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Abstract In this paper, we present an evolutionary multi-

objective learning model achieving cooperation between

the rule base and the adaptive fuzzy operators of the

inference system in order to obtain simpler, more compact

and still accurate linguistic fuzzy models by learning fuzzy

inference adaptive operators together with rules. The multi-

objective evolutionary algorithm proposed generates a set

of fuzzy rule based systems with different trade-offs

between interpretability and accuracy, allowing the

designers to select the one that involves the most suitable

balance for the desired application. We develop an exper-

imental study testing our approach with some variants on

nine real-world regression datasets finding the advantages

of cooperative compared to sequential models, as well as

multi-objective compared with single-objective models.

The study is elaborated comparing different approaches by

applying non-parametric statistical tests for pair-wise.

Results confirm the usefulness of the proposed approach.

Keywords Linguistic fuzzy modelling �
Interpretability-accuracy trade-off �
Multi-objective genetic algorithms �
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1 Introduction

Many automated techniques to extract a proper set of fuzzy

rules from numerical data are proposed in the literature.

Most of these techniques usually aim to improve the per-

formance associated with the prediction error without

paying special attention to the system interpretability, an

essential aspect of Fuzzy Rule-Based Systems (FRBSs)

[8, 9, 33]. In recent years, the problem of finding the right

trade-off between interpretability and accuracy, in spite of

the original nature of fuzzy logic, has produced a growing

interest in methods which take both aspects into account

[8, 9]. Of course, the ideal scenario would be to satisfy both

criteria to a high degree, but since they are contradictory

issues, generally it is not possible. One way to achieve this

is to improve the system accuracy while trying to maintain

the interpretability to an acceptable level [9].

In this framework, adaptive inference systems and

defuzzification methods have acquired greater importance

[3, 12, 28] since they can find a way to defuzzify the con-

tribution of each rule appropriately [12] and improve the

cooperation between rules [3]. They can also specifically

adapt the behaviour of the fuzzy operators to the rule base

(RB) or learn the RB and the fuzzy operators jointly [28],

obtaining a positive synergy between both elements that lets

the system reach greater levels of accuracy, while not only

maintaining but also improving the interpretability.

Recently, the use of Multi-objective Evolutionary

Algorithms (MOEA) has been applied to improve the

aforementioned trade-off between interpretability and

accuracy of linguistic fuzzy systems [1, 2, 11, 17, 24, 27,

29]. Some of them obtain the complete Pareto (the set of

non-dominated solutions with different trade-offs) by

selecting or learning the set of rules which best represents

the example data, i.e., improving the system accuracy and
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decreasing the FRBS complexity. In [1, 2, 17] the authors

also propose tuning the membership functions together

with the rule selection to obtain simpler and still accurate

linguistic fuzzy models.

Following these ideas on the use of adaptive fuzzy

operators and MOEAs to improve the trade-off between

interpretability and accuracy, in [27] we present a MOEA

capable of learning the fuzzy inference operators (both

inference and defuzzification) and performing rule selec-

tion [22–25] for Mamdani fuzzy linguistic systems jointly.

The proposed model aimed to achieve a positive synergy

based on the cooperation between the fuzzy operators and

the RB to improve the accuracy while simplifying the RB,

i.e., improving the complexity-based interpretability [33].

Our main aim in this work was to extend the afore-

mentioned model, proposing a new family of models that

also look for cooperation between the fuzzy operators and

RB based on the learning of both of them jointly and

maintaining the multi-objective evolutionary model phi-

losophy to obtain a set of solutions with different balance

between accuracy and interpretability.

To this end, we employed two different MOEA models

to concurrently perform the rule learning (also including

rule selection) and learning fuzzy operator parameters

(inference system and defuzzification method) with the

following two objectives: system error and number of

rules. The MOEAs selected are based on the well-known

SPEA2 [34] and NSGA-II [13] algorithms. They improve

their search ability by incorporating a method for guiding

the search towards the desired Pareto zone.

We tested the proposed approach using nine real-world

regression datasets, and compared them with sequential

multi-objective based approaches and accuracy based sin-

gle objective approaches [3, 27, 28]. We used non-para-

metric statistical tests for pair-wise comparison taking into

consideration three representative points from the Pareto

fronts obtained for the MOEAs.

The next section describes the adaptive inference and

defuzzification method. Section 3 shows the RB learning

and rule selection. Section 4 is devoted to describing the

MOEA learning proposal, explaining its main characteris-

tics and the genetic operators considered. Section 5

develops an experimental study and shows the results

obtained. Finally, Sect. 6 presents some concluding

remarks. Additionally, an appendix describes the Wilcoxon

signed-rank test used in our study.

2 Adaptive fuzzy operators

In this section we describe the adaptive inference system as

well as the adaptive defuzzification method used in our

learning proposal. From now on, we will name them

together as Adaptive Fuzzy Operators (AFO).

2.1 Adaptive inference system

Linguistic FRBSs for system modelling use IF–THEN

rules in the following form:

Ri : If Xi1 is Ai1 and. . .and Xim is Aim then Y is Bi

with i = 1 to N, where N stands for the number of rules of

the RB, Xi1 to Xim and Y for the input and output variables,

respectively, and Ai1 to Aim and Bi for the involved ante-

cedents and consequent labels, respectively.

The expression of the Compositional Rule of Inference

in fuzzy modelling with punctual fuzzification is the fol-

lowing: lB (y) = I (C (lA1 (x1),…, lAm (xm)), lB (y)),

where lB (�) is the membership function of the inferred

consequent, I(�) is the implication operator, C(�) is the

conjunction operator, lAi(xi) are the values of the matching

degree of each input of the system with the membership

functions of the rule antecedents, and lB(�) is the rule

consequent.

Those operators, the conjunction (C(�)) and the impli-

cation operator (I(�)) are suitable for parameterization in

order for the inference system to be adapted. Our previous

studies in [3] show that using models based on the adaptive

conjunction is a more valuable option than those based on

the adaptive implication operator. Hence, we selected the

adaptive conjunction in this study in order to insert

parameters in the inference system.

Taking into account the aforementioned studies in [3],

we have selected the Dubois adaptive t-norm with a sep-

arate connector for every rule, the expression for which is

shown in (1).

TDuboisðx; y; aÞ ¼
x � y

Maxðx; y; aÞ; ð0� a� 1Þ ð1Þ

This adaptive t-norm showed the highest accuracy in

previous studies, compared with Frank and Dombi t-norms

and is more efficiently computed. The use of an adaptive

t-norm for the antecedent connection seeks better

performance than traditional t-norms. Dubois t-norm

performs between minimum (a = 0) and algebraic

product (a = 1).

2.2 Adaptive defuzzification method

There are various tendencies in the development of adap-

tive defuzzification methods reported in the literature.

These employ one or more parameters in their expression

to modify the behaviour of the defuzzifier or, in most cases,

to achieve higher accuracy.
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Following the studies developed in [12], in this work we

consider applying the defuzzification function to the fuzzy

set inferred by each rule (obtaining a characteristic value)

and computing them by a weighted average operator,

because of its fine performance, efficiency and easier

implementation. This way of working is named FITA (First

Infer, Then Aggregate) [5].

We also consider the use of a product functional term of

the matching degree between the input variables and the

rule antecedent fuzzy sets (hi), f ðhiÞ ¼ hi � bi where bi

corresponds to one parameter for each rule Ri, i = 1 to N,

in the RB, as it is more efficiently computed and obtains

similar results to other functions [12]. The adaptive

defuzzification formula selected is shown in (2),

y0 ¼

PN

i

hi � bi:Vi

PN

i
hi:bi

; ð2Þ

where Vi represents a characteristic value of the fuzzy set

inferred from rule Ri, the Maximum Value or the Gravity

Centre (GC), the latter being the one selected in this paper.

The product functional term with a different parameter

for each rule has the effect of weighted rules. This value

associated with the rule indicates the importance of that

rule for the inference process.

3 Rule base learning

This section introduces the fuzzy rule selection technique

and the RB learning approach used in our study.

3.1 Fuzzy rule selection

Fuzzy rule set reduction techniques try to minimize the

number of rules of a given FRBS while maintaining (or

even improving) the system performance. To do so, erro-

neous and conflicting rules that degrade the performance

are eliminated, obtaining a more cooperative fuzzy rule set

and, as a result, potentially improving system accuracy.

Furthermore, in many cases the accuracy is not the only

requirement of the model and the interpretability also

becomes an important aspect. Reducing the model com-

plexity is a way to improve the system readability, i.e., a

compact system with few rules generally requires less

effort for its interpretation. Fuzzy rule set reduction tech-

niques are usually applied as a post-processing stage, once

an initial fuzzy rule set has been extracted.

One of the most used fuzzy rule set reduction techniques

is rule selection. This approach involves obtaining an

optimal subset of fuzzy rules from a previous fuzzy rule set

by selecting some of them. We may find several methods

for rule selection, with different search algorithms that look

for the most successful combination of fuzzy rules [21–25].

In [26], an interesting heuristic rule selection procedure is

proposed where, by means of statistical measures, a rele-

vance factor is computed for each fuzzy rule composing the

FRBSs to subsequently select the most relevant ones.

These kinds of techniques for rule selection could be easily

combined with other post-processing techniques to obtain

more compact and accurate FRBSs. In this way, some

works have considered the selection of rules together with

the learning of parametric operators of inference system by

coding all of them (rules and parameters) in the same

chromosome [27].

In this work, we employ this methodology when using

single-objective models without implicit rule selection.

However, when the model uses the rule learning joined

with rule selection, another mechanism is used, which is

described next.

3.2 Rule base learning algorithms

The linguistic RB learning used in this work is based on the

ad-hoc data driven methodology named Cooperative Rules

(COR) [7]. This methodology manages a set of consequent

label sets (one per rule). Instead of selecting the consequent

with the best performance in each subspace as usual (Wang

and Mendel [31]), the COR methodology considers the

possibility of using another consequent, different from the

best, which allows the FRBS to be more accurate thanks to

having an RB with best cooperation. For this purpose, COR

performs a combinatorial search among the candidate rules

looking for the set of consequents which globally achieves

the best accuracy.

COR consists of two stages:

1. Construction of the search space—This obtains a set

of candidate consequents for each rule.

2. Selection of the most cooperative fuzzy rule set—This

performs a combinatorial search among these sets

seeking the combination of consequents with the best

global accuracy.

In order to perform this combinatorial search, an explicit

enumeration or an approximate search technique can be

considered. In this work, we use a search technique

because it is effective and quick.

A description of the COR-based rule generation process

is shown in the following steps:

Inputs:

• An input–output data set E = {el,……, eM}, with

el = (xl1,……, xlm, yl1,……, ylp), l [ {1,……, N}, N

being the data set size, and n (m) being the number of
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input (output) variables—representing the behaviour of

the problem being solved.

• A fuzzy partition of the variable spaces. In our case,

uniformly distributed fuzzy sets are regarded. Let Ai be

the set of linguistic terms of the ith input variable, with

i [ {1,……,m}, and Bj be the set of linguistic terms of

the jth output variable, with j [ {1,……, p}, with |Ai|

(|Bj|) being the number of labels of the ith (jth) input

(output) variable.

Algorithm:

1. Search space construction:

1.1 Define the fuzzy input subspaces containing positive

examples: To do so, we should define the positive

example set (E ? (Ss)) for each fuzzy input subspace

Ss = (As1,……, Asi,……, Asm), with Asi [ Ai being a

label, s [ {1,……, Ns}, and Ns =
Q

ni = 1, |Ai|

being the number of fuzzy input subspaces. In this

paper, we use the following:

Eþ Ssð Þ ¼
n

el 2 Ej8 i 2 1; . . .. . .;mf g;

8A’
i 2 Ai; lAS

i ðxl
iÞ � lA

0
i ðxl

iÞ

o

with lAS
i ð:Þbeing the membership function associated with

the label Asi. Among all the Ns possible fuzzy input sub-

spaces, consider only those containing at least one positive

example. To do so, the set of subspaces with positive

examples is defined as S? = {Sh|E ? (Sh) = [}.

1.2 Generate the set of candidate rules in each subspace

with positive examples: Firstly, the candidate conse-

quent set associated with each subspace containing at

least an example, Sh [ S?, is defined. In this paper,

we use the following:

C Shð Þ ¼ B1kh; . . .. . .;Bpkh

� �
2 B1x. . . xBpj9 el 2 E þ Shð Þ

�

where 8 j 2 1; . . .. . .; pf g; 8B’j 2 Bj; lB
kh
j yl

jð Þ � lB
0
j yl

jð Þ

�

Then, the candidate rule set for each subspace is defined as

CR(Sh) = {Rkh = [IF X1 is Ah1 and… and Xm is Ahm THEN

Y1 is B1kh and… and Yp is Bpkh] such that

Bkh = (B1kh,……, Bpkh) [ C(Sh)}. To allow COR to reduce

the initial number of fuzzy rules, the special element R[

(which means ‘‘don’t care’’) is added to each candidate rule

set, i.e., CR(Sh) = CR(Sh) [ R[. If it is selected, no rules

are used in the corresponding fuzzy input subspace. In this

work we denote it as COR-S.

2. Selection of the most cooperative fuzzy rule set—This

stage is performed by running a combinatorial

search algorithm to look for the combination

RB = {R1 [ CR(S1),……, Rh [ CR(Sh),……,R|S?1| [
CR(S|S?1|)} with the best accuracy. Since the search

space tackled is usually large, approximate search

techniques should be used. As mentioned before, in

this work we use this technique for both single and

multi-objective algorithms when we employ selection

and rule learning jointly.

4 Rule base and inference system cooperative learning

with multi-objective algorithms

This section describes the evolutionary multi-objective

model proposed in this work. As previously mentioned, our

aim is to obtain a set of fuzzy systems with different trade-

offs between accuracy and interpretability, using AFO and

RB learning (including rule selection). To do this, we

exploit two specific MOEAs considering a threefold coding

scheme [coding the parameters of the AFO (inference

systems and defuzzification) and RB]. They are two spe-

cific MOEAs based on the well-known and representative

second generation ones, SPEA2 [34] and NSGA-II [13].

4.1 Improvements for SPEA2 and NSGA-II

The SPEA2 algorithm [34] (Strength Pareto Evolutionary

Algorithm for Multi-objective Optimization) is character-

ized by two aspects: a fitness assignment strategy, which

takes into account both dominating and dominated solu-

tions for each individual, and a density function, estimated

by employing the nearest neighbourhood, which guides the

search more efficiently.

NSGA-II algorithm [13] is a parameterless approach

with several interesting principles: a binary tournament

selection based on fast non-dominated sorting, an elitist

strategy and a crowding distance method to estimate the

diversity of a solution.

Following the experiences in [27], we propose to guide

the searching process of SPEA2 and NSGA-II employing

a method called Guided Domination Approach [6], which

gives priority to the accuracy objective through a

weighted function of the objectives. Focusing the

searching process in this way, we can reduce the effort of

the search, and a better precision in the non-dominated

solutions can be obtained, because the searching effort is

concentrated in a more interesting and reduced zone of

the Pareto, the density of the obtained solutions being

higher. The weighted function of the objectives is defined

in (3),

Xiðf ðxÞÞ ¼ fiðxÞ þ
XM

j¼1; j 6¼i

aijfjðxÞ; i ¼ 1; 2; . . .;M ð3Þ
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where aij is the amount of gain in the jth objective function

for a loss of one unit in the ith objective function, and M is

the number of objectives. The above set of equations

require fixing the matrix a, which has a one in its diagonal

elements. This method redefines the domination concept as

follows:

A solution x(1) dominates another solutions x(2), if

Xi(f(x
(1))) B Xi(f(x

(2))) for all i = 1,2,…, M, and the

strict inequality is satisfied at least for one objective.

Thus, if we have two fitness functions (M = 2), the two

weighted functions are showed in (4).

X1 f1; f2ð Þ ¼ f1 þ a12f2; X2 f1; f2ð Þ ¼ a21f1 þ f2 ð4Þ

We would like to emphasize that this approach can be

viewed as a modified domination principle. This procedure

can be viewed as a multi-objective optimization approach

with the original domination principle acting on a linearly

transformed set of objective functions. A little thought will

reveal that the above definition of domination on the

objective vector f is the same as the original domination

definition on the transformed vector X. This approach is

different to one that would have considered only single-

objective algorithms using these linear combinations [6],

because in this case we obtain a set of FRBSs in a

single run.

4.2 The multi-objective evolutionary approach

In this section we describe some components of the

MOEAs employed.

The evolutionary model uses a chromosome with a

threefold coding scheme (CC ? CD ? CR) (Fig. 1) where:

• CC encodes the ai parameters of the conjunction

connective. They are N real coded parameters (genes),

one for each rule, Ri, of the linguistic RB. Each gene

can take any value in the interval [0, 1], that is, between

the minimum and the algebraic product.

• CD encodes the bi parameters of the defuzzification.

They are N real coded parameters, one for each rule, of

the linguistic RB. Each gene can take any value in the

interval [0, 10]. This interval has been selected

according to the study developed in [12]. It allows

attenuation as well as enhancement of the matching

degree.

• CR encodes the learning RB. It is an integer string of N

genes, each one representing a candidate rule conse-

quent of the initial RB. Furthermore, depending on

whether a rule is selected or not, the value ‘-1’ is

assigned to the corresponding gene.

The initial population is randomly initialized in the

fuzzy operators part with the exception of a single

chromosome:

• CC with the N genes is initiated to 0 in order to make

Dubois t-norm equivalent to Minimum t-norm initially.

• CD also with the N genes is initiated to 1 with the

objective of beginning like the standard WCOA

method.

The initial population in the fuzzy rule part, CR, is ini-

tialized following these two exceptions:

• A single chromosome with the N rules obtained by the

WM-method [31], that is, with all the genes initialized

to correspondent consequent.

• Default chromosomes randomly initiated with all rules

activated. In this case, in order to achieve solutions with

a high accuracy we should not lose rules that could

present a positive cooperation once their parameters

have been evolved. The best way to do this is to start

with solutions that select all the possible rules. This

favours a progressive extraction of bad rules (those that

do not improve with the tuning of parameters).

The crossover operator employed by the fuzzy operators

part is BLX-0.5 [15] while the one used for the rule

learning part is HUX [16].

Rule Base

Defuzzification

R1

α1 ……
…

CDCC

{ -1,.., X } { -1,.., X }

CR

{ -1,.., X }

Conjunction

Adaptive Fuzzy Operators

R2 RN

α2 αN

R1 R2 RN R1 R2 RN

β1 β2 βN

… …
…

Fig. 1 Coding scheme for the MOEA with N rules
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Finally, four offspring are generated by combining the

two from the CR part with the two from the operators part

(the two best replace their parents). The mutation operator

changes a gene value at random in the CR and operators

part (one in each part) with probability 0.2.

In this work, the fitness is based on the interpretability

(using the number of rules) and on the accuracy (using the

error measure). Both must be minimized.

5 Experimental study

In order to analyse the proposed methods, we have used

nine real-world problems with different complexities (dif-

ferent numbers of variables and available data). Table 1

summarizes the main characteristics of the nine datasets

selected from the KEEL project webpage [4] (http://www.

keel.es) where they can be downloaded.

This section is organized as follows:

First, we describe the experimental set-up in Sect. 5.1.

Then, Sect. 5.2 analyses the behaviour of the proposed

approach. In order to better analyse theses MOEAs, they

have also been compared with their single-objective

counterpart. Finally, Sect. 5.3 shows some representative

plots of the Pareto fronts obtained.

5.1 Experimental set-up

Methods considered for the experiments are briefly descri-

bed in Table 2, where the well-known ad-hoc data-driven

learning algorithms of Wang and Mendel (WM) [31] and

COR [7], denoted as RBWM and RBCOR, are applied to

obtain an initial set of candidate linguistic rules. The initial

linguistic partitions are comprised of five linguistic terms in

the case of datasets with less than nine variables and three

linguistic terms in the remaining ones (which helps to obtain

a more reasonable number of rules in the main datasets). If

rule selection is performed after RB learning, we denote it as

RBWM ? S when using WM or RBCOR ? S with COR.

Generally, we use ‘‘?’’ to denote ‘‘sequence’’ and ‘‘-’’ to

denote ‘‘together’’, so if rule selection is performed jointly

with COR, we use RBCOR-S. AFO - S which means adap-

tive fuzzy operators learning together with rule selection,

consequently RBWM ? AFO - S denotes the use of RB

obtained with WM and the single-objective evolutionary

learning of the AFO together with rule selection.

RBWM ? (AFO - S)SP2, and RBWM ? (AFO - S)NS-II

are the MOEAs that learn the AFO and perform rule selec-

tion together (with the models based on SPEA2 and NSGA-

II, respectively). The new methods proposed in this work are

(AFO - RBCOR-S)SP2 and (AFO - RBCOR-S)NS-II that is,

the use of the MOEAs based on SPEA2 and NSGA-II to

learn the AFO and the RBCOR-S jointly in the same evolu-

tionary multi-objective process.

In all experiments, we adopted a 5-folder cross-validation

model, i.e., five random partitions of the data each with 20%

of the patterns of the data set, and used four folds for training

and one for testing. For each of the data partitions, the

learning methods were run 6 times using different seeds for

the random number generator. For each data set, we there-

fore consider the average results of 30 runs. In the case of

methods with multi-objective approach, for each data set

and for each trial we generate the approximated Pareto front.

Then, we focus on three representative points: the first (the

most accurate), the median and the last (the least accurate).

For each dataset, we compute the mean values and the

standard deviations over the 30 trials of the mean square

error (MSE) on the training and test sets and the number of

rules (#R) in the FBRSs. For the single objective-based

approaches, we compute the mean values over the 30 solu-

tions obtained for each dataset.

This way to work was also employed in [27] in order

to compare the single objective methods with the multi-

objective ones considering only the accuracy objective,

letting us see that the Pareto fronts are not only wide

but also optimal. The MSE is computed with the

expression (5),

MSEðSÞB ¼
1
2

PP

k¼1

ðyk � SðxkÞÞ2

P
ð5Þ

where S denotes the fuzzy model whose inference system

uses the Dubois adaptive t-norm as conjunction operator

showed in expression (1), inference operator minimum

t-norm, and the adaptive defuzzification method showed in

expression (2). This measure uses a set of system evalua-

tion data formed by P pairs of numerical data Zk = (xk, yk),

k = 1,…, P, with xk being the values of the input variables,

and yk being the corresponding values of the associated

output variables.

In order to assess whether there are significant differ-

ences among the results, we adopted statistical analysis

Table 1 Data sets considered for the experimental study

Datasets Name Variables Patterns

Plastic strength PLA 3 1,650

Quake QUA 4 2,178

Electrical maintenance ELE 5 1,056

Abalone ABA 9 4,177

Stock prices STP 10 950

Ankara weather WAN 10 1,609

Izmir weather WIZ 10 1,461

Mortgage MOR 16 1,409

Treasure TRE 16 1,409

44 Evol. Intel. (2009) 2:39–51

123

http://www.keel.es
http://www.keel.es


[18–20] and in particular non-parametric tests, according to

the recommendations made in [14, 19], where a set of

simple, safe and robust non-parametric tests for statistical

comparisons of classifiers were introduced. In particular for

pair-wise comparison we use the Wilcoxon signed-rank test

[30, 32]. A detailed description of this test is presented in

the Appendix. To perform the test, we used a level of

confidence a = 0.1. In particular, the Wilcoxon test is

based on computing the differences on two sample means

(typically, mean test errors obtained by a pair of different

algorithms on different datasets). In the classification

framework, these differences are well defined since these

errors are in the same domain. In the regression framework,

to make the differences comparable, we propose to adopt a

normalized difference DIFF, defined as:

DIFF ¼ MSETSTðOtherÞ �MSETSTðReferenceÞ
MSETSTðOtherÞ ð6Þ

This difference expresses the improvement percentage of

the reference algorithm on the other one.

The results of the initial FRBSs obtained by WM and

COR are presented in Table 3 as reference data where the

number of rules (#R) are the same for both methods due to

the fact that fuzzy input subspaces were likewise obtained.

The values of the parameters considered by the single-

objective methods are: the population size was 50, 240,000

evaluations were performed, 0.6 was the crossover proba-

bility and 0.2 was the mutation probability per chromo-

some. The values of the parameters considered by the

MOEAs are: the population size was fixed to 200, the

external population size was 61, 240,000 evaluations were

performed and 0.2 was the mutation probability.

The parameters a12, a21 used by the Guided Domination

Approach of the MOEAs were determined after several

tests and fixed to 0 and 16, respectively, i.e., strongly

focused on the accuracy.

5.2 Results and analysis

This section shows and analyses the results of the proposed

cooperative methods (AFO - RBCOR-S)SP2, (AFO -

RBCOR-S)NS-II against sequential RBWM ? (AFO - S)SP2,

RBWM ? (AFO - S)NS-II and the single objective coun-

terpart RBWM ? AFO - S and AFO - RBCOR-S.

Tables 4, 5, 6 and 7 show the results obtained by these

methods in the three representative points of the accuracy-

interpretability plane when we used MOEAs with best

accuracy highlighted in bold. For the single objective-

based approaches only the most accurate points are shown.

Table 2 Methods considered

for comparison
Reference Method Description

[31] RBWM RB obtained with WM

[10] RBWM ? S RB obtained with WM and then, rule selection

[7] RBCOR RB obtained with COR

[7] RBCOR-S RB obt. with COR using the rule selection

– RBCOR ? S RB obt. with COR and then, rule selection

[28] RBWM ? AFO - S RB obt. with WM and then, AFO with rule selection

learning using a single objective CHC based

model

[28] AFO - RBCOR-S AFO and RBCOR-S jointly using a single objective

CHC based model

[27] RBWM ? (AFO - S)SP2 AFO with rule selection using SPEA2, using a RB

obt. with WM

[27] RBWM ? (AFO - S)NS-II AFO with rule selection using NSGA-II, using a RB

obt. with WM

– (AFO - RBCOR-S)SP2 AFO with RB learning based on COR-S using

SPEA2

– (AFO - RBCOR-S)NS-II AFO with RB learning based on COR-S using

NSGA-II

Table 3 Initial results obtained by WM and COR

Datasets #R RBWM RBCOR

MSEtra MSEtst MSEtra MSEtst

PLA 14.8 3.434 3.557 1.477 1.480

QUA 53.6 0.0258 0.0267 0.0178 0.0189

ELE 65.0 56,135 56,359 50,711 54,585

ABA 68.2 8.407 8.424 3.047 3.058

STP 122.8 9.074 9.042 5.254 5.279

WAN 156.0 16.063 16.403 7.150 7.357

WIZ 104.8 6.945 7.139 4.931 5.083

MOR 77.6 0.985 0.973 0.646 0.653

TRE 75.0 1.636 1.632 1.519 1.524
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Model behaviour can be observed, but it is easier to

reach conclusions viewing Tables 8, 9 and 10, which show

the results of the Wilcoxon test on the MSEtst and the #R

for the most accurate point (MAX ACC).

Table 8 shows the results when comparing the sequen-

tial models, single objective against multi-objective. The

accuracy is similar among them, but the multi-objective is

more interpretable. The null hypothesis for Wilcoxon test

Table 4 Results obtained by the sequential models compared with their single objective counterparts and reference models

Dataset Method MAX INT MEDIAN INT/ACC MAX ACC

#R MSEtra MSEtst #R MSEtra MSEtst #R MSEtra MSEtst

PLA RBWM ? S – – 11.6 2.403 2.477

RBWM ? AFO - S – – 12.9 1.783 1.886

RBWM ? (AFO - S)SP2 11.3 1.651 1.722 12.1 1.641 1.712 13.3 1.639 1.711

RBWM ? (AFO - S)NS-II 11.4 1.654 1.722 12.1 1.646 1.715 13.3 1.642 1.713

QUA RBWM ? S – – 29.9 0.022 0.023

RBWM ? AFO - S – – 34.6 0.020 0.022

RBWM ? (AFO - S)SP2 25.3 0.0205 0.0221 27.7 0.0205 0.0220 30.5 0.020 0.022

RBWM ? (AFO - S)NS-II 25.7 0.0206 0.0222 27.9 0.0205 0.0220 30.8 0.020 0.021

ELE RBWM ? S – – 41.8 41,642 44,037

RBWM ? AFO - S – – 50.8 21,804 26,054

RBWM ? (AFO - S)SP2 44.1 22,812 26,448 45.2 22,723 26,201 46.9 22,663 25,840

RBWM ? (AFO - S)NS-II 44.2 23,595 27,639 45.0 23,595 27,639 45.5 23,542 26,593

ABA RBWM ? S – – 25.6 5.083 5.049

RBWM ? AFO - S – – 36.5 4.578 4.600

RBWM ? (AFO - S)SP2 20.8 4.627 4.654 22.8 4.617 4.648 25.2 4.614 4.647

RBWM ? (AFO - S)NS-II 21.5 4.654 4.685 23.5 4.645 4.680 25.2 4.635 4.670

STP RBWM ? S – – 36.3 2.624 2.786

RBWM ? AFO - S – – 61.4 1.364 1.434

RBWM ? (AFO - S)SP2 36.8 1.391 1.472 41.3 1.397 1.456 46.3 1.376 1.450

RBWM ? (AFO - S)NS-II 38.1 1.419 1.492 42.9 1.406 1.475 45.1 1.403 1.466

WAN RBWM ? S – – 55.8 6.567 7.181

RBWM ? AFO - S – – 90.0 3.566 4.340

RBWM ? (AFO - S)SP2 67.1 3.680 4.267 70.7 3.666 4.270 74.8 3.662 4.265

RBWM ? (AFO - S)NS-II 69.5 3.763 4.374 73.5 3.748 4.337 77.7 3.743 4.335

WIZ RBWM ? S – – 46.0 3.036 3.506

RBWM ? AFO - S – – 71.4 0.782 1.257

RBWM ? (AFO - S)SP2 55.5 0.858 1.282 59.7 0.840 1.254 64.5 0.834 1.184

RBWM ? (AFO - S)NS-II 57.7 0.903 1.456 61.6 0.887 1.414 61.6 0.888 1.388

Table 5 Results obtained by the sequential models compared with their single objective counterparts and reference models (highest data sets)

Dataset Method MAX INT MEDIAN INT/ACC MAX ACC

#R MSEtra MSEtst #R MSEtra MSEtst #R MSEtra MSEtst

MOR RBWM ? S – – 23.2 0.204 0.213

RBWM ? AFO - S – – 41.7 0.082 0.097

RBWM ? (AFO - S)SP2 29.8 0.095 0.105 32.4 0.094 0.104 35.6 0.094 0.104

RBWM ? (AFO - S)NS-II 30.7 0.101 0.113 33.2 0.100 0.111 36.1 0.100 0.111

TRE RBWM ? S – – 23.3 0.342 0.374

RBWM ? AFO - S – – 41.4 0.078 0.091

RBWM ? (AFO - S)SP2 30.0 0.103 0.116 33.1 0.100 0.105 36.6 0.100 0.111

RBWM ? (AFO - S)NS-II 33.6 0.113 0.123 33.6 0.109 0.120 37.1 0.109 0.119
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was rejected with a very small p-value for the #R, which

supports our conclusion with a high degree of confidence.

However, they are similar in relation to the accuracy

objective. In this case, the null hypothesis associated with

the Wilcoxon test is accepted. Thus, we cannot conclude

that the results achieved by multi-objective methods are

different on MSEtst even if they are better more times (R?),

because the difference is short.

Table 9 is similar to Table 8, but when comparing

cooperative models, that is, multi-objective approaches

obtain similar accuracy to single-objective. Thus, single

objective models, accuracy-oriented, using the same num-

ber of evaluations as multi-objective ones obtain very good

accuracy, but their interpretability is far away from the

more accurate solution of the front of the Pareto of the

multi-objective method. Therefore, this is an important

advantage of the use of multi-objective approaches.

Table 10 shows an interesting comparison between

sequential and cooperative, both for single objective and

multi-objective. The null hypothesis associated with the

Wilcoxon test is now rejected (p \ a) in both cases.

However, the result is different among #R and MSEtst.

Table 6 Results obtained by the cooperative models compared with their single objective counterparts and reference models

Dataset Method MAX INT MEDIAN INT/ACC MAX ACC

#R MSEtra MSEtst #R MSEtra MSEtst #R MSEtra MSEtst

PLA RBCOR ? S – – 14.8 1.477 1.480

RBCOR-S – – 14.8 1.477 1.480

AFO - RBCOR-S – – 14.5 1.110 1.149

(AFO - RBCOR-S)SP2 12.9 1.109 1.146 13.5 1.106 1.143 14.5 1.105 1.145

(AFO - RBCOR-S)NS-II 12.9 1.119 1.156 13.5 1.113 1.149 14.5 1.111 1.149

QUA RBCOR ? S – – 45.8 0.0178 0.0189

RBCOR-S – – 42.5 0.0178 0.0186

AFO - RBCOR-S – – 48.0 0.0170 0.0186

(AFO - RBCOR-S)SP2 25.1 0.0177 0.0190 31.4 0.0172 0.0186 38.3 0.0171 0.0185

(AFO - RBCOR-S)NS-II 25.9 0.0177 0.0190 31.8 0.0173 0.0187 38.1 0.0172 0.0185

ELE RBCOR ? S – – 44.7 40,763 43,228

RBCOR-S – – 40.8 38,153 38,926

AFO - RBCOR-S – – 53.9 18,981 21,122

(AFO - RBCOR-S)SP2 37.6 21,648 24,975 41.1 20,366 23,141 45.1 19,959 22,585

(AFO - RBCOR-S)NS-II 38.0 22,240 25,099 41.7 20,835 23,445 46.1 20,331 22,763

ABA RBCOR ? S – – 44.4 2.829 2.908

RBCOR-S – – 39.0 2.737 2.760

AFO - RBCOR-S – – 50.3 2.345 2.465

(AFO - RBCOR-S)SP2 29.9 2.443 2.557 32.7 2.425 2.548 36.1 2.417 2.541

(AFO - RBCOR-S)NS-II 31.2 2.466 2.586 34.1 2.447 2.568 37.2 2.442 2.553

STP RBCOR ? S – – 52.9 2.222 2.433

RBCOR-S – – 51.2 2.185 2.450

AFO - RBCOR-S – – 72.5 1.101 1.188

(AFO - RBCOR-S)SP2 41.9 1.116 1.207 46.2 1.106 1.192 50.9 1.103 1.187

(AFO - RBCOR-S)NS-II 45.1 1.143 1.225 50.0 1.131 1.210 55.4 1.128 1.204

WAN RBCOR ? S – – 73.4 4.113 4.534

RBCOR-S – – 63.0 3.926 4.562

AFO - RBCOR-S – – 101.9 1.279 1.755

(AFO - RBCOR-S)SP2 68.5 1.208 1.642 75.6 1.161 1.601 83.0 1.148 1.590

(AFO - RBCOR-S)NS-II 68.5 1.287 1.769 75.5 1.234 1.674 83.1 1.219 1.654

WIZ RBCOR ? S – – 52.1 3.136 3.637

RBCOR-S – – 46.8 2.948 3.369

AFO - RBCOR-S – – 75.2 0.691 0.952

(AFO - RBCOR-S)SP2 51.3 0.769 1.388 58.2 0.717 1.189 65.7 0.704 1.101

(AFO - RBCOR-S)NS-II 53.0 0.781 1.206 59.4 0.738 1.145 66.3 0.725 1.076
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So, we can conclude that the results achieved by these

methods are statistically different on the MSEtst and on the

R#. Thus, cooperative models are more accurate than

sequential ones, while regarding interpretability, sequential

models are more interpretable. This is why RBCOR-S pro-

duces more accurate RBs than RBWM ? S, thanks to the

cooperation among rules, whereas the sequential model

uses a more effective rule selection mechanism that lets it

give more compact RBs.

Therefore, we can conclude that the proposed coopera-

tive multi-objective model gives:

• Higher interpretability than single-objective approaches

with similar accuracy.

Table 7 Results obtained by the cooperative models compared with their single objective counterparts and reference models (highest data sets)

Dataset Method MAX INT MEDIAN INT/ACC MAX ACC

#R MSEtra MSEtst #R MSEtra MSEtst #R MSEtra MSEtst

MOR RBCOR ? S – – 26.6 0.1413 0.1466

RBCOR-S – – 25.0 0.135 0.140

AFO - RBCOR-S – – 50.2 0.0412 0.049

(AFO - RBCOR-S)SP2 36.6 0.048 0.053 39.8 0.046 0.052 43.5 0.046 0.052

(AFO - RBCOR-S)NS-II 36.5 0.052 0.058 40.1 0.050 0.056 43.9 0.050 0.056

TRE RBCOR ? S – – 25.8 0.337 0.364

RBCOR-S – – 25.0 0.311 0.342

AFO - RBCOR-S – – 43.1 0.082 0.097

(AFO - RBCOR-S)SP2 30.6 0.102 0.121 33.8 0.099 0.117 37.6 0.098 0.116

(AFO - RBCOR-S)NS-II 30.7 0.113 0.130 33.8 0.110 0.125 37.3 0.108 0.124

Table 8 Wilcoxon test to compare sequential models: single-objective RBWM ? AFO - S (R?) compared with multi-objective

RBWM ? (AFO - S)SP2 and NS-II (R-) on #R and MSEtst

Comparison Measure R? R- Hypothesis (a = 0.1) p-value

RBWM ? AFO - S vs. RBWM ? (AFO - S)SP2 MSEtst 19 17 Accepted 1.000

#R 1 44 Rejected 0.011

RBWM ? AFO - S vs. RBWM ? (AFO - S)NS-II MSEtst 32 13 Accepted 0.260

#R 1 44 Rejected 0.011

Table 9 Wilcoxon test to compare cooperative models: single-objective AFO - RBCOR-S (R?) compared with the proposed multi-objective

(AFO - RBCOR-S)SP2 and NS-II (R-) on #R and MSEtst

Comparison Measure R? R- Hypothesis (a = 0.1) p-value

AFO - RBCOR-S vs. (AFO - RBCOR-S)SP2 MSEtst 32 13 Accepted 0.260

#R 0 36 Rejected 0.008

AFO - RBCOR-S vs. (AFO - RBCOR-S)NS-II MSEtst 25 11 Accepted 0.327

#R 0 36 Rejected 0.008

Table 10 Wilcoxon test to compare sequential (R?) compared with cooperative (R-) models, among single objective (RBWM ? AFO - S vs.

AFO - RBCOR-S) and among multi-objective (RBWM ? (AFO - S)SP2 and NS-II vs. (AFO - RBCOR-S)SP2 and NS-II) on #R and MSEtst

Comparison Measure R? R- Hypothesis (a = 0.1) p-value

RBWM ? AFO - S vs. AFO - RBCOR-S MSEtst 1 44 Rejected 0.011

#R 45 0 Rejected 0.008

RBWM ? (AFO - S)SP2 vs. (AFO - RBCOR-S)SP2 MSEtst 1 44 Rejected 0.011

#R 44 1 Rejected 0.011

RBWM ? (AFO - S)NS-II vs. (AFO - RBCOR-S)NS-II MSEtst 1 44 Rejected 0.011

#R 44 1 Rejected 0.011
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• Higher accuracy than sequential multi-objective

approaches.

5.3 Graphical analysis of the Pareto fronts

Now, for each dataset and for each MOEA, we plot on the

accuracy-complexity plane the centroids of the first (the

most accurate), median and last (the least accurate) solutions

obtained on the training and test sets in the different trials of

the algorithms, since we performed 30 trials with different

training and test partitions, and it would not be readable to

show all the Pareto fronts. Thus, we plot the MAX ACC, the

MEDIAN ACC/INT and the MAX INT points for each

MOEA and for each dataset in Tables 2 and 3. We also show

the solutions generated by single-objective methods.

Viewing Fig. 2, we can point out the following:

• Results presented by the proposed cooperative models,

both based on the two evolutionary algorithms are, in

general, below the other models of the study, that is,

they are more accurate.
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• However, the three solutions of the MOEAs, the MAX

ACC, the MEDIAN ACC/INT and the MAX INT,

seems to be nearby, and placed in the more accurate

zone. The reason is that we are not using standard

SPEA2 and NSGA-II but an improved accuracy version

of them based on the Guided Domination Approach

depicted in Sect. 4.1. The search process is focused in

the reduced Pareto front zone with higher accuracy, and

the results obtained are the extremes and central point

of the desired zone.

• The cooperation between AFO and the RB makes the

proposed cooperative models show different solutions,

more accurate than the AFO with sequential models, as

was also concluded in Sect. 5.2.

6 Conclusions

In the framework of the trade-off between accuracy and

interpretability, the use of MOEAs gives a set of solutions

with different levels of conciliation between both features.

In this work, we have proposed a multi-objective evolu-

tionary learning model with the two objectives of system

error and number or rules, where the adaptive fuzzy

operators, including inference and defuzzification, are

learnt together with the RB. This fact allows both ele-

ments to cooperate, allowing a set of solutions with

several optimal trade-offs, with more accuracy than the

sequential multi-objective models. It also significantly

improves the interpretability against the single objective,

accuracy-based models, while giving a similar level of

accuracy. These results were achieved developing an

experimental study with nine real-world regression data

sets comparing the proposed methodology with sequential

multi-objective based approaches and single objective

accuracy-based approaches with the same number of

evaluations for the evolutionary search process. Non-

parametric statistical test for pair-wise were used, con-

sidering three representative points from the Pareto. The

multi-objective algorithms employed are based on two

well-known second generation ones with an additional

feature to focus the search process to the desired zone, in

this case it is centred to the more accurate region of the

Pareto front.

Therefore, we consider the proposed methodology as an

interesting approach in the design of FRBSs from examples

scenario, as it does not suppose a longer developing time

and provides high quality solutions.
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Appendix

On the use of Wilcoxon signed-rank test

The Wilcoxon signed-rank test is a pair-wise test that aims

to detect significant differences between two sample

means: it is analogous to the paired t-test in non-parametric

statistical procedures. If these means refer to the outputs of

two algorithms, then the test practically assesses the reci-

procal behaviour of the two algorithms [29, 31]. Let di be

the difference between the performance scores of the two

algorithms on the ith out of Nds datasets. The differences

are ranked according to their absolute values; average

ranks are assigned in case of ties. Let R? be the sum of

ranks for the datasets on which the first algorithm outper-

formed the second, and R- the sum of ranks for the con-

trary outcome. Ranks of di = 0 are split evenly among the

sums; if there is an odd number of them, one is ignored:

Rþ ¼
X

di [ 0

rankðdiÞ þ
1

2

X

di¼0

rankðdiÞ;

R� ¼
X

di\0

rankðdiÞ þ
1

2

X

di¼0

rankðdiÞ;

Let T be the smaller of the sums, T = min(R?;R-). If T is

less than, or equal to, the value of the distribution of

Wilcoxon for Nds degrees of freedom (Table B.12 in [31]),

the null hypothesis of equality of means is rejected.The

Wilcoxon signed-rank test is more sensitive than the t-test. It

assumes commensurability of differences, but only quali-

tatively: greater differences still count for more, which is

probably desired, but the absolute magnitudes are ignored.

From the statistical point of view, the test is safer since it

does not assume normal distributions. Also, the outliers

(exceptionally good/bad performances on a few datasets)

have less effect on the Wilcoxon test than on the t-test. The

Wilcoxon test assumes continuous differences di, therefore

they should not be rounded to one or two decimals, since this

would decrease the test power due to a high number of ties.

When the assumptions of the paired t-test are met, the

Wilcoxon signed-rank test is less powerful than the paired

test. On the other hand, when the assumptions are violated,

the Wilcoxon test can be even more powerful than the t-test.

This allows us to apply it to the means obtained by the

algorithms in each dataset, without any assumption about the

distribution of the obtained results.
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