
Applied Intelligence 21, 7–24, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The United States.

Supply Estimation Using Coevolutionary Genetic Algorithms in the Spanish
Electrical Market

ENRIQUE A. DE LA CAL MARÍN AND LUCIANO SÁNCHEZ RAMOS
Computer Science Department, University of Oviedo, Asturias, Spain

Abstract. The price of electrical energy in Spain has not been regulated by the government since 1998, but
determined by the supply from the generators in a competitive market, the so-called “electrical pool”. A genetic
method for analyzing data from this new market is presented in this paper. The eventual objective is to determine
the individual supply curves of the competitive agents. Adopting the point of view of the game theory, different
genetic algorithm configurations using coevolutionary and non-coevolutionary strategies combined with scalar and
multi-objective fitness are compared. The results obtained are the first step toward solving the induction of the
optimal individual strategies into the Spanish electrical market from data in terms of perfect oligopolistic behavior.

Keywords: intelligent data analysis, coevolutionary genetic algorithms, evolutionary economic models

1. Introduction

The cost of production of electrical energy depends on
the type of generator: one MW produced by a nuclear
plant costs less than one MW produced by a thermal
plant. The most economical plants are in operation most
of the time while the more expensive ones connect to
the electrical system only when the former cannot cover
demand. Consequently, the cost of energy is higher
during peak consumption and lower during the hours
of less demand, for instance at night.

Many other factors intervene in the selection of the
power plants that connect to the system at any given
time, such as geographic location, which affects the
loss of energy in the transport lines, or the precipitation
rate with regard to the operation of hydraulic plants.
In spite of this, the basic principle that “the cheaper
power plants connect first” explains the majority of the
fluctuations in the cost of energy.

The relationship between the cost of production and
the selling price is not direct. Production cost deter-
mines price in a regulated market, such as the one that
existed in Spain before 1998 and continues to exist in
other European Community countries. This is not so
in a competitive market. Before 1998, prices in Spain
were fixed by a public agency that was also in charge

of elaborating a list of the power plants that should
connect at any given time. This list was calculated by
means of numeric optimization algorithms, which min-
imized the global cost of the production necessary to
cover domestic demand.

In the modern model, based on free competition
among the different companies [1], the Market Op-
erator (MO), a neutral agent appointed by the State
to regulate competition, calculates the energy prices
for every hour, starting from the supply of the genera-
tors and the demand of the consumers. The procedure
by which production is planned again is based on the
principle that “the cheapest power plants connect first”.
In this case, however, “cheapest” does not mean “low
cost”, but “low selling price”, because each agent is free
to choose the price it wants to charge for its power. It is
interesting to note that the law stipulates that all power
plants are to receive the same payment for each MW of
energy sold, as occurred in the non-competitive model,
and not the payment they asked for in their strategy.
The second principle of the competitive market is “the
most costly power plant connected marks the price”.

This way of assigning production poses problems
difficult for the planning departments of the generating
companies to resolve. On the one hand, management
of the power plants would be tempted to offer energy

8 de la Cal Marı́n and Sánchez Ramos

at zero cost, such that that power plant would always
be selected (and paid according to the price marked
by competition). However, this strategy, if applied by a
considerable fraction of the companies, would cause a
global decrease in prices in the short run, to the detri-
ment of all the generators. On the other hand, the op-
posite temptation, to agree on prices, much more ef-
ficient in economical terms, is prohibited by law. The
only legal way to maximize the profit of a company is
to accurately predict demand as well as the price that
competition will offer. This way, the agent can adjust
its own price so that it is slightly under market price
and thus be assigned the greatest possible amount of
production at a high price.

Demand can be predicted using simple statistical
techniques, but not supply. In reality, not only is it dif-
ficult to predict future supply, but also to know past
supply: the MO guarantees that this information will
remain confidential until a certain amount of time has
transpired. In order to predict supply, the first step is to
elaborate an intelligent data analysis tool that is capa-
ble of estimating the past supply of the agents based on
the energy prices and the hours of consumption. That
is the main objective of this work.

1.1. Formulation of the Problem in Terms
of the Game Theory

Given that preliminary data are insufficient to carry out
a statistical analysis, it is necessary to make conjectures
regarding the results. This work assumes that the agents
are intelligent and that the market is fair, such that the
unit profits (euros/MW) are approximately the same
for all the competitors.

With this hypothesis, if we know the cost of produc-
tion of the agents (and we can estimate that using data
prior to 1998), it is possible to simplify market opera-
tion and abstract it to a game, which can be explained
as follows. Let us assume that a certain amount of en-
ergy is to be bought from several generators. None of
them is capable of supplying the total amount and the
amount supplied by all of them exceeds the needs.

Each player (one of the generators) gives a referee
(the MO) a closed envelope with its sales strategy. It
consists of a pair “quantity supplied—price demanded
per unit”. The referee opens the envelopes, arranges
the strategies and chooses the cheapest ones until de-
mand is covered. Each player selected is then paid for
the amount it sells at the price of the most expensive
strategy that was accepted. Each player receives the

difference between the price paid and their unit cost,
multiplied by the energy units sold.

The actual number of players is several hundred (one
player per electrical power plant). To simplify calcula-
tions, we group the price-quantity pairs of all the power
plants belonging to the same company into a single to-
tal quantity produced-unit price curve. In this way, we
reduce several hundred strategies to four aggregate sup-
ply curves (there are four large electrical companies in
Spain). The same is done with costs: each of the four
participants in the simplified game will have a curve
that relates the negotiated MW with their production
cost. The mechanism of this new game is a bit more
complex: each player gives the referee an aggregate
supply curve. The referee adds up all the curves and
intersects the results with a demand curve. The cross
point determines the market price. Given the price and
the supply curves furnished by the agents, the revenue
of each player is calculated. Finally, the net profit of
each player is calculated using the difference between
the income received and the value of its cost curve at
the point corresponding to the amount negotiated.

1.2. Genetic Formulation

In this work, we want to reconstruct the aggregate sup-
ply curves from a file that contains the price values and
the amounts sold in various game repetitions. To do
this, a coevolutionary genetic algorithm is used.

Briefly, a genetic algorithm works as follows: first,
we define as many populations of strategies as players.
To score a strategy, we will simulate a game, making
this strategy compete with the best strategy from each
of the other players. The strategy will receive a high
score if it fulfils these two criteria:

• That the price obtained in the simulation is similar
to the price in the real game.

• That the unit profits obtained by each player are sim-
ilar.

Observe that genetic algorithms have been applied
to solve economic problems similar to the one con-
sidered int this paper (see [2–7]) and a market model
that shares some of the characteristics of this one has
been related to a coevolutionary genetic programming-
based model above [8]. Unfortunately, in our opinion,
none of these approaches can be extended to solve the
precise problem we pose here.

Supply Estimation Using Coevolutionary Genetic Algorithms 9

1.3. Summary

The remainder of this paper is arranged as follows: In
Section 2, our methodology is described. In Section
3, a simple problem is solved to illustrate the use of
the method proposed here. A self-criticism of the pro-
posed methodology is made in Section 4. In Section 5,
co-evolutionary, evolutionary and classical methods,
applied to a semi-synthetic problem, are compared.
The paper finishes with concluding remarks and fu-
ture work, and with an appendix containing numerical
data from experiments depicted in Section 5.

2. Proposed Methodology

The algorithm studied in this work serves to obtain the
aggregate supply curves of the companies competing
in the market using the historical information from the
results of several previous markets.

In the introduction, it was mentioned that these ag-
gregate supply curves provide the price at which a com-
pany is prepared to sell its energy, depending on the
amount bought. Each supply curve represents a mar-
ket strategy and the companies elaborate them based
on their assumptions with regard to the evolution of
demand and the strategies of the other competitors.

2.1. Definition of a Supply Curve

Each preliminary datum is a pair formed by two num-
bers: the total amount of energy produced in Spain dur-
ing a certain hour and the price of energy at that hour.
This pair of values corresponds to a point on the curve
obtained by adding up all the supply curves furnished
by the players in the market corresponding to that hour,
as explained in the introduction. Unfortunately, unless
we assume that an agent uses the same curve several
times at different hours, the preliminary data do not
contain sufficient information to reconstruct the sup-
ply curves.

An extreme case consists in assuming that the agents
always use the same curve in all the games. This hy-
pothesis is overly simplified. The behavior expected
from an agent consists in its demanding higher prices
when the forecasted demand is higher: this way, it max-
imizes its income without risking its offer being re-
jected. We indeed know that the supply curves that
a company uses depend on specific factors. Strategic
Planning Departments take into consideration the day
of the week, the hour of the day, the season, the weather

forecast (rain, temperature) and some other indicators
before posting prices to the Market Operator. Our anal-
ysis would be very imprecise if we did not consider
some of these factors. Following our own experience,
three features should be considered: the hour (which is
related to the amount of energy negotiated, depending
on labor hours and daylight), the day of the week (the
dependence between labor hours and demand changes
on weekends and holidays) and the season (electrical
cooling or heating, affects both previous dependen-
cies).

Given this information, we decided to stay in an in-
termediate position between (a) assuming that the sup-
ply curve is always the same for each agent, and (b)
assuming a different curve for every market. Since (a)
is too imprecise and (b) is intractable, in this work we
will allow each agent to select its curve from a restricted
set of choices, depending on the values of the features
mentioned before. In other words, a strategy comprises:

• a rule-based classification system, that produces a
segmentation of the market points into a certain num-
ber of classes depending on hour, day of the week
and type of day, and

• as many supply curves as market segments.

That is, each individual is a set of rules whose an-
tecedents are assertions with regard to market charac-
teristics and whose consequents are the supply curves
that the player can use. We shall call these consequents
“prototype strategies”.

The simplest representation of a prototype strategy
is a straight line. Linear models can approximate the
behavior of a competitive electrical market in the neigh-
borhood of its equilibrium point. Unfortunately, in spite
of this kind of simplification, which is valid for study-
ing the response of the market under small changes,
it is not accurate enough to estimate complete supply
curves of the agents, which are highly non linear. We
have decided to use piecewise linear supply curves in-
stead (see Fig. 1). The number of their segments will be
a compromise between the accuracy of the model and
the amount of available data (three segments in most
of the experiments in this paper.)

2.2. Genetic Representation of Individuals

We will solve this problem either with regular genetic
algorithms or with coevolutionary genetic algorithms,
to compare their relative performances.

10 de la Cal Marı́n and Sánchez Ramos

0

5000

10000

15000

20000

0 4 8 12

Energy

6 step (max. 25 step)

Price

0

5000

10000

15000

20000

0 4 8 12

Energy

Price

0

5000

10000

15000

20000

0 4 8 12

Energy

Price

Figure 1. Actual (left), linear (center) and polygonal supply curves (right). Representation by a polygonal line is closer to reality than the linear
supply and does not depend on an excessive number of parameters.

Each individual in the coevolutionary approach [9,
10] codifies a possible set of strategies (i.e., a rule-based
classifier system and a set of prototype strategies) of
one of the agents; we will keep as many populations
of individuals as agents exist. Fitness is not assigned
to an individual but to a combination of individuals
extracted from all populations [11, 12]. Conversely, in-
dividuals in the regular (non coevolutionary) approach
are sets that contain one set of strategies for each agent
involved in the market, therefore they can be directly
assigned a fitness value. The differences in represen-
tation, fitness and genetic operators between both ap-

Graphical representationGenetic representation

Prototype Coefficients Classifier
a

00
,b

00

Price

Price

Energy

Energy

Price

Energy

morning, holiday

afternoon, labor

morning, labor

afternoon, holiday

a
00

b
00

a
33

b
33

t+

a
01

,b
01

a
02

,b
02

a
03

,b
03

a
10

,b
10

a
11

,b
11

a
12

,b
12

a
13

,b
13

a
20

,b
20

a
21

,b
21

a
22

,b
22

a
23

,b
23

a
30

,b
30

a
31

,b
31

a
32

,b
32

a
33

,b
33

Prototype

Prototype

Prototype

Prototype

Energy

a
00

b
00

a
33

b
33

t

Classification variables

1.- hour of the day (continuous)
 morning = [0 - t] hours
 afternoon = (t -23] hours

2.- type of day (symbolic)
 labor
 holiday

Price

Figure 2. Polygonal supply curve comprising three segments and a classifier with two variables that segments the markets into 4 clusters; (top
left) genetic representation, (bottom left) classifier variable values, (right) graphical representation.

proaches are discussed in more detail in the sections
that follow.

An individual in the coevolutionary approach will be
codified with a chain of numbers. This chain comprises
two real numbers to define every segment in a proto-
type, plus a list containing the numerical parameters
on which the linguistic terms in the antecedents of the
classifier depend.

To clarify the codification of an individual, let us
consider the example in Fig. 2. Let us suppose we have
two input variables, called “hour of the day” and “type
of day.” The first variable can take values from 0 to

Supply Estimation Using Coevolutionary Genetic Algorithms 11

23, and the second one can take two linguistic values,
“labor” and “holiday”. The antecedents of the rules
that compound the strategy must span all values of the
input variables; we discretize all continuous variables
into linguistic terms first, and then enumerate all
possibilities. Let us call “morning” the hours before
a time called t , and “afternoon” the hours after t . The
complete strategy will be

if morning and holiday
then prototype=(a00,b00,a01,b01,
a02,b02,a03,b03)

if afternoon and holiday
then prototype=(a10,b10,a11,b11,
a12,b12,a13,b13)

if morning and labor
then prototype=(a20,b20,a21,b21,
a22,b22,a23,b23)

Non-Coevolutionary/Regular Approach

Coevolutionary Approach

i0 i1 i2 i3
 Prototypesi0 Classifieri0 Prototypes i1 Classifieri1 Prototypes i2 Classifieri2 Prototypes i3 Classifieri3

.

.

.

.

.

pop

i

 Prototypes i0 Classifieri0

i2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

i3

i1
i0

pop0 pop1

pop2
pop3

 Prototypes i0 Classifier i0

 Prototypes i2 Classifieri2 Prototypes i3 Classifier i3

Figure 3. Genetic representation for coevolutionary approach individuals (top), and an aggregate individual (bottom) valid for the non-
coevolutionary approach.

if afternoon and labor
then prototype=(a30,b30,a31,b31,
a32,b32,a33,b33)

and it can be codified by a chain of 33 numbers.
Since each prototype strategy depends on eight values,
we need 4 × 8 parameters to define all consequents
and one more number to define the value of t . The
antecedents need not to be codified, because they are
implicit in the sorting of the rules.

In general, a strategy depending on n input variables,
taking ni different values each, will be codified by a
chain of 8

∏n
i=1 ni + C , where C is the number of pa-

rameters defining the classifier.
The coevolutionary approach uses the number of

populations equal to the number of firms participat-
ing the market (four, in our case.). Each individual
represents the supply strategy for a firm (see Fig. 3

12 de la Cal Marı́n and Sánchez Ramos

top.) Individuals in the non-coevolutionary approach
are formed by concatenating as many individuals of
the former type as agents exist (see Fig. 3 bottom.) Ob-
serve that the segmentation of the markets is different
for every agent, thus they do not share the parameters
of the classifier.

2.3. Genetic Operators

Individuals in the coevolutionary approach are repre-
sented by chains of real numbers, thus there is no need
to define custom genetic operators. However, the rel-
ative sizes of the subchain codifying the consequents
and the subchain codifying the list of parameters of the
classifier are very different. We have opted to let only
one of these parts be modified in every genetic oper-
ation, thus we can manually balance the evolution of
both and speed up the evolution of the classifier part.
This is the only difference between our operators and
the standard versions of uniform arithmetic crossover
and mutation [13, 14]. Observe that the offspring is

Non-Coevolutionary/Regular Approach Crossover

Coevolutionary Approach Crossover

mom

dad

child

1 prototype selected

mom

dad

child

classifier selected

mom

dad

child

1 firm/1 prototype selected

mom

dad

child

1 firm/classifier selected

Figure 4. Crossover operations in coevolutionary (top) and evolutionary (bottom) representations. Evolutionary crossover consists of selecting
one agent at random and performing the coevolutionary crossover over the corresponding parts.

always valid, because:

• The consequents produced by the either the muta-
tion or the crossover operators are weighted sums
of monotonic functions, which are also monotonic
functions.

• The classifier arising from crossover or mutation is
checked, and repaired if needed, so that all param-
eters defining it are constrained to their respective
ranges.

When two individuals are to be crossed, a coin is
tossed to decide whether we select from each of them
(a) the subchain codifying the classifier definition or (b)
one subchain that codifies the definition of one of the
prototypes (the consequent of a single rule is modified
after applying crossover.) The selected subchains are
recombined by means of standard arithmetic crossover,
but the remaining part of the individual remains un-
touched (see Fig. 4 top).

The mutation operator is defined as the crossing of an
individual with another one, generated at random. Both

Supply Estimation Using Coevolutionary Genetic Algorithms 13

recombination and mutation are immediately extended
to the canonical case (non-coevolutionary): the same
strategy is selected from both parents (i.e., crossover
affects subchains with the same relative position inside
the individual) and the preceding operations are applied
to the selected subchain (see Fig. 4 bottom).

2.4. Fitness Function

We have mentioned that we needed to assume that the
unitary profits of all firms are the same in order to
obtain a good model. Otherwise, we would not be able
to determine the market share of every firm, only an
aggregation of the supply curves of all firms that could
be broken down in many different ways.

This decision implies that we need to rank strategies
according to two different criteria: a strategy is good
when, after being combined with the strategies of the
remaining players, (a) either the price and the quantity
sold are near the actual price or quantity and (b) sim-
ilar unitary profits are achieved by all players –where
“unitary profit” is defined as the difference between
cost and income, divided by the number of MWs sold.
The first goal measures how the curves fit real data,
and the second one measures the degree of fulfillment
of the restriction “all unitary profits are the same.” We
will use the square error to quantify the first objective,
and the mean of the variances of the unitary profits to
quantify the second one.

Different methods exist for mapping multi-objective
fitness into scalar fitness [15]. We have studied the
weighted average of values (a) and (b), but, according
to our experiments (see Section A.2), there is a signifi-
cant improvement if we use a multi-objective approach
instead [16–19].

The same fitness function was applied to both the
coevolutionary process (as many populations as com-
panies) and the regular process (one population). Note
that in the coevolutionary approach, the fitness of an
individual is calculated making it compete with in-
dividuals selected at random from other populations,
while in the evolutionary approach, an individual is a
set of compound strategies from all companies, thus
this selection is not necessary.

3. Demonstration Case

A simple problem is presented here for the sake of
illustrating the basic aspects of the proposed method-

Table 1. Market points in the demonstration case.

Price 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35

Quantity 75 80 85 90 95 100 105 110 115 120

ology. This example models 10 repetitions of a game
in which we know each player always uses the same
supply curve, thus we do not need the classifier.
Supplies are straight lines, each depending on two
parameters.

The inputs for this problem are:

1. The cost functions. q is the quantity of energy pro-
duced, C0 and C1 are the prices demanded:

C0(q) = 8q + 12

C1(q) = 8.5q + 10

2. The market scenario, a series of 10 demand func-
tions (Dm) with the same elasticity (i.e., the same
steepness):

Dm(p) = −2p + (100 + 10m), for m in 0 . . . 9

3. The set of market points in Table 1, (pricei ,
quantityi). They were generated from the intersec-
tions of the demand functions (Di) and the aggregate
strategy.
The original strategies of the agents (those we want
to recover) are:

qorig
0 (p) = 0.10p + 16.60

qorig
1 (p) = 1.89p + 33.55

therefore, the intersections of qorig
0 + qorig

1 and the
preceding demand functions produce Table 1.

The algorithm is fed with Table 1, functions D0 to
D9 and the cost functions C0 and C1. It produces ap-
proximations q0, q1 to the actual strategies qorig

0 and
qorig

1 . Individuals in the coevolutionary genetic popula-
tions are chains of two numbers (coefficients defining
q0 or q1). For the sake of clarity, let us evaluate the
combination of two individuals generated at random,
(0.2, 15.0) and (2.0, 10.0) which correspond to the pair
of strategies:

q0(p) = 0.2p + 15.0

q1(p) = 2.0p + 10.0.

14 de la Cal Marı́n and Sánchez Ramos

Table 2. Price of energy and total number of units sold for the pair of offers defined in Section 3.

Price 17.86 20.24 22.62 25 27.38 29.76 32.14 34.52 36.90 39.29

Quantity 64.29 69.52 74.76 80 85.24 90.48 95.71 100.95 106.19 111.43

Table 3. Number of units sold by each player.

q0 18.57 19.05 19.52 20 20.48 20.95 21.43 21.90 22.38 22.86

q1 45.71 50.48 55.24 60 64.76 69.52 74.29 79.05 83.81 88.57

One part of the fitness depends on the difference be-
tween the energy that was actually sold and the energy
that would be sold if the strategies being evaluated were
issued. We must first calculate the estimated prices for
each market. These prices are graphically determined
by the cut of q0 + q1 with each demand Dm . The re-
sults are in Table 2. The squared difference between
the quantities in this table and those in Table 1 is 93.5.
The other term in the fitness is the variance of the uni-
tary benefits in all markets. Given the expressions of
q0 and q1, the amount of energy each player sells in
each market is contained in Table 3. Unitary profit is
calculated by dividing the difference between income
p · q(p) and cost C(q(p)) into the number q of sold
units. The variance of all these values is 0.014. This is
the second field in the fitness value.

Once the models of representation and the com-
binations of the individuals with the demand curves
are defined, a coevolutionary genetic algorithm is
applied to obtain an estimate of the original in-
dividual strategies. Estimated individual strategies
were obtained after running the algorithm with two
subpopulations with the size of 400, multicrite-
ria fitness, 200 generations, tournament selection
(size 4) and linear descending crossover probabil-
ity, from 100 to 0% (this decision is experimen-
tally justified in Appendix A.6). The output of our
method is:

q0(p) = 0.10p + 16.70

q1(p) = 1.90p + 33.29

4. Self-Criticism: Non Coevolutionary
Analysis of the Data

One may wonder whether this method offers signifi-
cant advantages over simpler techniques. Let us sup-
pose all agents share the same classifier, i.e., the an-

tecedents of all rules are the same for all agents
(for instance, let us suppose all players agree in the
meaning of ‘morning’ and ‘afternoon’ in the previous
example.)

In this case, we can think of applying cluster analysis
to the input data (the pairs price-quantity) to estimate
the antecedents of the classifier or, in other words, to do
a segmentation of the different markets, according to
their properties. Then, the input data can be divided into
different subsets (market segments), and an aggregate
supply curve can be fitted into each market segment
by non linear regression (see Fig. 5). The share of all
agents is obtained with the help of the unitary profit
assumption.

To assess this method, we will set up a second
algorithm, in which k-means is used to cluster the
points and a genetic algorithm is used to fit a piecewise
linear curve to each cluster. We will call this approach
“K -means Genetic Model” (KGM). From now on, the
methods proposed here in their canonical and coevolu-
tionary versions will be called “Genetic Model” (GM)
and “Coevolutionary Genetic Model” (CGM), respec-
tively. We will show, by means of numerical simula-
tion of a simplified real problem, that the adjustment
of CGM improves that of KGM and GM.

5. Practical Application: A Simplified
Real Problem

This section describes the application of this method to
a semi-synthetic problem. This problem was designed
to reproduce current scenarios in the Spanish electrical
market, while being originated by theoretical supply
curves, thus we can quantify the accuracy of GM, CGM
and KGM methods.

The exposition is organized as follows:

1. A description of the semi-synthetic problem is
made.

2. The experimental framework (decisions about the
genetic process) is defined.

3. KGM, GM and CGM methods are compared.
4. The results are discussed and the practical applica-

tion of the models studied.

Supply Estimation Using Coevolutionary Genetic Algorithms 15

a) Market Points set b) Clustering + Non-linear Multi-objetive optimization

+ +

+

Price Price

EnergyEnergy

Figure 5. Approximation by classical methods: Clustering + Non-linear multi-objective optimization.

5.1. Semi-Synthesized Problem Description

The problem proposed here is more complex than the
demonstration scenario shown in Section 3. Market
points have been distributed resembling market points
in a specific real situation (see Fig. 6(a) for actual data
points for two days in the year 2000). The real problem

40

60

80

100

120

140

10 15 20 25 30 35 40 45 50 55

Synthetic Market Points

a) Cloud of Real Market Points b) Cloud of Synthetic Market Points

Sat/09/00 & Mon/12/99 Market Points

40

60

80

100

120

140

10 15 20 25 30 35 40 45 50 55
Price

Energy

Price

Energy

Figure 6. Saturday (September 2000) and Sunday (December 1999) market points (a) compared to semi-synthetic data (b).

in Fig. 6(a) has been simplified to 6(b). The reasons
that forced us to use semi-synthetic data are:

• Supply curves: we have assumed a small number of
aggregate supply curves exists, and a simple behavior
for every firm (i.e., the supply curve only depends on
the market segment given by the classifier). This is

16 de la Cal Marı́n and Sánchez Ramos

40

60

80

100

120

140

10 15 20 25 30 35 40 45 50 55

Market Points

GROUP1

GROUP2

MP
1

PP

MP
5
PP

MP
6

PP

MP
10
PP

MP
1

P
1
PP

MP
20

PP

Price

Energy

Figure 7. Cross-shaped cloud of market points for the semi-synthetic problem and the two clusters that should be obtained.

a simplification of the real case. In practice, each
generator operates with certain autonomy, thus the
actual aggregate supply curves are never exactly the
same in two different markets. By replacing them
with semi-synthetic curves, we can know whether
the deviations between desired add real output of
our algorithm are due to the genetic algorithm, or
they are inherent in the dispersion of the data.

• Demand elasticity: The steepness of the demand
curves was not provided by the MO. Therefore, we
assume a plausible value.

• Both the demand and the cost functions are lineariza-
tions of the actual ones.

We decided to generate 20 points in two clusters,
assuming that all points belong to weekends in the same
season (and therefore the segmentation depends only
on the hour of the day, see Fig. 7). We wish to recover
the four individual supply curves (the Spanish electrical
market is made up of four major generating agents) that
originated the situation in Fig. 6(b).

The input data includes:

1. 20 market points, MPi , i = 1, . . . 20 (pairs price-
quantity)

2. 20 Demand functions, which were assigned
the same elasticity (−2). For instance, de-
mand function for the market point characterized

by the pair (price = 16.67, quantity = 66.67) is
−2 ∗ price + 100.

3. 4 linear production cost functions, (one for each
firm) which are

C0(q) = 8q + 10

C1(q) = 10q + 20

C2(q) = 12q + 30

C3(q) = 11q + 25

4. The quotient between unitary profits of all firms (1,
in this case).

5. The number of prototypes (2).

The prototypes used to generate the market points (the
desired output of the process) are shown in Table 4.

5.2. Experimental Framework

5.2.1. Crossover Operation. The first decision that
must be made in CGM algorithm concerns the method
for selecting prototypes in the crossover operation.
We have evaluated two alternatives: only 1 prototype,
selected at random, is interchanged between the in-
dividuals being crossed (“coevol-1-random”) or all
prototypes are used in a kind of uniform crossover

Supply Estimation Using Coevolutionary Genetic Algorithms 17

Table 4. Objective individual strategies for the cross shaped
problem. Prototypes are piecewise linear, with 3 segments.
Each compound strategy comprises 2 prototypes, and the clas-
sifier system has two rules.

MP1−10

E0 (16.67,2.13)(26.67,2.17)(36.67,2.21)(46.67,2.25)

E1 (16.67,7.39)(26.67,7.69)(36.67,7.99)(46.67,8.29)

E2 (16.67,42.52)(26.67,51.02)(36.67,59.52)(46.67,68.02)

E3 (16.67,14.55)(26.67,15.65)(36.67,16.75)(46.67,17.85)

MP11−20

E0 (16.67,1.93)(26.67, 2.08)(36.67,2.23)(46.67,2.38)

E1 (16.67,6.40)(26.67,7.33)(36.67,8.26)(46.67,9.19)

E2 (16.67,29.35)(26.67,46.45)(36.67,63.55)(46.67,80.65)

E3 (16.67,10.63)(26.67,14.33)(36.67,18.03)(46.67,21.73)

Table 5. Framework to compare GM and CGM. Since the
crossover is very disruptive, the mutation operator did not improve
the convergence and it was not used. For the same reason, the prob-
ability of crossover has to be lowered as the search advances.

Selection type: Tournament

Tournament size: 4

Number of pops.: 4 populations in coevolutionary model

Size of pops.: 100–1000

Iterations: 100–500

Crossover probability: Linear descending from 100.0%

Mutation probability: 0.0%

that we have labelled “coevol-all” (see Fig. 8). The
framework for this and future genetic experiments
in this section is shown in Table 5. GM crossover
is different because individuals do not codify the
strategies of one firm but a combination comprising
a set of strategies for every firm. CGM crossover
can be extended to this schema: evol-1-random se-

coevol-all

a
o0

b
o0

a
o1

b
o1

a
o2

b
o2

a
o3

b
o3

c
o1

c
o2

c
o3

a
d0

b
d0

a
d1

b
d1

a
d2

b
d2

a
d3

b
d3

c
d1

c
d2

c
d3

..

a
h0

b
h0

a
h1

b
h1

a
h2

b
h2

a
h3

b
h3

c
h1

c
h2

c
h3

coevol-1-random

a
o0

b
o0

a
o1

b
o1

a
o2

b
o2

a
o3

b
o3

c
o1

c
o2

c
o3

a
d0

b
d0

a
d1

b
d1

a
d2

b
d2

a
d3

b
d3

c
d1

c
d2

c
d3

a
h0

b
h0

a
h1

b
h1

a
h2

b
h2

a
h3

b
h3

c
h1

c
h2 h3

c

select a pair (a,b) at random

o = mom

d = dad

h = child

o = mom

d = dad

h = child

Figure 8. Types of crossover operators for CGM, (coevol-all and coevol-1-random).

lects one firm’s strategies from both parents and ap-
plies “coevol-1-random” crossover to them. “Evol-all”
consists of applying “coevol-1-random” to all firms
(see Fig. 9).

Observe that the settings for some of these opera-
tors are not the usual ones: mutation did not improve
the convergence speed so it was not used (see Sec-
tion A.7). Our experiments have also shown that the
crossover was very disruptive, even after the modifica-
tions proposed in Section 2.3 were applied. Notice that
the probability of crossover is lowered as the search
advances due to the same reason (see Section A.6).

5.2.2. Fitness Function. Regular fitness calculation
of a GM individual consists of making the firms com-
pete with each other. This will be called “intra-i” fit-
ness. An alternative fitness involves the competition of
each firm with firms from another individual selected at
random from the population. This fitness will labelled
“extra-i” (see Fig. 10).

5.2.3. Summary of the Decisions Made. The dia-
gram in Fig. 11 shows the decisions made to obtain the
final genetic configuration. The first decision consists
in deciding between multi-objective and scalar fitness,
using CGM to evaluate both fitnesses. Our experiments
(see Section A.2) conclude that multi-objective fitness
is more effective than scalar fitness. Therefore, scalar
fitness will not be used in the remaining decisions.

Again, in CGM, we have to choose one crossover
operator between “coevol-1-random” and “coevol-all.”
Results in Section A.3 state that “coevol-1-random” is
the best one. Therefore, “coevol-1-random” is selected
as the choice crossover operator for individuals in CGM
for all tests.

Two crossover operators for GM individuals are
analysed: “evol-1-random” and “evol-all.” In this case,

18 de la Cal Marı́n and Sánchez Ramos

evol-all

firm
o0

firm
o1

firm
o2

firm
o3o = mom

d = dad

h = child

evol-1-random

select a firm at random

firm
d0

firm
d1

firm
d2

firm
d3

firm
h0

firm
h1

firm
h2

firm
h3

firm
o0

firm
o1

firm
o2

firm
o3

firm
d0

firm
d1

firm
d2

firm
d3

firm
u0

firm
h1

firm
u2

firm
u3

o = mom

d = dad

h = child

Figure 9. Types of crossover operators for GM, (evol-all and evol-1-random).

intra-i fitness

firm
A

firm
B

firm
Cindividual i =

extra-i fitness

firm
D

firm
E

firm
Findividual r =

individual i =

Fitness(i)

r is selected at random

firm
A

firm
B

firm
C

firm
A

firm
E

firm
F

firm
B

firm
D

firm
F

firm
C

firm
D

firm
E

C
om

petitions

Fitness(i)

firm
A

firm
B

firm
C

firm
B

firm
A

firm
C

firm
C

firm
A

firmB

C
om

petitions

Figure 10. Types of fitness functions for GM, (intra-i and extra-i).

Multi-objective Fitness
Crossover coevol-1-random Yes
Crossover coevol-all No

Scalar Fitness No

Intra-i Fitness
Crossover evol-1-random No
Crossover evol-all No

Extra-i Fitness
Crossover evol-1-random No
Crossover evol-all No

Figure 11. Diagram with the decisions taken to select fitness functions and crossover operators for GM and CGM.

results from Section A.5 show us that both crossover
operators have a similar behavior.

“Extra-i” and “intra-i” fitness for GM have been
studied, too. The results (see experiments in Section
A.4) demonstrate that “extra-i” fitness is better than
“intra-i” fitness in most of the cases studied.

Finally, after comparing GM and CGM results (see
Section A.8), we can conclude that CGM with multi-
objective fitness and the “coevol-1-random” crossover
operator is more effective than GM.

5.3. Comparison Between KGM and CGM

We have selected the best model obtained in the pre-
vious section, CGM, to compare it with an alternative

method based on “a priori” clustering (see Section 4).
KGM takes two steps:

1. Clustering of market points using the K-means
algorithm.

2. For each cluster of market points from the preceding
step, CGM without the classification system (one
prototype) is applied to fit one polygonal curve to
the market points of every cluster.

After Section A.8 results, we can conclude that CGM
is rather more effective than GM and KGM, but KGM
can compete with the non-coevolutionary solution GM
(see Table 14 in Appendix A.8). Therefore, the choice
method is now CGM with coevol-1-random crossover
operator and multi-objective fitness.

Supply Estimation Using Coevolutionary Genetic Algorithms 19

5.4. Analysis of Results and Applications
of the Method

We will show the practical relevance of this algorithm
by using it to solve a practical problem. Suppose we
wish to predict what would happen if one firm increases
its price.

One would expect that the total amount of total en-
ergy sold in the pool decreases, and, therefore, the final
price increases. However, the share of the firms will
change, too, and it is possible that the increase is prof-
itable for the enterprise that issued it.

Let us assume the change is small enough so the
remaining enterprises do not react and alter their re-
spective strategies. In case this is not true, the tool we
have developed here is not valid. One should run an
algorithm similar to this in structure, but with a change
in the fitness function. In order to simulate the reaction
of the enterprises, it is no longer true that the strategies
match the historical data, and the fitness must depend
mainly on the profit of each enterprise, thus the genetic
algorithm can evolve towards the optimal strategy def-
inition in terms of the game theory. This point will be
recalled in Section 6, “Concluding Remarks and Future
Work”.

After our algorithm has been used to extract
the individual supply curves, we follow the next
schema:

1. A simulation of the pool is run to calculate the profit
of all firms.

2. The strategy of one firm is altered.
3. A second simulation is run to calculate the new

profit.

5.4.1. Experimental Framework. Tests with an esti-
mated pool from each model studied (GM, CGM and
n-KGM models, where n is the number of clusters)
have been made. Let us suppose first that we are firm 0,
the firm with the lowest market share. We will increase
our supply curve by 1% and evaluate the new profits.
Then the supply is increased by 5% and the analysis
repeated. Finally, a second, identical experiment will
be carried out, but from the point of view of firm 2, the
biggest company.

The value Perc error measures the error that CGM,
GM and KGM introduce into this process:

Perc error = 100

· |Profit increase(estimated pool) − Profit increase(actual pool)|
Profit increase (actual pool)

It can be observed that the coevolutionary method
presents (see Table 6) the lowest maximum percent-
age error (CGM, 5.05% of maximum percentage er-
ror) of all the methods studied. 1-KGM is the sec-
ond, with 21.25% of error, after GM with 38.33%
and last 2-KGM. These results suggest that cluster-
ing (KGM) is not effective. Besides the adjustment
to the market points is better when the number of
2 clusters is increased (see Table 14 in Appendix
A.8), this does not imply that the resulting pool is
nearer to the actual one. This is experimentally stated
in Table 6, where 2-KGM method obtains an er-
ror of 83.45% as opposed to 21.25% in the 1-KGM
method. Therefore, we can conclude that the coevo-
lutionary analysis of markets is a more precise tech-
nique than both non coevolutionary analysis and or-
dinary segmentation with submodel fitting for this
application.

6. Concluding Remarks and Future Work

Coevolutionary genetic models are usually used to sim-
ulate natural systems with multiple agents of inde-
pendent behavior, where mathematical models are too
complex to be applied. Here, we have experimentally
shown that a coevolutionary genetic model is more
effective than a regular genetic model or a K -means
algorithm plus genetic algorithm based on non-linear
regression. On the other hand, it has been stated that
multi-objective fitness is also more effective than real
value fitness. Multi-objective fitness allows goals to
be explored in parallel, avoiding mutual obstruction,
and, therefore, the premature convergence to a local
optimal.

From the point of view of a firm that manages our
estimated pool, this method shows the influence of a
slight variation in its strategy over its profits, given a
certain market situation. This way, a firm can adjust its
strategy and improve its profits.

The following step to improve this algorithm con-
sists in designing a tool capable of generating the op-
timal pool, given the demand and the production costs
of the firms. From the Market Operator’s point of view,
it is useful to know the theoretical optimal strategies
for a set of market points in a perfect oligopolistic sit-
uation, which is a non-linear extension to the Cournot
problem [20]. This information will serve to estimate
the difference between the real profit of the pool and
the theoretical maximum profit if competition is per-
fect, therefore detecting illegal agreements between

20 de la Cal Marı́n and Sánchez Ramos

Table 6. Summary of percentage error obtained with GM, CGM and KGM.

Firm % Modif. Method Profbefore Profafter Increase Percentage error

0 1.0 Actual 883.2 892.0 +8.8 0.00

0 1.0 CGM 883.1 891.9 +8.8 0.00

0 1.0 GM 881.2 890.1 +8.8 0.79

0 1.0 1-KGM 886.3 895.1 +8.8 0.09

0 1.0 2-KGM 864.2 872.5 +8.4 5.24

0 5.0 Actual 883.2 927.3 +44.1 0.00

0 5.0 CGM 883.2 927.2 +44.1 0.01

0 5.0 GM 881.2 925.7 +44.4 0.81

0 5.0 1-KGM 886.3 930.4 +44.0 0.10

0 5.0 2-KGM 864.2 906.0 +41.8 5.26

2 1.0 Actual 23887.3 23899.6 +12.3 0.00

2 1.0 CGM 23929.2 23942.0 +12.8 4.10

2 1.0 GM 23593.6 23601.3 +7.7 37.40

2 1.0 1-KGM 23922.9 23932.7 +9.8 20.33

2 1.0 2-KGM 23893.6 23915.5 +21.9 78.05

2 5.0 Actual 23887.3 23944.7 +57.4 0.00

2 5.0 CGM 23989.5 23929.2 +60.3 5.05

2 5.0 GM 23593.6 23629.0 +35.4 38.33

2 5.0 1-KGM 23922.9 23968.1 +45.2 21.25

2 5.0 2-KGM 23893.6 23998.9 +105.3 83.45

generators. In addition, it will serve to simulate the pool
under large changes in the supply curves of one firm,
overpassing the limitations of the analysis in the last
section.

Appendix A: Experiments

This Appendix includes numerical results for exper-
iments made with the semi-synthetic problem from
Section 5 to select the best genetic parameters. These
results have been moved here to improve the readabil-
ity of the paper. General framework and specific error
functions are described in Section A.1.

Section A.2 shows results for multi-objective fit-
ness compared to scalar fitness using CGM. Re-
sults of comparing proposed crossover operators for
CGM are included in Section A.3. Different fitness
function results for GM are shown in Section A.4.
Section A.5 retrieves results for crossover operators
with GM. Studies of the crossover and mutation prob-
ability are presented in Sections A.6 and A.7 re-
spectively and finally a summary table is included in
Section A.8.

A.1. Framework and Error Measurement

All tests were made using genetic parameters from
Table 5. Different fitness functions and crossover op-
erators will be analyzed in each of the following
sections.

In order to provide complete information about the
results obtained, two error functions have been used to
measure the distance between the estimated curves and
the original supply curves:

• Error1 measures the mean percentage error of esti-
mated quantity for all firms in each market.

• Error2 measures the mean percentage error of
estimated energy share in each market for all
firms.

A.2. Mono-Objective vs. Multi-Objective Fitness,
Coevolutionary Model

Tests made with multi-objective fitness, scalar fitness
and a coevol-1-random crossover operator (see results
in Section A.3) using CGM are in Table 7. Results

Supply Estimation Using Coevolutionary Genetic Algorithms 21

Table 7. Comparison of errors using multi-objective and scalar fitness for CGM.

Fitness Pop Iter Error1 σerror1 Error2 σerror2

Multi-objective fitness 100 200 2.427 0.872 0.411 0.157

Scalar fitness 100 200 253.896 126.628 22.695 6.821

Multi-objective fitness 200 200 2.189 0.965 0.400 0.213

Scalar fitness 200 200 240.562 99.271 20.013 6.778

Multi-objective fitness 300 200 1.835 0.691 0.342 0.131

Scalar fitness 300 200 261.687 64.373 19.510 4.912

Multi-objective fitness 400 200 1.842 0.663 0.364 0.149

Scalar fitness 400 200 269.891 72.581 22.769 4.962

Multi-objective fitness 500 200 1.631 0.748 0.332 0.176

Scalar fitness 500 200 246.641 96.271 20.926 5.624

Multi-objective fitness 1000 200 1.118 0.523 0.197 0.088

Scalar fitness 1000 200 255.751 62.520 21.408 4.483

Multi-objective fitness 500 500 1.327 0.782 0.270 0.181

Scalar fitness 500 500 215.066 112.140 17.916 6.920

Multi-objective fitness 1000 500 1.168 0.640 0.253 0.139

Scalar fitness 1000 500 223.648 126.607 19.170 8.001

are the average of 10 runs with each set of param-
eters: type of fitness (Fitness), number of individ-
uals by population (Pop) and number of iterations
(Iter).

Multi-objective fitness obtains the best solution with
both quality criteria (absolute error –Error1– and distri-
bution of market shares –Error2–). It seems that multi-
objective fitness converges in parallel to a global mini-
mum in its two components (variance of unitary profits
–Fitnessb– and square error –Fitnessa–) while scalar
fitness, which is a weighted sum of both, is dragged
by the easiest convergence component, causing con-
vergence to a local minimum (see Fig. 12).

0

20

40

60

80

100

0 100 200

Fitnessscalar
Fitnessb
Fitnessa

Iteration

Fitness scalar

a) Fitness scalar

Fitness multi

Local optimum
global optimum0

20

40

60

80

100

100 200
Iterationb) Fitness multi

Fitness multi
Fitness b
Fitness a

Figure 12. Comparison of Scalar (a) vs. Multi-objective (b) Fitness Progression.

A.3. Selection of the Crossover Operation,
Coevolutionary Model

Numerical results for the two proposed crossover op-
erators, coevol-1-random and coevol-all, and multi-
objective fitness are in Table 8. It shows average re-
sults of 10 runs with each set of parameters: type
of crossover operator (Crossover), number of indi-
viduals by population (Pop) and number of iterations
(Iter).

Although the margin between both variants is
small, coevol-1-random is better than coevol-all in all
tests.

22 de la Cal Marı́n and Sánchez Ramos

Table 8. Crossover methods comparison for a coevolutionary
model.

Crossover Pop Iter Error1 σError1 Error2 σError2

coevol-all 500 200 2.310 0.997 0.383 0.182

coevol-1-random 500 200 1.631 0.748 0.332 0.176

coevol-all 500 500 1.744 0.755 0.356 0.167

coevol-1-random 500 500 1.327 0.782 0.270 0.181

coevol-all 1000 200 1.778 0.526 0.282 0.073

coevol-1-random 1000 200 1.118 0.523 0.197 0.088

coevol-all 1000 500 1.241 0.715 0.246 0.159

coevol-1-random 1000 500 1.168 0.640 0.253 0.139

A.4. Fitness Function, Non Coevolutionary Model

Both GM fitness functions, “intra-i” fitness and “extra-
i,” fitness have been tested with both GM crossover op-
erators, evol-1-random and evol-all (see Section A.5).

We propose an alternative to regular fitness (intra-i
fitness) that consists in making each firm comprising
an individual compete with firms from another indi-
vidual selected at random from the population. Table 9
contains average results of 10 runs with each set of
parameters: type of fitness (Fitness), type of crossover
operator, number of individuals by population (Pop)
and number of iterations (Iter).

Table 9. Intra-i fitness vs. extra-i fitness for GM.

Fitness Pop Iter Error1 σerror1 Error2 σerror2

Evol-all crossover
intra-i 500 200 12.742 4.032 2.245 0.885

extra-i 500 200 7.844 1.744 0.793 0.333

intra-i 500 500 5.708 1.880 1.252 0.443

extra-i 500 500 4.495 1.959 0.718 0.252

intra-i 1000 200 11.181 2.660 1.899 0.503

extra-i 1000 200 7.230 1.276 0.720 0.346

intra-i 1000 500 4.822 1.163 1.003 0.237

extra-i 1000 500 4.223 1.858 0.607 0.220

Evol-1-random crossover

intra-i 500 200 35.972 17.795 4.131 2.317

extra-i 500 200 27.063 15.330 1.463 0.495

intra-i 500 500 4.268 1.746 0.899 0.410

extra-i 500 500 5.266 3.894 0.962 0.613

intra-i 1000 200 14.577 5.724 1.888 0.690

extra-i 1000 200 17.239 9.279 1.208 0.654

intra-i 1000 500 3.949 1.331 0.867 0.370

extra-i 1000 500 3.875 1.871 0.750 0.340

In conclusion, we can affirm that the method of com-
petition of external fitness (extra-i) is better in almost
all the cases studied. This difference is attenuated as
the number of individuals and iterations grows.

A.5. Crossover Operator, Non
Coevolutionary Model

We propose two GM crossover operators, one simi-
lar to coevol-1-random, but crossing whole firms and
not prototype strategies. Let us define a CGM scenario
with p populations, i individuals by population and
crossover probability of c, so the expected next gener-
ation number of individuals produced by the crossing
operator will be:

Crossed CGM individuals/population = 2ci

100 + c

Total crossed CGM individuals = 2cip

100 + c

The population of the equivalent GM has i individ-
uals (like a CGM population), but each GM individual
will be made up of p firms (a firm is a set of strategies,
such as a CGM individual). According to this, if the
crossing between two GM individuals composed by m
population segments is implemented as the crossing of
all the corresponding firms comprising it (evol-all), the
number of firms after crossing will be the same number
as CGM individuals:

Crossed GM firms/GM individual = 2ci

100 + c

Total crossed GM firms = 2cip

100 + c

Thus, we propose a new GM crossover consisting of
the random selection of only one firm for the crossing
(evol-1-random), instead of crossing all the firms. The
results of Table 10 are the average of 10 runs for each
set of parameters: type of crossover (Crossover), num-
ber of individuals by population (Pop) and number of
iterations (Iter).

Table 10 shows that evol-1-random crossover im-
proves with the population size (Pop) and the number
of iterations (Iter). Evol-1-random is better than evol-all
from 500 iterations. This demonstrates that the number
of crossings is not totally decisive in the problem that
we are raising, since the errors (Error1, and Error2)
are not improved with a new evolutionary crossover

Supply Estimation Using Coevolutionary Genetic Algorithms 23

Table 10. Crossover methods comparison for evolutionary model.

Crossover Pop Iter Error1 σerror1 Error3 σerror3

evol-all 500 200 12.742 4.032 2.245 0.885

evol-1-random 500 200 35.972 17.795 4.131 2.317

evol-all 1000 200 11.181 2.660 1.899 0.503

evol-1-random 1000 200 14.577 5.724 1.888 0.690

evol-all 500 500 5.708 1.880 1.252 0.443

evol-1-random 500 500 4.268 1.746 0.899 0.410

evol-all 1000 500 4.822 1.163 1.003 0.237

evol-1-random 1000 500 3.949 1.331 0.867 0.370

operator with respect to the equivalent coevolutionary
model.

A.6. Crossover Probability Study

All the previous studies were carried out using a
crossover probability calculated with the expression
100(1 − i ter

N T otal I ter), with which the best practical re-
sults were obtained. To confirm this statement, the re-
sults were tabulated for several tests with a constant
crossover probability (between 1.0% and 100%) in
the CGM model with multi-objective fitness, using the
crossover operator “coevol-1-random” (see Table 11).

Observe that as the crossover probability increases,
the value of Error1 worsens, and the minimum
crossover probability of 10% is obtained. This indi-

Table 11. Errors from applying a constant crossover proba-
bility of 10–100% to the CGM model combined with the multi-
objective fitness and crossover operator “coevol-1-random”.

%Crossover probability Error1 σError1 Error3 σerror3

Descending Probability 1.631 0.748 0.332 0.176

1 5.340 2.957 0.595 0.257

5 3.419 0.950 0.611 0.232

10 3.010 1.344 0.554 0.204

20 3.580 2.350 0.530 0.223

30 3.374 1.501 0.594 0.292

40 3.730 1.250 0.652 0.220

50 4.341 1.569 0.770 0.309

60 4.604 1.900 0.806 0.284

70 6.418 3.029 1.043 0.460

80 6.160 2.867 0.997 0.413

90 6.099 2.659 0.971 0.406

100 6.511 2.556 1.100 0.477

Table 12. Comparison of the best results obtained with a con-
stant crossover probability as opposed to a descending crossover
probability with a linear function

Crossover probability Error1 σError1 Error3 σerror3

Const. 10% 3.010 1.344 0.554 0.204

Const. 20% 3.580 2.350 0.530 0.223

Descending Probability 1.631 0.748 0.332 0.176

cates that the population diversity remains high until
the end of CGM learning, when the crossover proba-
bility is still high, which favors high dispersion. For
this reason, we decided on the use of a descending
crossover probability. The minimum errors, Error1 as
well as Error2, obtained with constant crossover prob-
ability, do not improve the results obtained with the
descending probability of 1.631% (see Table 12).

A.7. Mutation Probability Study

Uniform arithmetic crossover operators already in-
clude a random factor, which is why the possibility
of not using a mutation operator was assessed. To ex-
perimentally contrast this decision, testing was carried
out with positive mutation probabilities from 1.0 to
10%. Table 13 contains the results obtained with a mu-
tation operator applied with positive probabilities (%
Mut.) and without it (probability 0%), both combined
with the CGM model with multi-objective fitness and
crossover operator “coevol-1-random”.

In view of the results obtained, we can say that the
errors increase as the mutation probability increases,
which is why it was decided not to use this operator.

A.8. Summary

As shown in Table 14, it can be concluded that the
coevolutionary model using multi-objective fitness is

Table 13. Comparison of errors obtained without
mutation (0%) vs. positive mutation probability
with CGM and multi-objective fitness.

% Mut. Error1 σError1 Error3 σError3

0.0 1.631 0.748 0.332 0.176

0.5 1.949 0.834 0.373 0.148

1.0 2.323 1.286 0.420 0.183

5.0 3.024 0.587 0.488 0.083

10.0 3.132 0.330 0.450 0.073

24 de la Cal Marı́n and Sánchez Ramos

Table 14. Comparison of errors obtained with CGM, GM and KGM.

Model Cross./fitness Pop Iter Error1 σerror1 Error2 σerror2

1-KGM – 500 200 3.716 0.000 0.423 0.000

2-KGM – 500 200 3.580 0.000 0.515 0.000

GM All/extra-i fitness 500 200 7.844 1.744 0.793 0.333

CGM 1-random/multi-objective fitness 500 200 1.631 0.748 0.332 0.176

GM 1-random/intra-i fitness 500 500 4.268 1.746 0.899 0.410

CGM 1-random/multi-objective fitness 500 500 1.327 0.782 0.270 0.181

GM All/extra-i fitness 1000 200 7.230 1.276 0.720 0.346

CGM 1-random/multi-objective fitness 1000 200 1.118 0.523 0.197 0.088

GM 1-random/extra-i fitness 1000 500 3.875 1.871 0.750 0.340

CGM 1-random/multi-objective fitness 1000 500 1.168 0.640 0.253 0.139

more effective than the evolutionary equivalent model,
and also better than the equivalent KGM.

Acknowledgments

This research has been partly funded by the “Fundación
Banco Herrero 2002 Research Grant” and by “Ministe-
rio de Ciencia y Tecnologı́a,” under the research proyect
TIC2002-04036-C05-05.

References

1. Ministerio de Industria y Energı́a, “Protocolo para el establec-
imiento de una nueva regulación del sistema eléctrico nacional,”
Technical report, Ministerio de Industria y Energı́a, 1996.

2. J. Arifovic, “Genetic algorithm learning and the cobweb model,”
Journal of Economic Dynamics and Control, vol. 18, pp. 3–28,
1994.

3. T.C. Price, “Using co-evolutionary programming to simulate
strategic behaviour in markets,” Journal of Evolutionary Eco-
nomics, vol. 7, pp. 219–234, 1997.

4. R. Franke, “Coevolution and stable adjustments in the cobweb
model,” Journal of Evolutionary Economics, vol. 8, pp. 383–
406, 1998.

5. H. Dawid, Adaptative Learning by Genetic Algorithms,
Springer-Verlag: Berlin, 1999.

6. W.W. Leontief, “Verzögerte angebotsanpassung und partielles
gleinchgewicht,” Zeitschrift für Nationalökonomie, vol. 5,
pp. 670–676, 1934.

7. R.E. Marks, “Breeding hybrid strategies: Optimal behaviour for
oligopolists,” Journal of Evolutionary Economics, vol. 2, pp. 17–
38, 1992.

8. R.E. Marks and L.G. Cooper, “The complexity of compet-
itive marketing strategies,” Complexity International, vol. 6,
1999.

9. W.D. Hillis, “Co-evolving parasites improve simulated evolu-
tion as an optimization technique,” Artificial Life II, pp. 41–47,
1991.

10. M.A. Potterm, K.A. De Jong, and J.J. Grefenstette, “A coevolu-
tionary approach to learning sequential decision rules,” in Pro-
ceedings of the Sixth International Conference on Genetic Al-
gorithms, edited by Larry Eshelman, Morgan Kaufmann: San
Francisco, CA, 1995, pp. 366–372.

11. J. Paredis, “Coevolutionary computation,” Artificial Life, vol. 2,
no. 4, pp. 355–375, 1995.

12. C.D. Rosin and R.K. Belew, “New methods for competitive co-
evolution,” Evolutionary Computation, vol. 5, no. 1, pp. 1–29,
1997.

13. W.M. Spears and K.A. De Jong, “On the virtues of parameterized
uniform crossover,” in Proceedings of the Fourth International
Conference on Genetic Algorithms, edited by R. Belew and
L. Booker, Morgan Kaufman: San Mateo, CA, 1991, pp. 230–
236.

14. G. Syswerda, “Uniform crossover in genetic algorithms,” in Pro-
ceedings of the Third International Conference on Genetic Al-
gorithms, edited by R. Belew and L. Booker, Morgan Kaufman:
San Mateo, CA, 1989, pp. 2–9.

15. Y.J. Lai and C.L. Hwang, Fuzzy Multiple Objective Decision-
Making: Methods and Applications, Springer-Verlag: New York,
1996.

16. D.A. Veldhuizen and G.B. Lamont, “Multiobjective evolution-
ary algorithms: Analyzing the state-of-the-art,” Evolutionary
Computation, vol. 8, no. 2, pp. 125–147, 2000.

17. C.M. Fonseca and P.J. Fleming, “An overview of evolutionary
algorithms in multiobjective optimization,” Evolutionary Com-
putation, vol. 3, no. 1, pp. 1–16, 1995.

18. C.M. Fonseca and P.J. Fleming, “Multiobjective optimization
and multiple constraint handling with evolutionary algorithms—
Part II: A application example,” IEEE Transactions on Systems,
Man, and Cybernetics, Part A: Systems and Humans, vol. 28,
no. 1, pp. 38–47, 1998.

19. J. Horn, N. Nafpliotis, and D.E. Goldberg, “A Niched Pareto
genetic algorithm for multiobjective optimization,” in Proceed-
ings of the First IEEE Conference on Evolutionary Computation,
IEEE World Congress on Computational Intelligence, IEEE Ser-
vice Center: Piscataway, NJ, vol. 1, 1994, pp. 82–87.

20. A. Cournot, Recherches sur les Principies Mathématiques de la
Théorie des Richesses, Hachette, Paris, 1838.

