set of RBFs which have a

characteristic locally tuned response that depends on

the centre and the width (radius) of each RBF.

• It has a simple topological structure, with only one

hidden layer.

• It is one of the few existing interpretable ANN models

and gives us the possibility of extracting rules (Jin and

Sendhoff 2003; Jang and Sun 1993).

M. D. Perez-Godoy � A. J. Rivera � F. J. Berlanga �
M. J. Del Jesus (&)

Departamento de Informática,

Universidad de Jaén, Jaén, Spain

e-mail: mjjesus@ujaen.es

M. D. Perez-Godoy

e-mail: lperez@ujaen.es

A. J. Rivera

e-mail: arivera@ujaen.es

F. J. Berlanga

e-mail: berlanga@ujaen.es

123

Soft Comput (2010) 14:953–971

DOI 10.1007/s00500-009-0488-z

• It has universal approximation capability (Park and

Sandberg 1991, 1993).

The objective of any RBFN design process is to deter-

mine centres, widths and the linear output weights con-

necting the RBFs to the output neuron layer. The most

traditional learning procedure has two stages: first, unsu-

pervised learning of centres and widths is used, and finally

output weights are established by means of supervised

learning. Clustering techniques (Pedrycz 1998) are nor-

mally used to adjust the centres. Regarding the widths, they

may all be given the same value, may reflect the width of

the previously calculated clusters (i.e. RBFs), or may be

established as the average distance between RBFs, among

other possibilities. In order to obtain the weights in the

second stage, algorithms such as Least Mean Square

(LMS) (Widrow and Lehr 1990) or Singular Value

Decomposition (SVD) (Golub and Van Loan 1996) can be

used.

As well as this typical methodology, different design

strategies for RBFN design can be found in the literature.

Due to the fact that RBFNs were initially used for function

approximation, most of the methods are based on tradi-

tional optimization techniques such as regularization (Orr

1995), orthogonalization of regressors (Chen et al. 1991),

gradient-based (Neruda and Kudová 2005), or Levenberg–

Marquardt (Ampazis and Perantonis 2002). These tech-

niques can be used to decide the RBFs to aggregate or

eliminate and may be considered as forward or backward

selection methods (Peng et al. 2006).

Another important paradigm for RBFN design is Evo-

lutionary Computation (Bäck et al. 1997; Holland 1975;

Goldberg 1989), a general stochastic optimization frame-

work inspired by natural evolution. In any evolutionary

process, the codification scheme is one of the most

important characteristics. There are two main ways of

representing a solution in the RBFN design:

• The Pittsburgh approach, which codifies the whole

RBFN in a chromosome (Harpham et al. 2004).

• The cooperative–competitive approach, which repre-

sents an RBF in each individual. In this way, each RBF

competes for survival and all the RBFs in the popula-

tion cooperate towards a definite solution (Whitehead

and Choate 1996). The key matter in these models is

the computation of the role of each individual (credit

assignment), considering both the accuracy and com-

plexity of the final RBFN.

The Pittsburgh approach has to deal with two problems:

to face up to with the high dimensionality of the search

space and to define an adequate competition and coopera-

tion among different components of the RBFN. The

cooperative–competitive approach reduces the search

space for the GA, and the representation of the solution

with an adequate credit assignment function makes easier

the obtaining of an RBFN composed by a few number of

accurate RBFs, which are not overlapping and represents

the information of the data examples.

The objective of our algorithm, CO2RBFN, is to obtain

simple and accurate RBFNs. A simple RBFN is composed

of a low number of RBFs, which precisely represent the

knowledge about the patterns of their environment and

which are correctly located in the space of patterns (with

minimum overlapping). In addition, the RBFs must work

well together in order to obtain an RBFN with an adequate

generalization.

In this way, our proposal, CO2RBFN, follows the

cooperative–competitive evolutionary approach for the

design of RBFNs applied to classification problems. In

order to obtain simple and accurate networks, this evolu-

tionary paradigm is reinforced with the remaining design

components:

• a fitness function (which considers three factors for

each RBF; contribution to the output of the complete

RBFN, local error and overlapping),

• some specific evolutionary operators based on analys-

ing the environment of the RBFs,

• a distance measure which deals, without loss of

information, with differences between nominal features

which are very usual in classification problems, and

• a Fuzzy Rule Based System (FRBS) which decides the

operators’ application probability over a certain RBF.

The paper is organized as follows: in Sect. 2 RBFNs and

the classification problem framework are described. In

Sect. 3, a revision of the evolutionary proposals for RBFN

design is shown. The CO2RBFN algorithm is explained in

Sect. 4. To prove the efficiency of the proposal, a deep

comparative statistical study has been carried out with

different evolutionary RBFN design paradigms, neural

network models and rule induction methods. The experi-

mental environment is described in Sect. 5. The analysis of

the results is presented in Sect. 6. Finally, in Sect. 7, the

main conclusions are shown.

2 RBFNs and the classification problem framework

An RBFN is a feed-forward neural network with three lay-

ers: an input layer with n nodes, a hidden layer with m

neurons or RBFs, and an output layer with one or several

nodes (Fig. 1). Each input node corresponds to a feature of

the input pattern. The m neurons of the hidden layer are

activated by a radially symmetric basis function, /i:R
n ? R,

which can be defined in several ways (Rojas et al. 1997).

954 M. D. Perez-Godoy et al.

123

From all the possible choices for /i, the Gaussian

function is the most widely used:/iðx~Þ ¼ /iðe�ðkx~� c

*

ik=diÞ2Þ;
where c~i 2 Rn is the centre of basis function /i, di [R is

the width (radius), and kk is typically the Euclidean norm

on Rn. The output of one basis function will be high when

the input vector and the centre of this basis function are

closer, always taking into account the value of the radius.

The weights wij show the contribution of an RBF to the

respective output node, and therefore output nodes imple-

ment the weighted sum of RBF outputs (Eq. 1).

fjðx~Þ ¼
Xm

i¼1

wij/iðx~Þ ð1Þ

In a classification environment, the RBFN has to

perform mapping from an input space Xn to a finite set of

classes C with k classes, in the following way: considering

a training set S with p patterns:

S ¼ ðx~u; cuÞjx~u 2 Xn; cu 2 C; u ¼ 1; . . .; pf g ð2Þ

where x~u is the feature vector and cu is the class it belongs

to.

• Usually in the classification scenario, the number of

outputs of the RBFN corresponds to the number of

classes (k), and each class cu is specifically assigned to

an output node.

• In order to train the network, the membership to class

cu is encoded into a binary vector z~u 2 f0; 1gk
through

the relation z~i
u ¼ 1 iff cu = i, and z~i

u ¼ 0 otherwise.

• After training, the output of the output node j, fjðx~uÞ for

a given input vector x~u can be interpreted as the class

membership probability. Usually, the output node with

maximum activation will be taken as the output class

for the network.

• In a simple classification environment, each basis

function /i will cover a set of patterns of a given class

cu. If the network weights have been correctly trained,

the RBF /i will obtain a high activation value for these

patterns belonging to class cu, and therefore they will

be properly classified by the RBFN.

This behaviour, together with the above-mentioned

characteristics such as simple topology or local response,

confers to RBFNs a degree of interpretability higher than

most ANNs. In fact, the functional equivalence between

RBFNs and interpretable systems like fuzzy inference

systems has been demonstrated by Jang and Sun (1993),

and different methods for the extraction of interpretable

fuzzy rules from a trained RBFN have been proposed (Jin

and Sendhoff 2003). To extract interpretable fuzzy rules

from an RBFN, the number of RBFs should be kept small

and there should be no very similar basis function. These

two characteristics are considered in our proposal.

A typical problem of several classification models,

RBFNs included, consists of working with datasets that

cannot only have numerical attributes (i.e. real or integer)

but also nominal ones. One of the key characteristics of any

RBFN model is pattern evaluation, which implies the cal-

culation of the distance between the pattern and the RBF

centres of the network. Euclidean distance is typically used

when the given attributes are numerical, obtaining satis-

factory results. This metric is only defined for numerical

attributes. With nominal attributes, a definition of the

similarity (dissimilarity) measure becomes less trivial

(Esposito et al. 2000a). A simple but commonly used

measure is the Overlap Metric (OM) (Stanfill and Waltz

1986), also called Hamming distance for binary attributes.

Under this metric, for two possible values, the distance is

defined as zero when these values are identical and as one

otherwise. However, this metric implies loss of information

because it considers that all attributes values are of equal

distance from each other, not taking into account different

degrees of similarity. There exist alternative dissimilarity

measures such as the Value Difference Metric (VDM)

(Wilson and Martinez 1997), and Adaptive Dissimilarity

Matrix (ADM) (Cheng et al. 2004), among others. For the

VDM two feature values are considered to be closer if they

have similar classifications (i.e. more similar correlations

with the output classes). On the other hand, ADM takes

into account the possible correlation between the attributes.

In Cheng et al. (2004), the RBFN model is used to test

the efficiency of the OM, VDM and ADM dissimilarity

measures and it is demonstrated that VDM and ADM

outperform OM. It is more difficult to conclude which

dissimilarity measure is the most efficient when comparing

VDM and ADM results. Finally, we have decided to use

the VDM measure keeping in mind that it is, from a

computational point of view, simpler and more efficient

than ADM. Nevertheless, the definition of a suitable dis-

tance for both numerical and nominal attributes is neces-

sary. The distance we have chosen is HVDM (Wilson and

Fig. 1 RBFN topology

CO2RBFN: an evolutionary cooperative–competitive RBFN design algorithm 955

123

Martinez 1997), which uses the Euclidean distance for

numerical attributes:

HVDMðx; yÞ ¼
ffi
Xn

a¼1

d2
aðx; yÞ

s
ð3Þ

where n is the number of attributes, and the function da(x,y)

returns a distance between the two values x and y for

attribute a in the following way:

daðx; yÞ ¼
1 if x or y is unknown

VDMaðx; yÞ if a is nominal

Eaðx; yÞ if a is numerical

8
<

: ð4Þ

The Euclidean distance is a well-known distance for

numerical attributes, defined as:

Eðx; yÞ ¼
ffi
Xn

a¼1

xa � yað Þ2
s

ð5Þ

VDM provides an appropriate distance function for

nominal attributes:

VDMaðx; yÞ ¼
XC

c¼1

Na;x;c

Na;x
� Na;y;c

Na;y

����

����
q

¼
XC

c¼1

Pa;x;c � Pa;y;c

�� ��q

ð6Þ

where

• Na,x is the number of instances in the training set having

x as the value for attribute a;

• Na,x,c is the number of instances in the training set

having x as the value for attribute a and c as the output

class;

• C is the number of output classes in the problem

domain;

• q is a constant (we have used q = 1).

• Pa,x,c is the conditional probability that the output class

is c, given that attribute a has the value x, i. e., P(c|a).

Pa,x,c is defined as:

Pa;x;c ¼
Na;x;c

Na;x
ð7Þ

3 The evolutionary design of RBFNs

As previously mentioned, there are two problem areas

associated with the design of ANNs in general and so with

the design of RBFNs (Sanchez 2002): determining the

optimal architecture and the optimal parameters.

The first problem is simplified in the case of RBFNs

since there is one hidden layer and the number of data

vector in the training set defines an upper bound for the

number of hidden nodes. There are different proposals for

the determination of hidden layer nodes (RBFs) based on

Akaike’s information criterion (Chen et al. 1990) that

provides a compromise between network complexity and

performance or on sequential learning (increasing or

decreasing the number of RBFs) as (Peng et al. 2006;

Holcomb and Morari 1991; Lee and Kil 1991; Musavi et al.

1992). In Sundararajan et al. (1999), a review of this area

can be found.

The second problem in the RBFN design is focused on

the basis centres, widths and weights, which must be rep-

resentative of the whole data set. The most usual approach

for this problem, the clustering algorithms (Pedrycz 1998),

usually does have the problem of determining the number

of hidden nodes a priori and so it can only achieve a local

optimal solution (Harpham et al. 2004).

These problems have been addressed by evolutionary

algorithms (EAs) (Schaffer et al. 1992; Yao 1993, 1999;

Balakrishnan and Honavar 1995; Harpham et al. 2004).

The following taxonomy presents the main areas where the

EAs have been applied to RBFN design (Yao 1999;

Harpham et al. 2004):

1. Evolving network architecture. In the RBFN design,

the determination of the network architecture implies

the obtaining of the number of hidden nodes. This

problem is usually addressed with evolutionary pro-

posals together with the RBFN parameters in Pitts-

burgh approaches (Burdsall and Giraud-Carrier 1997;

Sergeev et al. 1998; Xue and Watton 1998).

2. Evolving RBFN parameters (centres, widths and

weights of the RBFs). The use of EAs to optimize

the connection weights could eliminates the possibility

of converging to a local minimum but usually this

problem is not address with EAs in an independent

way but with other parameters as basis width (Sumathi

et al. 2001; Sheta and De Jong 2001; Jiang et al. 2003).

In Vesin and Gruter (1999), Dawson et al. (2000)

proposals which evolve only the basis centre and width

can be found.

3. Optimizing the data set. The dimensionality of the

learning problem can be drastically reduced selecting

an optimal subset of training data, which is used for

training the RBFN (Billings and Zheng 1995; Sergeev

et al. 1998). On the other hand, the selection of the

most relevant attributes for the RBFN design is not

deeply studied in the specialized bibliography (Fu and

Wang 2003) and it can be addressed by means EAs (Fu

and Wang 2002; Ferreira et al. 2003; Pérez-Godoy

et al. 2008).

As mentioned earlier, in the evolutionary design of

RBFNs most of the proposals address the different prob-

lems by means hybrid algorithms where the EA optimizes

the basis centres and widths and the architecture and the

second stage uses a supervised learning method in order to

956 M. D. Perez-Godoy et al.

123

obtain the weights (Chaiyaratana and Zalzala 1998;

Sergeev et al. 1998; Xue and Watton 1998; Vesin and

Gruter 1999; Moechtar et al. 1999; Dawson et al. 2000;

Chen et al. 1999).

In any evolutionary algorithm, and therefore in those for

the evolutionary design of RBFNs, two main aspects must

be considered:

1. The way to represent and manage the solutions.

2. The way to compute the goodness of any candidate

solution.

Regarding the first aspect, in the specialized bibliogra-

phy most of the evolutionary proposals for the design of

RBFNs (Lacerda et al. 2005; Harpham et al. 2004; Rivas

et al. 2004) codifies a complete RBFN by means an indi-

vidual and the population of RBFNs evolves through

different operators. It is called Pittsburgh representation

scheme. In the specialized bibliography, there are some

proposals which represents a solution by means this Pitts-

burgh scheme: with binary encoded (Sergeev et al. 1998;

Vesin and Gruter 1999; Moechtar et al. 1999; Dawson et al.

2000; Sumathi et al. 2001; Du and Zhang 2008), integer

(Billings and Zheng 1995) or real encoded (Leung et al.

2002; Esposito et al. 2000b) chromosomes.

Nevertheless, according to Potter and De Jong (2000)

evolutionary computation has some difficulties in solving

certain types of problems, especially when an individual

represents a complete solution composed of independent

subcomponents. An alternative to the classical (Pittsburgh)

approach is the cooperative–competitive evolutionary

strategy (Whitehead and Choate 1996; Potter and De Jong

2000), which provides a framework where an individual of

the population represents only a part of the solution,

evolving in parallel, competing to survive but at the same

time cooperating in order to find a common solution (the

complete RBFN). This approach has the advantage of

being computationally less complex, since an individual

does not represent the whole solution but only a part of it.

With this approach, two main problems must be addressed:

the credit assignment, or the fitness allocated to each

individual according to its contribution to the final solution,

and the mechanism used in order to maintain diversity

among individuals of the population.

In the bibliography, there are some proposals concerning

the design of RBFNs based on cooperative–competitive

evolutionary strategies (Whitehead and Choate 1996;

Topchy et al. 1997; Li et al. 2008). The most traditional is

(Whitehead and Choate 1996) where an individual repre-

sents an RBF and the population the whole network.

Individual credit assignment is defined depending on the

weight of the RBF. In the same way, in the algorithm

described in (Topchy et al. 1997) an individual is an RBF

and credit assignment is calculated according to the

efficiency of the RBF or its contribution to the correct

output of the network. In Li et al. (2008), a co-evolutionary

RBFN design method, interacting co-adapted subpopula-

tions evolve independently. Each individual in a population

represents a particular component (group of RBFs) of the

RBFN. The fitness of an individual from a particular sub-

population is assessed by associating it with representatives

from other subpopulations.

The authors of this paper have proposed evolutive

methods for function approximation and time series fore-

cast (Rivera et al. 2007) using the cooperative–competitive

paradigm. In addition, a first approach to solve classifica-

tion problems has been described in Pérez-Godoy et al.

(2007).

Regarding the computation of the quality of the candi-

date solutions, managing only one objective in order to

optimize RBFNs (the error, for instance) may lead us to

obtain RBFNs with high complexity, i.e. a high number of

RBFs. This is because it is easier to reduce error with those

RBFNs having many RBFs than with those having few

neurons. Evolutionary multiobjective optimization (Deb

2001) can be used in order to optimize several objectives

such as error and complexity (the number of RBFs) for

example. In these evolutionary algorithms, all the objec-

tives must be taken into account in order to define both the

fitness and the relation order among individuals. The goal

is to obtain a set of optimized solutions (non-dominated

solutions) with similar quality rather than a single optimal

solution. Different multiobjective evolutionary algorithms

applied to RBFN design have been proposed in (González

et al. 2003; Teixeira et al. 2008; Guillén et al. 2007; Yen

2006).

To date, all the multi-objective proposals for the RBFN

design use the Pittsburgh codification scheme, because of

the difficulties in the comparison of partial solutions (as the

cooperative–competitive approach requires).

To deal with multiple quality measures, the evolu-

tionary proposals, in the specialized bibliography, com-

bine them in the credit assignment (Rivera et al. 2001) or

in the selection procedure (Rivera et al. 2007) among

other possibilities.

4 CO2RBFN: an evolutionary cooperative–competitive

hybrid algorithm for RBFN design

CO2RBFN (Cooperative Competitive algorithm for RBFN

design) combines different soft computing techniques such

as neural networks, evolutionary programming with a

cooperative–competitive approach and fuzzy rule-based

systems. This evolutionary strategy allows us to determine

RBFN parameters, and the evolutionary operators’ appli-

cation is decided by means of a FRBS (Fig. 2).

CO2RBFN: an evolutionary cooperative–competitive RBFN design algorithm 957

123

The proposed RBFN design algorithm is based on the

evolutionary programming paradigm (Fogel et al. 1966)

which has the following features:

• there is a phenotypic level evolution

• mutations are the single sources of the modification in

feasible solutions

• genetic operators such as crossover or similar are not

used

• the selection procedure can be viewed as a tournament

between parents and progeny.

As mentioned previously, the objective of our algorithm,

CO2RBFN, is to obtain simple and accurate RBFNs. A

simple RBFN is composed of a low number of RBFs,

which precisely represent the knowledge about the patterns

of their environment and which are correctly located in the

space of patterns (with minimum overlapping). In addition,

the RBFs must work well together in order to obtain an

RBFN with an adequate generalization.

With these aims in mind, our proposal follows the

cooperative–competitive evolutionary strategy, where each

individual of the population represents an RBF (gaussian

function will be considered as RBF) and the entire popu-

lation is responsible for the final solution. This paradigm

provides a framework where an individual of the popula-

tion represents only a part of the solution, competing to

survive (since it will be eliminated if its performance is

poor) but at the same time cooperating in order to build the

whole RBFN, which adequately represents the knowledge

about the problem and achieves a good generalization for

new patterns. In this scenario, the local operation (RBFs

with local response) and the representation of the majority

of the examples (by means of any RBF) is reinforced

and the overlapping among RBFs is minimized. These

design-guidelines in our algorithm improve the interpret-

ability of the RBFN obtained.

Subsequently, the remaining components of our algo-

rithm are designed: fitness function, evolutionary operators,

the distance measure and the fuzzy rule base system, which

decides the probability of applying operators.

In this environment, in which the final solution depends

on the behaviour of many components, the fitness of each

individual is known as credit assignment. In order to mea-

sure the credit assignment of an individual, three factors

have been proposed to evaluate the role of each RBF in the

network (error, contribution and overlapping). These factors

reinforce: the individual quality of RBFs (calculating the

local error inside the radius of each RBF), their generality

(measured by the contribution which promotes RBFs with a

high number of patterns inside its radius), and the adequate

location of the RBFs in the space of patterns (measured by

the overlapping). Together, these three factors enhance the

individual role of RBFs, and moreover their cooperative

work to build an accurate and simple network. It can be

highlighted that the last two factors take into account all the

patterns and the behaviour of the rest of the RBFs. In this

way, our fitness function combines concepts such as coop-

eration, specialization and niching (Buchtala et al. 2005).

Our evolutionary operators have been designed in order

to achieve an adequate balance between exploration and

exploitation of data. Some of them include characteristics

of clustering algorithm in order to properly analyze the

local environment of the RBFs. Specifically four evolu-

tionary operators have been proposed: an operator which

eliminates RBFs, two operators which mutate RBFs, and

finally an operator which maintains RBF parameters in

order to explore and exploit the search space and to pre-

serve the best RBFs, respectively.

Fig. 2 CO2RBFN hybrid

architecture

958 M. D. Perez-Godoy et al.

123

In order to decide the operators’ application probability

over a certain RBF the algorithm uses an FRBS, which

represents expert knowledge in the design of RBFNs. The

factors proposed for credit assignment have been used as

input parameters for the FRBS, the operators’ application

probability being the outputs of the FRBS.

Finally, it must be highlighted that the proposal con-

siders a distance measure which deals, without loss of

information, with differences between nominal features

which are very usual in classification problems.

All these components constitute an algorithm,

CO2RBFN, which designs RBFNs for solving classification

problems, with an appropriate balance between accuracy

and simplicity.

The main steps of CO2RBFN, explained in the following

subsections, are shown in the pseudocode in the Fig. 3.

4.1 RBFN initialization

To define the initial network, a simple process is used: a

specified number, m, of neurons (i.e. the size of population)

is randomly allocated among the different classes of the

training set. To do so, each RBF centre, c~i; is randomly

established to a pattern of the training set, taking into

account that the RBFs must be distributed equally among

the different classes. The RBF widths, di, will be set to half

of the average distance between the centres. Finally, the

RBF weights, wij, are set to zero.

4.2 RBFN training

During this stage, RBF weights are trained. LMS (Widrow

and Lehr 1990) has been used to calculate the RBF

weights. This technique exploits the local information that

can be obtained from the behaviour of the RBFs.

4.3 RBF evaluation

A credit assignment mechanism is required in order to

evaluate the role of each base function in the cooperative–

competitive environment. For an RBF /i, three parameters,

ai, ei, oi are defined.

• The contribution, ai, of the RBF /i, i = 1…m, is

determined by considering the weight, wi, and the

number of patterns of the training set inside its width,

pii. An RBF with a low weight and few patterns inside

its width will have a low contribution:

ai ¼
wij j if pii [q
wij j � ðpii=qÞ otherwise

�
ð8Þ

where q is the average of the pii values minus the

standard deviation of the pii values.

• The error measure, ei, for each RBF /i, is obtained by

counting the wrongly classified patterns inside its

radius:

ei ¼
pibci

pii
ð9Þ

where pibci and pii are the number of wrongly classi-

fied patterns and the number of all patterns inside the

RBF width, respectively.

• The overlapping of the RBF /i and the other RBFs is

quantified by using the parameter oi. This parameter is

calculated by taking into account the fitness sharing

(Goldberg and Richardson 1987) methodology, whose

aim is to maintain the diversity in the population. This

factor is expressed as:

oi ¼
Xm

j¼1

oij

oij ¼
1� /i � /j

�� ���di

� �
if /i � /j

�� ��\di

0 otherwise

(ð10Þ

where oij measures the overlapping of the RBF /i and

/j, j = 1…m

4.4 Applying operators to RBFs

In this algorithm, four operators have been defined in order

to be applied to the RBFs.

• Operator Remove: eliminates an RBF.

• Operator Random Mutation: modifies the centre and

width of an RBF. The width is altered with a

probability inversely proportional to the number of

features of the classification problem (n), in a percent-

age below 50% of the old width. The coordinates of the

centre are modified as follows: if the coordinate is a

real value, it is increased or decreased in a percentage

below 50% of the width. If the coordinate is a nominal

value, it mutates to another one, among all the possible

values of the attribute or feature, with a probability

inversely proportional to the HVDM distance from the

original value. The number of coordinates to be

mutated is randomly obtained and it is a number below

25% of the total number of features.

• Operator Biased Mutation: modifies the width and all

coordinates of the centre using local information of theFig. 3 Main steps of CO2RBFN

CO2RBFN: an evolutionary cooperative–competitive RBFN design algorithm 959

123

RBF environment. A clustering-based technique for

training centres has been used which modifies the RBF

centre, c~i; as follows:

c
0

ij ¼ cij � h 8j ¼ 1. . .n ð11Þ

The increase or decrease of the old centre is decided by

means of a random number h (h B 0.5 di). The centre

is varied in order to approximate it to the average of

the patterns belonging to the RBF class and inside its

RBF width.

The objective of the width training is that most of the

patterns belonging to the RBF class will be inside the

RBF width. In this way, the RBF width is modified as

follows:

d
0 ¼ d � h if u�D

d
0 ¼ d þ h otherwise

�
D ¼ npnci

npci
A ¼ npci2

npnci2

ð12Þ

where h is a random number (h B 0.5di); u is a random

number (u B D ? A); npnci is the number of patterns

not belonging to the RBF class inside the RBF width;

npci is the number of patterns belonging to the RBF

class inside the RBF width; npci2 is the number of

patterns belonging to the RBF class inside twice RBF

width and npnci2, is the number of patterns not

belonging to the RBF class inside twice RBF width.

• Operator Null: in this case, all the parameters of the

RBF are maintained.

These mutation operators allow us to obtain an appro-

priate balance between exploitation and exploration, which

is a desirable feature in every evolutionary algorithm.

Biased mutations use local information from the RBF

environment in order to achieve an optimal adaptation. On

the other hand, random mutations carry out alterations that

lead to the exploration of the environment and thus avoid

local optimums.

The operators are applied to the whole population of

RBFs. The probability for choosing an operator is deter-

mined by means of a Mandani-type fuzzy system (Man-

dani and Assilian 1975). The inputs of this system are

parameters ai, ei and oi used for defining the credit

assignment of the RBF /i. These inputs are considered as

linguistic variables vai, vei and voi. The outputs, premove,

prm, pbm and pnull, represent the probability of applying

remove, random mutation, biased mutation and null

operators, respectively.

The number of linguistic labels has been empirically

determined and the fuzzy sets have been defined according

to their meaning. There are three linguistic labels, Low,

Medium and High, to define each input. Four linguistic

labels are considered for the outputs: Low, Medium–Low,

Medium–High and High. Figure 4 shows the membership

functions for the input and output variables, respectively.

Table 1 shows the rule base used to relate the described

antecedents and consequents. The rule base represents

expert knowledge in the design of RBFNs. It was devel-

oped taking into account the fact that an RBF is worse if its

contribution (ai) is low, its error (ei) is high and its over-

lapping (oi) is also high. On the other hand, an RBF is

better when its contribution is high, its error is low and its

overlapping is also low. Therefore, as the probability of

eliminating a basis function increases, the associated RBF

becomes worse. However, as the probability of not modi-

fying an RBF increases, the associated basis function

improves. The probabilities of mutation usually have a high

value in order to promote a parsimonious evolution.

4.5 Introduction of new RBFs

In this step of the algorithm, the eliminated RBFs are

substituted by new RBFs. The new RBF is located on a

badly classified pattern or on a randomly chosen pattern

with a probability of 0.5, respectively.

In the first instance, the RBF is located on the first badly

classified pattern outside of any RBF width found. The

width of the new RBF will be set to the average of the

RBFs in the population plus half of the minimum distance

to the nearest RBF. Its weights are set to zero.

If it is chosen randomly, the RBF is located on the first

pattern found outside of any RBF width. The width of the

new RBF is set to the average of the RBFs in the popu-

lation and its weights are set to zero.

4.6 Replacement strategy

After applying the mutation operators, new RBFs appear.

The algorithm uses the replacement scheme to determine

which new RBFs will be included in the new population.

To do so, the role of the mutated RBF in the network is

Fig. 4 Left input variables

membership functions for the

FRBS. Right output variables

membership function

960 M. D. Perez-Godoy et al.

123

compared with the original one in order to determine the

RBF with the best behaviour in order to include it in the

population.

There are important differences between the cooperative

competitive method developed by the authors (Rivera et al.

2007) and CO2RBFN. In summary, the evolutionary pro-

cess has been deeply remodelled in order to increase its

exploration and exploitation features, and the RBFN design

is optimized. The main differences are highlighted here:

• In order to address nominal attributes a new dissimi-

larity measure, HVDM, has been introduced.

• The number of network outputs in Rivera et al. (2007)

was set to one because it solved regression problem. In

CO2RBFN, the network has one output for each class in

the addressed dataset.

• New and simpler credit assignment parameters to

measure the contribution and the error are defined in

CO2RBFN in order to increase the efficiency and to

only penalize RBFs which represent a small set of

patterns.

• In Rivera et al. (2007) operators were applied to the

worst RBFs, but in CO2RBFN, operators are applied to

the whole population. Therefore, a high level of

exploration–exploitation is promoted.

• Regarding the operators, in Rivera et al. (2007), two

operators were considered: an RBF deleting operator,

and a biased mutation operator based on gradient error

techniques for tuning the RBF centre and radius.

CO2RBFN considers four operators: an RBF deleting

operator; a random mutation operator which modifies

RBF width and centre and so improves the exploration

features; a new biased operator which carries out a

more specialized analysis of the local environment

information, based on clustering techniques, so the

exploitation characteristics are improved; finally, in

CO2RBFN, a new operator that maintains the RBF

parameters is introduced in order to achieve a parsi-

monious evolution of the population.

• A new fuzzy rule base is developed for CO2RBFN

taking into account new operators.

• Beside the specialized method for introducing RBFs in

the population, a new random introduction RBF method

is considered in order to improve the balance between

exploration and exploitation.

• Finally, the replacement mechanism is also modified. In

Rivera et al. (2007), progeny always substitute parents,

but in CO2RBFN, this mechanism is defined as a

tournament between parents and progeny. Again, the

equilibrium between exploration and exploitation of the

evolutionary process is enhanced.

5 Experimental framework

In this study, CO2RBFN is applied to 11 data sets and is

compared with five different soft computing methods. A

complete statistical study has been carried out to test the

efficiency and complexity of the compared methods.

The collection of data sets used in this section was

obtained from the UCI Repository of Machine Learning

Database (Asuncion and Newman 2007).

Table 2 shows the features of the Datasets.

Car, Credit, Hepatitis and Wbcd datasets have missing

values and therefore a pre-processing stage needs to be

performed. In the case of numerical attributes, any missing

value of an attribute in a given instance is substituted for

the average of the values for this attribute in the remaining

instances of the same class. When the attribute is nominal,

the mode is used instead of the average.

In order to estimate the precision, we use a tenfold cross

validation approach, that is, ten partitions for training and

Table 1 Fuzzy rule base representing expert knowledge in the design

of RBFNs

Antecedents Consequents

va ve vo premove prm pbm pnull

R1 L M–H M–H L L

R2 M M–L M–H M–L M–L

R3 H L M–H M–H M–H

R4 L L M–H M–H M–H

R5 M M–L M–H M–L M–L

R6 H M–H M–H L L

R7 L L M–H M–H M–H

R8 M M–L M–H M–L M–L

R9 H M–H M–H L L

Table 2 Dataset features

Dataset Instances Numerical

features

Nominal

features

Classes

Car 1,728 0 6 4

Credit 690 6 9 2

Glass 114 9 0 7

Hepatitis 155 6 13 2

Ionosphere 351 34 0 2

Iris 150 4 0 3

Pima 768 8 0 2

Sonar 208 60 0 2

Wbcd 699 9 0 2

Vehicle 846 18 0 4

Wine 178 13 0 3

CO2RBFN: an evolutionary cooperative–competitive RBFN design algorithm 961

123

test sets, 90% for training and 10% for testing, where the

ten test partitions form the whole set. For each dataset, we

consider the average results of the ten partitions.

CO2RBFN has been compared with several methods

covering a wide range within the machine learning field:

alternative paradigms in the RBFN design field, another

neural network model (multilayer perceptron), and a

decision tree model. Specifically:

• GeneticRBFN: algorithm for RBFNs design based on

the Pittsburgh scheme where each individual is a whole

network. Implementation designed by the authors (see

Appendix 2 for a wide description).

• C4.5: algorithm that creates classification rules in the

form of decision trees from a dataset (Quinlan 1993).

Implementation obtained from KEEL (Alcalá-Fdez

et al. 2009).

• MLP-Back: algorithm for Multilayer Perceptron Net-

works design which uses the Backpropagation algo-

rithm for learning (Rojas and Feldman 1996).

Implementation obtained from KEEL.

• RBFN-Decr: algorithm for RBFNs design based on a

decremental scheme (Broomhead and Lowe 1988).

Implementation obtained from KEEL.

• RBFN-Incr: algorithm for RBFNs design based on an

incremental scheme (Plat 1991). Implementation

obtained from KEEL.

As has been said, in CO2RBFN there is only one net-

work, and the number of individuals is the number of RBF

nodes. CO2RBFN is run with a number of RBFs from the

number of classes in the given dataset to four times the

number of these classes. The parameters used for

CO2RBFN are shown in Table 3.

The parameters used for GeneticRBFN, C4.5, MLP-

Back, RBFN-Decr and RBFN-Incr are set to the values

indicated by the authors and they are shown from Table 3.

From Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14, the

classification test rate of the methods and their corre-

sponding complexities (number of nodes—RBFs—in the

RBFN or number of the rules in the FRBSs) are shown. For

the CO2RBFN algorithm, the best efficiency network

obtained inside the execution range is chosen (CO2RBFN

results for all the execution range are shown in Appendix

1). In the tables, the bold entries highlight the best results.

6 Analysis of the results

A first analysis of the results shows that CO2RBFN obtains

RNFNs comparable in the classification rate to other meth-

ods (even higher in six datasets) and with low complexity.

Nevertheless, in order to formally analyse the results

with regard to the precision and complexity of the methods,

we perform series of statistical tests. The objective of these

tests is to determine if the differences are significant.

Demšar (2006) illustrates the necessity of using non-

parametric statistics due to the failure of evolutionary

Table 3 Parameters used for algorithms

Algorithm Parameter Value

CO2RBFN Generations of the main

loop

200

Number of RBF’s Min = number of classes

Max = 4 9 number

of classes

GeneticRBFN Generations of the

main loop

200

Individuals 40

Chromosome length Min = number of classes

Max = 4 9 number

of classes

Crossover probability 0.6

Mutation probability 0.1

Mutation widths percent 0.2

Mutation centres

percent

0.2

Tournament size 3

C4.5 Pruned True

Confidence 0.25

InstancesPerLeaf 2

MLP-Back Hidden_layer 2

Hidden_nodes 15

Transfer Htan

Eta 0.15

Alpha 0.10

Lambda 0.0

RBFN-Decr Percent 0.1

nNeuronsIni 20

Alpha 0.3

RBFN-Incr Epsilon 0.1

Alpha 0.3

Delta 0.5

Table 4 Results with Car dataset

Algorithm # Nodes/rules Classification rate (%)

C4.5 119.4 91.550

GeneticRBFN 15.9 80.783

MLP-Back 30.0 49.245

RBFN-Decr 16.0 73.847

RBFN-Incr 1340.6 93.171

CO2RBFN 5.0 81.007

962 M. D. Perez-Godoy et al.

123

algorithms for continuous optimization problems to verify

the various hypotheses necessary for the use of parametric

tests.

We will apply the following non-parametric tests:

• In order to see whether there were differences among

the algorithms, we use Friedman’s test and Iman and

Davenport’s test.

• For pair wise comparison, Wilcoxon’s signed-ranks test

is used.

The tests are applied using 0.05 as level of confidence (a).

A wider description of these tests is shown in Appendix 3.

In the next two subsections, these tests are applied

considering classification rate and model complexity

(number of nodes or rules), respectively.

6.1 Classification rate analysis

In this section, the classification accuracy of the methods is

analysed. First, Friedman’s test is applied and a ranking of

Table 5 Results with Credit dataset

Algorithm # Nodes/rules Classification rate (%)

C4.5 22.0 87.101

GeneticRBFN 7.0 85.507

MLP-Back 30.0 82.609

RBFN-Decr 7.3 61.449

RBFN-Incr 599.9 66.087

CO2RBFN 2.0 84.232

Table 6 Results with Glass dataset

Algorithm # Nodes/rules Classification rate (%)

C4.5 26.3 67.443

GeneticRBFN 27.0 65.089

MLP-Back 30.0 37.609

RBFN-Decr 15.6 24.438

RBFN-Incr 124.0 54.072

CO2RBFN 22.0 67.710

Table 7 Results with Hepatitis dataset

Algorithm # Nodes/rules Classification rate (%)

C4.5 7.1 89.647

GeneticRBFN 7.5 86.711

MLP-Back 30.0 71.817

RBFN-Decr 12.6 76.711

RBFN-Incr 120.1 76.637

CO2RBFN 8.0 87.399

Table 8 Results with Ionosphere dataset

Algorithm # Nodes/rules Classification rate (%)

C4.5 13.2 90.632

GeneticRBFN 7.5 92.885

MLP-Back 30.0 72.948

RBFN-Decr 13.0 82.348

RBFN-Incr 180.5 92.592

CO2RBFN 8.0 91.411

Table 9 Results with Iris dataset

Algorithm # Nodes/rules Classification rate (%)

C4.5 4.8 94.000

GeneticRBFN 10.4 95.067

MLP-Back 30.0 64.667

RBFN-Decr 9.6 94.000

RBFN-Incr 29.8 94.667

CO2RBFN 6.0 96.267

Table 10 Results with Pima dataset

Algorithm # Nodes/rules Classification rate (%)

C4.5 18.3 73.972

GeneticRBFN 7.6 75.615

MLP-Back 30.0 70.819

RBFN-Decr 7.6 72.014

RBFN-Incr 671.4 67.728

CO2RBFN 4.0 75.950

Table 11 Results with Sonar dataset

Algorithm # Nodes/rules Classification rate (%)

C4.5 14.3 71.071

GeneticRBFN 7.7 73.305

MLP-Back 30.0 67.762

RBFN-Decr 13.8 59.143

RBFN-Incr 159.8 74.976

CO2RBFN 8.0 75.086

Table 12 Results with Vehicle dataset

Algorithm # Nodes/rules Classification rate (%)

C4.5 71.8 71.034

GeneticRBFN 16.0 67.043

MLP-Back 30.0 38.066

RBFN-Decr 10.8 45.046

RBFN-Incr 750.7 56.259

CO2RBFN 16.0 69.192

CO2RBFN: an evolutionary cooperative–competitive RBFN design algorithm 963

123

methods is obtained. This ranking is used by Friedman and

Iman and Davenport’s tests in order to determine whether

there are significant differences between the methods.

Table 15 shows the average rankings (computed by the

Friedman’s test) of the algorithms. A lower value in the

ranking represents a better algorithm. It can be seen how

the best algorithm in the ranking is CO2RBFN. Table 16

shows the results of applying both tests (Friedman and

Iman and Davenport).

The Friedman statistic is 35.403. The critical value of v2

distribution with 5 degrees of freedom is lower than the

Friedman statistic, which implies that there are significant

differences between the algorithms.

The Iman and Davenport statistic is 18.065. The critical

value of F-distribution with 5 and 50 degrees of freedom is

lower than the Iman and Davenport value, which implies

there are significant differences between the algorithms.

Next, Wilcoxon’s test is applied in order to detect sig-

nificant differences between the behaviour of pairs of

algorithms. In Table 17, results of Wilcoxon’s test are

shown. As can be seen, in these tables there are significant

differences between CO2RBFN and MLP-Back, RBFN-

Decr and RBFN-Incr.

6.2 Model complexity analysis

The model complexity is measured based on the number of

rules, in the case of C4.5 methods, and on the number of

nodes in the case of CO2RBFN, GeneticRBFN, MLP-Back,

RBFN-Decr and RBFN-Incr methods.

Friedman’s test is applied and the ranking obtained is

shown in Table 18. Again, the best algorithm in the rank-

ing is CO2RBFN. Table 19 shows the results of Friedman

and Iman and Davenport’s tests.

The Friedman statistic is 39.506. The critical value v2

distribution with 5 degrees of freedom is lower than the

Friedman statistic, which implies significant differences

between the algorithms.

The Iman and Davenport statistic is 25.499. The critical

value of F-distribution with 5 and 50 degrees of freedom is

Table 13 Results with Wbcd dataset

Algorithm # Nodes/rules Classification rate (%)

C4.5 12.4 94.995

GeneticRBFN 6.2 96.713

MLP-Back 30.0 87.722

RBFN-Decr 10.4 92.119

RBFN-Incr 319.9 94.303

CO2RBFN 5.0 97.083

Table 14 Results with Wine dataset

Algorithm # Nodes/rules Classification rate (%)

C4.5 5.1 94.902

GeneticRBFN 10.4 95.275

MLP-Back 30.0 93.301

RBFN-Decr 8.3 68.562

RBFN-Incr 125.3 74.739

CO2RBFN 7.0 96.739

Table 15 Rankings obtained for the algorithms taking into account

classification rate

Algorithm Ranking

C4.5 2.591

CO2RBFN 1.727

GeneticRBFN 2.455

MLP-Back 5.364

RBFN-Decr 5.136

RBFN-Incr 3.727

Table 16 Result of Friedman and Iman and Davenport’s tests taking

into account classification rate

Test Statistic Critical

values

Significant

differences?

Friedman 35.403 11.071 Yes

Iman and Davenport 18.065 2.400 Yes

Table 17 Results of Wilcoxon’s test taking into account classifica-

tion rate

R? CO2RBFN R- Critical

value

Significant

differences?

35.0 C4.5 31.0 10 No

52.0 GeneticRBFN 14.0 10 No

66.0 MLP-Back 0.0 10 Yes

66.0 RBFN-Decr 0.0 10 Yes

57.0 RBFN-Incr 9.0 10 Yes

Table 18 Rankings obtained for the algorithms taking into account

complexity models

Algorithm Ranking

C4.5 3.273

Co2RBFN 1.773

GeneticRBFN 2.5

MLP-Back 4.909

RBFN-Decr 2.636

RBFN-Incr 5.909

964 M. D. Perez-Godoy et al.

123

lower than the Iman and Davenport statistic, which implies

significant differences between the algorithms.

The results of applying Wilcoxon’s test are shown in

Table 20. As can be seen, in these tables there are signif-

icant differences between CO2RBFN and C4.5, Genetic-

RBFN, MLP-Back and RBFN-Incr.

6.3 Summary

The Friedman’s test ranking shows that CO2RBFN is the

best algorithm both in terms of accuracy and complexity

(see Tables 15, 18) where minimum value implies best

algorithm, in precision and simplicity, respectively).

Friedman and Iman and Davenport statistics demon-

strate that there are significant differences between the

methods analysed (see Tables 16, 19).

In order to determine pair differences, Wilcoxon’s

signed-ranks test is applied. This statistical analysis shows

that there are significant differences in accuracy between

CO2RBFN and MLP-Back, RBFN-Incr and RBFN-Decr,

and there are no significant differences between C4.5

and GeneticRBFN. Nevertheless, regarding complexity

CO2RBFN shows significant differences between C4.5 and

GeneticRBFN, as well as MLP-Back and RBFN-Incr.

Taking into account the above, CO2RBFN outperforms

in complexity, with statistical significant differences,

all the methods considered except RBFN-Decr (but

CO2RBFN outperform, with statistical significant differ-

ences, RBFN-Decr in accuracy).

Regarding accuracy, CO2RBFN outperforms all the

proposals studied except C4.5 and GeneticRBFN, always

with significant differences. It must be highlighted that

CO2RBFN improves C4.5 and GeneticRBFN, with statis-

tical significant differences.

In summary, we can conclude that CO2RBFN is the best

proposal in the accuracy-complexity balance for the RBFN

design.

7 Conclusions

In this paper, we propose CO2RBFN, a new hybrid evo-

lutionary cooperative–competitive algorithm for RBFN

design in the field of pattern classification.

The aim of our algorithm is to obtain simple and

accurate networks and both the design of the general

evolutionary paradigm and the design of the rest of the

components have this objective.

An important key point of our proposal is the identifi-

cation of the role (credit assignment) of each basis function

in the whole network. In order to evaluate this value for a

given RBF three factors are defined and used: the RBF

contribution to the network’s output, ai (promoting the

generality of the RBF); the error in the basis function

radius, ei (reinforcing the quality of the individual); and the

degree of overlapping among RBFs, oi (promoting the

good location of the RBFs). In order to drive the cooper-

ative–competitive process, with an adequate balance

between exploration and exploitation, four operators are

used: Remove, Random Mutation, Biased Mutation (based

on clustering) and Null. The application of these operators

is determined by a fuzzy rule-based system which repre-

sents expert knowledge of the RBFN design. The inputs of

this system are the three parameters used for credit

assignment: ai, ei, and oi.

It must be highlighted that the proposal considers a

distance measure, HVDM, which deals, without loss of

information, with differences between nominal features

which are very usual in classification problems.

Our approach has been evaluated using eleven well-

known datasets, and their results have been compared with

those obtained by five other soft computing methods. These

methods cover a wide range within the machine-learning

field including alternative paradigms in RBFN design,

another neural network model and a decision tree model.

The accuracy and complexity of the models have been

formally analysed using a series of statistical tests. This

study shows that CO2RBFN obtains RBFNs with an

appropriate balance between accuracy and simplicity,

outperforming the other methods considered.

Acknowledgments This work has been partially supported by the

CICYT Spanish Projects TIN2005-04386-C05-03, TIN2007-60587

and the Andalusian Research Plan TIC-3928.

Table 19 Results of Friedman and Iman and Daverport’s tests taking

into account complexity models

Test Statistic Critical

values

Significant

differences?

Friedman 39.506 11.071 Yes

Iman and Davenport 25.499 2.400 Yes

Table 20 Results of Wilcoxon’s test taking into account complexity

models

R? CO2RBFN R- Critical

value

Significant

differences?

60.0 C4.5 6.0 10 Yes

56.5 GeneticRBFN 9.5 10 Yes

66.0 MLP-Back 0.0 10 Yes

50.0 RBFN-Decr 16.0 10 No

66.0 RBFN-Incr 0.0 10 Yes

CO2RBFN: an evolutionary cooperative–competitive RBFN design algorithm 965

123

Appendix 1: Detailed results obtained for CO2RBFN

Car dataset

#

Nodes

Error

training

Standard

dev

Error

test

Stand

dev

%

Training

%

Test

4 0.129 0.007 0.207 0.061 87.104 79.350

5 0.122 0.007 0.190 0.048 87.823 81.007

6 0.116 0.008 0.204 0.045 88.354 79.572

7 0.112 0.007 0.198 0.046 88.753 80.197

8 0.108 0.009 0.198 0.051 89.186 80.241

9 0.102 0.009 0.200 0.056 89.784 79.998

10 0.098 0.009 0.207 0.053 90.203 79.270

11 0.095 0.009 0.191 0.052 90.543 80.925

12 0.093 0.011 0.200 0.040 90.678 80.011

13 0.089 0.008 0.202 0.047 91.075 79.804

14 0.087 0.010 0.207 0.049 91.279 79.261

15 0.079 0.008 0.220 0.061 92.085 77.974

16 0.079 0.010 0.199 0.045 92.103 80.127

Credit dataset

#

Nodes

Error

training

Standard

dev

Error

test

Stand

dev

%

Training

%

Test

2 0.123 0.006 0.158 0.065 87.655 84.232

3 0.120 0.004 0.158 0.081 87.974 84.203

4 0.118 0.004 0.177 0.100 88.235 82.261

5 0.116 0.005 0.175 0.096 88.432 82.522

6 0.115 0.003 0.172 0.088 88.470 82.812

7 0.114 0.004 0.167 0.084 88.577 83.275

8 0.113 0.004 0.179 0.094 88.686 82.116

Glass dataset

#

Nodes

Error

training

Standard

dev

Error

test

Stand

dev

%

Training

%

Test

7 0.328 0.020 0.358 0.113 67.223 64.216

8 0.319 0.016 0.373 0.103 68.145 62.699

9 0.310 0.017 0.354 0.104 68.987 64.575

10 0.296 0.014 0.360 0.120 70.410 63.990

11 0.290 0.015 0.354 0.111 71.034 64.635

12 0.282 0.017 0.333 0.105 71.812 66.694

13 0.277 0.014 0.332 0.111 72.299 66.778

14 0.275 0.016 0.356 0.116 72.547 64.389

15 0.266 0.015 0.330 0.109 73.399 66.976

16 0.262 0.015 0.343 0.107 73.826 65.654

17 0.258 0.015 0.346 0.104 74.230 65.425

18 0.255 0.016 0.335 0.103 74.490 66.487

19 0.251 0.014 0.340 0.117 74.925 65.980

20 0.250 0.017 0.349 0.109 74.977 65.086

Appendix continued

#

Nodes

Error

training

Standard

dev

Error

test

Stand

dev

%

Training

%

Test

21 0.248 0.014 0.354 0.118 75.164 64.602

22 0.248 0.014 0.323 0.111 75.175 67.710

23 0.242 0.016 0.328 0.114 75.798 67.223

24 0.240 0.015 0.332 0.118 75.997 66.763

25 0.236 0.014 0.342 0.116 76.389 65.820

26 0.233 0.015 0.326 0.102 76.700 67.391

27 0.234 0.019 0.329 0.115 76.587 67.065

28 0.235 0.015 0.337 0.107 76.536 66.332

Hepatitis dataset

#

Nodes

Error

training

Standard

dev

Error

test

Stand

dev

%

Training

%

Test

2 0.087 0.016 0.168 0.145 91.270 83.228

3 0.074 0.009 0.168 0.138 92.632 83.157

4 0.067 0.011 0.151 0.094 93.261 84.905

5 0.065 0.011 0.151 0.071 93.548 84.914

6 0.064 0.008 0.128 0.107 93.563 87.187

7 0.063 0.010 0.139 0.075 93.749 86.137

8 0.057 0.007 0.126 0.074 94.280 87.399

Ionosphere dataset

#

Nodes

Error

training

Standard

dev

Error

test

Stand

dev

%

Training

%

Test

2 0.149 0.017 0.171 0.053 85.078 82.926

3 0.134 0.020 0.160 0.049 86.648 84.003

4 0.105 0.015 0.134 0.050 89.485 86.579

5 0.097 0.017 0.119 0.049 90.294 88.069

6 0.087 0.014 0.111 0.043 91.270 88.907

7 0.074 0.013 0.099 0.048 92.643 90.111

8 0.065 0.011 0.086 0.039 93.485 91.411

Iris dataset

#

Nodes

Error

training

Standard

dev

Error

test

Stand

dev

%

Training

%

Test

3 0.017 0.008 0.045 0.047 98.252 95.467

4 0.012 0.004 0.048 0.055 98.770 95.200

5 0.011 0.004 0.045 0.052 98.919 95.467

6 0.010 0.004 0.037 0.042 99.007 96.267

7 0.010 0.005 0.037 0.050 99.007 96.267

8 0.009 0.004 0.044 0.054 99.067 95.600

9 0.009 0.004 0.052 0.050 99.081 94.800

10 0.009 0.004 0.044 0.049 99.141 95.600

11 0.009 0.004 0.048 0.050 99.111 95.200

12 0.008 0.004 0.040 0.046 99.230 96.000

966 M. D. Perez-Godoy et al.

123

Pima dataset

#

Nodes

Error

training

Standard

dev

Error

test

Stand

dev

%

Training

%

Test

2 0.239 0.024 0.260 0.051 76.068 74.001

3 0.227 0.010 0.248 0.043 77.341 75.218

4 0.221 0.007 0.240 0.049 77.873 75.950

5 0.218 0.006 0.247 0.047 78.224 75.252

6 0.215 0.006 0.243 0.047 78.516 75.716

7 0.213 0.006 0.244 0.045 78.675 75.638

8 0.212 0.006 0.242 0.044 78.814 75.796

Sonar dataset

#

Nodes

Error

training

Standard

dev

Error

test

Stand

dev

%

Training

%

Test

2 0.247 0.020 0.282 0.111 75.299 71.762

3 0.235 0.019 0.261 0.114 76.517 73.910

4 0.222 0.015 0.283 0.097 77.756 71.705

5 0.219 0.020 0.285 0.092 78.120 71.514

6 0.210 0.013 0.279 0.099 78.952 72.114

7 0.206 0.016 0.271 0.090 79.412 72.948

8 0.201 0.012 0.249 0.098 79.882 75.086

Vehicle dataset

#

Nodes

Error

training

Standard

dev

Error

test

Stand

dev

%

Training

%

Test

4 0.432 0.021 0.446 0.048 56.782 55.391

5 0.400 0.019 0.415 0.054 60.032 58.489

6 0.389 0.021 0.405 0.054 61.135 59.520

7 0.369 0.026 0.381 0.045 63.092 61.912

8 0.357 0.019 0.386 0.043 64.303 61.390

9 0.343 0.016 0.370 0.050 65.721 62.954

10 0.332 0.016 0.350 0.047 66.840 64.979

11 0.318 0.015 0.353 0.046 68.201 64.703

12 0.311 0.013 0.334 0.045 68.873 66.645

13 0.307 0.010 0.326 0.041 69.320 67.414

14 0.296 0.014 0.318 0.038 70.433 68.201

15 0.292 0.014 0.316 0.044 70.846 68.433

16 0.287 0.012 0.308 0.047 71.253 69.192

Wbcd dataset

#

Nodes

Error

training

Standard

dev

Error

test

Stand

dev

%

Training

%

Test

2 0.024 0.004 0.032 0.023 97.581 96.769

3 0.023 0.002 0.033 0.021 97.743 96.741

4 0.023 0.002 0.033 0.021 97.749 96.739

5 0.022 0.002 0.029 0.018 97.797 97.083

6 0.022 0.002 0.032 0.019 97.794 96.792

7 0.022 0.002 0.033 0.020 97.803 96.740

8 0.022 0.002 0.029 0.020 97.813 97.054

Wine dataset

#

Nodes

Error

training

Standard

dev

Error

test

Stand

dev

%

Training

%

Test

3 0.008 0.006 0.051 0.060 99.189 94.915

4 0.004 0.004 0.057 0.066 99.575 94.261

5 0.003 0.003 0.043 0.061 99.738 95.732

6 0.002 0.003 0.038 0.045 99.813 96.157

7 0.001 0.002 0.033 0.046 99.913 96.739

8 0.001 0.002 0.036 0.040 99.950 96.412

9 0.000 0.001 0.037 0.046 99.975 96.281

10 0.000 0.000 0.045 0.054 100.000 95.484

11 0.000 0.001 0.038 0.047 99.975 96.196

12 0.000 0.000 0.038 0.050 100.000 96.190

Appendix 2: GeneticRBFN description

To test our cooperative–competitive method against a

Pittsburgh based proposal, a typical genetic algorithm for

the RBFN design, GeneticRBFN, has been developed. The

design lines of GeneticRBFN are the classical ones for

these kinds of algorithms (Harpham et al. 2004). In order to

establish similar operating conditions certain characteris-

tics of CO2RBFN have been introduced in GeneticRBFN,

like analogies in the operators and the HVDM dissimilarity

measure.

This method follows the traditional Pittsburgh evolu-

tionary approach for the design of RBFNs: each individual

is a whole network. The objective of the evolutionary

process is to minimise the classification error. The main

steps of this algorithm are shown in Fig. 5.

The main components of GeneticRBFN algorithm are

described below.

Initialization

The initialization stage is the same as that in CO2RBFN. So

the RBFs will be centred, in an equidistributed way, for

each RBFN/individual.

Genetic operators: selection, recombination

and mutation

With the crossover operator, two individuals/RBFNs par-

ents are randomly chosen to obtain an RBFN offspring.

Fig. 5 Main steps of GeneticRBFN algorithm

CO2RBFN: an evolutionary cooperative–competitive RBFN design algorithm 967

123

The number of RBFs of the new individual will be

delimited between a minimum and a maximum value. The

minimum value is set to the number of RBFs of the parent

with fewer RBFs. In the same way, the maximum value is

set to the number of RBFs of the parent with more RBFs.

In order to generate the offspring RBFs will be chosen in a

random way from the parents.

Six mutation operators, usually considered in the spec-

ialised bibliography (Harpham et al. 2004) have been

implemented. They can be classified as random operators

or biased operators. The random operators are:

• DelRandRBFs: randomly eliminates k RBFs, where k is

a pm percent of the total number of RBFs in the RBFN.

• InsRandRBFs: randomly aggregates k RBFs, where k is

a pm percent of the total number of RBFs in the RBFN.

• ModCentRBFs: randomly modifies the centre of k

RBFs, where k is a pm percent of the total number of

RBFs in the RBFN. The centre of the basis function

will be modified in a pr percent of its width.

• ModWidtRBFs: randomly modifies the centre of k

RBFs, where k is a pm percent of the total number of

RBFs in the RBFN. The width of the basis function will

be modified in a pr percent of its width.

Biased operators, which exploit local information are:

• DelInfRBFs: deletes the k RBFs of the RBFN with a

lower weight. k is a pm percent of the total number of

RBFs in the RBFN.

• InsInfRBFs: inserts the k RBFs in the RBFN outside the

width of any RBF present in the RBFN. k is a pm

percent of the total number of RBFs in the RBFN.

An intermediate population with the parents and the

offspring is considered and a tournament selection mech-

anism is used to determine the new population. The

diversity of the population is promoted by using a low

value for the tournament size (k = 3).

Training weights

In order to train the weights, the LMS algorithm is used. Its

parameters are set to their standard values.

Individual evaluation

The fitness defined for each individual/RBFN is its clas-

sification error for the given problem.

In order to increase the efficiency of the GA, the search

space of this method has been drastically reduced. As is

well known, in Pittsburgh GAs, where the only objective to

optimise is the classification error, the complexity of the

individuals (i.e. number of RBFs) grows in an uncontrolled

way (because normally an RBFN with more RBFs gives a

lower error percentage than an RBFN with few RBFs). In

this experimentation, the search space has been reduced by

fixing the maximum complexity (and so chromosome size)

between a minimum and a maximum number of RBFs. The

minimum number of RBFs has been set to the number of

classes for the problem and the maximum to four times this

number.

Appendix 3: Statistical methods

Non-parametric methods are often referred to as distri-

bution free methods, as they do not rely on assumptions

that the data are drawn from a given probability

distribution.

Non-parametric methods are widely used for studying

populations which take a ranked order (such as movie

reviews receiving one to four stars). The use of non-para-

metric methods may be necessary when data has a ranking

but no clear numerical interpretation, such as when

assessing preferences.

As non-parametric methods make fewer assumptions,

their applicability is much wider than the corresponding

parametric methods. In particular, they may be used in sit-

uations where less is known about the application in

question. In addition, due to the reliance on fewer

assumptions, non-parametric methods are more robust.

Another justification for the use of non-parametric

methods is simplicity. In certain cases, even when the use

of parametric methods is justified, non-parametric methods

may be easier to use. Due both to this simplicity and to

their greater robustness, non-parametric methods are seen

by some statisticians as leaving less room for improper use

and misunderstanding.

Now we will explain the non-parametric methods used:

Friedman’s test

This is a non-parametric equivalent of the test of repeated-

measures ANOVA. It computes the ranking of the

observed results for algorithm (rj for the algorithm j with k

algorithms) for each data-set, assigning to the best the

ranking 1, and to the worst the ranking k. Under the null

hypothesis, formed from supposing that the results of the

algorithms are equivalents and, therefore, their rankings are

also similar, Friedman’s statistic

v2
F ¼

12Nds

kðk þ 1Þ
X

j

R2
j �

kðk þ 1Þ2

4

" #
;

is distributed according to v2
F with k - 1 degrees or free-

dom, being Rj ¼ 1
Nds

P
i r2

i ; and Nds the number of data-set.

The critical values for Friedman’s statistic coincide with

968 M. D. Perez-Godoy et al.

123

those established in the v2 distribution when Nds [10 and

k [5.

Iman and Davenport’s test

This is a metric derived from Friedman’s statistic, given

that this last metric produces a conservative undesirable

effect. The statistic is:

FF ¼
Nds � 1ð Þv2

F

Ndsðk � 1Þ � v2
F

;

and it is distributed according to a F-distribution with k - 1

and (k - 1)(Nds - 1) degrees of freedom.

Wilcoxon’s signed-rank test

This is analogous to the paired t test in non-parametrical

statistical procedures; therefore, it is a pair test that aims to

detect significant differences between the behaviour of two

algorithms.

Let di be the difference between the performance score

of the two classifiers on ith out of Nds data-sets. The dif-

ferences are ranked according to their absolute values;

average ranks are assigned in case of ties. Let R? be the

sum of ranks for the data-sets is which the first algorithm

outperformed the second, and R- the sum of ranks for the

opposite. For ranks of di = 0 are split evenly the sums; if

there is an odd number of them, one is ignored:

Rþ ¼
X

di [0

rankðdiÞ þ
1

2

X

di¼0

rankðdiÞ;

R� ¼
X

di\0

rankðdiÞ þ
1

2

X

di¼0

rankðdiÞ:

Let T be the smallest of the sums, T = min(R?, R-). If T

is less than or equal to the value of the distribution of

Wilcoxon for Nds degrees of freedom, the null hypothesis

of equality of means is rejected.

References

Alcalá-Fdez J, Sánchez L, Garcı́a S, Del Jesus MJ, Ventura S, Garrell

JM, Otero J, Romero C, Bacardit J, Rivas VM, Fernández JC,

Herrera F (2009) KEEL: a software tool to assess evolutionary

algorithms to data mining problems. Soft Comput 13(3): 307–

318

Ampazis N, Perantonis SJ (2002) Two highly efficient second-order

algorithms for training feedforwards networks. IEEE Trans

Neural Netw 13(3):1064–1074

Asuncion A, Newman DJ (2007) UCI machine learning repository.

School of Information and Computer Science, University

of California, Irvine, CA. http://www.ics.uci.edu/*mlearn/

MLRepository.html

Bäck T, Hammel U, Schwefel H (1997) Evolutionary computation:

comments on the history and current state. IEEE Trans Evol

Comput 1(1):3–17

Balakrishnan K, Honavar V (1995) Evolutionary design of neural

architecture—a preliminary taxonomy and guide to literature.

Technical report, AI Research Group, CS-TR 95–01

Billings SA, Zheng GL (1995) Radial basis function network

configuration using genetic algorithms. Neural Netw 8(6):877–

890

Broomhead D, Lowe D (1988) Multivariable functional interpolation

and adaptive networks. Complex Syst 2:321–355

Buchtala O, Klimek M, Sick B (2005) Evolutionary optimization of

radial basis function classifiers for data mining applications.

IEEE Trans Syst Man Cybern B 35(5):928–947

Burdsall B, Giraud-Carrier C (1997) GA-RBF: a self optimising RBF

network. In: Proceedings of conference on artificial neural

networks and genetic algorithms. Springer, Berlin

Chaiyaratana N, Zalzala AMS (1998) Evolving hybrid RBF-MLP

networks using combined genetic/unsupervised/supervised learn-

ing. In: Proceedings of UKACC international conference on

control, Swansea, UK

Chen S, Billings SA, Cowan CFN, Grant PW (1990) Practical

identification of narmax models using radial basis functions. Int J

Control 52(6):1327–1350

Chen S, Cowan C, Grant P (1991) Orthogonal least squares learning

algorithm for radial basis function networks. IEEE Trans Neural

Netw 2:302–309

Chen S, Wu Y, Luk BL (1999) Combined genetic algorithm

optimization and regularized orthogonal least squares learning

for radial basis function networks. IEEE Trans Neural Netw

10(5):1239–1243

Cheng V, Li CH, Kwok JT, Li CK (2004) Dissimilarity learning for

nominal data. Pattern Recogn 37:1471–1477

Dawson CW, Wilby RL, Harpham C, Brown MR, Cranston, E, Darby

EJ (2000) Modelling Ranunculus presence in the Rivers test and

Itchen using artificial neural networks. In: Proceedings of

international conference on geocomputation, Greenwich, UK

Deb K (2001) Multi-objective optimization using evolutionary

algorithms, 1st edn. Wiley, New York

Demšar J (2006) Statistical Comparisons of Classifiers over Multiple

Data Sets. J Mach Learn Res 7:1–30

Du H, Zhang N (2008) Time series prediction using evolving radial

basis function networks with new enconding scheme. Neuro-

computing 71:1388–1400

Er MJ, Chen W, Wu S (2005) High-speed face recognition base on

discrete cosine transform and RBF neural networks. IEEE Trans

Neural Netw 16(3):679–691

Esposito F, Malerba D, Tamma V, Bock HH (2000a) Classical

resemblance measures. In: Bock H-H, Diday E (eds) Analysis of

symbolic data. Exploratory methods for extracting statistical

information from complex data, Series: studies in classification,

data analysis, and knowledge organization, vol 15. Springer,

Berlin, pp 139–152

Esposito A, Marinaro M, Oricchio D, Scarpetta S (2000b) Approx-

imation of continuous and discontinuous mappings by a growing

neural RBF-based algorithm. Neural Netw 13(6):651–665

Ferreira PM, Ruano AE, Fonseca CM (2003) Genetic assisted

selection of RBF model structures for greenhouse inside air

temperature prediction. IEEE Control Appl 1:576–581

Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial Intelligence through

simulation evolution. Wiley, New York

Fu X, Wang L (2002) A GA-based novel RBF classifier with class-

dependent features. Proc Congr Evol Comput 2:1964–1969

Fu X, Wang L (2003) Data dimensionality reduction with application

to simplifying RBF network structure and improving

CO2RBFN: an evolutionary cooperative–competitive RBFN design algorithm 969

123

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

classification performance. IEEE Trans Syst Man Cybern B

33(3):399–409

Goldberg D (1989) Genetic algorithms in search, optimization, and

machine learning. Addison-Wesley, Reading

Goldberg D, Richardson J (1987) Genetic algorithms with sharing for

multimodal function optimization. In: Grefenstette (ed) Proceed-

ings of second international conference on genetic algorithms.

Lawrence Erlbaum Associates, pp 41–49

Golub G, Van Loan C (1996) Matrix computations, 3rd edn. J.

Hopkins University Press, Baltimore

González J, Rojas I, Ortega J, Pomares H, Fernández FJ, Dı́az AF

(2003) Multiobjective evolutionary optimization of the size,

shape, and position parameters of radial basis function networks

for function approximation. IEEE Trans Neural Netw 14(6):

1478–1495

Guillén A, Pomares H, Rojas I, González J, Herrera LJ, Rojas F,

Valenzuela O (2007) Output value-based initialization for radial

basis function neural networks. Neural Process Lett. doi:

10.1007/s11063-007-9039-8

Harpham C, Dawson C, Brown M (2004) A review of genetic

algorithms applied to training radial basis function networks.

Neural Comput Appl 13:193–201

Holcomb T, Morari M (1991) Local training for radial basis function

networks: towards solving the hidden unit problem. In: Pro-

ceedings of American control conference, Boston

Holland JH (1975) Adaptation in natural and artificial systems. The

University of Michigan Press

Huang SN, Tan KK, Lee TH (2008) Adaptive neural network

algorithm for control design of rigid-link electrically driven

robots. Neurocomputing 71(4–6):885–894

Jang JSR, Sun CT (1993) Functional equivalence between radial basis

functions and fuzzy inference systems. IEEE Trans Neural Netw

4:156–158

Jiang N, Zhao ZY, Ren LQ (2003) Design of structural modular

neural networks with genetic algorithm. Adv Eng Soft 1:17–

24

Jin Y, Sendhoff B (2003) Extracting interpretable fuzzy rules from

RBF networks. Neural Process Lett 17(2):149–164

Lacerda E, Carvalho A, Braga A, Ludermir T (2005) Evolutionary

radial functions for credit assessment. Appl Intell 22:167–181

Lee S, Kil RM (1991) A Gaussian potential function network with

hierarchically seft-organising learning. Neural Netw 4:207–224

Leung H, Dubash N, Xie N (2002) Detection of small objects in

clutter using a GA-RBF neural network. IEEE Trans Aero Electr

Sys 38(1):98–118

Li M, Tian J, Chen F (2008) Improving multiclass pattern recognition

with a co-evolutionary RBFNN. Pattern Recogn Lett 29(4):392–

406

Maglogiannis I, Sarimveis H, Kiranoudis CT, Chatziioannou AA,

Oikonomou N, Aidinis V (2008) Radial basis function neural

networks classification for the recognition of idiopathic pulmon-

ary fibrosis in microscopic images. IEEE Trans Inf Technol B

12(1):42–54

Mandani E, Assilian S (1975) An experiment in linguistic synthesis

with a fuzzy logic controller. Int J Man Mach Stud 7(1):1–13

Marcos JV, Hornero R, Álvarez D, Del Campo F, López M, Zamarrón

C (2008) Radial basis function classifiers to help in the diagnosis

of the obstructive sleep apnoea syndrome from nocturnal

oximetry. Med Biol Eng Comput 46:323–332

Moechtar M, Farag AS, Hu L, Cheng TC (1999) Combined genetic

algorithms and neural network approach for power system

transient stability evaluation. Europ Trans Elect Power 9(2):115–

122

Moody J, Darken CJ (1989) Fast learning in networks of locally-tuned

processing units. Neural Comput 1:281–294

Musavi MT, Ahmed W, Chan KH, Faris KB, Hummels DM (1992)

On the training of radial basis function classifiers. Neural Netw

5:595–603

Neruda R, Kudová P (2005) Learning methods for radial basis

function networks. Future Gener Comp Sy 21(7):1131–1142

Orr MJL (1995) Regularization on the selection of radial basis

function centers. Neural Comput 7:606–623

Park J, Sandberg I (1991) Universal approximation using radial-basis

function networks. Neural Comput 3:246–257

Park J, Sandberg I (1993) Universal approximation and radial basis

function network. Neural Comput 5(2):305–316

Pedrycz W (1998) Conditional fuzzy clustering in the design of radial

basis function neural networks. IEEE Trans Neural Netw

9(4):601–612

Peng JX, Li K, Huang DS (2006) A hybrid forward algorithm for RBF

neural network construction. IEEE Trans Neural Netw

17(6):1439–1451

Pérez-Godoy MD, Rivera AJ, del Jesus MJ, Rojas I (2007)

CoEvRBFN: an approach to solving the classification problem

with a hybrid cooperative–coevolutive algorithm. In: Proceed-

ings of international workshop on artificial neural networks, pp

324–332

Pérez-Godoy MD, Aguilera JJ, Berlanga FJ, Rivas VM, Rivera AJ

(2008) A preliminary study of the effect of feature selection in

evolutionary RBFN design. In: Proceedings of information

processing and management of uncertainty in knowledge-based

system, pp 1151–1158

Plat J (1991) A resource allocating network for function interpolation.

Neural Comput 3(2):213–225

Potter M, De Jong K (2000) Cooperative coevolution: an architecture
for evolving coadapted subcomponents. Evol Comput 8(1):1–29

Powell M (1985) Radial basis functions for multivariable interpola-

tion: a review. In: IMA Proceedings of conference on algorithms

for the approximation of functions and data, pp 143–167

Quinlan JR (1993) C4.5: programs for machine learning. Morgan

Kauffman, Menlo Park

Rivas VM, Merelo JJ, Castillo PA, Arenas MG, Castellanos JG

(2004) Evolving RBF neural networks for time-series forecasting

with EvRBF. Inf Sci 165(3–4):207–220

Rivera AJ, Ortega J, Prieto A (2001) Design of RBF networks by

cooperative/competitive evolution of units. In: Proceedings of

international conference on artificial neural networks and genetic

algorithms (ICANNGA 2001), pp 375–378

Rivera AJ, Rojas I, Ortega J, del Jesus MJ (2007) A new hybrid

methodology for cooperative–coevolutionary optimization of

radial basis function networks. Soft Comput. doi:10.1007/

s00500-006-0128-9

Rojas R, Feldman J (1996) Neural networks: a systematic introduc-

tion. Springer, Berlin

Rojas I, Valenzuela O, Prieto A (1997) Statisctical analysis of the

main parameters in the definition of radial basis function

networks. Lect Notes Comput Sci 1240:882–891

Sanchez VD (2002) A searching for a solution to the automatic RBF

network design problem. Neurocomputing 42:147–170

Schaffer JD, Whitley D, Eschleman LJ (1992) Combinations of

genetic algorithms and neural networks: a survey of the state of

the art. In: Proceedings of international workshop on combina-

tions of genetic algorithms and neural networks

Sergeev SA, Mahotilo KV, Voronovsky GK, Petrashev SN (1998)

Genetic algorithm for training dynamical object emulator based

on RBF neural network. Int J Appl Electro Mech 9(1):65–74

Sheta AF, De Jong K (2001) Time-series forecasting using GA-tuned

radial basis functions. Info Sci 133(3–4):221–228

Stanfill C, Waltz D (1986) Towards memory-based reasoning,

Commun. ACM 29(12):1213–1228

970 M. D. Perez-Godoy et al.

123

http://dx.doi.org/10.1007/s11063-007-9039-8
http://dx.doi.org/10.1007/s00500-006-0128-9
http://dx.doi.org/10.1007/s00500-006-0128-9

Sumathi S, Sivanandam SN, Ravindran R (2001) Design of a soft

computing hybrid model classifier for data mining applications.

Engin Intell Sys Electr Engin Comm 9(1):33–56

Sun YF, Liang YC, Zhang WL, Lee HP, Lin WZ, Cao LJ (2005)

Optimal partition algorithm of the RBF neural network and its

application to financial time series forecasting. Neural Comput

Appl 14(1):36–44

Sundararajan N, Saratchandran P, Yingwei L (1999) Radial basis

function neural network with sequential learning: MRAN and its

application. World Scientifics, New York

Teixeira CA, Ruano MG, Ruano AE, Pereira WCA (2008) A soft-

computing methodology for noninvasive time-spatial tempera-

ture estimation. IEEE Trans Bio Med Eng 55(2):572–580

Topchy A, Lebedko O, Miagkikh V, Kasabov N (1997) Adaptive

training of radial basis function networks based on co-operative

evolution and evolutionary programming. In: Proceedings of

international conference neural information processing (ICO-

NIP), pp 253–258

Vesin JM, Gruter R (1999) Model selection using a simplex

reproduction genetic algorithm. Sig Process 78:321–327

Whitehead B, Choate T (1996) Cooperative–competitive genetic

evolution of radial basis function centers and widths for time

series prediction. IEEE Trans Neural Netw 7(4):869–880

Widrow B, Lehr MA (1990) 30 Years of adaptive neural networks:

perceptron, madaline and backpropagation. Proc IEEE

78(9):1415–1442

Wilson DR, Martinez TR (1997) Improved heterogeneous distance

functions. J Artif Intell Res 6(1):1–34

Xue Y, Watton J (1998) Dynamics modelling of fluid power systems

applying a global error descent algorithm to a selforganising

radial basis function network. Mechatronics 8(7):727–745

Yao X (1993) A review of evolutionary artificial neural networks. Int

J Intell Syst 8(4):539–567

Yao X (1999) Evolving artificial neural networks. Proc IEEE

87(9):1423–1447

Yen GG (2006) Multi-Objective evolutionary algorithm for radial

basis function neural network design. Stud Comput Intell

16:221–239

CO2RBFN: an evolutionary cooperative–competitive RBFN design algorithm 971

123

	CO2RBFN: an evolutionary cooperative--competitive RBFN design algorithm for classification problems
	Abstract
	Introduction
	RBFNs and the classification problem framework
	The evolutionary design of RBFNs
	CO2RBFN: an evolutionary cooperative--competitive hybrid algorithm for RBFN design
	RBFN initialization
	RBFN training
	RBF evaluation
	Applying operators to RBFs
	Introduction of new RBFs
	Replacement strategy

	Experimental framework
	Analysis of the results
	Classification rate analysis
	Model complexity analysis
	Summary

	Conclusions
	Acknowledgments
	Appendix 1: Detailed results obtained for CO2RBFN
	Appendix 2: GeneticRBFN description
	Initialization
	Genetic operators: selection, recombination and mutation
	Training weights
	Individual evaluation

	Appendix 3: Statistical methods
	Friedman’s test
	Iman and Davenport’s test
	Wilcoxon’s signed-rank test

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

