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Searching for New Mathematical Growth
Model Approaches for Listeria monocytogenes
A. VALERO, C. HERVÁS, R.M. GARCı́A-GIMENO, AND G. ZURERA

ABSTRACT: Different secondary modeling approaches for the estimation of Listeria monocytogenes growth rate as
a function of temperature (4 to 30 ◦C), citric acid (0% to 0.4% w/v), and ascorbic acid (0% to 0.4% w/v) are presented.
Response surface (RS) and square-root (SR) models are proposed together with different artificial neural networks
(ANN) based on product functions units (PU), sigmoidal functions units (SU), and a novel approach based on the
use of hybrid functions units (PSU), which results from a combination of PU and SU. In this study, a significantly
better goodness-of-fit was obtained in the case of the ANN models presented, reflected by the lower SEP values
obtained (< 24.23 for both training and generalization datasets). Among these models, the SU model provided the
best generalization capacity, displaying lower RMSE and SEP values, with fewer parameters compared to the PU and
PSU models. The bias factor (Bf) and accuracy factor (Af) of the mathematical validation dataset were above 1 in all
cases, providing fail-safe predictions. The balance between generalization properties and the ease of use is the main
consideration when applying secondary modeling approaches to achieve accurate predictions about the behavior of
microorganisms.
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Introduction

Predictive microbiology is a specific application of the field
of mathematical modeling for describing the behavior of

pathogen and spoilage microorganisms under a given set of envi-
ronmental conditions. Growth predictive models have been widely
accepted as informative tools that provide quick and cost-effective
assessments of microbial growth for product development, risk as-
sessment, and educational purposes (Ross 1999). Although there
are several classifications of predictive models, the one proposed
by Whiting and Buchanan (1993) (primary, secondary, and tertiary
models) is currently the most commonly used classification.

This paper focuses on secondary type models. In predictive mi-
crobiology, the development and application of secondary mod-
els for growth rate and lag time have been extensively reviewed
(McClure and others 1997; Devlieghere and others 2000, 2001;
Zurera-Cosano and others 2004). Square-root models describe the
effect of suboptimal temperature on growth rate (Ratkowsky and
others 1982). When this initial model is fitted to experimental growth
rates, the data are square-transformed to stabilize their variance.
This empirical relationship was transformed into a multiplicative
model to consider the effect of additional environmental parame-
ters such as CO2, sodium lactate, or water activity (Dalgaard and
others 1997; Devlieghere and others 2000, 2001). One of the major
advantages of these models is the fact that they are simple, easy
to interpret, and use few parameters. Furthermore, the biological
significance of microorganisms behavior can be obtained from the
restricted parameters.

Polynomial models were extensively used in the 1990s, being the
most common secondary models. They do provide certain advan-
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tages; for example, it is easy to fit heterogeneous groups of experi-
mental data using multiple linear regression techniques. Such mod-
els commonly use response surface analysis and have been used to
predict growth as a function of factors such as pH, NaCl, tempera-
ture, and other preservatives (Buchanan and Phillips 1993 Wijtzes
and others 1993; McClure and others 1997). However, these models
often produce an excessive number of parameters and lack biolog-
ical interpretability.

Artificial neural networks (ANN) have been proposed as useful
tools for modeling complex nonlinear systems (Hajmeer and oth-
ers 1997). Their applications in predictive microbiology field are
used for modeling growth curves as a function of extrinsic and in-
trinsic parameters (Geeraerd and others 1998; Jeyamkondan and
others 2001; Garcı́a-Gimeno and others 2003, 2005). Their major
advantages are the approximation of underlying relationships of
any complexity between the independent variables and their flex-
ibility to fit bacterial growth data, especially in dynamic condi-
tions (Cheroutre-Vialette and Lebert 2002). Traditional models re-
fer to Multi-Layer Perceptron type (MLP) models: this group in-
cludes sigmoidal-base unit functions (SU) and also multiplicative
networks including product-base unit functions (PU). In addition
to these groups of models, where hidden layer nodes have the same
activation/transfer functions, hybrid models can include different
functions. A few studies have focused on this area, such as Cohen
and Intrator (2002, 2005), who compared sigmoidal-base, product-
base, and radial-base unit functions. As described by Geeraerd and
others (2004), the generalization properties of growth models (in
other words, the performance of the model when confronted with
new data) are essential to assess their predictive capacity. Generally
speaking, a lower goodness-of-fit is reasonably acceptable in certain
cases if the generalization capacity is improved. Although almost all
models used have drawbacks in their utilization, it is important to
select an appropriate model for a specific dataset.

Mild-preservation technologies are increasing due to the major
demand of nature and fresh products (Jacxsens and others 2003).
The effect of citric acid (CA) has been proven to be both protective
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and bactericidal against Listeria monocytogenes (Buchanan and
Golden 1994). Ascorbic acid (AA) is added to a variety of foods to
improve their quality or to enhance their nutritional value (Mackey
and Seymour 1989) having either bacteriostatic or a bactericidal
activity (Eddy and Ingram1953). Moreover, the combination of low
temperature, low pH, and high concentration of organic acids can
inhibit the growth of L. monocytogenes in minimally processed foods
(Le Marc and others 2002).

The main purpose of this study is to present and compare the
applicability of different secondary model approaches on a dataset
of L. monocytogenes growth rate as a function of storage temperature,
CA, and AA: (i) square-root model (SR), (ii) response surface model
(RS), and (iii) the use of ANN models associated with sigmoidal,
product base functions, and hybrid models.

Materials and Methods

Strain and preculture conditions
A slant culture containing L. monocytogenes (strain NCTC 11994)

was incubated for 24 h at 30 ◦C in 10 mL of pure tryptone soya broth
(TSB, pH 7.2). Then, 1 mL of the culture was incubeted in a test tube
of 9 mL of TSB (24 h, 30 ◦C each). A 3rd subculture was obtained in
the same way, incubating 1 mL of the inoculum in a flask of 100 mL
of TSB until the early stationary phase was reached.

Sample preparation and growth evaluation
Modified media were achieved by adding all possible combina-

tions of concentrations of CA L (−) 1-hydrate and L (+) AA (0% to
0.4% w/v) to 100 mL of TSB. Following sterilization of the media, the
final pH was checked (Table 1).

Growth was assessed by measuring absorbance in Bioscreen C
at 600 nm. Prior to inoculation, microtiter plates with 10 × 10 wells
were filled with 160 µL of modified media. Each condition was repli-
cated 5 times and 2 blank samples with 200 µL each were run. Then,
the inoculum size was adjusted by a calibration curve (30 ◦C, pH

Table 1 --- Combinations of organic acids performed for
model and validation datasets. Final pHs for each con-
dition are also shown.

Model dataset Validation dataset

CA (%) AA (%) pH CA (%) AA (%) pH

0 0 7.26 0 0.05 7.08
0 0.1 6.92 0.05 0 6.31
0 0.2 6.79 0.05 0.05 6.27
0 0.3 6.62 0.05 0.15 6.07
0 0.4 6.37 0.05 0.25 5.8
0.1 0 6.34 0.05 0.35 5.5
0.1 0.1 5.92 0 0.15 6.22
0.1 0.2 5.64 0.15 0 6.09
0.1 0.3 5.46 0.15 0.05 6.01
0.1 0.4 5.38 0.15 0.15 5.84
0.2 0 5.67 0.15 0.25 5.63
0.2 0.1 5.47 0.15 0.35 5.4
0.2 0.2 5.38 0 0.25 5.98
0.2 0.3 5.16 0.25 0 5.85
0.2 0.4 4.95 0.25 0.05 5.79
0.3 0 5.37 0.25 0.15 5.64
0.3 0.1 5.33 0.25 0.25 5.46
0.3 0.2 5.13 0.25 0.35 5.32
0.3 0.3 4.76 0 0.35 5.74
0.3 0.4 4.5 0.35 0 5.51
0.4 0 5 0.35 0.05 5.4
0.4 0.1 4.86 0.35 0.15 5.19
0.4 0.2 4.71 0.35 0.25 4.97
0.4 0.3 4.6 0.35 0.35 4.84
0.4 0.4 4.41

7.2) until a concentration of approximately 106 CFU/mL was ob-
tained. Finally, the wells were inoculated with 40 µL of inoculum.
Log-absorbance data were obtained as a function of time for each
condition tested.

Experimental data
The experimental design was based on an enlarged dataset from

the study of Carrasco and others (2006). All possible combinations
of factors were performed within the following intervals for the con-
ditions studied: storage temperature (4, 7, 10, 15, 20, 25, 30 ◦C); CA
concentration (0%; 0.1%; 0.2%; 0.3%; 0.4% w/v) and AA concentra-
tion (0%; 0.1%; 0.2%; 0.3%; 0.4% w/v).

To validate the performance of the model (that is, to test the gener-
alization capabilities), additional conditions were tested within the
experimental range of the datasets mentioned above. These addi-
tional conditions are at the same temperature values, but other CA
and AA concentrations (0%, 0.05%, 0.15%, 0.25%, and 0.35% w/v)
(Table 1).

Relation between absorbance and cell count
Calibration curves performed at different combinations of tem-

perature (4 to 30 ◦C) and pH (4.5 to 7.2) were used to transform ab-
sorbance data to cell counts (Table 2). Modified TSB was prepared by
adding CA L (−) 1-hydrate and L (+) AA to 100 mL of culture medium
as necessary. The pH of TSB was modified in order to cover the entire
pH range reached in the experiment. After autoclaving, the final pH
was checked. To perform calibration curves, L. monocytogenes cells
were grown for 24 h at 30 ◦C in TSB from a slant culture. Later, 1 mL
was transferred into 10 mL of TSB and incubated at 30 ◦C for 24 h.
A 3rd subculture was incubated in a flask of 100 mL of pH-modified
TSB medium, at different temperatures until the early stationary
phase was reached.

Table 2 --- Criteria followed for applying the calibration
curves to growth model conditions at different levels of T
and pH

Calibration Growth model
curves conditions

T (◦C) pH T (◦C) pH range

30 7.2 30 6.5–7.2
25 6.5–7.2
20 6.5–7.2

30 6 30 5.75–6.5
25 5.75–6.5
20 5.75–6.5

30 5.5 30 5.25–5.75
25 5.25–5.75
20 5.25–5.75

30 5 30 4.75–5.25
25 4.75–5.25
20 4.75–5.25

30 4.5 30 <4.75
25 <4.75
20 <4.75

15 7.2 15 6.5–7.2
15 6 15 5.75–6.5
15 5.5 15 5.25–5.75
15 5 15 4.75–5.25
15 4.5 15 <4.75
10 7.2 10 6.5–7.2
10 6 10 5.75–6.5
10 5.5 10 5.25–5.75
10 5 10 4.75–5.25

7 7.2 7 6.5–7.2
7 6 7 5.75–6.5
7 5.5 7 5.25–5.75
4 7.2 4 6.5–7.2
4 6 4 5.75–6.5
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Calibration curves were performed in accordance with the pro-
tocol defined by Francois and others (2005) for each combination
tested in order to study the relationship between absorbance and
cell count in a microtiter plate. From the initial inoculum, a half
dilution series was made in TSB in a microtiter plate. In the 1st col-
umn, 200 µL inoculum was added to all the wells using a multipipet,
where initially all other wells were filled with 200 µL of broth. In
each well of the 2nd column, 200 µL inoculum was added to 200 µL
broth. From each of those wells, 200 µL was taken to prepare the
next dilution. This procedure resulted in 10 dilution steps, each in
10 replicates.

The inoculum size was controlled by making dilution series in
TSB and plating on tryptone soya agar, then incubating at 30 ◦C for
24 h. Microtiter plates were placed in Bioscreen C and absorbance
measurements were taken. Measurements were corrected by a blank
containing only TSB. A logarithmic transformation was performed
for both absorbance values and cell count data to standardize the
variance and the distance between the data points. These trans-
formed data were used to fit linear regression curves in Microsoft
ExcelTM. The main statistical parameters and the goodness-of-fit
(R2 adjusted and standard deviation) for each regression curve are
shown in Table 3.

Data fitting: primary model
The DMFit 1.0 curve fitting program was used to fit cell count data

as a function of time by applying the Baranyi and Roberts function
(1994). Previously, cell count data were log transformed in order to
standardize the variance. Using this primary model, the growth rate
(µ) was estimated.

Secondary modeling approaches
Square-root model (SR). The estimates obtained for µ (h−1)

were primarily fitted using the Ratkowsky model (Ratkowsky and
others 1982) to consider the effect of temperature on the growth
rate of L. monocytogenes as described in Eq. 1. Based on the study
of Devlieghere and others (2000), this model was extended to the
amount of CA and AA in order to observe the effect of these factors
on µ. The model has the following form:

√
µ = a + b (X1 − X ′

1) + c
√

(X ′
2 − X2)(X ′

3 − X3) (1)

Table 3 --- Conditions (T, pH) employed for the calibration
curves with the main statistical parameters for each re-
gression curve

T (◦C) pH Slope Intercept R2adjusted S.E. n

30 7.2 0.795 9.248 0.974 0.069 50
30 6 0.841 9.279 0.986 0.064 33
30 5.5 0.816 9.006 0.984 0.053 52
30 5 0.864 8.260 0.991 0.132 47
30 4.5 0.763 8.351 0.982 0.043 35
15 7.2 0.815 9.070 0.982 0.064 76
15 6 0.996 8.916 0.996 0.033 62
15 5.5 0.906 8.533 0.993 0.034 58
15 5 1.114 8.531 0.985 0.050 61
15 4.5 1.314 8.349 0.976 0.049 51
10 7.2 0.837 9.044 0.979 0.047 76
10 6 1.009 9.055 0.985 0.047 56
10 5.5 1.033 9.019 0.988 0.044 60
10 5 0.906 8.760 0.963 0.072 47

7 7.2 1.407 9.133 0.985 0.048 60
7 6 1.472 9.020 0.982 0.058 68
7 5.5 1.375 8.896 0.986 0.058 79
4 7.2 1.377 9.037 0.989 0.049 66
4 6 1.242 9.083 0.965 0.076 54

S.E. = Standard error of the slope estimate; n = number of data.

where a, b, and c are the coefficients to be estimated, X1 is tempera-
ture, X 1

′ the minimum temperature at which growth rate is 0, X 2 −
X 3 are the concentrations of CA and AA respectively, X 2

′ − X 3
′ are

the estimated theoretical maximum CA and AA concentrations (%
w/v) for organism growth, and µ is the maximum growth rate.

Responsesurfacemodel(RS). The square-root model was com-
pared with a quadratic response surface model that corresponds to
the following equation:

y = β0 +
k∑

j=1

β j X j +
k∑

j=1

β j j X2
j +

∑

j<1

k∑

l=2

β jl X j Xl + ε (2)

where y is the response variable (µ); β 0 (intercept y-axis) and β j, β jj,
and β jl are the coefficients of the model; Xj and Xl are the indepen-
dent variables related to the factors (temperature, concentration of
CA and concentration of AA, as described in Eq. 1); and ε is the error
of the model.

Response surface and square-root models were obtained by fit-
ting the data of Eq. 1 and 2 with the Levenberg-Marquardt algorithm
from SPSS 12.0 for WindowsTM software.

Hybrid artificial neural networks: adaptive methods for es-
timating functions. ANN models are commonly based on 1 type
of function (sigmoidal or product) to describe data observed; how-
ever, in this study, a new methodology is shown for estimating the
relation within the independent variables x and the dependent vari-
able y through linear combinations of sigmoidal and product-base
functions. In other words, an estimation of a function with N − 1
predicting variables x will be performed from a set of data points
n or measurements zi = (xi, yi), (i = 1,. . . , n) in an N-dimensional
space:

y = f (x) + ε (3)

where ε represents a random error variable with mean 0 and a dis-
tribution not known independent of x.

Nonparametric adaptive estimation methods are used to obtain
a function resulting from a linear combination of base functions, in
the form

f (x) =
M∑

j=1

β j Bj (x, wj) (4)

where x = (x1, x2, ..., xp) is the vector of input variables, β j are coeffi-
cients of the linear combinations to estimate from the data, Bj(x, wj)
are base functions, being B0 (x, p0) = 1 to introduce this bias into the
model, wj = (w j1, w j2, ..., wjp), are parameters associated with base
functions, and M is the number of hidden nodes in the network.

In this paper, 2 base functions, sigmoidal and product, were used
individually and in combination.

Product functions (PU) have the following form:

Bk(x, wk) =
p∏

i=1

xwki
i k = 1, . . . , m2 (5)

Whereas sigmoidal functions (SU) have the form:

Bj (x, uj) = 1

1 + exp −
(

uj0 +
p∑

i=1
uji xi

) j = 1, . . . , m1; (6)

Thus, the linear combination (hybrid model) to estimate the func-
tion (PSU) will be:

M18 JOURNAL OF FOOD SCIENCE—Vol. 72, Nr. 1, 2007



M:
Fo

od
Mi

cr
ob

iol
og

y&
Sa

fet
y

Listeria growth modeling approaches . . .

f (x) = γ0 +
m1∑

j=1

α j Bj (x, u j ) +
m2∑

k=1

βk Bk(x, wk) (7)

where γ 0 is the intercept of the equation, and uji and α j are the
coefficients of the base functions to be estimated. An example of the
structure of hybrid models is shown in Figure 1. The method used
consisted of determining a sufficient number of base functions to
provide an approach to the function to be estimated (Donoho 1989)
so for each e >0 a value of m1 and m2 was found, as well as parameter
estimators of α j, β k, ûj, and ŵk for j = 1, . . . , m1 and k = 1, . . . , m2

until the following expression was obtained:

∥
∥
∥
∥
∥

f (x) − (γ0 +
m1∑

j=1

α j Bj (x, u j ) +
m2∑

k=1

βk Bk(x, wk)

∥
∥
∥
∥
∥

< e (8)

To overcome this problem, an evolutionary algorithm (EA) will
be used as described by Angeline and others (1994) and Hervás-
Martinez and others (2006).

The general evolutionary process is based on the use of selection,
replication, and mutation operators (parametric and structural).
Evolution of the network topology corresponds to a local search for
the structure of sigmoidal and product-base functions that display
the best fit to the training data points, determining the values of the
m1 and m2 associated with the number of base functions consid-
ered. On the other hand, evolution of the network weights is related
to the vectors uj and wk that determine coefficients presented in
each base function, and those that result from linear combinations

Figure 1 --- Theoretical architecture
of a hybrid neural network

Table 4 --- Parametric values used by the evolutionary algorithm for product unit neural networks for the estimation
of Listeria monocytogenes

Structural mutation parameters: Parametric mutation
Population parameters interval [∆M, ∆M] parameters of Eq. (9)

Size, NP 1000 add nodes [1, 2] α1(0) 1
Maximum number of hidden nodes, p 8 delete nodes [1, 2] α2(0) 5
Number of independent variables, k 4 add connections [1, 6] β 0.5
Exponent interval, [−M, M] [0, 3] delete connections [1, 6] R 10
Coefficient interval, [0, L] [−5, 5]

of these base functions (α j, β k). The general structure of the evolu-
tionary algorithm, which is described in detail in Hervás-Martinez
and others (2006), is applied to an initial population of N individuals.
It can be supported in the following steps:

1. Generate initial population with randomly generated net-
works.

2. Evaluate the fitness score for each individual of the population
based on the objective function.

3. Copy the best individual to the next generation.
4. The best 10% of the population substitutes the worst 10%.
5. Apply parametric mutation operators to the best 10% of the

population.
6. Apply structural parametric mutation to the rest of the popu-

lation.
The values of parameters used by the evolutionary algorithm for

PUNN are shown in Table 4. It should be pointed out that the al-
gorithm is quite robust to the modification of these parameters.
The EA begins generating N networks randomly, choosing the total
number of hidden nodes from a uniform distribution in the interval
(0, M], where m1 + m2 = M corresponds to the maximum number
of hidden nodes in each network. The number of connections be-
tween nodes from the hidden and input layers is determined from
a uniform distribution in the interval (0, p ], where p represents the
number of independent variables.

Once the network topology is defined, 1 weight is assigned to each
connection from a uniform distribution in the interval [− L, L] for
the weights between the hidden and input layer and [− U , U] for
the weights between the hidden and the output layer.

Vol. 72, Nr. 1, 2007—JOURNAL OF FOOD SCIENCE M19
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There are 2 types of mutations in an EA: parametric and structural.
The severity of these mutations depends on the temperature T(R)
of the network model, defined as:

T(R) = 1 − A(R) , 0 ≤ T(R) ≤ 1 (9)

where the aptitude A(R) of a network R is calculated as a decreasing
function of the root mean square error E(R) from the expression

A(R) = 1
1 + E (R)

, 0 < A(R) ≤ 1 (10)

Parametric mutation is applied to the 10% of the selected networks
that present the best fit and affect the network weights. Paramet-
ric mutation consists of adding to the coefficients α j, β k, a random
variable of mean 0, and standard deviation α1(t)T(R), while the co-
efficients uji and wki present a random variable of mean 0 and stan-
dard deviation α2(t)T(R), where α1(t) � α2(t), ∀t. Mutations of the
weights uji and wki corresponding to the exponents of functions to
be modeled should be less severe than mutations in the weights α j,
β k, corresponding to the base-function coefficients.

Structural mutation that affects network topology (hidden nodes
and connections) was applied to the 90% of the networks that pre-
sented the worst fit to the training data points. Five types of structural
mutations were used in this study: add nodes, eliminate nodes, add
connections, eliminate connections, and join nodes.

All independent variables and the dependent variable consid-
ered in the ANN models were scaled in the rank [0.1, 0.9] as per the
following example using temperature T :

T∗ = 0.8
T − Tmin

Tmax − Tmin
+ 0.1 (11)

where T is the original temperature, T min and T max are the minimum
and maximum values of the dataset, and T∗ is the scaled tempera-
ture. Once obtained, model estimations should be descaled follow-
ing the same equation.

Evaluation criteria. To evaluate the magnitude of the difference
between the observed and predicted values of the different models
proposed, root mean-square error (RMSE) and standard error of
prediction (SEP) (Hervás and others 2001) were applied to both the
training and generalization datasets. These values are defined by:

RMSE =
√∑

(µpred − µobs)2

n
(12)

SEP = 100
µobs

√
√
√
√
√

n∑

i=1

(µpred − µobs )2

n
(13)

where µobs is the observed maximum specific growth rate, µpred is
the predicted specific growth rate, and n the number of data.

SEP is a relative percentage that explains the deviations between
predictions and observations, and is independent of the size of the
values for the dependent variable.

For model validation, the bias factor (Bf) and accuracy factor (Af)
(Ross 1996) were applied to the generalization dataset and are rep-
resented in the following equations:

Bf = 10(
∑

log(µpred/µobs)/n) (14)

Af = 10(
∑

log(µpred/µobs)/n) (15)

Results and Discussion

The experimental data used in this study encompassed 157
growth conditions of L. monocytogenes (95 conditions selected

for the training and 62 for generalization dataset with 5 replicates
per condition) in modified TSB as a function of storage temperature
(4 to 30 ◦C), CA (0% to 0.4% w/v) and AA (0% to 0.4% w/v). All possi-
ble combinations were tested, but only conditions in which growth
was observed were considered in the analysis procedure. Conditions
selected are represented in Table 5 and 6.

Primary model
Log-absorbance data were transformed into cell counts (log

CFU/mL) using the calibration curves obtained previously (Table 2).
Later, the Baranyi model (Baranyi and Roberts 1994) was fitted to cell
count data using DMFit 1.0. Based on this primary model, µ was es-
timated from cell count data.

The Baranyi model presented a good fit to the data observed,
corroborating the observations of other authors (George and others
1996; McClure and others 1997). Figure 2 shows a growth curve of cell
count data fitted to Baranyi model. It should be noted that some ex-
trapolation was made when starting from absorbance data. Membré
and others (1999) compared this adjustment to the one given using
the Gompertz equation and found significant differences in growth
rate estimation. They concluded that the 1st model provided a better
goodness-of-fit.

Secondary models
The 2nd step was to find the relationship between growth rate and

environmental parameters. Five different model approaches were
used to obtain predicted L. monocytogenes growth rate: RS model,
SR model, and 3 ANN models (PU, SU, and PSU).

For the RS model, different transformations of µ were tested, and√
µ was chosen to stabilize the variance of the data. Subsequently,

a linear regression procedure with a stepwise method was used to
link √

µ with the environmental factors considered in the model.
The final equation was:

√
µ = 0.018 − 1.353(CA2) − 0.285(AA2) + 0.021(T)

−0.027(T) (CA) − 0.010(T) (AA) − 0.899(CA) (AA)
(16)

The minimal parameter values (T′, CA′, and AA′) were estimated to
fit the SR model to the data observed. These values are shown in
Table 7 along with their lower and upper confidence intervals, and
were obtained by extrapolating conditions at which µ was zero. The
secondary model was obtained in the same way as described above.

√
µ = − 0.755 + 0.016(T − T′) + 1.315

√
(CA

′ − CA) (AA′ − AA) (17)

Finally, the neural network models were adjusted by repeating
the algorithm to obtain the architecture that best fits the data
observed.

The structure of the interconnected neurons in a neural network
depends on the complexity of a given problem. The number of neu-
rons in the input and the output layers is determined by the number
of input and output variables in the problem. The number of neu-
rons in the hidden layers is related to the performance of a neural
network. Too few hidden neurons limit the ability of the network
to model the problem, and too many result in overtraining of the
input/output pair patterns presented in the training process. This
demonstrates the need to develop methods that enable the number
of parameters to be reduced without significantly diminishing the
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Table 5 --- Conditions selected for the training dataset
and observed/predicted mean values of the 5 repli-
cates/condition of maximum growth rate (µ) from the dif-
ferent models

Predicted valuesCA% AA%
T (◦C) (w/v) (w/v) µOBS µRS µSR µPU µSU µPSU

30 0 0 0.417 0.424 0.407 0.413 0.417 0.401
30 0 0.1 0.324 0.381 0.345 0.369 0.375 0.355
30 0 0.2 0.329 0.334 0.285 0.327 0.332 0.313
30 0 0.3 0.281 0.285 0.227 0.285 0.289 0.273
30 0 0.4 0.247 0.233 0.171 0.241 0.246 0.233
30 0.1 0 0.355 0.311 0.297 0.320 0.314 0.320
30 0.1 0.1 0.294 0.265 0.249 0.276 0.271 0.279
30 0.1 0.2 0.230 0.218 0.204 0.235 0.228 0.240
30 0.1 0.3 0.239 0.171 0.160 0.192 0.186 0.196
30 0.1 0.4 0.105 0.125 0.118 0.148 0.144 0.145
30 0.2 0 0.231 0.191 0.193 0.220 0.211 0.218
30 0.2 0.1 0.210 0.149 0.160 0.176 0.169 0.171
30 0.2 0.2 0.092 0.108 0.128 0.134 0.127 0.120
30 0.2 0.3 0.041 0.071 0.098 0.092 0.088 0.074
30 0.3 0 0.079 0.084 0.098 0.115 0.112 0.094
30 0.3 0.1 0.052 0.053 0.079 0.071 0.072 0.051
30 0.3 0.2 0.011 0.027 0.061 0.029 0.035 0.020
30 0.3 0.3 0.011 0.008 0.045 0.001 0.001 0.001
30 0.3 0.4 0.012 0.000 0.029 0.001 0.001 0.001
25 0 0 0.314 0.298 0.308 0.293 0.314 0.321
25 0 0.1 0.235 0.267 0.255 0.260 0.272 0.284
25 0 0.2 0.242 0.233 0.204 0.229 0.232 0.244
25 0 0.3 0.220 0.196 0.155 0.196 0.194 0.197
25 0 0.4 0.139 0.158 0.110 0.163 0.158 0.148
25 0.1 0 0.231 0.217 0.214 0.213 0.213 0.233
25 0.1 0.1 0.228 0.183 0.174 0.180 0.175 0.184
25 0.1 0.2 0.152 0.148 0.136 0.148 0.140 0.139
25 0.1 0.3 0.109 0.113 0.101 0.116 0.106 0.105
25 0.1 0.4 0.055 0.079 0.068 0.083 0.076 0.079
25 0.2 0 0.067 0.128 0.127 0.127 0.121 0.117
25 0.2 0.1 0.113 0.097 0.101 0.094 0.088 0.086
25 0.2 0.2 0.049 0.068 0.076 0.062 0.057 0.063
25 0.2 0.3 0.025 0.041 0.053 0.030 0.030 0.043
25 0.3 0 0.031 0.050 0.054 0.038 0.039 0.047
25 0.3 0.1 0.024 0.028 0.040 0.005 0.012 0.028
20 0 0 0.196 0.224 0.194 0.196 0.210 0.216
20 0 0.1 0.159 0.179 0.174 0.173 0.179 0.171
20 0 0.2 0.149 0.136 0.150 0.150 0.150 0.137
20 0 0.3 0.129 0.097 0.125 0.127 0.125 0.112
20 0 0.4 0.123 0.062 0.098 0.103 0.101 0.092
20 0.1 0 0.140 0.144 0.139 0.141 0.139 0.122
20 0.1 0.1 0.119 0.112 0.116 0.118 0.114 0.100
20 0.1 0.2 0.107 0.082 0.092 0.096 0.091 0.082
20 0.1 0.3 0.074 0.055 0.067 0.073 0.070 0.066
20 0.1 0.4 0.034 0.032 0.044 0.049 0.051 0.052
20 0.2 0 0.096 0.075 0.078 0.083 0.079 0.067
20 0.2 0.1 0.068 0.055 0.057 0.060 0.059 0.052
20 0.2 0.2 0.030 0.037 0.037 0.037 0.041 0.039
20 0.2 0.3 0.011 0.022 0.019 0.014 0.025 0.027
20 0.3 0 0.023 0.022 0.025 0.023 0.029 0.027
20 0.3 0.1 0.038 0.014 0.012 0.001 0.014 0.016
15 0 0 0.109 0.153 0.112 0.116 0.116 0.114
15 0 0.1 0.083 0.116 0.100 0.101 0.097 0.097
15 0 0.2 0.104 0.082 0.086 0.087 0.081 0.083
15 0 0.3 0.071 0.053 0.069 0.072 0.066 0.070
15 0 0.4 0.059 0.028 0.052 0.056 0.053 0.058
15 0.1 0 0.079 0.089 0.079 0.083 0.076 0.071
15 0.1 0.1 0.063 0.064 0.064 0.068 0.062 0.059
15 0.1 0.2 0.057 0.042 0.049 0.054 0.049 0.048
15 0.1 0.3 0.063 0.023 0.033 0.039 0.038 0.038
15 0.1 0.4 0.032 0.009 0.019 0.024 0.028 0.029
15 0.2 0 0.038 0.037 0.040 0.048 0.044 0.037
15 0.2 0.1 0.034 0.026 0.027 0.033 0.034 0.028
15 0.2 0.2 0.014 0.012 0.015 0.019 0.024 0.020
15 0.3 0 0.015 0.004 0.009 0.011 0.020 0.011
10 0 0 0.047 0.095 0.052 0.054 0.053 0.062
10 0 0.1 0.037 0.067 0.047 0.046 0.043 0.053

Continued

Table 5 --- Continued

Predicted valuesCA% AA%
T (◦C) (w/v) (w/v) µOBS µRS µSR µPU µSU µPSU

10 0 0.2 0.037 0.042 0.039 0.039 0.035 0.044
10 0 0.3 0.022 0.022 0.030 0.031 0.027 0.036
10 0 0.4 0.016 0.007 0.020 0.023 0.021 0.029
10 0.1 0 0.026 0.046 0.036 0.038 0.033 0.034
10 0.1 0.1 0.018 0.029 0.028 0.030 0.026 0.027
10 0.1 0.2 0.007 0.015 0.019 0.023 0.019 0.020
10 0.1 0.3 0.001 0.005 0.011 0.015 0.014 0.014
10 0.1 0.4 0.001 0.000 0.004 0.007 0.009 0.009
10 0.2 0 0.008 0.012 0.015 0.021 0.018 0.013

7 0 0 0.030 0.027 0.027 0.027 0.030 0.038
7 0 0.1 0.024 0.024 0.024 0.023 0.023 0.031
7 0 0.2 0.019 0.024 0.020 0.018 0.018 0.024
7 0 0.3 0.016 0.010 0.014 0.014 0.013 0.018
7 0 0.4 0.014 0.001 0.008 0.009 0.009 0.013
7 0.1 0 0.025 0.028 0.018 0.019 0.017 0.016
7 0.1 0.1 0.015 0.015 0.013 0.014 0.012 0.011
7 0.1 0.2 0.008 0.005 0.008 0.010 0.008 0.006
7 0.2 0 0.008 0.004 0.006 0.010 0.007 0.000
4 0 0 0.018 0.044 0.011 0.008 0.014 0.018
4 0 0.1 0.011 0.025 0.009 0.006 0.010 0.013
4 0 0.2 0.006 0.011 0.007 0.005 0.006 0.008
4 0 0.3 0.003 0.002 0.004 0.003 0.003 0.003
4 0 0.4 0.004 0.000 0.002 0.001 0.001 0.001
4 0.1 0 0.014 0.004 0.006 0.005 0.006 0.001
4 0.1 0.1 0.006 0.005 0.004 0.004 0.003 0.001
4 0.1 0.2 0.007 0.001 0.002 0.002 0.000 0.001
4 0.1 0.3 0.001 0.001 0.000 0.000 0.001 0.001

T = temperature; CA = citric acid concentration; AA = ascorbic acid
concentration; µOBC = observed values of µ; SR = square-root model; RS =
response surface model; PU = product-base unit function; SU = sigmoidal-base
unit function; PSU = hybrid model.

model’s estimation capacity (Hervás and others 2001). The archi-
tecture for the best networks chosen is displayed in the following
equations. All variables (T∗, CA∗, AA∗, and µ∗) were scaled in the
rank (0.1 to 0.9).

PU model:

µ∗ = 0.098 − 0.963(T∗1.682)(CA∗1.086) + 2.887(T∗30.026)(CA∗1.010)

+0.974(T∗1.724)(AA∗−0.020) − 0.405(T∗1.449)(AA∗1.146)
(18)

SU model:

µ∗ = 2.175 − 0.692

[1 + e−[−6.810+8.421(T∗)+0.570(CA∗)]]

− 2.102

(1 + e−[3.935−5.099(T∗)+1.235(CA∗)+0.768(AA∗)])

(19)

PSU model:

µ∗ = 0.153 − 0.553[(T∗)3.235(CA∗)−0.155(AA∗)0.019]

− 0.132

(1 + e−[12.945−25.315(T∗)+11.009(CA∗)+6.406(AA∗)])

+ 3.621

(1 + e−[−3.619+3.473(T∗)−1.211(CA∗)−0.467(AA∗)])

(20)

By applying the corresponding equations, predicted values for µ

were obtained. Table 5 and 6 show the predictions of the average of
µ for the 5 models considered for both training and generalization
datasets.

Evaluation of the goodness-of-fit
The goodness-of-fit of the training and generalization datasets

for the models considered were evaluated by calculating RMSE and
SEP, and are shown in Table 8.
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In all cases, the models developed produced relatively low val-
ues for RMSE (< 0.0318), which means that the observed and pre-
dicted growth rates were very similar. However, for the general-

Table 6 --- Conditions selected for the generalization
dataset and observed/predicted mean values of the 5
replicates/condition of µ from the different models

Predicted valuesCA% AA%
T (◦C) (w/v) (w/v) µOBS µRS µSR µPU µSU µPSU

30 0.00 0.05 0.407 0.403 0.376 0.390 0.396 0.377
30 0.05 0.05 0.354 0.360 0.340 0.359 0.357 0.359
30 0.05 0.00 0.345 0.369 0.351 0.368 0.366 0.368
25 0.05 0.15 0.206 0.241 0.191 0.205 0.204 0.220
25 0.05 0.25 0.180 0.180 0.148 0.173 0.167 0.171
25 0.05 0.35 0.097 0.143 0.107 0.141 0.132 0.129
25 0.15 0.05 0.126 0.152 0.152 0.154 0.148 0.148
25 0.15 0.15 0.071 0.129 0.120 0.122 0.113 0.110
25 0.15 0.25 0.065 0.096 0.090 0.090 0.082 0.083
25 0.15 0.35 0.014 0.066 0.063 0.057 0.052 0.061
25 0.25 0.05 0.029 0.070 0.078 0.066 0.063 0.065
25 0.00 0.05 0.298 0.241 0.282 0.276 0.293 0.302
25 0.05 0.05 0.252 0.251 0.241 0.240 0.247 0.268
25 0.05 0.00 0.244 0.256 0.260 0.254 0.263 0.284
20 0.05 0.15 0.134 0.159 0.126 0.135 0.132 0.119
20 0.05 0.25 0.099 0.114 0.091 0.112 0.107 0.098
20 0.05 0.35 0.054 0.088 0.060 0.089 0.085 0.081
20 0.15 0.05 0.086 0.094 0.095 0.101 0.096 0.083
20 0.15 0.15 0.049 0.079 0.070 0.078 0.074 0.067
20 0.15 0.25 0.055 0.056 0.048 0.055 0.055 0.052
20 0.15 0.35 0.015 0.035 0.028 0.032 0.038 0.039
20 0.25 0.05 0.022 0.038 0.039 0.041 0.044 0.039
20 0.25 0.15 0.014 0.026 0.026 0.019 0.027 0.027
20 0.00 0.05 0.180 0.152 0.201 0.184 0.194 0.193
20 0.05 0.05 0.146 0.163 0.163 0.157 0.159 0.146
20 0.05 0.00 0.154 0.166 0.183 0.169 0.173 0.164
15 0.20 0.25 0.009 0.008 0.042 0.011 0.020 0.016
15 0.05 0.15 0.080 0.074 0.063 0.078 0.071 0.071
15 0.30 0.05 0.009 0.003 0.019 0.004 0.015 0.008
15 0.05 0.25 0.045 0.048 0.049 0.063 0.057 0.059
15 0.05 0.35 0.066 0.027 0.046 0.048 0.046 0.048
15 0.15 0.05 0.063 0.051 0.051 0.058 0.053 0.047
15 0.15 0.15 0.084 0.033 0.041 0.044 0.041 0.038
15 0.15 0.25 0.028 0.018 0.027 0.029 0.031 0.029
15 0.15 0.30 0.037 0.012 0.019 0.022 0.026 0.025
15 0.25 0.05 0.021 0.013 0.017 0.022 0.026 0.019
15 0.25 0.10 0.013 0.009 0.013 0.015 0.022 0.015
15 0.00 0.05 0.095 0.134 0.088 0.108 0.106 0.105
15 0.05 0.05 0.096 0.104 0.094 0.092 0.086 0.084
15 0.05 0.00 0.083 0.119 0.096 0.100 0.095 0.091
10 0.05 0.05 0.046 0.057 0.053 0.042 0.038 0.043
10 0.05 0.15 0.050 0.036 0.035 0.035 0.030 0.035
10 0.05 0.25 0.028 0.019 0.027 0.027 0.023 0.028
10 0.05 0.35 0.011 0.007 0.018 0.019 0.017 0.021
10 0.15 0.05 0.009 0.021 0.020 0.026 0.022 0.019
10 0.15 0.15 0.032 0.010 0.015 0.018 0.016 0.014

7 0.05 0.05 0.023 0.036 0.020 0.021 0.020 0.023
7 0.05 0.15 0.017 0.020 0.018 0.016 0.015 0.017
7 0.05 0.25 0.007 0.008 0.012 0.012 0.010 0.012
7 0.05 0.35 0.006 0.001 0.007 0.008 0.007 0.007
7 0.15 0.05 0.006 0.009 0.009 0.012 0.009 0.005
7 0.00 0.05 0.024 0.055 0.023 0.025 0.026 0.034
7 0.00 0.15 0.023 0.033 0.023 0.020 0.020 0.028
7 0.00 0.25 0.021 0.016 0.018 0.016 0.015 0.021
7 0.00 0.35 0.013 0.004 0.012 0.012 0.011 0.016
7 0.05 0.00 0.026 0.046 0.021 0.023 0.023 0.026
7 0.05 0.10 0.019 0.028 0.020 0.019 0.017 0.020
7 0.05 0.20 0.011 0.013 0.015 0.014 0.012 0.015
7 0.05 0.30 0.008 0.004 0.010 0.010 0.008 0.010
4 0.00 0.05 0.012 0.034 0.010 0.007 0.012 0.015
4 0.05 0.00 0.011 0.027 0.009 0.007 0.009 0.009

T = temperature; CA = citric acid concentration; AA = ascorbic acid
concentration; µOBC = observed values of maximum growth rate (µ); SR =
square-root model; RS = response surface model; PU = product-base unit
function; SU = sigmoidal-base unit function; PSU = hybrid model.

ization dataset, RMSE values were lower for the ANN models per-
formed. These results support the findings of other authors. Yu and
others (2006) compared nonlinear regression models with ANNs.
From all the models presented, ANN displayed the best RMSE,
demonstrating its capacity to generate more accurate predictions
than RS models. Esnoz and others (2006) offered a comparison be-
tween RS models and neural network models for predicting Bacil-
lus stearothermophilus inactivation rate. The RS model achieved an
RMSE of 0.19 to experimental data, higher than that obtained using
ANN models, which ranged between 0.13 and 0.16. Garcı́a-Gimeno
and others (2005) obtained an RMSE of between 0.006 and 0.115.
These values are similar to the errors observed in other ANN models
(Hajmeer and others 1997; Lou and Nakai, 2001; Garcı́a-Gimeno and
others 2003) or in RS models (Juneja and others 2001; Zurera-Cosano
and others 2004).

Since RMSE values depend on the magnitude of the data, SEP
values were calculated because they are relative percentages that
provide better comparisons between different models. The SEP val-
ues were acceptable for all models presented, but produced con-
siderably lower values for the PU, SU, and PSU models (< 24.23%
for both training and generalization datasets, according to Table
8). In this study, ANN models presented a better generalization ca-
pacity compared to RS and SR models. Several authors highlight
that SU models produce better estimations of kinetic parameters
than other models such as the RS (Hajmeer and others 1997; Hervás
and others 2001; Lou and Nakai 2001). Garcı́a-Gimeno and others
(2002) observed SEP values that were lower than 22% for predic-
tions of Lactobacillus plantarum growth rate and which were much
better than the RS model (35.6%), so SU models were chosen in-
stead of RS models based on the lower SEP, despite the fact that
the SU models had a greater degree of complexity. Although some
researchers do not agree with the use of ANN to predict growth pa-
rameters due to their complexity, other studies have confirmed that
SU models could be even simpler than regression in certain cases
(Hervás and others 2001; Garcı́a-Gimeno and others 2002). Geer-
aerd and Van Impe (1999) extended neural networks to model the
specific growth rate of Shigella flexneri in BHI medium as a func-
tion of temperature, pH, NaCl, and NaNO2, and compared ANNs
with polynomial models. They found a better performance for ANN
models. Cheroutre-Vialette and Lebert (2000) developed a recurrent
neural network for the prediction of L. monocytogenes growth under
variable conditions. However, a better performance was obtained
against an increase in the number of parameters to be estimated.

In this study, out of the PU, SU, and PSU models, as shown in
Table 8, the SU model presented the best performance to describe
growth rate data. The use of PU and PSU would be very valuable
if a strong interaction existed a priori between the factors that af-
fect the prediction of microbe growth parameters. However, PU and
PSU models were not suitable in comparison with the other models
because they produced an excessive number of parameters with-
out improving generalization capacity. This demonstrates the need
to develop alternative methods that would decrease the number of
parameters required without diminishing performance (Hervás and
others 2000). A few methods have already been developed to elimi-
nate unnecessary weights or parameters. Garcı́a-Gimeno and others

Table 7 --- Cardinal values of the SR model with upper and
lower confidence intervals (C.I.)

Coefficient 95% lower C.I. 95% upper C.I.

T′ −0.740 −1.925 0.583
CA′ 0.502 0.396 0.757
AA′ 0.905 0.479 1.437
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Figure 2 --- Growth
curve of Listeria
monocytogenes based
on cell count data
fitted to Baranyi model

(2002) used a pruning algorithm, removing unnecessary weights and
neurons during the training process without losing generalization
capacity. There are several different pruning methods: one of the
most commonly used methods involves designing an ANN using
evolutionary algorithms (Hervás and others, 2001). In our study, EA
pruning was carried out to reduce complexity. The number of pa-
rameters for each model is expressed in Table 8. The SU model used
fewer parameters (10) in comparison with the PU (13) and PSU (15)
models, and also provided a better fit to the data observed. Hervás
and others (2006) compared SU and PU models with RS models
to predict kinetic parameters for Leuconostoc mesenteroides. They
concluded that the RS model was better for predicting growth rate
since it used fewer parameters, whereas PU models were more suit-
able for predicting lag time and maximum population density, since
they presented a lower error of prediction.

Mathematical validation
In order to determine the performance of the models, the calcu-

lated values for Bf and Af are shown for the generalization dataset
(Table 8). Bf is related to the position of the data points (above or be-
low) with regard to the line of equivalence (structural deviation). Af,
on the other hand, provides information about the mean distance
between each data point and the line of equivalence.

Bf is slightly above 1 for all models, but more accurate values
were obtained using the RS and SR models. This means that the
model overestimates µ (predictive µ > observed µ), so predictions
will be fail-safe. However, as Ross (1999) stated, growth models of
pathogenic microorganisms should present values for Bf of between
0.9 and 1.15. Since all Bf values were lower than 1.15, the models
proposed presented an acceptable bias.

Table 8 --- Evaluation criteria for each model performed: Number of parameters, root mean square error (RMSE), stan-
dard error of prediction (SEP), accuracy factor (Af) and bias factor (Bf)

Training data Generalization data

Model No. parameters RMSE SEP (%) RMSE SEP (%) Bf Af

Response surface 6 0.0222 24.59 0.0303 38.65 1.09 1.41
Square root 3 0.0318 34.04 0.0238 29.03 1.02 1.56
PU (3:4:1) 13 0.0230 23.29 0.0193 24.23 1.11 1.35
SU (3:2:1) 10 0.0225 22.41 0.0182 23.05 1.14 1.36
PSU (3:3:1) 15 0.0226 24.19 0.0190 23.92 1.14 1.33

Af values were above 1 for all models, but in this case, the neu-
ral network models presented more accurate values (1.34 to 1.36).
However, Ross and others (2000) considered Af values of up to 0.15
(15%) for each factor included in the model. Therefore, in our study,
using 3 factors (temperature, CA, and AA), Af values of up to 1.45
should be expected. Since Af values were lower, except for the SR
model, which was slightly higher, the models provide acceptable de-
scriptions of the data observed. Carrasco and others (2006) obtained
similar values for Af and Bf when validating a model describing L.
monocytogenes growth rate (1.16 and 1.05, respectively). Lebert and
others (2000) observed a good fit when they applied mathematical
validation to models to estimate generation time for Pseudomonas
spp. (Bf = 0.82 to 1.16 and Af = 1.13 to 1.24). In a different study on
the same microorganism, similar values were obtained (Bf = 0.84;
Af = 1.23) (Neumeyer and others 1997).

Validation of the models was proven with external data from sci-
entific literature in Table 9. Bf and Af for each model were calculated.
As described in Table 9, the models developed in this study shown
an adequate generalization capacity, since Bf values were near 1,
except for the SR model. On the other hand, Af values were slightly
above 1, and SU model provided the best Af value (1.285). There
are very few reports that include CA or AA, alone or in combina-
tion, as preservatives to inhibit L. monocytogenes growth. Therefore,
further validation should be performed on foods in which both or-
ganic acids are present to enable the application of the models in
food industries.

Conclusions

In this study, different secondary modeling approaches (RS,
SR, and 3 ANN models) were presented for estimating growth
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Table 9 --- Validation of each model performed with data from scientific literature

Reported values Predicted values

T (◦C) CA% (w/v) AA% (w/v) µmax (h−1) µRS (h−1) µSR (h−1) µPU (h−1) µSU (h−1) µPSU (h−1)

7 0.050 0 0.021a 0.023 0.044 0.023 0.023 0.026
13 0.050 0 0.064a 0.073 0.094 0.076 0.070 0.072
13 0.100 0 0.040a 0.059 0.067 0.063 0.056 0.055
21 0.050 0 0.176a 0.183 0.188 0.185 0.191 0.189
21 0.100 0 0.078a 0.151 0.149 0.155 0.153 0.138

5.5 0 0 0.018b 0.018 0.053 0.016 0.021 0.027
10.5 0 0 0.057b 0.057 0.097 0.059 0.058 0.067
15 0 0 0.120b 0.111 0.147 0.116 0.116 0.114
20 0 0 0.188b 0.224 0.194 0.196 0.210 0.216
25 0 0 0.301b 0.299 0.308 0.293 0.314 0.321

4 0.138 0 0.003c 0.004 0.006 0.004 0.003 0.001
10 0.095 0 0.045c 0.036 0.046 0.039 0.034 0.035

4 0 0.120 0.023c 0.009 0.021 0.006 0.009 0.012
10 0 0.120 0.048c 0.045 0.059 0.045 0.041 0.051

4 0 0.011 0.032c 0.010 0.041 0.008 0.013 0.017
10 0 0.011 0.049c 0.051 0.089 0.053 0.052 0.061

Bf 0.958 1.445 0.929 0.965 0.982
Af 1.310 1.461 1.379 1.285 1.372

aAhamad and Marth (1989).
bNyati (2000).
cGiannuzzi and Zaritzky (1996).
T = temperature; CA = citric acid concentration; AA = ascorbic acid concentration; µmax = reported values of maximum growth rate (µ); SR = square-root model;
RS = response surface model; PU = product-base unit function; SU = sigmoidal-base unit function; PSU = hybrid model; Af = accuracy factor; and Bf = bias factor.

parameters (µ). In general, the ANN models were found to yield a
better fit with experimentally measured data in comparison with the
data predicted by the RS and SR models. This justifies its use in the
field of predictive microbiology. In this study, given that only 3 factors
(temperature, CA, and AA) were used, the model is not excessively
complex, so a simpler ANN model based on a sigmoidal function
provided acceptable estimations for L. monocytogenes growth rate
with a better goodness-of-fit and generalization capacity than the
RS or SR models.

The results obtained in this study showed that more complex
models imply a better fit to data observed than regression models.
However, simpler models provide good solutions in certain cases,
especially when few environmental factors are taken into account.
The balance between generalization properties and the ease of use
is the main consideration when applying secondary modeling ap-
proaches to achieve accurate predictions about the behavior of mi-
croorganisms.
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