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Abstract

Transparent models search for a balance between interpretability and ac-
curacy. This paper is about the estimation of transparent models of chaotic
systems from data, which are accurate and simple enough for their expres-
sion to be understandable by a human expert. The models we propose are
discrete, built upon common blocks in control engineering (gain, delay, sum,
etc.) and optimized both in their complexity and accuracy.

The accuracy of a discrete model can be measured by means of the av-
erage error between its prediction for the next sampling period and the true
output at that time, or ‘one-step error.’ A perfect model has zero one-step
error, but a small error is not always associated with an approximate model,
especially in chaotic systems. In chaos, an arbitrarily low difference be-
tween two initial states will produce uncorrelated trajectories, thus a model
with a low one-step error may be very different from the desired one. Even
though a recursive evaluation (multi-step prediction) improves the fitting, in
this work we will show that a learning algorithm may not converge to an ap-
propriate model, unless we include some terms that depend on estimates of
certain properties of the model (so called ‘invariants’ of the chaotic series).
We will show this graphically, by means of the reconstructed attractors of
the original system and the model. Therefore, we also propose to follow a
multiobjective approach to model chaotic processes and to apply a simulated
annealing-based optimization to obtain transparent models.

Keywords: Multiobjective Simulated Annealing, Chaotic Systems, Trans-
parent Models, Genetic Programming.

1 Introduction

The mathematical models of chaotic systems have to balance complexity and ac-
curacy. We expect a technique that produces a black box from data [15, 24, 30, 36,

∗Corresponding author. Tel.: +34 985182597; fax: +34 985 181 986. E-mail address: villar-
jose@uniovi.es

1

Manuscript (including abstract)



Gain 2 Delay Saturation

+Gain 4

x̂k+1 = σ(2xk−1) + 4xk

Figure 1: Example of graphical representation of a model comprising common
building blocks in control engineering, and its corresponding difference equation.
The function σ defines a nonlinear gain, the ‘saturation’ block.
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Figure 2: Graphical representation of the one-step error of the model in Figure 1.

39, 47, 7, 29] to produce more accurate results than other procedures that also gain
insight into the block structure of the system.

In our opinion, one of the most useful representations of a model comprises
a set of building blocks such as the gain, sum, or delay (see Figure 1) which, in
turn, is equivalent to a set of discrete, nonlinear difference equations. A difference
equations-based model allows the user not only to predict the output of the process,
but also to know the dynamics of the model and ultimately to design a control
system for it. Thus we will say that Figure 1 displays a white box or a transparent
model.

However, obtaining a transparent model from data is a problem that has not
been solved yet. Our aim is to discover a consistent subset of state variables and
the equations that relate them, and also the numerical values of the coefficients in
these equations. Some of the most recent approaches to obtain this information
are based on evolutionary techniques, combined with a tree-based representation
of the model [4, 6, 14, 19, 46, 56]. In Figure 3 there is a simplified example
of such a representation, that will be explained in depth in Section 3.2. The use
of a tree-based representation permits to define a simultaneous search in both the
different families of models, given by the different shapes the tree can adopt, and
the parameters that define a model within one of these families (in the example, the
parameters are values ‘2’ and ‘4’, which are leaves of the tree in Figure 3).

In some of the mentioned evolutionary algorithms, the objective function mea-
sures the discrepancies between the actual data and the prediction of the model,
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Figure 3: Simplified tree-based representation of the model displayed in Figure 1.
‘SAT’ stands for ‘saturation’ and ‘DEL’ for ‘delay’. The prefix expression in the
figure is a representation of the tree as a chain of symbols. In Section 3.2 we will
show that a grammar can be defined, in order to determine which chains are valid
and which ones are not.

the so called one-step error (see Figure 2). This technique does not fully take into
account the dynamic behavior of the model [47, 54]. As we will show later, if we
search for a model on the basis of the lowest one-step prediction error, we have a
good chance of ending up with a non-chaotic model. Generally speaking, a zero
one-step error proves that the model is exact, but a small error does not mean that
the model is a good approximation. In chaotic processes, this effect is stressed,
because of the sensitivity to initial conditions; that is to say, a small difference be-
tween two initial states produces uncorrelated trajectories past a number of periods.
Because of the same reason, the use of greater prediction horizons is not always
feasible.

Therefore, we propose to use both the one-step error and the value of the largest
Lyapunov exponent of our model. The largest Lyapunov exponent is a measure of
the amount of chaos in the signal [28, 30, 55], and it has to match that value esti-
mated from training data. The difference between the maximum Lyapunov expo-
nents of two models also gives us a measure of similarity between the complexities
of their dynamics [20, 54]. In particular, our multiobjective problem is designed
to minimize the prediction error and the complexity of the model, while restrict-
ing the search to those models whose largest Lyapunov exponents are close to the
estimated value from the time series we want to analyze.

The main drawback with our approach is the time needed to estimate the Lya-
punov exponents. Multicriteria genetic algorithms are known to require a large
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number of evaluations of the fitness function. In this respect, we propose to use
an ad hoc evolutionary algorithm that combines a tree-based representation with a
population-based, multiobjective extension of the Simulated Annealing. This algo-
rithm is able to produce a set of difference equations that reproduces the dynamics
of a sampled chaotic process, and improves the results of modern multiobjective
evolutionary algorithms like NSGA-II [12, 13] when the number of evaluations
of the objective function is limited. Observe that the comparison of two multiob-
jective evolutionary algorithms is a current research area itself. We have used a
methodology of our own, based on binary indicators [58].

In the next section, we focus on the open problems in the transparent modeling
of chaotic systems, and introduce our approach, which is fully explained in Section
3. Experiments and results are shown in Section 4, and the paper finishes with the
concluding remarks and highlights some future work.

2 Issues with evolutionary transparent modeling of chaotic
systems

2.1 Evolutionary models of chaos

Evolutionary algorithms (genetic algorithms, genetic programming and evolution-
ary programming) have been applied to identify and control nonlinear and chaotic
systems. The reader can refer to [34, 49], where genetic algorithms are compared
with different identification techniques, or review the results in [2, 7, 8, 27, 43, 50,
53]. The control problem is less studied. For instance, in [43], a genetic algorithm
was used to find the optimal control signals sequence in a chaotic cutting process.
Fuzzy controllers have been used in [5, 7, 53].

The most often used fitness function is scalar, and it measures the accuracy
of the prediction, but there have also been some transparent models for chaos.
None of them is based on the building blocks we propose, though. For instance,
linguistic fuzzy rules were combined with genetic algorithms in [8] and in [27], and
applied to analyze chaotic time series. Wavelet coefficients are also considered to
provide a certain degree of interpretability, as they were used in [50], where genetic
algorithms were applied to select wavelet threshold parameters in an exchange-rate
forecasting problem.

Other approaches for non-linear modeling use polynomial models, as can be
seen in [15, 44]. Many other different, problem specific, analytical modeling ap-
proaches have been developed. For example, in [1], evolutionary algorithms were
used to obtain nonlinear models for a satellite based ocean forecasting system. In
[14], evolutionary computing was used for extracting mathematical models, and
this proposal was analyzed with three different applications. In [19] genetic pro-
gramming was used to find difference equations models of non-linear processes, as
we propose in this article. Finally, in [2] genetic-neural experts are combined and
used for stock index forecasting.
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2.2 Instantaneous error and recursive predictions

In our opinion, transparent models should not be designed only on the basis of the
one-step error, although the fitness of an individual is based only on instantaneous
error measures in all the preceding methods.

Understandable models are intended to obtain knowledge about the structure
of the physical process. We can lose some accuracy in the prediction if it helps to
obtain a simpler model and gain a better insight, but if the learning produces a set
of non chaotic equations for a chaotic system, no matter how simple they are, they
do not provide the best information. In Figure 4 there is an example of a model
with a good one-step error but with the wrong structure, which helps to make our
point clearer.

There are few publications where the information about the dynamics of the
system is used. For example, in [17], evolutionary computing was used for obtain-
ing models for chaotic time series, using the error of the recurrent outcome of the
model, which is a measure of its dynamical behavior. Nevertheless, chaotic models
are sensitive to initial conditions. The recurrent outcomes of a chaotic model are
very different under small differences of the initial state. Thus, this measure of
error can be discussed, but our own approach shares properties with this method.
In the following section, we propose to evaluate the dynamical properties of a can-
didate model by means of its recursive evaluation, not through the error in the
trajectory, but estimating the higher Lyapunov exponent of the time series formed
by this recursive prediction and including it in a multiobjective fitness function.

2.3 Multicriteria design of models

Multiobjective techniques have been previously used to develop models for non
linear and chaotic systems. In some of our own previous works [16], we have
chosen using a linear combination of the quadratic error and the largest Lyapunov
exponent for the fitness function, and have optimized it by using a genetic algo-
rithm. In [15, 44] a Pareto based approach is used instead of scalar functions, in
combination with the MOGA algorithm described in [18]. There are some differ-
ent Pareto based multiobjective strategies that could also be applied to the same
problem, as can be seen in [9]. Later, we will evaluate a more recent approach, the
NSGA-II algorithm [12, 13].

Given the computational cost of evaluating the Lyapunov exponents of a model,
and the potentially large size of some individuals, we are mostly interested in al-
gorithms that need a low number of iterations and small population sizes. It is
widely admitted that genetic algorithms are the best choice for this matter [57].
However, in our opinion, the experimentations that support this assertion were in-
tended to solve problems based on a linear genotype, and cannot be immediately
extrapolated to tree-based representations. We will show that some metaheuristics
can improve the results of multiobjective genetic algorithms.
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Figure 4: Upper part: One-step prediction of two linear models, given by the trans-
ference functions 1.39z

z2+0.6z−0.21 and 1.16z
z+0.15 . The one-step error is small, although

the structure of both models is different. Central and lower parts: recursive pre-
dictions of both models for a step input (0 before the tenth sample, 1 for samples
between 10 and 30). The step response shows the differences in the dynamics of
these models, that were not clear from the graph in the upper part. The same thing
happens with chaotic models: many non-chaotic models have a very good one-step
prediction error in chaotic series, but their recursive prediction does not produce a
strange attractor, as it will be shown later.
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2.3.1 Multicriteria Simulated Annealing

In previous works [48], we have combined a simulated annealing (SA) global
search with a grammar-tree based representation, in the context of the learning
of fuzzy rules. The results of the genetic algorithm (GA) were improved by a
strategy so simple as keeping only one individual, and repeatedly mutating it, ad-
mitting or discarding the result according to a probability decreasing with time and
distance. Taking this into account, in this paper we will extend our own algorithm
to multiobjective problems, and propose a new population-based, multi-objective
SA (MOSA) search, able to elicit a set of non-dominated solutions. In the follow-
ing sections we will show that the genetic search (the NSGA-II algorithm,) while
equally efficient in the long term, can be improved in this specific problem by a
Simulated Annealing-based search in both accuracy and memory usage.

It is interesting to mention that a pure Pareto-based MOSA search has not been
previously defined, to the best of our knowledge. The most recent approaches
weigh the different criteria into a scalar function [23, 35, 51]. Otherwise, in [11]
it was proposed to use the dominance to decide the evolution of the simulated
annealing. That approach was also used in [21], where fuzzy numbers and uncer-
tainty in dominance are managed to decide if an individual is better than another
or not. Similarly, in [40, 41], Pareto dominance is studied to decide how the mul-
tiobjective simulated annealing evolves. But, in all of these cases, an weighted
sum of objectives is still used to evaluate each individual. A different approach to
Pareto based MOSA, nearer to ours, is introduced in [3], where a comparison of
a Pareto-based evolutionary algorithm and a population-based simulated annealing
with dominance control approach is shown. In each simulated annealing iteration,
a new individual is obtained by means of a heuristic and included in the population
if there is a non dominance relation with the current individual. If the new one
dominates the current, then it becomes the current one. In the opposite case, then it
is accepted with temperature dependent probability. Observe that, even in this last
case, it is required that either an individual dominates or is dominated by another.
This is done, again, weighing the different objectives into a scalar function and
therefore, it can be argued that the algorithm does not homogeneously sample the
Pareto front. In the following sections we will introduce a different algorithm that
does not pose this problem.

3 Multicriteria design of models with Simulated Anneal-
ing

In this section we explain our proposal for obtaining a model which balances ac-
curacy, interpretability and dynamic behavior, as stated in the introduction. The
algorithm we are about to introduce is a multiobjective extension of the SA-P al-
gorithm defined in [48].
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Needs:
Initial and final temperatures: Tinitial, Tfinal

Cooling factor : C

Produces:
A set of nondominated models: PARETO

Initialize the population of models: X = {x0}
Initialize the set of elites : PARETO = X
T ← Tinitial

while T ≥ Tfinal

// X’ is the intermediate population
X′ ← ∅
for each x ∈ X

xmutated ← mutation(x)
if xmutated ≺ x then

X′ = X′ ∪ {xmutated}
else if x ≺ xmutated then

if rnd() < exp(-distance(x, xmutated)/T) then
X′ = X′ ∪ {xmutated}

else X′ = X′ ∪ {x}
else

X′ ← X′ ∪ {x, xmutated}
end if

end for
PARETO ← nondominated models of the joint set PARETO ∪X′

X ← selection(X′)
T ← T · C

end while

Figure 5: Pseudocode of the MOSA algorithm

3.1 Outline of the algorithm

The pseudocode of the Multi-Objective Simulated Annealing (MOSA) algorithm
is shown in Figure 5. This algorithm is based on a variable sized search points
population. At each iteration, all the search points are mutated and their respective
fitness evaluated. The comparison between the fitness of the mutated individual
and that of its corresponding search point can produce three different results:

1. The new individual dominates the current search point.

2. The new individual is dominated by the search point.

3. Neither of them dominates the other.

Our strategy for these three cases is as follows:

1. If the mutated individual dominates the current search point, it replaces its
parent in an intermediate population.

8



DEAD ZONE SATURATION

UC

UC

LC

LC

Figure 6: Graphical representation of the transference functions of the building
blocks used in the models.

2. If the mutated individual is dominated, then a random decision is made be-
tween storing the current search point or the mutated one. Observe that,
being an SA search, the probability of admitting the mutated point depends
on the cooling pattern and decreases with both the distance between the in-
dividuals and the time. The distance we have used is explained in Section
3.5.

3. Otherwise, the size of the intermediate population is increased, and the mu-
tated model initiates a new search path.

Once all the individuals in the population have been mutated and the preceding
decisions have been taken, the intermediate population is sampled by means of
the selection operator (see Section 3.6) to form the following generation. An
elitist set of non-dominated solutions is also kept aside the population. This set
is the current sample of the Pareto front and will eventually be the output of the
algorithm.

3.2 Representation of an individual

As we have mentioned before, our models are built upon common building blocks
in control engineering. Following [31], our catalog comprises the dead zone, satu-
ration, subtraction, product and delay. In Figure 6 the transference functions of the
less evident blocks are displayed. The ‘delay’ operator produces the value that a
given variable has had a certain number of periods ago.

The phenotype of an individual is a list of equations. Each equation assigns an
expression to one state variable, and it is assumed that the first state variable is also
the output of the model. Any expression has to be a valid chain of the grammar
that follows:
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EXP '→ ArithOp | NonLinearOp | DelayOp | Param | Variable
ArithOp '→ (+ EXP, EXP) | (- EXP, EXP) | (* EXP, EXP)
NonLinearOp '→ (Saturation Param Param EXP) | (DeadZone Param Param EXP)
DelayOp '→ (Delay Param Variable)

for instance, the expression

σ(2xk−1) + 4xk

where σ(x) = sign(x) · min{|x|, 1}, is codified by the chain

(+ (SATURATION -1 1 (* 2 (DELAY 1 X))) (* 4 X)).

We use a tree-shaped genotype, (a simplified example has already been given
in Figure 3). The complete representation also includes labels in the nodes and the
edges of the tree, which will be used in the mutation operator defined in the next
section. The genotype is the parse tree of the expression. An actual example of it
is shown in Figure 7, where the following set of equations is codified:

x1
k+1 = σ(4x1

k−1) + 5x2
k

x2
k+1 = x3

k
x3

k+1 = x1
k−1

Each node of this tree encodes the name of the production rule that originated
each subtree. This information will be used later to define a typed crossover. Note
that we do not codify numerical parameters in the leaves of the tree, but rather
references to a chain of named parameters.

3.3 Mutation and crossover operators

The Simulated Annealing algorithm relies on the mutation operator to produce
new models, therefore the crossover is not needed. However, we will implement
the mutation by means of a subtree crossover with a randomly generated individual
[25][42] to define the mutation in terms of the crossover operator. Notice that the
crossover operator defined in this section will be reused in the genetic algorithm to
which we will compare our numerical results in Section 4.

Since the numerical parameters are encoded in a separate chain rather than in
the leaves of the tree, our crossover operator has two different expressions, that we
will call parametric and structural. The parametric crossover takes place between
the chains of parameters, and the structural one between the trees. Leaving apart
the differences in the grammar, the same operators proposed in [48] were used:

• Parametric crossover: Extended intermediate crossover [37] between the
chains of parameters.
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Figure 7: Genotype of an individual in the MOSA algorithm. An individual com-
prises a list of equations and a chain of parameters. Each equation is, in turn, a
labeled tree.

• Structural crossover: Typed subtree exchange [38]. The grammar proposed
before is used to determine the compatibility of subtrees, e.g. an edge with
the label ‘EXP’ can receive a subtree of type ‘ArithOp’ but an edge labeled
‘Param’ can not receive a ‘Variable’ type tree .

3.4 Random generation of genotypes

The PTC2 algorithm is used to generate random trees [32, 33]. This algorithm
allows to specify the maximum number of nodes, the types of nodes, the proba-
bility distribution of each type of node, the maximum height and the probability
distribution for each tree height, conditioned to our grammar.

3.5 Distance between individuals

The distance function is used in Simulated Annealing to check that the mutated
individuals are close to the initial individual.

In previous works [48], we postulated the use of an edition distance between
trees. This distance is the number of edition operations (add, remove or replace a
node) needed to transform the current into the new model. Moreover, in the same
paper we also checked that similar individuals (in terms of the edition distance) had
a very different evaluation of the fitness, and the same happens here. Therefore, we
have chosen to implement a distance in the fitness landscape (the supremum of the
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distances in all the criteria) instead of an edition distance in the genotypical space.

3.6 The selection operator

The size of the intermediate population can be twice as high as the current popula-
tion size, in the worst case.

Our selection operator is a variation of that used in the NSGA-II algorithm
[12, 13]. Firstly, the set of nondominated search points is computed by pairwise
comparisons of all individuals in the intermediate population X′. Secondly,

• If the size of the set of nondominated search points is small enough, this set
is the new population.

• If its size must be further reduced, we sort the individuals in this last set by
means of the same crowding distance defined in the NSGA-II algorithm, and
choose first those points in less dense areas.

3.7 Fitness function

The fitness function comprises two numbers: the average error of the one-step
prediction of the model, and the absolute difference between the estimations of the
largest Lyapunov exponents of the model and the training data.

Different procedures have been proposed to compare this kind of compound
values [10]. We will use a Pareto multiobjective evaluation, and guide the search
towards obtaining a set of non dominated individuals. In the most general case, it
is said that an individual x dominates another individual y (x ≺ y,) when all the Fj

components of the fitness vector F verify Fj(x) ≤ Fj(y) and ∃ t | Ft(x) < Ft(y).
However, we are not interested in the whole Pareto front, because models with a
high prediction error are not of practical interest. We will discard all models whose
one-step prediction error is higher than the variance of the time series, irrespective
of their Lyapunov value.

The estimation of the one-step prediction error is immediate. The same cannot
be said about estimating the largest Lyapunov exponent of a model. It can be
computed, as mentioned, from the time series produced by the recursive evaluation
of the model, starting in a given initial state, and discarding the first few hundred
samples of the recursive evaluation, so we are certain that the trajectory is in the
attractor.

We evaluated some different numerical algorithms. Our first choice was the
well-known Wolf algorithm [55], that we had already used in previous works. The
number of samples that this algorithm needs is rather high; this, altogether with the
large number of iterations and the population sizes needed to obtain good models
with multiobjective genetic algorithms, makes the whole identification procedure
impractical. There are other algorithms, in particular those of Rosenstein and Kantz
[45][26], which need lower sample sizes than Wolf’s; we have successfully used a
combination of the Rosenstein algorithm and our own heuristic estimation of the
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Figure 8: Multilayer perceptron as a model a chaotical time series. The embedding
dimension is 3, and the error is computed as the average of the squared one-step
prediction error. Neural networks can approximate the series with very high accu-
racy, nevertheless the model they learn can be non-chaotic.

point where the slope of the curve time vs. divergence changes. However, the
best results in both accuracy and computational effort have been obtained by an
estimation based on the equations of the model and the principal axes of expansion,
as discussed in [52]: we follow the divergence of two close trajectories. One of
them is retained for reference. The other is repeatedly renormalized so that the
distance between both is kept short. The maximum Lyapunov exponent is then
estimated by the average value of the logarithm of the initial distance between the
trajectories, divided by the distance between the predictions, before renormalizing.

4 Experimental results

4.1 One-step error compared to the proposed fitness function

As mentioned in the introduction, a good error in the one-step prediction does not
mean that the dynamic behavior of the system has been captured. In Figure 4 we
gave an example of a linear model with the wrong structure, but a low one-step
error. In this section we will provide a new example where a chaotical time series
will be modeled by a multilayer perceptron.

The neural network will be trained to minimize the squared difference between
the one-step prediction and the true output of the system, e.g. let us suppose that
the chaotic series is

1, 4, 6, 1, 2, 6, 5, . . .

and we choose an embedding dimension of size 3. Then, we train a neural network
with three inputs and one output (see Figure 8), using the training set that follows:
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Figure 9: Chaotic time series used to analyze the one-step prediction error based
fitness function

Input Output
1, 4, 6 1
4, 6, 1 2
6, 1, 2 6
· · ·

In particular, we have modeled the chaotic series shown in Figure 9 with four
multilayer perceptrons, using the conjugate gradient method [22]. The nets have a
sigmoidal activation in the hidden layer and a linear activation in the output layer.
The first 80% of the data was used to train the net, and the last 20% was used to
test it. Their respective sizes and the order of magnitude of the errors are shown in
the table below:

Multilayer Perceptron
Embedding dimension Nodes in each layer Err

1 1 - 3 - 1 10−3

2 2 - 5 - 1 10−4

3 3 - 10 - 1 10−5

4 4 - 10 - 1 10−5

The errors are very low. If we plotted the prediction of the net over the real
data, there was virtually no difference. Let us compute recursive trajectories for
these neural networks, as shown in Figure 10, applying the same procedure that
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we used in the example in Figure 4. The results are plotted in Figure 11. All these
models are stable and therefore, there are no strange attractors.

0 0 1

0.453

0.453

Figure 10: Recursive evaluation of a multilayer perceptron to check the properties
of the attractor. The output of the net is added to the input series and the data is
shifted to obtain the next prediction.

The neural networks have been selected because they are one of the most accu-
rate black-box models in the literature. There is nothing intrinsically wrong with
the use of neural networks to obtain short term predictions of chaotic series. For
instance, if we use a genetic model instead, it happens the same. In Figure 12, a
genetic algorithm was used, with the same representation and operators described
in the text except for a scalar fitness (based only on the one-step error). We have
trained it with data from the Henon map. The learned model is not chaotic, though,
as pictured in the central part of the figure. And, in the lower part of the same fig-
ure, the recursive evaluation of a model that optimizes the fitness function proposed
in this work is shown. In the next section we will also plot some reconstructed at-
tractors, where the similarities are more evident.

4.2 Benchmark problems

In this section we will compare the results of MOSA and NSGA-II with some
benchmark problems. The NSGA-II is an implementation of the Pareto based mul-
tiobjective genetic algorithm detailed in [12, 13].

The results will be shown with two different methodologies, graphical and sta-
tistical. The graphical (qualitative) approach serves to identify the differences be-
tween the combined Pareto fronts after a certain number of repetitions of each
experiment. The statistical (quantitative) comparison of the results of multiobjec-
tive Evolutionary Algorithms is a current research field. There are many different
measures of how much a Pareto front improves the results of another one, but
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Figure 11: Multilayer perceptrons with one hidden layer, trained on the series in
Figure 9 to minimize the one-step error. Upper part: Recursive evaluation of the
neural networks 1-3-1 and 2-5-1. Lower part: Networks 3-10-1 and 4-10-1. De-
spite the low values in the objective function shown in the text, all trajectories
converge to a point in the space state, thus none of the models is chaotic.
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Figure 12: Graphical analysis of experimental results, Henon map. Upper part:
Train data. Center: Typical recursive evaluation of a transparent model obtained by
an evolutionary algorithm when the maximum Lyapunov exponent is not included
in the fitness function; in this case, the optimization has converged to a stable model
(Lyapunov exponent < 0). Lower part: recursive evaluation of one of the models
found with the MOSA algorithm.
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it is acknowledged that there are problems derived from the stochastic nature of
evolutionary algorithms that are still unsolved [57, 58, 59]. We propose to use a
statistical test about the probability that one algorithm dominates the other, based
on the binary ε-indicator described in [58]. Both the qualitative and quantitative
analysis will be explained in the next sections.

4.2.1 Experimental setup

The parameters of the operators used in the experimentation are shown in the fol-
lowing tables:

NSGA-II
Parameter Value Parameter Value

Structural crossover 0.5 Parametric crossover 0.5
Structural mutation 0.01 Embedding dimension 2

Population size 100 Evaluations of fitness 5000
Minimum value of a parameter -5 Maximum value of a parameter 5

MOSA
Parameter Value Parameter Value

Initial temperature 1.00 Cooling factor 0.999
Structural mutation 0.5 Parametric mutation 0.5

- Embedding dimension 2
Maximum population size 10 Evaluations of fitness 5000

Minimum value of a parameter -5 Maximum value of a parameter 5

The learning time is roughly proportional to the number of times that we esti-
mate the greater Lyapunov exponent of a model, and both algorithms are allowed
to evaluate 5000 times this function. Since this estimation is not performed when
the one-step error is higher than the variance of the time series, this is equivalent
to 50 ≈ 100 generations of the NSGA-II algorithm. The parameters defining the
random initialization of the individuals are as follows:

Parameter Value
Maximum number of nodes in equations 10

Prob. of number of nodes/equation, 1 - 10 .05 .12 .11 .15 .15 .15 .11 .08 .05 .03
Maximum height 7

Height probability distribution, 1 - 7 .05 .4 .3 .15 .05 .025 .025
node types +; -; *; Delay; Saturation; Dead Zone

Node type probability distribution .21 .21 .21 .21 .09 .07

Each experiment was repeated 10 times. The time series used for training and
validation has a size of 1000. The chaotic systems that have have been used are the
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Figure 13: Graphical analysis of experimental results, Henon map. Upper part, left:
Combined Pareto front of ten repetitions of the algorithms NSGA-II (triangles) and
MOSA (circles). All the models in the Pareto front of the NSGA-II algorithm are
dominated by at least one element in the Pareto front of the MOSA. To enhance
the differences, a logarithmic scale is used. The vertical axis represents the error in
the Lyapunov exponent, the horizontal one is the one-step error. Upper part, right:
combined cloud of the 10 Pareto fronts of both experiments, from which the Pareto
fronts were calculated. Lower part, left: Attractor of the Henon map. Lower part,
right: Attractor of one of the models induced by the MOSA method.

Logistic and the Henon maps, with the set of parameters shown in the equations
that follow:

Logistic map: xk+1 = 4.0 ∗ xk ∗ (1− xk) (1)

Henon map:
{

x1
k+1 = x2

k
x2

k+1 = 1 + 0.3 ∗ x1
k − 1.4 ∗ x2

k ∗ x2
k

(2)

4.2.2 Commented graphical results

The graphical results are displayed in Figures 13 and 14. In both cases, we have
obtained the combined Pareto front (upper left part) after 10 repetitions of each
algorithm. This combined Pareto front is formed by selecting all the non dominated
individuals of the 10 runs. In the upper right part, all the elements of the 10 Pareto

19



 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 1e-04  0.001  0.01  0.1

MOSA

NSGA-II

one-step error

L
y
a
p
u
n
o
v
 e

rr
o
r

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 1e-04  0.001  0.01  0.1  1

"PAR-GLOBAL-MOSA" u 1:2

"PAR-GLOBAL-NSGA" u 1:2

L
y
a
p
u
n
o
v
 e

rr
o
r

one-step error

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

"atractor.dat" u 1:2

x1

x2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

"atractor.dat" u 3:4

x1

x2

Figure 14: Graphical analysis of experimental results, Logistic map. Upper part,
left: Combined Pareto front of ten repetitions of the algorithms NSGA-II (trian-
gles) and MOSA (circles). All but one of the models in the Pareto front of the
NSGA-II algorithm are dominated by at least one element in the Pareto front of the
MOSA. To enhance the differences, a logarithmic scale is used. The vertical axis
represents the error in the Lyapunov exponent, the horizontal one is the one-step
error. Upper part, right: combined cloud of the 10 Pareto fronts of both experi-
ments, from which the Pareto fronts were calculated. Lower part, left: Attractor of
the Henon map. Lower part, right: Attractor of one of the models induced by the
MOSA method.
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fronts of each algorithm are displayed together, in the same graph. Lastly, in the
right lower part of the figures we have displayed a couple of reconstructed attractors
that show the similarities between the dynamic behavior of the models (right part)
and that of the original system (left part).

There is a clear difference between the combined fronts, because all of the
points in the NSGA-II front are dominated by those of the MOSA. The difference is
not so clear in the combined clouds (upper right part), since some of the executions
of MOSA were dominated by NSGA-II and vice versa. In the next section, we will
study the extent to which, on average, one algorithm is better than the other.

4.2.3 Numerical comparison

There are functions (unary indicators) that can convert a Pareto front into a repre-
sentative value. It is possible to compare sets of these representative values with
the same methodology used in scalar evolutionary algorithms, i.e., a statistical test
able to discard that the expected errors are the same. However, some studies have
shown that these unary indicators cannot show all the dominance relations that can
occur between Pareto fronts [59]. Therefore, to assess the average improvement
between one algorithm and the other, we will use a method based on a binary indi-
cator, namely the binary ε-indicator defined in [58].

Two different definitions of this last indicator are possible: the standard (multi-
plicative) Iε and the additive indicator Iε+. Given two fronts A and B, if Iε(A,B) <
1 and Iε(A,B) > 1, or if Iε+(A,B) < 0 and Iε+(A,B) > 0, we can state that A
dominates B. The values of these indicators for our combined Pareto fronts follow:

Iε(MOSA,NSGA) Iε(NSGA,MOSA)
Henon 0.25 122.98

Logistic 0.13 201.483

Iε+(MOSA,NSGA) Iε+(NSGA,MOSA)
Henon -0.04 0.19

Logistic -6·10−4 0.04

In both cases, we can conclude that combined MOSA results dominate those of
NSGA-II. These results are not conclusive, though, since one exceptionally good
result of either algorithm could be responsible for the dominance of the combined
Pareto front. So we propose to apply the ε-indicator to perform a full set of com-
parisons between all pairs of fronts.

Our methodology is as follows: Let pA(B) be 1 if A dominates B (i.e. when
Iε(A,B) > 1 and Iε(B,A) < 1), 0 otherwise. Given 10 repetitions B1, . . . , B10

of an algorithm B, let

PA(B) =
1
10

10∑

i=1

pA(Bi). (3)
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Figure 15: Boxplots of (1) PMOSA(NSGA-II) and (2) PNSGA-II(MOSA) for the Henon
map (left part) and Logistic map (right part). This graph shows that the probability
of MOSA improving NSGA-II is higher than the probability of NSGA-II improv-
ing MOSA in both problems.

Given other 10 repetitions A1, . . . , A10 of an algorithm A, let

PA(B) = (PA1(B), PA2(B), . . . , PA10(B)). (4)

The vector PA(B) can be seen as a sample of a random variable: the fraction
of times that the output of the algorithm A dominates the algorithm B. If the
expectation of PA(B) is greater than the expectation of PB(A), then we can state
that the algorithm A is better than the algorithm B, since it is more likely that
results of the former improve those of the latter than the opposite.

Therefore, to know whether there is a significant difference between the two
algorithms we can use a statistical test to discard that the expectations of PA(B)
and PB(A) are the same. Since the distributions of none of them were compati-
ble with the Gaussian distribution, we have used a Wilcoxon test (null hypothesis
E(PA(B)) = E(PB(A)), alternate hypothesis E(PA(B)) > E(PB(A))). The
resulting p-values are shown in the following table:

p-value
Henon 0.00020

Logistic 0.00013

We can surely discard that the means of both variables are the same in favor of
the alternate hypothesis; thus, we can conclude that MOSA is a significant im-
provement with respect to NSGA-II in this particular application. In Figure 15
the boxplots of PMOSA(NSGA-II) and PNSGA-II(MOSA) for both problems are also
given.
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5 Concluding remarks and future work

Modeling chaotic dynamic systems is a complex task. It is easy to obtain a model
with low error in a one-step prediction, but it is not easy to capture their dynamical
properties. We have already shown that many of these short term models are not
chaotic.

If a transparent model is needed, the one-step approach is questionable. How-
ever, using a larger horizon in the prediction is not feasible, since chaotic systems
show a high dependency on the initial conditions. Therefore, we have decided
to combine the one-step error and an invariant of the recursive evaluation of the
model, its largest Lyapunov error. Our results have shown that, for simple chaotic
systems, we are able to, effectively, obtain a model whose recursive evaluation con-
verges to a strange attractor, very similar to that of the original system. Moreover,
we have shown that, for this task, the use of a Simulated Annealing-based search
can improve the results of recent multicriteria genetic algorithms in both memory
requirements and computational time.

Future work will be devoted to integrate the full spectra of Lyapunov exponents
in the algorithm. This is needed to identify models with more than one positive
exponent. In this last case, it is hard for our algorithm to obtain a good model, since
most of the search is spent with models where only the largest exponent is similar.
The same can be said about unstable models, that are currently detected by means
of heuristics (i.e., limits in the range of the output of the recursive evaluation). The
full spectra or, at least, the Kolmogorov entropy of the model should be evaluated
and taken into account along with the one-step error and the largest exponent.
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