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Abstract
This paper presents a real-coded memetic algorithm that applies a crossover hill-
climbing to solutions produced by the genetic operators. On the one hand, the memetic
algorithm provides global search (reliability) by means of the promotion of high lev-
els of population diversity. On the other, the crossover hill-climbing exploits the self-
adaptive capacity of real-parameter crossover operators with the aim of producing an
effective local tuning on the solutions (accuracy). An important aspect of the memetic
algorithm proposed is that it adaptively assigns different local search probabilities to
individuals. It was observed that the algorithm adjusts the global/local search balance
according to the particularities of each problem instance. Experimental results show
that, for a wide range of problems, the method we propose here consistently outper-
forms other real-coded memetic algorithms which appeared in the literature.

Keywords
Memetic algorithms, real-coding, steady-stated genetic algorithms, crossover hill-
climbing.

1 Introduction

It is now well established that pure genetic algorithms (GAs) are not well suited to
fine tuning search in complex search spaces, and that hybridisation with other tech-
niques can greatly improve the efficiency of search (Davis, 1991; Goldberg and Voess-
ner, 1999). GAs that have been hybridized with local search techniques (LS) are often
called memetic algorithms (MAs) (Moscato, 1989; Moscato, 1999). MAs are evolutionary
algorithms that apply a separate LS process to refine individuals (e.g., improve their
fitness by hill-climbing). An important aspect concerning MAs is the trade-off between
the exploration abilities of the GA, and the exploitation abilities of the LS used (Krasno-
gor and Smith, 2001).

Under the initial formulation of GAs, the search space solutions are coded using
the binary alphabet, however, other coding types, such as real-coding, have also been
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taken into account to deal with the representation of the problem. The real-coding ap-
proach seems particularly natural when tackling optimisation problems of parameters
with variables in continuous domains. A chromosome is a vector of floating point num-
bers whose size is kept the same as the length of the vector, which is the solution to the
problem. GAs based on real number representation are called real-coded GAs (RCGAs)
(Deb, 2001; Herrera, Lozano and Verdegay, 1998).

For function optimisation problems in continuous search spaces, an important dif-
ficulty must be addressed: solutions of high precision must be obtained by the solvers
(Kita, 2001). Adapted genetic operators for RCGAs have been presented to deal with
this problem, which favour the local tuning of the solutions. An example is non-
uniform mutation (Michalewicz, 1992), which decreases the strength in which real-
coded genes are mutated as the RCGA’s execution advances. This property causes
this operator to make a uniform search in the initial space and very locally at a later
stage. In addition, real-coded MAs (RCMAs) have been proposed, which incorporate LS
mechanisms for efficiently refining solutions. Most common RCMA instances use local
improvement procedures (LIPs), like gradient descent or random hill-climbing, which
can only find local optima. One commonly used formulation of MAs applies LIPs to
members of the population after recombination and mutation, with the aim of exploit-
ing the best search regions gathered during the global sampling done by the RCGAs.

One RCMA model that has received attention concerns the use of crossover-based
local search algorithms (XLS). Since the crossover operator produces children around
the parents, it may be used as a move operator for an LS method (Deb, Anand and Joshi,
2002; Dietzfelbinger, Naudts, Van Hoyweghen and Wegener, 2003; Satoh, Yamamura
and Kobayashi, 1996; Yang and Kao, 2000). This is particularly attractive for real-coding
since there are real-parameter crossover operators that have a self-adaptive nature in
that they can generate offspring adaptively according to the distribution of parents
without any adaptive parameter (Beyer and Deb, 2001, Kita, 2000). With the passing of
generations, the RCMA loses diversity, which allows the crossover to create offspring
distributed densely around the parents, inducing an effective local tuning. This kind of
crossover operator shows promise for building effective XLS.

In this paper, we present an RCMA model that uses a real-parameter crossover
hill-climbing (XHC). XHC is a particular type of XLS that allows the self-adaptive ca-
pacity of real-parameter crossover operators to be exploited inside the proper XLS, i.e.,
it is a self-adaptive crossover local search method. The mission of XHC is to obtain the
best possible accuracy levels to lead the population toward the most promising search
areas, producing an effective refinement on them. On the other hand, the RCMA is
designed to promote high population diversity levels. It attempts to induce reliability
in the search process by ensuring that different promising search zones are the focus of
the XHC throughout the run. In addition, the RCMA employs an adaptive mechanism
that determines the probability with which every solution should receive the applica-
tion of XHC. In this way, it attempts to adjust the global/local search ratio (i.e., the
exploration/exploitation balance) to the particular features of the problem that is being
solved.

The paper is set up as follows. In Section 2, we review some important aspects of
real-parameter crossover operators and describe the one used in this work. In Section
3, we deal with RCMAs, providing a classification for the different types of algorithms
that have appeared in the MA literature. In addition, we give special attention to RC-
MAs that employ crossover local search procedures. In Section 4, we describe our pro-
posal for an XHC model. In Section 5, we present the RCMA model, based on the use
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of XHC. In Section 6, we described the experiments carried out in order to determine
the suitability of our approach. Finally, we present our conclusions in Section 7.

2 Crossover Operators for RCGAs

The crossover operator has always been regarded as a fundamental search operator in
GAs (De Jong and Spears, 1992; Kita, 2001) since it exploits information about the search
space that is currently available in the population. Much effort has been given to devel-
oping sophisticated crossover operators, and as a result, many different versions have
been proposed (eg. Deb, 2001; Herrera, Lozano and Verdegay, 1998; Herrera, Lozano
and Sánchez, 2003). Real-coding of solutions for numerical problems offers the pos-
sibility of defining a wide variety of special real-parameter crossover operators which
can take advantage of its numerical nature. Most of these crossover operators define
a probability distribution of “offsprings” solutions based on some measure of distance
among the parent solutions. If the parents are located closely to each other, the off-
spring generated by the crossover might be densely distributed around the parents.
On the other hand, if the parents are located far away from each other, then the off-
springs will be sparsely distributed around them. Therefore, these operators fit their
action range depending on the diversity of the population and if they use specific infor-
mation held by the parents. In this way, the current level of diversity in the population
determines if they will favour the production of additional diversity (divergence) or
the refinement of the solutions (convergence). This behaviour is achieved without re-
quiring an external adaptive mechanism.

In fact, in the recent past, RCGAs with some of these crossovers have been demon-
strated to exhibit self-adaptive behaviour similar to that observed in evolution strate-
gies and evolutionary programming approaches (Deb and Beyer, 2001; Kita, 2001).
Moreover, Beyer and Deb (2001) argue that a variation operator that harnesses the
difference between the parents in the search space is essential for the resulting evo-
lutionary algorithm to exhibit self-adaptive behaviour on the population level.

Usually, real-parameter crossover operators are applied to pairs of chromosomes,
generating two offspring for each one of them, which are then introduced in the popu-
lation (Herrera, Lozano and Sánchez, 2003). However, multiparent crossover operators
have been proposed which combine the features of more than two parents for generat-
ing the offspring (Deb, Anand and Joshi, 2002; Kita, Ono and Kobayashi, 1999; Tsutsui,
Yamamura and Higuchi, 1999;). Furthermore, crossover operators with multiple descen-
dants have been presented (Deb, Anand and Joshi 2002; Herrera, Lozano and Verdegay,
1996; Satoh, Yamamura and Kobayashi, 1996; Walters, 1998) and these produce more
than two offspring for each group of parents. In this case, an offspring selection strat-
egy limits the number of offspring that will become population members. The most
common strategy selects the best offspring as elements for the next population.

In this paper, we propose a new crossover operator that extends the BLX-α
crossover operator presented by Eshelman and Schaffer (1993). It is called parent-centric
BLX-α (PBX-α) and is described as follows. Let us assume that X = (x1 . . . xn) and
Y = (y1 . . . yn) (xi, yi ∈ [ai, bi] ⊂ <, i = 1 . . . n) are two real-coded chromosomes that
have been selected to apply the crossover operator to them. PBX-α generates (ran-
domly) one of these two possible offspring: Z1 = (z1

1 . . . z
1
n) or Z2 = (z2

1 . . . z
2
n), where

z1
i is a randomly (uniformly) chosen number from the interval [l1i , u

1
i ] with

l1i = max{ai, xi − I · α} and u1
i = min{bi, xi + I · α}

and z2
i is chosen from [l2i , u

2
i ] with
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l2i = max{ai, yi − I · α} and u2
i = min{bi, yi + I · α}

where I = |xi − yi|. This operator has the following features:

• It is a parent-centric crossover operator because it assigns more probability for
creating offspring near parents than anywhere else in the search space. Studies
carried out in Deb, Anand and Joshi (2002) have shown that these operators arise as
a meaningful and efficient way of solving real-parameter optimization problems.

• The degree of diversity induced by PBX-α may be easily adjusted by means of
varying its associated α operator parameter. The greater the α value is, the higher
the variance (diversity) introduced into the population.

• This operator assigns children solutions proportional to the spread of parent so-
lutions. Thereby, it gives to the RCGAs that use it the potential to exhibit self-
adaptation.

3 Real-Coded Memetic Algorithms

In this paper, the combination of RCGAs with some type of LS mechanism is denoted
RCMAs. They are motivated by the apparent need to employ both a global and LS strat-
egy to provide an effective global optimisation method (Hart, 1994). RCMA instances
presented in the literature may be classified into two different groups:

• Hybrid RCGAs. They use efficient LIPs on continuous domains, e.g., hill-climbers
for nonlinear optimisation (such as Quasi-Newton, conjugate gradient, SQP, ran-
dom linkage, and Solis and Wets) to efficiently refine solutions. Examples are
found in Hart (1994), Hart, Rosin, Belew and Morris (2000), Joines and Kay (2002),
Houck, Joines, Kay and Wilson (1997), Mühlenbein, Schomisch and Born (1991),
Renders and Bersini (1994), Renders and Flasse (1996), Rosin, Halliday, Hart and
Belew (1997), and Zhang and Shao (2001).

A common way to use an LIP in hybrid RCGAs is to apply it to every member of
each population. The resulting solutions replace the population members, and are
used to generate the next population under selection and recombination (so-called
Lamarckian evolution). An important variation on this schema is the use of a small
LS probability (Hart, 1994), i.e., the LIP is only applied to members with some
(typically small) fixed probability. Moreover, there is an alternative to Lamarckian
evolution, the Darwinian evolution, in which the solution resulting from LIP is
discarded, only its fitness influences the search, changing the fitness landscape.

A different type of hybridisation between LIPs and RCGAs concerns the construc-
tion of new classes of evolutionary algorithms, which are designed using the foun-
dational ideas of LIPs. Two examples are the evolutionary pattern search algo-
rithm (Hart, 2001a; Hart, 2001b) and the evolutionary gradient search procedure
(Salomon, 1998).

• RCMAs with crossover-based LS algorithms. The crossover operator is a recombina-
tion operator that produces elements around the parents. For that reason, it may be
considered to be a move operator for an LS strategy. In addition, as we mentioned
in Section 2, there are special real-parameter crossovers having a self-adaptive na-
ture in that they can generate offspring adaptively according to the distribution
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of parents without any adaptive parameter. With the passing of generations, the
RCGA loses diversity due to the selective pressure. Under this circumstance, these
crossovers create offspring distributed densely around the parents, favouring lo-
cal tuning. Therefore, such operators arise as appropriate candidates for building
crossover-based LS algorithms (XLS). The next section reviews instances of RC-
MAs that work with XLS.

Different RCMA instances based on XLS have been proposed in the literature.
They include the following:

• Minimal generation gap (MGG). The steady-state RCGA model was originally sug-
gested by Satoh, Yamamura and Kobayashi (1996) and later used in a number of
studies (Kita, Ono and Kobayashi, 1999; Tsutsui, Yamamura and Higuchi, 1999).
A generation alternation is done by applying a crossover operation λ times to a
pair of parents randomly chosen from the population. From the parents and their
offspring, the best individual is selected. In addition, a random individual is se-
lected using the roulette wheel technique. These two individuals then replace the
original parents. The elite individual is selected for producing selective pressure
and the random one is selected for introducing diversity into the population. No
mutation is applied under this mechanism.

• Generalized generation gap (G3). Deb, Anand and Joshi (2002) modify the MGG
model to make it computationally faster by replacing the roulette-wheel selection
with a block selection of the best two solutions. The G3 model also preserves elite
solutions from the previous iteration. In G3 the recombination and selection oper-
ators are intertwined in the following manner:

1. From the population P (t) select the best parent and µ − 1 other parents ran-
domly.

2. Generate λ offspring from the chosen parents using a multiparent crossover
operator.

3. Choose two elements at random from the population P (t).

4. Form a combined sub-population of the chosen two elements and offspring,
choose the best two solutions and replace the chosen two elements with these
solutions.

The justification for the design of MMG and G3 is the following. Once a stan-
dard RCGA has found fit areas of the search space, it searches over only a small
fraction of the neighbourhood around each search point. It must derive its power
from integrating multiple single neighbourhood explorations in parallel over suc-
cessive generations of a population. This many points, few neighbours strategy is in
direct contrast to a hill climber which potentially focuses effort on a greater frac-
tion of the search neighbourhood of one point but only around one point at a time.
This strategy might be called few points, many neighbours (O’Reilly and F. Oppacher,
1995). Precisely, MGG and G3 implement this strategy by using crossover opera-
tors with multiple descendants. The idea is to induce an LS on the neighbourhood
of the parents involved in crossover. In this way, this type of crossover operators
constitute an XLS.
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Crossover-hill-climbing (p1, p2, noff , nit)

1. p′1 = p1 and p′2 = p2.

2. Repeat nt times

3. Generate noff offspring, o1, · · · , onoff , performing crossover on p′1 and p′2.

4. Evaluate o1, · · · , onoff .

5. Find the offspring with best fitness value, obest.

6. Replace the worst among p′1 and p′2 with obest, only if it is better.

7. Return p′1 and p′2.

Figure 1: Pseudocode algorithm for XHC

• Family competition (FC). The FC model of Yang and Kao (2000) includes an XLS that
explores the neighbourhood of an element by applying crossover repeatedly with
different mates.

During the FC procedure, each individual Ip sequentially becomes the family fa-
ther. With a probability pc, this family father and another solution I1 randomly
chosen from the rest of the parent population are used as the parents in a crossover
operation. Then the new offspring is operated by mutation to generate an offspring
C1. For each family father, this procedure is repeated L times. Finally, L solutions
(C1, ..., CL) are produced but only the solution Cb with the best value of fitness
function survives. Later, a replacement selection is used to select the better one
from the family parent and its best individual.

The FC principle is that each individual in the population does an LS with length
L and only the best offspring survives. Since L solutions are created from the same
family father and undergo selection, the family competition strategy is similar to
(1, λ) selection. The authors suggested that FC is a good way to avoid premature
convergence but also to keep the spirit of local searches.

4 Real-Parameter Crossover Hill-Climbing

Hill-climbing is a LS algorithm that commences from a single solution point. At each
step, a candidate solution is generated using a move operator of some sort. The algo-
rithm simply moves the search from the current solution to a candidate solution if the
candidate has better or equal fitness. Crossover hill-climbing (XHC) was first described
by Jones (1995) and O’Reilly and F. Oppacher (1995) as a special XLS approach. Its ba-
sic idea is to use hill-climbing as the move accepting criterion of the search and use
crossover as the move operator.

In this paper, we present a real-parameter XHC that maintains a pair of parents
and repeatedly performs crossover on this pair until some number of offspring, noff ,
is reached. Then, the best offspring is selected and it replaces the worst parent only if it
is better. The process iterates nit times and returns the two final current parents. This
XHC model requires values for noff and nit, and a starting pair of parents, (p1, p2).
Although here we are using BLX-α crossover, it must be emphasized that our model
can be instantiated with any other standard real-coded crossover. Figure 1 shows the
pseudocode algorithm for XHC.
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An XHC instance may be obtained using the real-parameter crossover operator
presented in Section 2.1, the PBX-α operator.

The XHC proposed may be conceived as a micro selecto-recombinative RCGA model
that employs the minimal population size necessary to allow the crossover to be appli-
cable, i.e., two chromosomes. The competition process (step 6) differentiates this mech-
anism from the simple application of a crossover operator with multiple descendants
(Section 2). Precisely, our motivation was the definition of an XLS model that allows the
self-adaptive capacity of a real-parameter crossover operator to be exploited inside the
XLS itself, i.e., the design of a self-adaptive XLS. The competition process may modify the
current pair of parents during the XHC run, changing the spread of parents. Since real-
parameter crossovers generate offspring according to the distribution of parents, the
convergence or divergence of XLS will be accomplished without any adaptive param-
eter. It has been argued that incest should be kept to a minimum within evolutionary
algorithms to avoid premature convergence (Craighhurst and Martin, 1995),(Eschel-
man and Schaffer, 1991), (Schaffer, Mani, Eshelman and Mathias, 1999). However, it
is precisely convergence what we need to achieve with a local search (crossover based
in this case) in a continuous domain. Hence, our methods can also be understood as
promoting incest between the best of the current parents and the best of their offspring.

Most well-known continuous local searchers (derivative-free), such as the Solis
and Wets’ algorithm (Solis and Wets, 1981) and the (1+1)-evolution strategy (Rechen-
berg, 1973; Schwefel, 1981), make use of explicit control parameters (e.g., step sizes) to
guide the search. In addition, they adapt the parameters, in such a way that the moves
being made may be of varying sizes, depending on the success of previous steps. The
rules for updating parameters capture some lawful operation of the dynamics of the
algorithm over a broad range of problems. In this case, there is an explicit parameter
adaptation.

The idea of employing GA models as hill-climbers is not new; Kazarlis, Papadakis,
Theocharis and Petridis (2001) propose the use of a microgenetic algorithm (MGA)
(GA with a small population that evolves for a few generations) as a generalized hill-
climbing operator. They combine a standard GA with the MGA to produce a hybrid ge-
netic scheme. In contrast to conventional hill climbers that attempt independent steps
along each axis, an MGA operator performs genetic LS. The authors claimed that the
MGA operator is capable of evolving paths of arbitrary direction leading to better so-
lutions and following potential ridges in the search space regardless of their direction,
width, or even discontinuities.

5 Real-Coded MA with Crossover Hill-Climbing

In this section, we present our proposed RCMA. It is a steady-state RCMA that invokes
a real-parameter XHC:

• The mission of the XHC is to obtain the best possible accuracy levels to lead the
population toward the most promising search areas, producing an effective refine-
ment on them. So, its principal mission is to obtain the best possible accuracy levels.
To accomplish this goal, our approach relies on an incest promotion mechanism.

• The steady-state RCMA is designed to promote high population diversity levels. It
attempts to induce reliability in the search process, ensuring that different promis-
ing search zones are focused by the XHC throughout the run. Therefore, it attempts
to induce reliability in the search process.
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1. Select two parents from the population.

2. Create an offspring using crossover and mutation.

3. Evaluate the offspring with the fitness function.

4. Select an individual in the population, which may be replaced by the offspring.

5. Decide if this individual will be replaced.

Figure 2: Pseudocode algorithm for the SSGA model

In Section 5.1, we introduce the foundations of steady-state MAs. In Section 5.2,
we outline the different steps that constitute the steady-state RCMA. In Section 5.3,
we explain the resources considered to favour diversity in the population of this algo-
rithm. Finally, in Section 5.4, we present an adaptive mechanism that assigns every
chromosome a probability of being refined by XHC.

5.1 Steady-State MAs

In steady-state GAs (SSGAs) usually only one or two offspring are produced in each
generation. Parents are selected to produce offspring and then a decision is made as to
which individuals in the population to select for deletion in order to make room for the
new offspring. SSGAs are overlapping systems since parents and offspring compete
for survival. The basic algorithm step of SSGA is shown in Figure 2.

These steps are repeated until a termination condition is achieved. In step 4, one
can choose the replacement strategy (e.g., replacement of the worst, the oldest, or a ran-
domly chosen individual). In step 5, one can choose the replacement condition (e.g.,
replacement if the new individual is better, or unconditional replacement). A widely
used combination is to replace the worst individual only if the new individual is better.
We will call this strategy the standard replacement strategy. In Goldberg and Deb (1991),
it was suggested that the deletion of the worst individuals induced a high selective
pressure, even when the parents were selected randomly.

Although SSGAs are less common than generational GAs, Land (1998) recom-
mended their use for the design of steady-state MAs (SSGAs plus LS) because they may
be more stable (as the best solutions do not get replaced until the newly generated
solutions become superior) and they allow the results of LS to be maintained in the
population. The LS is applied, after Step 3, on the offspring created in Step 2. Then,
Steps 4 and 5 are followed to address the inclusion of the resulting refined solution into
the population. LS need not be applied to every solution being generated, because the
additional function evaluations required for LS search can be very expensive. Thus, a
parameter, called LS probability, pLS, is introduced, which determines the probability
that LS will be invoked to refine a new chromosome.

Steady-state MAs integrate global and local search more tightly than generational
MAs (Land, 1998). This interleaving of the global and local search phases allows the
two to influence each other, e.g., the SSGA chooses good starting points, and LS pro-
vides an accurate representation of that region of the domain. Contrarily, generational
MAs proceed in alternating stages of global and local search. First, the generational GA
produces a new population, then LS is performed. The specific state of LS is generally
not kept from one generation to the next, though LS results do influence the selection
of individuals.
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5.2 Steady-State RCMA Model

The main features of the steady-state RCMA proposed are (Figure 3):

• High population diversity levels are favoured by means of the combination of the
PBX-α crossover (Section 2) with a high value for its associated parameter (α = 1)
and the negative assortative mating strategy (Fernandes and Rosa, 2001) (Section
5.3.1). Diversity is promoted as well by means of the BGA mutation operator
(Mühlenbein, D. Schlierkamp-Voosen, 1993) (Section 5.3.2).

• The real-parameter XHC presented in Section 4 is invoked to refine the new chro-
mosomes created from the application of crossover and mutation. The XHC re-
quires two starting chromosomes to commence its operation; the first one is the
new chromosome generated. In this study, we choose the current best element in
the population as second parent. However, other alternatives for the selection of
this parent are possible, such as a random selection or the mating strategies of-
fered in Fernandes and Rosa (2001), Huang (2001), and Ronald (1993). After the
XHC processing, two solutions are returned, the two final parents. The fittest par-
ent may improve the current best element in the population. In this case, it will
be included in the population and the old best individual will be removed. The
another parent returned by XHC will be introduced in the population following
the standard replacement strategy (Section 5.1).

• A fitness-based adaptive method is considered to determine the LS probability,
pLS, for each new chromosome. Those chromosomes that are fitter than the cur-
rent worst individual in the population receive the highest pLS value (pLS = 1). In
this way, they are refined using XHC. Chromosomes that do not accomplish this
requirement obtain a low pLS value, pLS = 0.0625, which is considered appropri-
ate for many practical cases (Hart, 1994; Rosin, Halliday, Hart and Belew (1997);
Hart, Rosin, Belew and Morris, 2000).

• The local/global search ratio ( LG ratio) shown by the RCMA (defined as the percentage
of evaluations spent doing local search from the total assigned to the algorithm’s
run) is governed by three parameters, nit, noff , and pLS. The L

G ratio determines
the trade-off between the exploration abilities of the RCMA, and the exploitation
abilities of the XHC, and then, it has an important influence on the final perfor-
mance of the algorithm on a particular problem. The higher the values for these
parameters are, the nearer to 100% the L

G ratio is. For complicated problems, low L
G

ratio values become more effective, because the exploration is favoured by global
search, whereas for non-complex problems, higher L

G ratio values are convenient,
because XHC may exploit the search space during a long time, taking advantage
of its ability to refine solutions. With the employ of the adaptive pLS mechanism,
we attempt to adjust (as well as possible) the L

G ratio to adequate values that allow
high performance to be achieved on the particular problem to be solved.

5.3 Resources to Favour Population Diversity

Population diversity is crucial to a GA’s ability to continue the fruitful exploration of
the search space. When a lack of population diversity takes place too early, a premature
stagnation of the search is caused. Under these circumstances, the search is likely to
be trapped in a local optimum before the global optimum is found. This problem,
called premature convergence, has long been recognized as a serious failure mode for
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1. Initialize population.

2. While (not termination-condition) do

3. Use Negative-assortative-mating-strategy to select two parents.

4. Apply PBX-crossover and BGA-mutation to create an offspring, onew .

5. Evaluate onew .

6. Invoke Adaptive-pLS-mechanism to obtain pLS for onew .

7. If u(0, 1) < pLS then

8. Find the best chromosome in the population, cbest.

9. Perform Crossover-hill-climbing (onew , cbest, noff , nit).

c1xhc and c2xhc are returned (c1xhc is the best).

10. Replace cbest with c1xhc, only if it is better.

11. Utilize Standard-replacement-strategy to insert c2xhc in population.

12. Else

13. EmployStandard-replacement-strategy to insert cnew in population.

Figure 3: Pseudocode algorithm for the Steady-State RCMA proposed

GAs (Eshelman and Schaffer, 1991). In the MA literature, keeping population diversity
while using LS together with a GA is always an issue to be addressed, either implicitly
or explicitly (Krasnogor, 2002). We will now review some of these approaches:

• Mühlenbein, Schomisch and Born (1991) integrate LS procedures to distributed
GAs, which keep, in parallel, several sub-populations that are processed by genetic
algorithms, with each one being independent from the others. Their advantage is
the preservation of diversity due to the semi-isolation of the sub-populations.

• Merz (2000) shows many different combinations of LS and GA for the travelling
salesman problem while defining specific purpose crossover and mutation oper-
ators. The crossover used by the authors is the DPX crossover which was specif-
ically designed to preserve diversity by means of keeping constant the appropri-
ately defined hamming distance between the two parent tours and the offspring
generated. In addition, a restart technique is employed. During the run, the solu-
tions contained in the population move closer together until they are concentrated
on a small fraction of the search space: the search is said to have converged. The
restarts perturb the population so that the points are again far away from each
other. Thus, it represents an escape mechanism from suboptimal regions of the
search space.

• Nagata and Kobayashi (1997) describe a powerful MA with an intelligent
crossover in which the local searcher is embedded in the genetic operator. Fur-
thermore, populations that are a couple of orders of magnitude bigger than those
used by other authors were employed, with the expected increase in diversity.

• Krasnogor and Smith (2000) introduce a hybridization scheme for an MA based
on an adaptive helper that uses statistics from the GA’s population. Their MA is
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composed of two optimization processes, a GA and a helper that is a Monte Carlo
method, which serves two purposes. First, when the population is diverse, it acts
like an LS procedure and second, when the population converges, its goal is to
diversify the search.

• Krasnogor and Smith (2001) integrate two mechanisms to promote diversity: on
one hand they employ a cohort of local searchers within the MA as each one of
them “sees” a different landscape. This, in turn, allows individuals to avoid the
local optima of one operator by using a different local searcher. On the other hand
they employ self-adaptation for the selection of which local searcher to use at dif-
ferent stages of the search.

• Seront and Bersini (2000) present an MA with a clustering method that reduces
the total cost of LS by avoiding the multiple rediscoveries of local optima. In ad-
dition, the clustering method supplies information that can be used to maintain
the diversity in the population. Kemenade (1996) presents an MA model based on
evolution strategies that capture similar ideas.

• Finally, Parthasarathy, Goldberg and Burns (2001) address the issue of handling ex-
plicitly multimodal functions using MAs. They use the adaptive niching method
via coevolutionary sharing of Goldberg and Wang (1997) to stably maintain a di-
verse population throughout the search.

As we have mentioned, the steady-state RCMA proposed employs two mechanism
to promote high degrees of population diversity, the negative assortative mating and
the BGA mutation. Next, we explain their principal characteristics.

5.3.1 Negative Assortative Mating
The mating selection mechanism determines the way the chromosomes are mated for
applying the crossover to them (Step 1 in Figure 2). Mates can be selected so as to
favour population diversity (Craighurst and Martin, 1995; Eshelman, 1991; Fernandes
and Rosa, 2001). A way to do this is the negative assortative mating mechanism. As-
sortative mating is the natural occurrence of mating between individuals of similar
phenotype more or less often than expected by chance. Mating between individuals
with similar phenotype more often is called positive assortative mating and less often
is called negative assortative mating.

Fernandes and Rosa (2001) assume these ideas in order to implement a parent se-
lection mechanism in the crossover operator. A first parent is selected by the roulette
wheel method and nass chromosomes are selected with the same method (in our ex-
periments all the parents are selected at random). Then, the similarity between each of
these chromosomes and the first parent is computed (similarity between two real-coded
chromosomes is defined as the Euclidean distance between them). If assortative mat-
ing is negative, then the one with less similarity is chosen. If it is positive, the genome
that is more similar to the first parent is chosen to be the second parent. Clearly, the
negative assortative mating mechanism increases genetic diversity in the population
by mating dissimilar genomes with higher probability.

The steady-state RCMA proposed (Figure 3) combines the negative assortative
mating (that favours high population diversity levels) (Step 3) with the standard re-
placement strategy (that induces high selective pressure, as mentioned in Section 5.1)
(Steps 11 and 13). In this way, many dissimilar solutions are produced during the run
and only the best ones are conserved in the population, allowing diverse and promising
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solutions to be maintained. The filtering of high diversity by means of high selective
pressure has been suggested by other authors as a GA strategy to provide effective
search. For example, in Shimodaira (1996), an algorithm is proposed employing large
mutation rates and population-elitist selection, and in Eshelman (1991), a GA is pro-
posed which combines a disruptive crossover operator with a conservative selection
strategy.

5.3.2 BGA Mutation Operator
The mutation operator serves to create random diversity in the population (Spears,
1993). In the case of working with real coding, a topic of major importance involves
the control of the proportion or strength in which real-coded genes are mutated, i.e.,
the step size (Bäck, 1996). Different techniques have been suggested for the control of
the step size during the RCGA’s run (Herrera and Lozano, 2000a; Smith and Fogarty,
1997). One example is non-uniform mutation, which is considered to be one of the
most suitable mutation operators for RCGAs (Herrera, Lozano, Verdegay, 1998). Its
main idea is to decrease the step size as the execution advances. In this way, it makes
an uniform search in the initial space and very locally at a later stage, favouring local
tuning. An alternative method is the one introduced in (Krasnogor and Smith, 2001)
where a discrete set of mutation rates is made available to the algorithm which can
self-adapt to use any of them. Some advantages of using this model were discussed in
the reference mentioned above and analysed further in (Smith, 2001).

In our case, XHC is responsible for the local tuning of the solutions. Hence, we
really require a mutation operator that continuously provides acceptable levels of di-
versity. One of the mutation operators that behaves in this manner is the BGA mutation
operator (Mühlenbein, D. Schlierkamp-Voosen, 1993).

Let us suppose C = (c1, ..., ci, ..., cn) a chromosome and ci ∈ [ai, bi] a gene to be
mutated. The gene, c′i, resulting from the application of this operator is:

c′i = ci ± rangi ·
15∑

k=0

αk2−k,

where rangi defines the mutation range and it is normally set to 0.1 · (bi− ai). The + or
− sign is chosen with a probability of 0.5 and αi ∈ {0, 1} is randomly generated with
p(αi = 1) = 1

16 . Values in the interval [ci − rangi, ci + rangi] are generated using this
operator, with the probability of generating a neighbourhood of ci being very high. The
minimum possible proximity is produced with a precision of rangi · 2−15.

5.4 Adaptive pLS Mechanism

LS typically operates over a small portion of the total visited solutions. This is because
the additional function evaluations required for local search can be very expensive. The
question naturally arises as to how best to select the solutions which will undergo LS.
(Land, 1998) introduced the concept of “sniffs”: individual solutions are subject to a
limited amount of local search (i.e., a sniff). Moreover, those solutions that were in the
proximity of a promising basin of attraction received (at a latter stage) an extended cpu
budget. With that budget, further iterations of local search were performed. Hart (1994)
addressed this issue and proposed different mechanisms for adaptively calculating the
LS probability with which LS is applied to each new chromosome:

• Fitness-based adaptive methods use the fitness information in the population to
bias the LS toward individuals that have better fitness. They modify the LS prob-
ability of an individual based on the relationship of its fitness to the rest of the
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population. These methods assume that individuals with better fitness are more
likely to be in basins of attraction of good local optima.

• Distribution-based adaptive methods use redundancy in the population to avoid
performing unnecessary local searches. In particular, selected solutions will be
far away from each other, and ideally span as much of the search space as the
population itself. This helps ensure locally optimised solutions cover the search
space, and it tends to prevent premature convergence.

Since the steady-state RCGA proposed attempts to maintain a diverse population,
we have focussed our attention on fitness-based adaptive methods. In particular, we
have explored a simple adaptive scheme to assign an LS probability value to each chro-
mosome generated by crossover and mutation, cnew:

pLS =

{
1 if f(cnew) is better than f(cworst)
0.0625 Otherwise

where f is the fitness function and cworst is the current worst element in the population.
We consider that a nascent chromosome, cnew, being better than the current worst

element is a promising element, and thus, it deserves a local tuning. For this reason, the
adaptive approach ensures that it will undergo LS by means of the XHC application. In
addition, the resultant chromosomes, supposedly more promising, will form part of the
population. In this way, the steady-state RCMA maintains chromosomes that provide
precise information about the quality of fitting search regions. On the other side, when
the above circumstance is not accomplished, then a low value for pLS is assumed for
cnew (pLS = 0.0625). As was observed by Hart (1994), in many cases, applying LS to as
little of 5% of each population results in faster convergence to good solutions.

The reader must note that many other adaptive MA approaches are to be found,
e.g., in Espinoza, Minsker and Goldberg (2001), Krasnogor (2002), and Magyar, Johnson
and Nevalainen (2000).

6 Experiments

We have carried out different minimisation experiments on the test suite described in
Appendix A in order to determine the performance of the RCMA with XHC and to
study its main features. We have planned these experiments as follows:

• First, in Section 6.1, we analyse the behaviour of the RCMA varying the nit param-
eter, with the aim of determining the more robust value for this parameter. All the
posterior experiments are accomplished using this value.

• In Section 6.2, we examine the effects on the exploration/exploitation balance re-
sulting from the combination between the two main ingredients of our proposal,
the negative assortative mating strategy and the XHC.

• In Section 6.3, we compare the XHC model with a XLS based on crossover with
multiple descendants. Now, our purpose is to determine if the intrinsic self-
adaptation of XHC really works, inducing a promising solution refinement.

• In Section 6.4, we investigate whether the adaptive pLS mechanism (Section 5.4)
tunes the L

G ratio of the RCMA depending on the particular problem to be solved,
allowing a robust operation to be achieved.
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• In Section 6.5, we attempt to demonstrates the superiority of the proposed ap-
proach by means of an extensive comparison of the proposed approach with a
number of challenging competitors chosen from MA literature.

• Finally, in Section 6.6, we examine the search bias associated with the PBX-α
crossover operator, with the aim of checking if this operator has any bias towards
the center of the search space.

6.1 Influence of the nit Parameter

In our first empirical study, we investigate the influence of nit (number of iterations
accomplished by XHC) on the performance of the RCMA proposed, since it has an
significant effect upon the L

G ratio. In particular, we analyse the behaviour of the al-
gorithm when different values for this parameter are considered. A fixed value for
noff was assumed (the number of offspring generated from the current pair of parents)
(noff = 3).

nit
������� ���	�
� ������ ���	���

A B A B A B A B
1 1.5e-045 2.2e-049 1.1e+001 9.3e-002 8.5e+001 6.4e+000 8.9e-001 40.0 %
2 1.4e-080 2.0e-085 3.8e+000 5.6e-005 6.5e-004 2.2e-005 9.2e-001 46.0 %
3 6.5e-101 1.1e-105 2.2e+000 6.0e-004 3.8e-007 4.5e-009 1.4e+000 32.0 %
4 2.6e-110 1.1e-116 1.4e+000 8.6e-007 1.7e-008 1.1e-010 1.8e+000 22.0 %
5 4.5e-117 3.1e-123 2.8e+000 1.4e-005 2.8e-007 2.4e-012 1.1e+000 26.0 %
6 1.1e-118 3.2e-125 1.8e+000 2.2e-005 1.3e-009 2.9e-012 1.4e+000 20.0 %
7 5.2e-119 1.2e-124 1.7e+000 1.3e-004 1.1e-009 1.5e-012 1.9e+000 20.0 %
8 1.1e-115 4.1e-123 3.6e+000 6.3e-005 2.7e-004 1.0e-012 1.7e+000 18.0 %
9 3.6e-113 2.7e-119 2.5e+000 5.1e-005 1.2e-008 3.1e-013 2.7e+000 8.0 %
10 1.0e-106 7.2e-116 5.1e+000 2.4e-004 1.2e-010 1.2e-013 2.4e+000 12.0 %
15 2.8e-081 8.2e-091 6.2e+000 8.9e-003 6.0e-008 6.4e-012 3.0e+000 2.8e-014
20 3.2e-063 1.5e-070 1.4e+001 4.9e-002 2.0e-007 1.6e-009 6.9e+000 3.9e-011
50 4.8e-026 1.7e-030 2.0e+001 2.8e+000 6.9e-002 5.6e-004 2.2e+001 7.0e+000
nit

���	��� ������� �	������� �	��� �
A B A B A B A B

1 5.6e-003 58.0 % 5.2e+001 1.8e+000 1.3e+003 6.4e+001 4.1e+000 42.0 %
2 1.3e-002 28.0 % 2.7e+001 2.4e+000 2.1e+002 5.3e+000 7.1e+000 36.0 %
3 1.3e-002 30.0 % 5.5e+001 7.9e-001 1.4e+002 9.2e+000 7.7e+000 40.0 %
4 2.2e-002 18.0 % 9.0e+001 3.5e+000 1.7e+002 1.7e+000 1.1e+001 18.0 %
5 1.8e-002 18.0 % 1.0e+002 2.6e+000 2.4e+002 1.2e+001 1.2e+001 24.0 %
6 1.7e-002 22.0 % 1.3e+002 7.7e+000 2.7e+002 1.2e+001 1.4e+001 6.0 %
7 2.2e-002 24.0 % 1.2e+002 4.7e+000 2.3e+002 2.5e+000 1.3e+001 10.0 %
8 2.4e-002 30.0 % 1.4e+002 1.5e+001 2.5e+002 9.3e+000 1.5e+001 4.0 %
9 2.8e-002 16.0 % 1.2e+002 7.3e+000 2.7e+002 1.2e+001 1.6e+001 6.0 %
10 2.6e-002 20.0 % 1.2e+002 1.6e+001 2.6e+002 3.3e+000 1.4e+001 16.0 %
15 3.0e-002 14.0 % 1.4e+002 1.0e+001 2.5e+002 2.3e+000 1.4e+001 18.0 %
20 2.9e-002 24.0 % 1.3e+002 1.1e+000 2.6e+002 1.2e+000 1.5e+001 10.0 %
50 3.9e-002 10.0 % 1.4e+002 2.1e+001 4.1e+002 1.1e+000 1.7e+001 4.0 %

Table 1: Results with different values for nit

We have implemented an instance of RCMA that applies an XHC based on the
PBX-α operator (α = 1) (Section 2). The mutation probability is 1

n and the population
size is 60 chromosomes. The nass parameter associated with the negative assortative
mating (Section 5.3.1) is set to a high value, nass = 25. We have considered high values
for α and nass with the aim of favouring the production of individuals introducing high
diversity levels in the population. The algorithm was executed 50 times, each one with
a maximum of 100,000 evaluations. Table 1 shows the results obtained for different nit
values. The performance measures used are listed below. For each problem, the best
values for these measures are printed in boldface.

• A performance: average of the best fitness function found at the end of each run.
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• B performance: value of the fitness function of the best solution reached during all
the runs. If the global optimum has been located throughout some runs, this per-
formance measure will represent the percentage of runs in which this happens (in
this case, a ’%’ sign appears along with the values for this performance measure).

A visual inspection of table 1 allows one to conclude (as expected) that the best A
measure for each problems is reached with different nit values:

• For the multimodal test functions, fRas and fGri, and all the real-world problems
(which are very complex), low values for nit allow the best results to be achieved.
Low nit values force the global search through the steady-state RCMA, favouring
the generation of diversity. This conduct is essential for tackling these type of
problems.

• Higher values for nit provide an elongated operation of XHC. For unimodal test
functions, fsph, fRos, and fSch, this allows an effective refinement of solutions to
be accomplished.

In (Krasnogor and Smith, 2001) a self-adapting mechanism for the selection of the
number of iterations of the local searchers was introduced. The results in table 1 are a
strong indication that such a mechanism might provide additional benefits also to real
coded MAs.

We have chosen a particular value for nit, in order to allow the incoming study of
our proposal and the comparison with other MA models to be easily understandable.
We consider that with nit = 3, an acceptable robustness is achieved, with regards to all
the nit values analysed (see Table 1). In many cases, the results offered with this value
are similar to the best ones.

6.2 Synergy Between Negative Assortative Mating and XHC

Two important factors of the RCMA proposed are the promotion of diversity (explo-
ration) by means of the negative assortative mating strategy (NAM) and the refinement
of solutions carried out by XHC (exploitation). In this section, we attempt to examine
whether the combination of these two ingredients decisively affects the performance
of the RCMA, i.e., whether there exists synergy between them. The synergy will occur
when the combination of NAM and XHC performs better than the sole usage of any
one of them (Yoon and Moon, 2002). We have used Table 2 in order to accomplish this
investigation. It shows the results of the RCMA (nit = 3) when either NAM, or XHC,
or both of them are not applied by the RCMA.

A two-sided t-test (Ho : means of the two groups are equal, Ha : means of the
two group are not equal) at level of significance 0.05 was applied in order to ascertain
if differences in the A performance of the RCMA based on both NAM and XHC are
significant when compared against the one for the other alternatives (RCMA without
NAM, or without XHC, or without both of them). The direction of any significant
differences is denoted either by:

• a plus sign (+) for an improvement in A performance, or

• a minus sign (-) for a reduction, or

• no sign for non significant differences.
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���!�"� �����
� ���#�� �������
RCMA A B A B A B A B
without NAM and XHC 2.6e-023+ 5.1e-025 2.2e+01+ 1.9e+01 3.4e-01+ 4.5e-02 1.0e+00 12.0 %
without XHC 2.0e-016+ 3.1e-017 2.0e+01+ 1.8e+01 5.7e+02+ 2.3e+02 3.1e+00+ 1.1e-7
without NAM 3.1e-114− 5.6e-120 1.9e+00 1.1e-04 3.3e-05 9.7e-14 2.1e+00 8.0 %
with NAM and XHC 6.5e-101 1.1e-105 2.2e+00 6.0e-04 3.8e-07 4.5e-09 1.4e+00 32.0 %���	��� ���!�$� �	�	���%� �	�&� �
RCMA A B A B A B A B
without NAM and XHC 4.0e-03− 74.0 % 7.6e+01 3.4e+00 3.9e+02+ 2.5e+01 9.0e+00 8.0 %
without XHC 1.9e-02 3.1e-014 3.4e+02+ 1.2e+02 2.6e+03+ 4.6e+02 1.5e+01+ 1.2e+01
without NAM 2.6e-02+ 18.0 % 1.7e+02+ 2.0e+00 5.0e+02+ 4.3e+01 1.5e+01+ 8.0 %
with NAM and XHC 1.3e-02 30.0 % 5.5e+01 7.9e-01 1.4e+02 9.2e+00 7.7e+00 40.0 %

Table 2: Results with different combinations of NAM and XHC

The proposal (RCMA with NAM and XHC) clearly improves the results of the
three alternatives considered. Thus, we may conclude that there exists a profitable
synergy between NAM and XHC, because their combination produces a balance be-
tween exploration and exploitation that becomes determinant for the success of this
algorithm.

6.3 Analysis of the Self-Adaptation of XHC

In this paper, we have presented the XHC model as a self-adaptive XLS technique (Sec-
tion 4). In addition, we have explained that the self-adaptation may be accomplished
when we use a real-parameter crossover operator with self-adaptation abilities (Beyer
and Deb, 2001) and the competition process integrated in XHC (Step 6 in Figure 1).

In this section, we attempt to determine whether the self-adaptation of XHC really
may allow an effective refinement of the solutions to be achieved. In particular, we
compare an RCMA based on XHC (denoted as RCMA-XHC) with a similar algorithm
that uses an XLS that simply generates noff × nit offspring from the starting pair of
parents, and returns the two best individuals among parents and offspring (it will be
called RCMA-XLS). Since RCMA-XHC works with noff = 3 and nit = 3, RCMA-XLS
will generate 9 chromosomes for each XLS application. In order to make an adequate
comparison, we have disabled the adaptive pLS mechanism and considered a fixed
value for pLS (pLS = 0.0625). Table 3 contains the results. A t-test was performed to
determine if there exist differences in the A performance of these two algorithms.

Algorithm
�����"� ���	�
� ���#%� ���	���

A B A B A B A B
RCMA-XLS 8.9e-020+ 2.6e-021 1.5e+001+ 7.9e+000 2.4e+001+ 4.4e-001 1.6e+000 3.0e-011
RCMA-XHC 6.0e-040 3.0e-042 7.7e+000 2.0e-002 1.3e-003 1.3e-005 1.1e+000 28.0 %
Algorithm

������� �����$� �	�	����� �	�&� �
A B A B A B A B

RCMA-XLS 1.3e-002 22.0 % 1.3e+001− 1.3e+000 9.5e+002+ 5.6e+001 3.4e+000− 60.0 %
RCMA-XHC 1.5e-002 34.0 % 3.3e+001 3.5e+000 1.8e+002 4.2e+000 6.0e+000 46.0 %

Table 3: Comparison between RCMA-XHC and RCMA-XLS

RCMA-XHC provides a better A performance than RCMA-XLS on the unimodal
functions, fsph, fRos, and fSch. For the multimodal fGri and fRas the t-test indicates
non differences between the algorithms. However, RCMA-XHC achieves a better B
performance than RCMA-XLS on these functions. For Psle and Pfms (which are very
complex), RCMA-XHC is outperformed by RCMA-XLS.

In XHC, the use of the competition process introduces a high selective pressure
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and limits the area where the XHC acts, which is then exploited by the crossover. In
general, this induces a profitable behaviour on many problems. Nevertheless, for the
complex ones, the selective pressure may have negative effects, because it eliminates
the capacity of XHC to produce appropriate jumps to locate more promising areas in
the search space regions being refined.

6.4 Study of the Adaptive pLS Mechanism

There are, at least, two ways to study the operation of an adaptive mechanism for GAs
(Spears, 1995). The first is from the point of view of performance (test functions are
commonly used to evaluate performance improvement). The second view is quite dif-
ferent in that it ignores performance and concentrates more on the adaptive mechanism
itself, i.e., its ability to adjust the GA configuration according to the particularities of the
problem to be solved. Once given these two points of view, it is natural to investigate
the way in which adaptive behaviour is responsible for the performance improvement.

In this section, we tackle the study of the adaptive pLS mechanism from the point
of view of the adaptation itself. In particular, we are interested in determining whether
it adjusts the L

G ratio of the RCMA proposed according to the particularities of the
problem to be solved, allowing performance improvement to be achieved. Results are
shown in Figure 4. For every test problem, it outlines the average of the L

G ratio found
throughout the 50 runs of the RCMA proposed (nit = 3).
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Figure 4: LG ratio produced by the RCMA

There are differences between the L
G ratio values for the different problems. The

highest values are more fruitful for the unimodal fsph, fRos, and fSch, whereas lower
values becomes more effective for the most complex problems, PCheb and Pfms. In
fact, the ratio value for fsph duplicates the one for Pfms. These differences in the L

G
ratio arise as a sign of the adaptation ability (from the point of view of the adaptation
itself) of the adaptive pLS mechanism. They confirm that this method induces L

G ratios
adjusted to the particular problem to be solved.
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Although this adaptive mechanism shows signs of adaptation, we have to check
whether this adaptation is indeed beneficial. In order to do so, we have executed three
RCMA instances with the same features as the proposal, but they use a fixed pLS value
(0.0625, 0.25, and 1, respectively). Table 4 shows their results, which may be compared
with the ones for the proposal (denoted as Adaptive in the table) by means of the t-test.

pLS
������� ���	�
� ���#�� �������

A B A B A B A B
0.0625 6.0e-040+ 3.0e-042 7.7e+000+ 2.0e-002 1.3e-003 1.3e-005 1.1e+000 28.0 %
0.25 6.8e-057+ 6.3e-061 3.6e+000+ 1.4e-004 1.1e-006 3.7e-009 1.3e+000 40.0 %
1 7.4e-065+ 1.1e-068 2.4e+000 9.5e-004 6.6e-008− 1.0e-010 1.4e+000 22.0 %
Adaptive 6.5e-101 1.1e-105 2.2e+000 6.0e-004 3.8e-007 4.5e-009 1.4e+000 32.0 %
pLS

���	��� ������� �	�	���%� �	�&� �
A B A B A B A B

0.0625 1.5e-002 34.0 % 3.3e+001− 3.5e+000 1.8e+002 4.2e+000 6.0e+000 46.0 %
0.25 1.5e-002 28.0 % 8.1e+001+ 2.4e+000 1.9e+002+ 1.1e+001 1.0e+001 22.0 %
1 1.7e-002 16.0 % 1.1e+002+ 3.2e+000 3.5e+002+ 4.8e+000 1.2e+001+ 20.0 %
Adaptive 1.3e-002 30.0 % 5.5e+001 7.9e-001 1.4e+002 9.2e+000 7.7e+000 40.0 %

Table 4: Comparison with different fixed values for pLS

Favouring a high L
G ratio by using pLS = 1 allows suitable results to be obtained

for the unimodal fsph, fRos, and fSch, whereas the production of a low L
G ratio con-

sidering pLS = 0.0625 achieves the best performance for the multimodal fGri and for
all the complex real-world problems. This means that global search is well-suited for
complex problems and local search is useful for unimodal test functions, which is very
reasonable.

More precisely, Figure 4 indicates that, for each problem, the proposal might in-
duce an L

G ratio with this tendency. This may explain that, in general, it might return
results that are similar to the ones for the most successful instance with fixed pLS val-
ues (the case of fRos, fRas, fGri, PCheb, and Pfms), or even better than all of them (the
case of fsph).

To sum up, this study shows that the adaptation ability of the adaptive pLS mech-
anism allows the L

G ratios to be adjusted according to the particularities of the search
space, allowing significant performance to be achieved for problems with different dif-
ficulties.

6.5 Comparison with Other RCMAs

In this subsection, we compare the performance of the RCMA with XHC (noff = 3 and
nit = 3) with the one of other RCMAs proposed in the literature. They include: hy-
brid steady-state RCMAs, the G3 model (Section 3), the family competition algorithm
(Section 3) and an RCMA based on the CHC algorithm (Eshelman, 1991).

• Hybrid steady-state RCMA. It is a simple steady-state RCMA (Figure 3), where par-
ents are selected at random and standard replacement is considered. Every new
chromosome generated by PBX-α (α = 1) and BGA mutation undergoes the Solis
and Wets’s LS procedure (Solis and Wets, 1981) with pLS = 0.0625. Three instances
were run with different number of iterations for the LS (100, 1000, and 5000). They
are called SW-100, SW-1000, and SW-5000, respectively.

• G3 Model. We have implemented different G3 instances that consider µ = 2 and
use PBX-α (α = 1). They are distinguished by the value for λ (1,10, 15, 20, and 50).
We will denote these algorithms as G3-λ.
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Algorithm
���!�"� �����
� ���#%� �������

A B A B A B A B
CHC 5.8e-031 + 3.1e-031 1.9e+001+ 1.7e+001 2.0e-002+ 1.5e-003 1.6e+001+ 7.0e+000
CHC-SW-100 2.1e-014 + 6.7e-015 1.8e+001+ 1.6e+001 2.4e+002+ 9.4e+001 4.5e+001+ 2.9e+001
CHC-SW-1000 9.6e-025 + 4.6e-026 1.5e+001+ 7.3e+000 1.4e+001+ 2.5e+000 6.2e+001+ 4.0e+001
CHC-SW-5000 8.5e-063 + 3.1e-065 1.5e+001+ 7.4e+000 1.2e-001+ 1.6e-002 9.4e+001+ 5.0e+001
G3-1 9.0e-017 7.9e-103 2.8e+001+ 4.2e+000 8.3e+002+ 5.3e+001 7.4e+001+ 3.2e+001
G3-2 1.0e-099 + 7.6e-111 1.7e+001+ 6.6e-002 1.3e+002+ 6.8e-003 6.9e+001+ 3.0e+001
G3-3 6.5e-095 + 1.5e-104 1.1e+001+ 4.0e-005 9.3e+001+ 4.3e-005 6.9e+001+ 3.5e+001
G3-4 2.2e-089 + 5.6e-098 8.2e+000+ 3.4e-005 2.9e+001+ 1.8e-005 6.5e+001+ 2.0e+001
G3-5 4.8e-083 + 1.0e-089 1.1e+001+ 3.0e-004 5.0e+000+ 6.9e-007 6.3e+001+ 4.0e+001
G3-6 4.1e-078 + 1.9e-084 8.4e+000+ 1.6e-003 9.2e+000 1.6e-007 6.5e+001+ 3.1e+001
G3-7 2.1e-073 2.7e-078 9.0e+000+ 1.1e-005 4.0e+000+ 2.4e-006 6.0e+001+ 2.5e+001
G3-8 4.0e-068 1.1e-072 1.3e+001+ 1.4e-004 3.1e+000 7.2e-007 6.0e+001+ 3.3e+001
G3-9 2.7e-064 2.3e-069 8.5e+000+ 5.9e-003 2.2e+000 1.0e-006 5.0e+001+ 1.4e+001
G3-10 9.9e-062 + 1.3e-065 8.4e+000+ 9.1e-005 3.8e-001 3.4e-006 6.0e+001+ 3.3e+001
G3-15 3.3e-049 + 6.4e-053 1.2e+001+ 2.4e-003 8.5e-001 9.0e-007 5.1e+001+ 1.9e+001
G3-20 2.8e-041 + 7.1e-044 1.7e+001+ 5.0e-003 4.6e-002 1.3e-005 5.2e+001+ 2.5e+001
G3-50 1.2e-021 + 4.6e-024 2.1e+001+ 1.7e-002 3.5e-001+ 4.0e-003 4.4e+001+ 2.0e+001
SW-100 3.8e-020 + 5.6e-021 1.0e+001+ 1.2e-001 2.9e-007 1.1e-017 7.6e+000+ 40.0 %
SW-1000 6.9e-078 1.6e-175 4.5e+000+ 1.7e-012 5.0e-008− 6.0e-029 6.8e+001+ 2.3e+001
SW-5000 2.9e-120− 1.4e-322 4.3e+000+ 2.4e-003 4.1e-009− 1.4e-026 1.1e+002+ 5.9e+001
FC 1.5e-006+ 3.7e-007 2.3e+001+ 2.1e+001 1.1e+002+ 4.5e+001 5.5e+000+ 2.2e+000
RCMA-XHC 6.5e-101 1.1e-105 2.2e+000 6.0e-004 3.8e-007 4.5e-009 1.4e+000 32.0 %
Algorithm

������� �����$� �	�	����� �	�&�'�
A B A B A B A B

CHC 6.5e-003− 42.0 % 3.9e+001 7.7e-001 3.3e+002+ 3.2e+000 1.7e-018− 9.1e-021
CHC-SW-100 3.4e-003− 6.0 % 1.4e+001− 3.7e+000 1.5e+002 5.3e+000 5.0e+000− 2.1e-015
CHC-SW-1000 2.0e-002 + 4.4e-016 1.5e+002+ 3.6e+001 6.6e+002+ 3.4e+001 1.6e+001+ 5.2e-003
CHC-SW-5000 4.4e-002 + 7.4e-003 3.6e+002+ 1.7e+002 1.4e+003+ 4.4e+002 2.0e+001+ 1.2e+001
G3-1 5.1e-001 + 7.8e-014 3.8e+002+ 3.2e+001 1.9e+003+ 4.7e+001 2.1e+001+ 1.1e+001
G3-2 2.7e-001 2.0 % 2.2e+002+ 3.1e+001 7.8e+002+ 4.3e+001 1.8e+001+ 4.0 %
G3-3 2.3e-001 1.1e-016 2.1e+002+ 3.2e+001 7.1e+002+ 5.6e+001 1.7e+001+ 4.0 %
G3-4 4.5e-002 + 8.0 % 1.5e+002+ 1.1e+001 8.3e+002+ 1.0e+001 1.9e+001+ 5.0e-028
G3-5 3.1e-002 + 8.0 % 1.9e+002+ 7.4e+000 8.2e+002+ 1.4e+001 1.7e+001+ 6.0 %
G3-6 3.4e-002 + 4.0 % 1.4e+002+ 1.3e+001 4.9e+002+ 4.3e+000 1.7e+001+ 4.0 %
G3-7 3.6e-002 + 16.0 % 1.6e+002+ 4.6e+000 5.6e+002+ 6.6e+000 1.6e+001+ 8.0 %
G3-8 2.6e-002 + 16.0 % 1.3e+002+ 8.5e+000 4.3e+002+ 4.9e+000 1.6e+001+ 10.0 %
G3-9 2.9e-002 + 4.0 % 1.4e+002+ 6.0e+000 5.4e+002+ 3.2e+001 1.7e+001+ 2.0 %
G3-10 2.5e-002 + 8.0 % 1.4e+002+ 7.2e+000 6.3e+002+ 1.9e+001 1.6e+001+ 8.0 %
G3-15 1.7e-002 20.0 % 1.2e+002+ 9.5e+000 4.2e+002+ 2.6e+001 1.5e+001+ 8.0 %
G3-20 2.1e-002 + 12.0 % 1.0e+002+ 3.4e+000 3.3e+002+ 1.4e+001 1.5e+001+ 10.0 %
G3-50 2.0e-002 26.0 % 6.9e+001 3.0e+000 2.9e+002+ 3.3e+000 1.2e+001+ 18.0 %
SW-100 2.7e-002 14.0 % 9.1e+000− 6.9e-001 1.0e+002 3.0e+000 1.2e+001+ 9.1e+000
SW-1000 4.9e-004− 5.6e-016 1.1e+002+ 4.5e+000 3.6e+002+ 8.4e+000 1.5e+001+ 8.4e+000
SW-5000 2.9e-003− 2.6e-015 3.3e+002+ 5.4e+001 1.1e+003+ 2.2e+002 2.1e+001+ 1.4e+001
FC 3.5e-004− 2.2e-005 2.6e+001− 7.0e+000 3.9e+002+ 3.9e+001 1.1e+001+ 9.7e-003
RCMA-XHC 1.3e-002 30.0 % 5.5e+001 7.9e-001 1.4e+002 9.2e+000 7.7e+000 40.0 %

Table 5: Comparison with other RCMA models

• Family competition. An FC instance has been built considering the original genetic
operators and values for the control parameters provided in Yang and Kao (2000).

• Hybrid CHC Algorithm. CHC has arisen as a reference point in the GA literature
(Herrera and Lozano, 2000b; Whitley, Rana, Dzubera and Mathias, 1996). Here,
it is considered as an alternative to steady-state RCGAs, because it is based on a
(λ+λ) selection strategy. Furthermore, it is very adequate for the design of RCMAs
since incorporates different techniques to promote high population diversity.

We have used a real-coded implementation of CHC (a full description is found
in Herrera and Lozano, 2000b) that applies PBX-α (α = 1). In addition, we have
combined CHC with the Solis and Wets’ LS procedure, producing an RCMA called
CHC-SW. Each time CHC generates a chromosome by crossover, the LS is applied
with pLS = 0.0625. Three instances were run varying the number of iterations
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assigned to the LS procedure. They will be called, CHC-SW-100, CHC-SW-1000,
and CHC-SW-5000.

Table 5 shows the results. We have included the results for the CHC algorithm
(without LS). The proposal will be referred to as RCMA-XHC. A t-test was performed
to ascertain if differences in the A performance for RCMA-XHC are significant when
compared against the ones for the other algorithms. The direction of any differences
will be denoted as in Section 6.2.

We may remark that, in general, RCMA-XHC outperforms all the other algorithms.
Only CHC-SW-100 and SW-5000 significantly improve the results of RCMA-XHC on
three problems and CHC and SW-1000 on two problems. Therefore, we may summa-
rize that the proposal is very competitive with state-of-the-art RCMAs.

6.6 Analysis of the Sampling Bias of PBX-α

Real-parameter crossover operators use the variation of the population to constrain the
search and bias the distribution of offspring (i.e., sampling bias). Some real-parameter
crossover operators, such as BLX-α (Eshelman and Schaffer, 1993), have a sampling
bias that favours the generation of offspring being gathered towards the center of the
region covered by the parental population. In other words, they tend to search the
interpolative region intensively.

Fogel and Beyer (1995) and Deb, Anand and Joshi (2002) have shown that the typi-
cal initialisation used to compare evolutionary algorithms can give false impressions of
relative performance when applying crossover operators with this type of bias. If the
global optimum is located in the centre of the search region covered by initialising the
population uniformly at random, these crossover operators generate offspring which
are essentially unbiased estimates of the global optimum. In particular, they may re-
combine parents from opposite sides of the origin, placing the offspring close to the
center of the initialisation region. In other words, the uniform initialisation technique
is assumed to introduce a bias that favours a successful identification of the global opti-
mum, such that the success of a strategy employing these crossover operators might be
just an artefact of a useful combination of initialisation and global optimum location.

In this section, we analyze the PBX-α crossover operator (Section 2) from the point
of view of sampling bias. In particular, we attempt to check if this operator has any
bias towards the center of the search space. This is accomplished by following Ange-
line (1998), Eiben and Bäck (1997), and Gehlhaar and Fogel (1996), who have all rec-
ommended an initialization in regions that expressly do not include the optima during
testing to verify results obtained for symmetric initialisation schemes. Thus, in order
to study the bias of PBX-α, we have carried out two additional experiments on the
test functions in which the optimum lies at xi = 0 i = 1 . . . n, i.e., fsph, fSch, fRas,
and fGri. First, using the typical symmetric about the origin initialization, and second,
starting from a skewed initialisation, where the initial population is located in a subset
of the search space far apart from the global optimum. We assumed the initialisation
intervals shown in Table 6.

If the performance of an evolutionary algorithm based on PBX-α varied extremely
little under these two initialization methods, then we may believe that this operator
does not show an inherent affinity towards the center of the search space. We have run
three instances of our RCMA (Figure 3) using fixed values for pLS (0.0625, 0.25, and
1, respectively). The adaptive pLS mechanism was disabled with the aim of ensuring
that the comparison between the two initialisation methods is made under an equitable
number of calls for the XHC procedure. The results are included in Table 7.
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Test Function Range
fsph [4, 5]
fSch [60, 65]
fRas [4, 5]
fGri [580, 600]

Table 6: Ranges for each test function

Initialization pLS value
������� �����
� ���	��� ���	���

method A B A B A B A B
symmetric 0.0625 6.0e-40 3.0e-42 1.3e-03 1.3e-05 1.1e+00 - 28 % 1.5e-02 34 %
skewed 0.0625 1.7e-41 1.7e-41 4.1e-04 4.1e-04 4.3e+00 30 % 1.7e-02 28 %
symmetric 0.25 6.8e-57 6.3e-61 1.1e-06 3.7e-09 1.3e+00 - 40 % 1.5e-02 28 %
skewed 0.25 1.4e-56 1.3e-59 7.7e-06 1.0e-08 6.0e+00 24 % 2.2e-02 18 %
symmetric 0.5 7.4e-65 1.1e-68 6.6e-08 1.0e-10 1.4e+00 - 22 % 1.7e-02 16 %
skewed 0.5 3.8e-64 1.1e-68 3.8e-03 2.5e-10 1.3e+01 10 % 2.4e-02 26 %

Table 7: Results for the study of the search bias of PBX-α

We have analysed these results by means of a t-test and we have observed that
no significant impact on the final solution accuracy is observed for all but one objec-
tive function, namely fRas, where the symmetric initialisation allows the best results
to be reached for all the pLS values considered. Thus, in general, these additional ex-
periments clarify that PBX-α does not cause a search bias towards the origin of the
coordinate system in the case of domains of variables which are symmetric around
zero.

For the fRas function, the skewed initialisation adds new challenges to the RCMA
instances because they must overcome a number of local minima to reach the global
basin. This feature causes a certain percentage of runs to stagnate in local optima,
deteriorating the results. This does not occur with the symmetric initialisation, since
this method helps the algorithms to locate the global basin more easily.

7 Conclusions

This paper presented an RCMA model that applies an XHC to the solutions being gen-
erated by the genetic operators. The XHC attempts to obtain the best possible accuracy
levels by iteratively promoting incest, whereas the RCMA incorporates mechanisms
aimed to induce reliability in the search process. In addition, an adaptive mechanism
was employed that determines the probability with which solutions are refined with
XHC. The principal conclusions derived from the results of the experiments carried
out are the following:

• The proposal improves the performance of other RCMA approaches which have
appeared in the MA literature (on the test suite considered in this paper).

• This success is partly possible thanks to the combination of the exploration prop-
erties of the negative assortative mating strategy and the refinement of solutions
carried out by XHC.

• The adaptive pLS mechanism tunes the L
G ratio to produce a robust operation for

test functions with different characteristics.

Evolutionary Computation Volume 12, Number 3 293



M. Lozano, F. Herrera, N. Krasnogor, D. Molina

• The self-adaptive behavior of XHC works adequately on many cases, nevertheless
some difficulties appeared on some of the more complex problems.

In essence, RCMAs based on crossover-based local searchers are very promising
and indeed worth further study. We are currently extending our investigation to differ-
ent test-suites and real-world problems. Also we intend to:

• Test alternative XHC designs, which may be based on different replacement strate-
gies (Step 6 in Figure 1) or other real-parameter crossover operators (e.g the multi-
parent crossovers (Section 2).

• Incorporate the adaptive pLS mechanism in other types of RCMAs and benchmark
their performance,

• Build RCMAs that apply different types of LS procedures along with XHC.

• Adapt the noff and nit parameters during the run employing a mechanism similar
to the one described in (Krasnogor and Smith, 2001).

• Investigate the so called “crossover-aware local search and “mutation-aware local
search” (Krasnogor, 2002).

• Study the sensitivity of the BGA mutation operator and α and nass parameters
used by our RCMA.
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Appendix A. Test Suite

The test suite that we have used for the experiments consists of six test functions and
three real-world problems. They are described in Subsections A.1 and A.2, respectively.

Test Functions

We have considered six frequently used test functions: Sphere model (fSph) (De Jong,
1975; Schwefel, 1981), Generalized Rosenbrock’s function (fRos) (De Jong, 1975), Schwe-
fel’s Problem 1.2 (fSch) (Schwefel, 1981), Generalized Rastringin’s function (fRas) (Bäck,
1992; Törn and Antanas, 1989), Griewangk’s function (fGri) (Griewangk, 1981). Figure 5
shows their formulation. The dimension of the search space is 25.

• fsph is a continuous, strictly convex, and unimodal function.

• fRos is a continuous and unimodal function, with the optimum located in a steep
parabolic valley with a flat bottom. This feature will probably cause slow progress
in many algorithms since they must continually change their search direction to
reach the optimum. This function has been considered by some authors to be a real
challenge for any continuous function optimization program (Schlierkamp-Voosen
and Mühlenbein, 1994). A great part of its difficulty lies in the fact that there are
nonlinear interactions between the variables, i.e., it is nonseparable (Whitley, Rana,
Dzubera and Mathias, 1996).

294 Evolutionary Computation Volume 12, Number 3



Real-Coded Memetic Algorithms with Crossover Hill-Climbing

( ����� ( �	�
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fsph(~x) =
∑n

i=1
x2
i fRos(~x) =

∑n−1

i=1
(100 · (xi+1 − x2

i )
2 + (xi − 1)2)

f∗sph = fsph(0, . . . , 0) = 0 f∗Ros = fRos(1, . . . , 1) = 0

( �#%� ( �����

fSch(~x) =
∑n

i=1

(∑i

j=1
xj

)2

fRas(~x) = a · n+
∑n

i=1
x2
i − a · cos(ω · xi)

f∗Sch = fSch(0, . . . , 0) = 0 a = 10, ω = 2π
f∗Ras = fRas(0, . . . , 0) = 0

( �	���

fGri(~x) = 1
d

∑n

i=1
x2
i −
∏n

i=1
cos
(
xi√
i

)
+ 1

d = 4000
f∗Gri = fGri(0, . . . , 0) = 0

Figure 5: Test functions

• fSch is a continuous and unimodal function. Its difficulty concerns the fact that
searching along the coordinate axes only gives a poor rate of convergence, since
the gradient of fSch is not oriented along the axes. It presents similar difficulties to
fRos, but its valley is much narrower.

• fRas is a scalable, continuous, and multimodal function, which is made from fSph
by modulating it with a · cos(ω · xi).

• fGri is a continuous and multimodal function. This function is difficult to optimize
because it is non-separable and the search algorithm has to climb a hill to reach the
next valley. Nevertheless, one undesirable property exhibited is that it becomes
easier as the dimensionality is increased (Whitley, Rana, Dzubera and Mathias,
1996).

A GA does not need too much diversity to reach the global optimum of fsph since
there is only one optimum which could be easily accessed. On the other hand, for
multimodal functions (fRas and fGri), the diversity is fundamental for finding a way
to lead towards the global optimum. Also, in the case of fRos and fSch, diversity can
help to find solutions close to the parabolic valley, and so avoid slow progress.

Real-World Problems

We have chosen the following three real-world problems, which, in order to be solved,
are translated to optimization problems of parameters with variables on continuous do-
mains: Systems of Linear Equations (Eshelman, Mathias and Schaeffer, 1997), Frequency
Modulation Sounds Parameter Identification Problem (Tsutsui and Fujimoto, 1993), and
Polynomial Fitting Problem (Storn and Price, 1995). They are described below.

Systems of Linear Equations The problem may be stated as solving for the elements of a
vector,X , given the matrixA and vectorB in the expression: A ·X = B. The evaluation
function used for these experiments is:

Psle(x1, · · · , xn) =

n∑

i=1

n∑

j=1

(aij · xj)− bj .
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Clearly, the best value for this objective function is Psle(x∗) = 0. Inter-parameter
linkage (i.e., nonlinearity) is easily controlled in systems of linear equations, their non-
linearity does not deteriorate as increasing numbers of parameters are used, and they
have proven to be quite difficult.

We have considered a 10-parameter problem instance. Its matrices are the follow-
ing:

5 4 5 2 9 5 4 2 3 1
9 7 1 1 7 2 2 6 6 9
3 1 8 6 9 7 4 2 1 6
8 3 7 3 7 5 3 9 9 5
9 5 1 6 3 4 2 3 3 9
1 2 3 1 7 6 6 3 3 3
1 5 7 8 1 4 7 8 4 8
9 3 8 6 3 4 7 1 8 1
8 2 8 5 3 8 7 2 7 5
2 1 2 2 9 8 7 4 4 1

1
1
1
1
1
1
1
1
1
1

=

40
50
47
59
45
35
53
50
55
40

Frequency Modulation Sounds Parameter Identification Problem The problem is to specify
six parameters a1, w1, a2, w2, a3, w3 of the frequency modulation sound model repre-
sented by

y(t) = a1 · sin(w1 · t · θ + a2 · sin(w2 · t · θ + a3 · sin(w3 · t · θ))),

with θ = 2·π
100 . The fitness function is defined as the summation of square errors between

the evolved data and the model data as follows:

Pfms(a1, w1, a2, w2, a3, w3) =

100∑

t=0

(y(t)− y0(t))2,

where the model data are given by the following equation:

y0(t) = 1.0 · sin(5.0 · t · θ − 1.5 · sin(4.8 · t · θ + 2.0 · sin(4.9 · t · θ))).

Each parameter is in the range -6.4 to 6.35. This problem is a highly complex mul-
timodal one having strong epistasis, with minimum value Pfms(x∗) = 0.

Polynomial Fitting Problem This problem lies in finding the coefficients of the following
polynomial in z:

P (z) =
2k∑

j=0

cj × zj , k > 0 is integer,

such that

P (z) ∈ [−1, 1], for z ∈ [−1, 1], and

P (1.2) ≥ T2k(1.2) and P (−1.2) ≥ T2k(−1.2),

where T2k(z) is a Chebychev polynomial of degree 2k.
The solution to the polynomial fitting problem consists of the coefficients of T2k(z).

This polynomial oscillates between−1 and 1 when its argument z is between−1 and 1.
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Outside this region the polynomial rises steeply in direction of high positive ordinate
values. This problem has its roots in electronic filter design and challenges an optimiza-
tion procedure by forcing it to find parameter values with grossly different magnitudes,
something very common in technical systems. The Chebychev polynomial employed
here is:

T8(z) = 1− 32 · z2 + 160 · z4 − 256 · z6 + 128 · z8.

So, it is a nine-parameter problem. The pseudocode algorithm shown below was
used in order to transform the constraints of this problem into an objective function
to be minimized, called PChev . We consider that C = (c0, . . . , c8) is the solution to be
evaluated and PC(z) =

∑8
j=0 cj × zj .

Choose p0, p2, . . . , p100 from [−1, 1];
R = 0;
For i = 0, ..., 100 do

If (-1 > PC(pi) or PC(pi) > 1) then R← R + (1 − PC(pi))
2;

If (PC(1.2) − T8(1.2) < 0) then R← R + (PC(1.2) − T8(1.2))2;
If (PC(-1.2) − T8(-1.2) < 0) then R← R+ (PC(-1.2) − T8(-1.2))2;

Return R;

Each parameter (coefficient) is in the range -512 to 512. The objective function
value of the optimum is PChev(C∗) = 0.
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Eiben, A.E. and Bäck, T. (1997). Empirical investigation of multiparent recombination operators
in evolution strategies. Evolutionary Computation, 5(3): 347–365.

Eshelman, L.J. (1991). The CHC adaptive search algorithm: how to have safe search when engag-
ing in nontraditional genetic recombination. In Rawlin, G.J.E., editor, Foundations of Genetic
Algorithms 1, pages 265–283, Morgan Kaufmann, San Mateo, California.

Eshelman, L.J. and Schaffer, J.D. (1991). Preventing premature convergence in genetic algorithms
by preventing incest. In Belew, R. and Booker, L.B., editors, Proc. of the Fourth Int. Conf. on
Genetic Algorithms, pages 115–122, Morgan Kaufmann, San Mateo, California.

Eshelman, L.J. and Schaffer, J.D. (1993). Real-coded genetic algorithms and interval-schemata. In
Whitley, L.D., editor, Foundations of Genetic Algorithms 2, pages 187–202, Morgan Kaufmann,
San Mateo, California.

Eshelman, L.J. Mathias, K.E. and Schaffer, J.D. (1997). Convergence controlled variation. In Belew,
R. and Vose, M., editors, Foundations of Genetic Algorithms 4, pages 203–224, Morgan Kauf-
mann, San Mateo, California.

Espinoza, F.P., Minsker, B.S. and Goldberg, D.E. (2001). A self adaptive hybrid genetic algorithm.
In Proceedings of the Genetic and Evolutionary Computation Conference 2001, pages 759, Morgan
Kaufmann, San Mateo, California.

Fernandes, C. and Rosa, A. (2001). A Study on non-random mating and varying population size
in genetic algorithms using a royal road function. In Proc. of the 2001 Congress on Evolutionary
Computation, pages 60–66, IEEE Press, Piscataway, New Jersey.

Fogel, D.B. and Beyer, H.-G. (1995). A note on the empirical evaluation of intermediate recombi-
nation. Evolutionary Computation, 3(4): 491–495.

Gehlhaar, D. and Fogel, D. (1996). Tuning evolutionary programming for conformationally flex-
ible molecular docking. In Fogel, L., Angeline, P. and Bäck, T., editors, Proc. Of the Fifth
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