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Genetic Tuning of Fuzzy Rule Deep Structures
Preserving Interpretability and Its Interaction

With Fuzzy Rule Set Reduction
Jorge Casillas, Oscar Cordón, María José del Jesus, and Francisco Herrera

Abstract—Tuning fuzzy rule-based systems for linguistic fuzzy
modeling is an interesting and widely developed task. It in-
volves adjusting some of the components of the knowledge base
without completely redefining it. This contribution introduces a
genetic tuning process for jointly fitting the fuzzy rule symbolic
representations and the meaning of the involved membership
functions. To adjust the former component, we propose the use
of linguistic hedges to perform slight modifications keeping a
good interpretability. To alter the latter component, two different
approaches changing their basic parameters and using nonlinear
scaling factors are proposed. As the accomplished experimental
study shows, the good performance of our proposal mainly lies
in the consideration of this tuning approach performed at two
different levels of significance. The paper also analyzes the in-
teraction of the proposed tuning method with a fuzzy rule set
reduction process. A good interpretability-accuracy tradeoff is
obtained combining both processes with a sequential scheme: first
reducing the rule set and subsequently tuning the model.

Index Terms—Complexity reduction, linguistic fuzzy modeling,
linguistic hedges, surface and deep structures, tuning.

I. INTRODUCTION

FUZZY modeling (FM), i.e., system modeling with fuzzy
rule-based systems (FRBSs), may be considered as an ap-

proach used to model a system making use of a descriptive
language based on fuzzy logic with fuzzy predicates. In this
framework, one of the most important areas is linguistic FM,
where the interpretability of the obtained model is the main re-
quirement. This task is usually developed by means of linguistic
FRBSs, which use fuzzy rules composed of linguistic variables
[1] taking values in a term set with a real-world meaning. Thus,
the linguistic fuzzy model consists of a set of linguistic descrip-
tions regarding the behavior of the system being modeled [2].

Each of these linguistic fuzzy rules may be represented at two
different levels of description by defining two different struc-
tures [3].

• Surface structure—It is a less specific description and in-
volves defining the rule in its symbolic form as a relation
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Fig. 1. Two different ways to define a linguistic fuzzy rule. (a) Surface
structure = symbolic representation (b) Deep structure = symbolic
representation + membership function shapes.

between input and output linguistic variables. Fig. 1(a)
shows the surface structure of a linguistic fuzzy rule.

• Deep structure—It is a more specific description and con-
sists of the surface structure together with the definitions
of the membership functions associated to the linguistic
terms of the variables. Fig. 1(b) illustrates the deep struc-
ture of a linguistic fuzzy rule.

In a linguistic FRBS, the surface structure of each fuzzy rule
is encoded in the rule base—constituted by the collection of
rules in their symbolic forms—while the deep structure is con-
tained in the knowledge base, which comprises both the rule
base and the data base. The latter component contains the lin-
guistic term sets and the membership functions defining their
meanings.

One of the most important problems in the applications of
fuzzy logic is the automatic derivation of these surface and deep
structures from numerical information (input–output data pairs)
representing the behavior of the real system. Numerous auto-
matic methods—based on ad-hoc data-driven approaches [4],
[5] or on different techniques such as neural networks [6], [7]
and genetic algorithms (GAs) [8]—have been developed to per-
form this task.

A crucial problem emerges during this fuzzy model design:
to obtain both an accurate and an understandable model. Indeed,
FM usually comes with two contradictory requirements to the
obtained model: the interpretability, capability to express the
behavior of the real system in a comprehensible way, and the
accuracy, capability to faithfully represent the real system. Of
course, the ideal thing would be to satisfy both criteria to a high
degree but, since they are contradictory issues, it is generally
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not possible. In that case, more priority is given to one of them
(defined by the problem nature), leaving the other in the back-
ground.

Currently, one of the most promising research topics in
FM relates with the quest of a good trade-off between inter-
pretability and accuracy [9], [10]. This paper aims at proposing
a method to automatically obtain well-balanced fuzzy models.

To do so, different mechanisms to improve the accuracy and
the interpretability are used and, moreover, they are properly
gathered to regulate the desired tradeoff. Thus, the surface struc-
ture is adjusted with linguistic modifiers while the rest of the
deep structure is tuned by changing the membership functions.
The fact of using linguistic modifiers guarantees to avoid an
excessive interpretability loss since the changes they perform
have associated a clear meaning. On the other hand, the mem-
bership functions are adjusted with a constrained optimization
(that avoids the obtaining of excessively deformed fuzzy parti-
tions) combined with nonlinear scaling factors that preserve the
support sets of the fuzzy sets.

Additionally, the mentioned process is combined with a
method to reduce the complexity of the fuzzy models by
selecting the most representative fuzzy rules. This second
process will significantly improve the interpretability of the
obtained fuzzy models. The interaction between both processes
is thoroughly studied. As will be shown, fuzzy models with a
very good interpretability-accuracy tradeoff are obtained.

The paper is organized as follows. Section II shows a brief
summary of different proposals to obtain a good balance be-
tween interpretability and accuracy. Section III introduces how
the fuzzy rule deep structures of a linguistic fuzzy model may be
tuned to improve its accuracy thus finding the desired balance.
Section IV proposes a genetic tuning process to do so and shows
experimental results when solving two different real-world ap-
plications. Section V analyzes the interaction of the proposed
tuning method with a fuzzy rule set reduction process. Finally,
Section VI outlines some conclusions. On the other hand, the
Appendix A collects a description of the two real-world prob-
lems considered in the experimental studies of this paper.

II. TUNING PROCESS AS A MECHANISM TO FIND THE

INTERPRETABILITY-ACCURACY TRADEOFF

As it has been mentioned, FM faces two contradictory re-
quirements: interpretability and accuracy. Since the improve-
ment of one of them generally involves to worsen the other, there
are two FM approaches depending on the main objective to be
considered.

• Linguistic FM, mainly developed by linguistic (or Mam-
dani) FRBSs, is focused on the interpretability.

• Precise FM, mainly developed by Takagi–Sugeno FRBSs,
is focused on the accuracy.

Regardless of the approach, a common scheme is followed to
attain the desired balance between interpretability and accuracy
(Fig. 2 graphically shows this operation mode).

1) First, the main objective (interpretability or accuracy) is
tackled defining a specific model structure to be used, thus
setting the FM approach, and deriving the model.

Fig. 2. Improvements of interpretability and accuracy in fuzzy modeling.

2) Then, the modeling components (model structure and/or
modeling process) are improved by means of different
mechanisms to compensate for the initial difference be-
tween both requirements. Thus, accuracy improvements
are proposed in linguistic FM while interpretability im-
provements are proposed in precise FM.

Some examples found in the existing recent literature follow.

• Linguistic FM with improved accuracy—This approach
has been performed by learning/tuning the member-
ship functions by defining their shapes [11]–[17], their
types (triangular, trapezoidal, etc.) [18], or their context
(defining the whole semantic) [19], learning the granu-
larity (number of linguistic terms) of the fuzzy partitions
[20], or extending the model structure by using linguistic
modifiers [14], [21], weights (importance factors for each
rule) [22], or hierarchical architectures (mixing rules with
different granularities) [23], among others.

Additionally, although rule base reduction [23], [24]
and input variable selection [25], [26] processes improve
the interpretability, they can also be seen as accuracy im-
provements when redundancy and inconsistency criteria
are considered.

• Precise FM with improved interpretability—This ap-
proach is usually developed by reducing the fuzzy rule
set (usually with orthogonal transformations) [27]–[30],
reducing the number of fuzzy sets (usually with simi-
larity measures) with the subsequent merging of rules
[31]–[33], reducing the number of input variables [34],
or exploiting the local description of the rules (basically
smoothing the consequent polynomial function of the
Takagi–Sugeno rule or isolating the fuzzy rule actions)
[35]–[37].

This topic, the interpretability-accuracy tradeoff, is a very
important branch of research nowadays [9], [10]. Our aim in
this contribution will be to attain this desired balance by in-
creasing the accuracy of linguistic FRBSs preserving their inter-
pretability. To achieve so, the optimization of the membership
functions will be restricted and constrained nonlinear scaling
factors will be used. Moreover, the rule structure will be flexibi-
lized by adding linguistic modifiers to it. A fuzzy rule set reduc-
tion process will be also included to improve the interpretability.

III. TUNING SURFACE AND DEEP STRUCTURES

We can distinguish between two different approaches to au-
tomatically obtain a fuzzy model.
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• Learning process—It relates to the task of directly ob-
taining the fuzzy rule surface [4], [38] or deep structures
[32] from the available data.

• Tuning process—It assumes the existing of a previous def-
inition for both structures—provided by a learning process
or by experts—and adjusts them with slight modifications
to increase the system performance.

Traditionally, the tuning process has been used to fit the deep
structure by exclusively changing membership function mean-
ings [11]–[13], [15], [16]. Besides, some proposals to develop
this tuning with nonlinear scaling factors have also been intro-
duced [14], [17]. On the other hand, recent contributions per-
form a tuning of the surface structures adjusting the symbolic
representations [14], [21] with linguistic hedges [1].

Nevertheless, no proposals combining these different tuning
approaches have been considered till now. This contribution
aims at introducing a genetic method that fully tunes the deep
structures using different ways for changing the linguistic term
meanings together with the integration of linguistic hedges in
the fuzzy rules.

Prior to proposing our tuning process in Section IV, this sec-
tion introduces the way to adjust the FRBS by tuning its whole
deep structures. Thus, the two following subsections, respec-
tively, explain how to tune surface structures (symbolic repre-
sentations) using linguistic hedges, and how to adapt the part of
the deep structures related to the membership function shapes.
The combined action of both processes will fully tune the fuzzy
rule deep structures.

A. Tuning the Surface Structure by Using Linguistic Hedges

Certain operators may be included to slightly change the
meaning of the linguistic labels involved in a specific linguistic
fuzzy rule. As Zadeh highlighted in [1], a way to do so with a
minor description loss is to use linguistic hedges.

A linguistic hedge (also known as linguistic modifier) is a
function that alters the membership function of the fuzzy set
associated to the linguistic label, obtaining a definition with a
higher or lower precision depending on the case. Two of the
most well known modifiers are the concentration linguistic
hedge “very” and the dilation linguistic hedge “more-or-less.”
Their expressions are

and their effects on a triangular membership function are shown
in Fig. 3.

The surface structure may be tuned by adding the mentioned
linguistic hedges to the previously provided linguistic fuzzy
rules, thus changing their symbolic form. For example, from
the rule

IF is high and is good

THEN is small

the following tuned rule would be obtained:

IF is very high and is good

THEN is more-or-less small

Fig. 3. Effects of the linguistic hedges “very” and “more-or-less.”

Actually, this tuning approach does not define a new meaning
for the so-called primary terms—high, good, and small in our
example-but it uses them as generators whose meaning is spec-
ified in the context. In other words, thanks to the attributed-
grammar semantics [1] involved in linguistic variables, the final
membership functions are computed from the knowledge of the
membership functions of the primary terms.

Of course, the fact of using linguistic hedges will have a sig-
nificant influence in the FRBS performance since the matching
degree of the rule antecedents as well as the output fuzzy set ob-
tained when applying the implication in the inference process
will vary.

For some proposals that perform this kind of tuning with lin-
guistic hedges, the interested reader can refer to [14] and [21].

B. Tuning the Deep Structure by Changing the Basic
Membership Functions Parameters and Using Nonlinear
Scaling Factors

Tuning the deep structure, moreover of adjusting the surface
structure, involves fitting the characterization of the member-
ship functions associated to the primary linguistic terms con-
sidered in the system. Thus, the meaning of the linguistic terms
is changed from a previous definition, an initial data base in an
FRBS.

To change the shapes of the membership functions (i.e., the
meaning of the linguistic terms), the parameters defining them
must be altered. We can mainly distinguish between two dif-
ferent kinds of tuning approaches.

• Changing basic parameters [11]–[13], [15], [16]—One of
the most common ways of tuning membership functions
is to change their basic parameters. For example, if the
following triangular-shaped membership function is con-
sidered:

if
if
otherwise

modifying the basic parameters— , , and -will vary the
shape of the fuzzy set associated to the membership func-
tion [see Fig. 4(a)], thus influencing the system perfor-
mance.

• Using nonlinear scaling factors [14], [17]—Sometimes,
more flexible alternative expressions for the membership
functions are considered to vary the compatibility degree
to the fuzzy sets. For example, a new membership function
can be obtained raising the membership value to the power
of , a positive parameter that defines a nonlinear scaling
function, i.e.,
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Fig. 4. Two kinds of tuning the membership function shapes. (a) Tuning
by changing the basic membership function parameters. (b) Tuning by using
nonlinear scaling factors.

In this case, the tuning process involves adjusting the
parameter to improve the system performance. Fig. 4(b)
shows the effect of this tuning approach.

The latter approach (tuning with nonlinear scaling factors)
has an important limitation with respect to the former (tuning
of basic parameters): the support and core sets of the fuzzy set
are not altered. Moreover, when a symmetrical fuzzy set is con-
sidered, its center of gravity is not changed. On the contrary,
when tuning nonlinear scaling factors, the membership degree
of a value to the fuzzy set increases in a nonlinear way as it gets
closer to the core. According to this, we can assert that both
tuning approaches are not incompatible but complementary.

IV. GENETIC TUNING PROCESS OF SURFACE AND DEEP

STRUCTURES FOR LINGUISTIC FUZZY MODELING

In this section, a tuning process based on GAs will be intro-
duced to jointly fitting the membership functions by changing
their basic and additional parameters and fitting the rule surface
structure using linguistic hedges. The tuning involves starting
from a previous knowledge base (rule base data base) either
derived by any learning method or provided by experts.

The following sections introduce the genetic process, its
components, some dissertations about the interpretability of the
tuned models, and an experimental study.

A. Genetic Process

Our proposal of FRBS genetic tuning is characterized as fol-
lows.

• The objective (fitness function) will be to minimize the
well-known mean square error (MSE)

with being the data set size, being the output ob-
tained from the FRBS when the th example is considered,
and being the known desired output.

• A threefold coding scheme is used.
will encode the basic membership function parame-

ters, the membership function parameters (i.e., the
nonlinear scaling factors), and the linguistic hedges
included in the different rules. Therefore, and
are used to tune the semantics of the deep structures and

to adjust the surface structures. Fig. 5 graphically
shows such a scheme.

— For the part, a 3-tuple of real values for each
triangular membership function is used, thus being the
data base encoded into a real-coded chromosome built
by joining the membership functions involved in each
variable fuzzy partition. A variation interval is defined
for each basic parameter. It will be discussed in the next
section.

— For the part, a real-coded chromosome that en-
codes the value of the additional parameter for each
membership function is used. Each gene can take any
value in the interval with the following map-
ping between alleles and actual value:

and

with being the gene associated to the membership
function for the th linguistic term of the th vari-
able and being a parameter that de-
fines the flexibility degree allowed to tune the mem-
bership functions ( for maximum flexibility and

for minimum flexibility, i.e., no tuning).
When using symmetrical triangular membership

functions, this parameter can be interpreted as that
the nonlinear scale factor allows membership degrees
larger that 0.5 to the (when contraction,

) or (when dilation, )
of the corresponding support set. In this paper, we
fix this value to [the extreme membership
function shapes allowed with this value are depicted
on Fig. 4(b)].

— For the part, the coding scheme generates in-
teger-coded strings of length (with
being the number of rules and being the number of
input variables). Each gene can take any value in the
set {0,1,2} with the following correspondence to the
linguistic hedge used:

the very linguistic hedge is used

no linguistic hedge is used

the more- or-less linguistic hedge is used

with being the gene associated to the linguistic term
used in the th variable of the th rule.

Fig. 6 illustrates the proposed genetic tuning process. The GA
may be used in different ways depending on the chromosome
parts considered, thus performing different tuning processes.
The most interesting ones are those that tune the whole deep
structure and combine nonlinear scaling with membership
function parameter changing, i.e., parts (PL-tun
method) or parts (PAL-tun method).
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Fig. 5. Coding scheme for tuning FRBSs with n being the number of input variables, T being the jth linguistic term of the ith variable (with n+ 1 being the
output variable), t being the number of linguistic terms of the ith variable, and m being the number of linguistic fuzzy rules.

Fig. 6. Example of genetic tuning process for a single-input–single-output FRBS with three different linguistic terms for each variable and three linguistic fuzzy
rules. S stands for small, M for medium, L for large, and m-or-l for more-or-less.

B. Genetic Components

The genetic tuning method has the following components.

• When generating the initial population, some of the
original information in the initial knowledge base will be
mixed up with random values.

To include the original values in the part, the ac-
tual values will be directly included.

For the part, the original values will depend on
whether these parameters were used in the initial knowl-
edge base or not. If so, the parameters will be encoded
following the said scheme; if not, the allele 0 (which
means ) will be used.

For the part, the modifiers used in the initial
knowledge base are encoded with the said scheme. If no
linguistic hedges were previously considered, alleles 1
will be used.

The following four steps are considered to initialize the
population.

1) A chromosome that represents the initial data base and
rule base is included. Therefore, genes in the ,

, and parts will directly encode the values
corresponding to the original knowledge base.

2) A third of the population is generated with the part
at random (within the variation interval for each gene)

while the alleles in and will encode the original
values.

3) Another third of the population is generated with orig-
inal values in , alleles at random (within the interval

) in , and original values in the part.
4) The remaining chromosomes are generated with the orig-

inal values of the data base in the and parts,
and alleles at random (within the set {0,1,2}) in the
part.

• The crossover operator will depend on the chromosome
part where it is applied.

— In the and parts, the max-min-arith-
metical crossover [39] is considered. If

and
are to be crossed, the following four sons are gener-
ated:

The parameter is defined by the
designer. We can notice that the variation in-
terval of each gene will never be exceeded be-
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Fig. 7. Crossover operator.

cause of ,
.

— In the part, the standard two-point crossover is
used.

After recombining each part, the two best chromosomes
among the eight (four different and parts com-
bined with two different parts) descendant obtained
will be selected to replace their parents. Fig. 7 graphically
shows it.

• The mutation operator will also depend on the chromo-
some part where it is applied.

— In the and parts, a uniform mutation oper-
ator is considered. It involves to change the value of
the selected gene by other one randomly generated in
the corresponding interval.

— In the part, the mutation operator changes the
gene to the allele 1 when a gene with alleles 0 or 2
is to be mutated, and randomly to 0 or 2 when a gene
with allele 1 is to be mutated.

Once a chromosome has been selected to be mutated, a
randomly selected gene from each part is altered by its
corresponding operator.

• A generational GA with Baker’s stochastic universal sam-
pling procedure [40] together with elitism (that ensures the
selection of the best individual of the previous generation)
is considered.

C. Interpretability Issues in the Proposed Tuning Method

Some issues on the interpretability preservation made by the
proposed tuning method are analyzed in this section. Above all,
we should remark that the tuning process is designed to make
the rigid definition of linguistic fuzzy models more flexible with
the aim of increasing the accuracy. The use of this structure,
a far more interpretable than other formulations such as the
Takagi–Sugeno one, gives to the final tuned model a good in-
terpretability per se.

Fig. 8. Variation intervals for each membership function parameter to preserve
meaningful fuzzy sets.

Nevertheless, some aspects on interpretability must be con-
sidered in order to preserve an appropriate legibility of the tuned
linguistic models.

• Comprehensibility of the membership functions—A mem-
bership function is comprehensible insofar as the meaning
of the associated linguistic term is easily understandable.
Of course, this measure is highly subjective. We could
say that the use of membership functions with a correct
shape—meeting the constraint on that —and
a reasonable similarity with the initial definition (before
tuning) ensures their comprehensibility.

The proposed tuning method addresses this issue con-
straining the optimization of every gene in the and

parts. The membership function basic parameters
( part) are constrained by using short variation inter-
vals. These intervals are defined from the cross points be-
tween the initial fuzzy sets. Fig. 8 shows an example of
the interval considered for each parameter.

On the other hand, the nonlinear scaling factors (
part) are constrained to avoid excessively square-shaped
(when ) or singleton-shaped (when ) mem-
bership functions. Fig. 4(b) shows the maximum and min-
imum nonlinear scaling allowed by our method.

In the literature, this interpretability issue is tradition-
ally preserved using unimodal Ruspini’s (strong) fuzzy
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Fig. 9. Tuning process is performed in two stages. In the former one, a learning method is used to derive a rule base from an initial data base. Then, the tuning
method adjusts the previously obtained rule base and/or the initial data base.

partitions [41], [42]. In this case, the sum of the member-
ship degrees of a value to each linguistic term is always
equal to one. Opposite to our proposal, this kind of parti-
tion is very inflexible thus losing accuracy ability.

Another proposal that ensures a good comprehensi-
bility by adding the concept of conciseness (evaluated
with fuzzy entropy and deviation measures) to the fitness
function is proposed in [43].

• Completeness of the deep structures—A system is said to
be complete when a matching degree greater than zero is
obtained for any multidimensional input value. This issue
affects to the whole fuzzy rule deep structures, i.e., the set
of fuzzy rule surface structures composing the system and
the fuzzy partitions of the linguistic variables.

The proposed tuning method does not alter the com-
pleteness of the initial surface structures (defined before
applying the tuning process) since the changes performed
by the considered linguistic hedges ensure that the same
primary terms are used and the supports of the associated
fuzzy sets are not changed. Therefore, the completeness
will be determined a priori either by the learning method
used to generate the initial model or by the knowledge pro-
vided by experts.

However, the changes of the basic membership function
parameters made in the deep structures involve the chance
of losing the completeness. Therefore, this case should be
properly tackled by the tuning method. It may be basi-
cally addressed by penalizing bad solutions in the fitness
function or by restricting the variations of the parameters.
The proposed method considers this latter possibility by
using the mentioned variation intervals. Other proposals
that alter the fitness function to ensure a good complete-
ness degree are introduced in [13] and [15].

• Compactness of the surface structure set—This is an
important aspect that affects the interpretability of the
linguistic fuzzy model. It involves the use of a reduced
number of rules in order to make the model easily read-
able.

Clearly, the proposed tuning process does not alter
the number of linguistic fuzzy rules of the initial model.

Nevertheless, we should point out some comments on
that. Generally, the use of an excessive number of rules is
caused by the need of attaining an acceptable accuracy. To
do so, classical learning approaches increase the number
of linguistic terms to improve the approximation to the
data set, thus increasing the number of rules as well.
However, the tuning method properly changes the shapes
of the membership functions thus improving the accuracy.
Therefore, in our case the use of an initial model with a
low number of rules is recommended though it involves
having a low accuracy degree initially.

Nevertheless, a deeper analysis on the compactness is
performed in Section V, where some combinations of the
proposed tuning process with a fuzzy rule set reduction
method are introduced.

• Consistency of the surface structure set—This concept re-
lates with the lack of coherence in the definition of the sur-
face structures when similar premise parts with different
consequents are used.

This matter is not significant in the proposed tuning
method since the primary terms assigned to each linguistic
fuzzy rule do not vary and, therefore, if the initial model
is consistent, the tuned model will remain so.

Of course, this is done provided that the involved mem-
bership functions do not become highly similar during the
tuning process. Again, the use of the said variation inter-
vals meets this condition when a consistent initial model
is used.

D. Experimental Study of the Proposed Tuning Process

The experimental study will be focused on applying different
tuning processes to a simple fuzzy model previously generated.
The well-known Wang and Mendel (WM) method [4] will be
used to derive initial rule bases. Therefore, the WM method will
act as the learning module shown in Fig. 9, where the two-stage
tuning operation mode considered in this experimental study is
graphically shown.

This learning method was selected thanks to some interesting
advantages that become a significant importance in our two-
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Fig. 10. Graphical representation of fuzzy partition, with Sst for smallest,
S for small, M for medium, L for large, Lst for largest, and [l; r] being the
corresponding variable domain.

TABLE I
TUNING PROCESSES CONSIDERED IN THIS EXPERIMENTAL STUDY

stage design approach. On the one hand, the WM method ob-
tains the linguistic fuzzy model quickly but this model does not
usually perform properly, leaving the tuning phase in charge of
improving the accuracy. On the other hand, the WM method
generates the linguistic fuzzy rules from examples (with a sub-
sequent selection to solve the inconsistencies) instead of from
fuzzy input subspaces, thus obtaining a compact rule base with a
reduced number of rules [44]. Since the proposed tuning method
does not reduce the rule base size, this fact fits well to the design
approach.

An initial data base constituted by a primary fuzzy partition
for each variable is employed in the WM method and the tuning
processes. Every variable domain is partitioned into a number of
equally distributed triangular-shaped fuzzy sets. Fig. 10 shows
an example of the fuzzy partition considered with five linguistic
terms.

With the aim of performing a rigorous analysis, every pos-
sible combination of the three different tuning approaches
proposed in this paper (tuning the deep structure by changing
the basic membership function parameters or using nonlinear
scaling factors, or tuning the surface structure by using lin-
guistic hedges) will be considered. Table I summarizes the
different tuning processes. As said, the most interesting ap-
proaches seem to be the PL-tun and PAL-tun ones.

Two real-world modeling applications (the rice and electrical
problems) are considered to analyze the performance of the dif-
ferent tuning processes. While the rice problem shows a simple
distribution and it is included just because of the free availability
of the data, the electrical problem becomes an interesting mod-
eling application that presents more difficult relations among
variables. Nevertheless, this paper does not aim to show solu-
tions to these problems (which should be faced with a deeper
data treatment) but it simply use them as benchmarks.

The data and experimental setup descriptions can be con-
sulted in Appendix A. In the following subsections, the experi-
mental results and their analysis are introduced.

1) Experimental Results: Table II collects the results ob-
tained by the learning and tuning methods, where stands for
the number of rules, and for the values of the
MSE over the training and test data sets respectively, and h:m:s
for the mean time in hours, minutes, and seconds expended by
the runs (developed on a Pentium III 1-GHz). Because of nor-
malized values in [0,1] are considered for the output variable
in the rice problem, very small errors are obtained. Hence, the
table shows these results multiplied by 10 000 to facilitate their
reading. The values shown for and are rounded
to the closer integer value in the electrical problem. The arith-
metic mean over the 30 or 60 (depending on the problem)
runs performed; the standard deviation over the five or ten mean
values , one per data partition; and the arithmetic mean of
the standard deviation values over the six runs for each data par-
tition are included. The best results for both applications
are shown in boldface.

While stands for the differences existing among the data
partitions, stands for the differences existing among the runs
for each data partition. Therefore, the former value shows the ro-
bustness of the learning/tuning method to obtain similar results
regardless the data partition, while the latter value shows the ro-
bustness of the probabilistic algorithm to obtain similar results
regardless the followed pseudo-random sequence.

The values of the parameters used in the genetic tuning pro-
cesses are as follows: a population size of 50 individuals, 10 000
and 50 000 evaluations respectively for the rice and electrical
problems, 0.6 as crossover probability, 0.2 as mutation prob-
ability per chromosome, and 0.35 for the weight factor in the
max–min–arithmetical crossover (parameter ).

On the other hand, the results obtained by three different
learning methods on the same data sets are shown in Table III.
Although they develop a different FRBS design task than
our tuning process, they can be useful as a measure of the
performance achieved by our proposal. The first method, pro-
posed by Nozaki et al. in [5], uses linguistic fuzzy rules with
double consequents and weights associated to them, moreover
of considering an additional membership function parameter

to perform a nonlinear scaling over the membership func-
tions. The second one, proposed by Thrift in [38], is a basic
GA-based learning method that only defines the fuzzy rule
surface structures. Finally, the third process, proposed by Liska
and Melsheimer in [45], is a sophisticated learning method
based on two stages that firstly designs the whole deep struc-
tures with a GA-based process and then performs a final tuning
process.

As regards the values of parameters used in the Nozaki et al.’s
method, the best results were obtained with in both prob-
lems, which are the results shown in the table. In the Thrift’s
method, a population size of 50 individuals, 10 000 and 50 000
evaluations for the rice and electrical problems respectively, 0.6
as crossover probability, and 0.2 as mutation probability per
chromosome were used. In the Liska and Melsheimer’s method,
50 individuals, 10 000 (rice) or 50 000 (electrical) evaluations,
32 (rice) or 625 (electrical) as maximum number of rules, 0.6 as
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TABLE II
RESULTS OBTAINED BY THE PROPOSED TUNING METHODS ON THE INITIAL MODELS GENERATED BY THE WM METHOD

TABLE III
RESULTS OBTAINED BY OTHER METHODS

crossover probability, 0.1 as mutation probability per chromo-
some, and 0.1 as creep probability were used.

2) Analysis of Results: First of all, in view of the obtained
results, we may notice that all tuning processes significantly im-
prove the accuracy—both in approximation and pre-
diction —of the models derived by the WM learning
method.

In a general view, we should say that when a full tuning of
deep structures, i.e., including the surface ones, is performed
and membership function parameter and nonlinear scaling
tuning are combined (as our PL-tun and PAL-tun methods do),
significantly more accurate fuzzy models are obtained.

It is particularly notable the excellent results generated by
the PL-tun method that combines macroscopic and microscopic
tuning effects [41] with two ways of changing the member-
ship function shapes. This method obtains the best results in the

balance among all the methods analyzed in
the experimental study. Fig. 11 shows the tuned data base and
rule base obtained by the PL-tun method for a run on a specific
data set partition of the rice problem.

On the other hand, focusing on the P-tun and A-tun methods,
the former clearly obtains more accurate models. We can de-
duce from these results that the fact of varying the support sets
and moving the center of gravity of the fuzzy sets in the P-tun
method (which is not possible in the A-tun method) allows
the obtained linguistic fuzzy model to approximate better the
training data set.

The L-tun method solves this drawback to a certain extent.
Although, all in all, this method makes similar changes to the
membership function shapes than the A-tun one, it has a better
approximation capability thanks to perform them in the surface
structures. Thus, the L-tun method overcomes the A-tun one and
shows a better tradeoff between approximation and prediction
than the P-tun method.

When two tuning approaches are combined, only the PL-tun
method obtains significant improvements over the corre-
sponding tuning methods under separate cover.

We can see that PA-tun and AL-tun methods do not obtain
significant improvements. In the PA-tun case, even when both
components perform a different tuning process, the membership
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Fig. 11. Knowledge base (fuzzy rule deep structures) generated by the WM + PL-tun method for a specific run and data set partition on the rice problem.
MSE � 10000 before tuning = 147:04=167:00,MSE � 10; 000 after tuning = 10:26=13:81. m-or-l stands for “more-or-less.” (a) Tuned data base.
(b) Tuned rule base (fuzzy rule surface structures).

function parameters tuning seems to overshadow the action of
the nonlinear scaling factors. In the AL-tun case, the effects per-
formed by both tuning approaches are redundant.

As for the behavior of the PAL-tun method, which groups the
three tuning approaches regarded, we may notice that it obtains
good approximation and prediction degrees, but worsen than
the PL-tun method. Although the former method includes to
the latter one, it seems that the slight improvement achieved by
the part does not compensate for the search space size in-
creasing. As regards the interpretability of the models obtained
by this method, in Fig. 12 we can see how the combined use of
constrained basic and additional membership function parame-
ters does not disturb the legibility of the data base in the elec-
trical problem.

Comparing our results with the methods shown in Table III,
we may observe that the proposed tuning methods significantly
overcome the others, and models with better approximation and
prediction degrees are obtained. On the other hand, the three
compared methods obtain an excessive number of rules that
seriously disturbs the interpretability of the generated models.
This fact is caused by three different reasons (depending on the
method) that are solved by our tuning proposal. The method
of Nozaki et al. makes use of a more complex rule structure
(with double consequents and weights) to obtain a good accu-
racy. Of course, this approach involves significantly increasing
the number of rules. The method proposed by Thrift only de-

signs the fuzzy rule surface structures and keeps unaltered the
membership functions. Thus, a large number of rules is needed
to obtain a high accuracy. Liska and Melsheimer’s method per-
forms a simultaneous learning of the surface structures and the
basic membership functions parameters of the deep structures.
This approach tremendously increases the tackled search space,
thus making more difficult to obtain good solutions.

Finally, we may observe that the fact of performing a tuning
over a compact initial fuzzy rule set allow these methods to be
quicker than other approaches, like the Thrift and Liska’s and
Melsheimer’s methods, even using the same number of evalua-
tions in all the experiments. This is due to the inference process
of the whole training data, which becomes the main bottleneck
in fuzzy modeling, is quicker with a low number of rules. On
the other hand, the increasing of computing time performed by
A-tun, PA-tun, AL-tun, and PAL-tun methods with respect to
P-tun, L-tun, and PL-tun methods is due to the expensive cost
of computing real-valued power rising operations.

V. INTERACTION OF THE PROPOSED TUNING PROCESS WITH

FUZZY RULE SET REDUCTION PROCESSES

Once the tuning process has been presented, analyzed, and
tested, it seems interesting to study its interaction with other
well-known postprocessing methods used to refine initial fuzzy
models: fuzzy rule set reduction processes. This task, also
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Fig. 12. Knowledge base (fuzzy rule deep structures) generated by the WM + PAL-tun method for a specific run and data set partition on the electrical problem.
MSE before Tuning = 58032=55150, MSE after Tuning = 11395=14465. Street stands for street lengths, Town for town area, Building for
building area, Energy for energy supply, and Costs for maintenance costs. Sst stands for smallest, S for small, M for medium, L for large, Lst for largest, and m-or-l
for “more-or-less.” (a) Tuned data base. (b) Tuned rule base (fuzzy rule surface structures).

known as simplification or compaction, involves the decrease
of the number of fuzzy rules with the main objective of im-
proving the interpretability.

Thus, this section is devoted to perform an experimental study
on the combination of both postprocessing mechanisms: first
tuning, then reduction; first reduction, then tuning; and tuning
and reduction simultaneously. To do so, the first subsection in-
troduces a brief revision of the literature related to fuzzy rule set
reduction; the second one presents two GA-based processes to
perform the reduction alone or in combination with the tuning;

and finally, the third subsection shows and analyzes some ex-
periments.

A. Fuzzy Rule Set Reduction Process

Sometimes, a large number of fuzzy rules must be used
to reach an acceptable accuracy degree. However, this effect
is often caused by a deficient fuzzy rule set learning process
(sometimes advisedly) with tendency to generate too many
rules. Besides worsening the accuracy, an excessive number
of rules makes difficult to understand the model behavior.
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Thus, we may find different kinds of rules in a fuzzy rule set:
irrelevant rules, which do not contain significant information;
redundant rules, whose actions are covered by other rules;
erroneous rules, which are wrong defined and distort the FRBS
performance; and conflictive rules, which perturb the FRBS
performance when they coexist with others.

To face this problem, a fuzzy rule set reduction process can be
developed to achieve the goal of minimizing the number of rules
used while maintaining (or even improving) the FRBS perfor-
mance. Fuzzy rule set reduction is generally applied as a post-
processing stage, once an initial fuzzy rule set has been derived.

We may distinguish between two approaches to obtain a com-
pact fuzzy rule set.

• Selecting fuzzy rules—It involves obtaining an optimized
subset of rules from a previous fuzzy rule set by selecting
some of them.

We may find several methods to do so with different
search algorithms that look for the most successful combi-
nation of fuzzy rules [23], [46]–[48]. In [49], an interesting
heuristic rule selection procedure is proposed where, by
means of statistical measures, a relevance factor is com-
puted for each fuzzy rule composing the linguistic FRBSs
to subsequently select the most relevant ones.

The philosophy of ordering the rules with respect to
an importance criterion and selecting a subset of them
seems similar to the orthogonal transformation-methods
considered by Takagi–Sugeno-type FRBSs [27]–[29].
This mechanism is used to give an importance degree to
each fuzzy rule, thus obtaining a ranking of them. Once
they have been sorted, the selection is achieved using only
the most promising ones.

• Merging fuzzy rules—It is an alternative approach that re-
duces the fuzzy rule set by merging the existing rules.

In [50], the authors propose to merge neighboring rules,
i.e., fuzzy rules where the linguistic terms used by the
same variable in each rule are adjacent. The merge is per-
formed in three different ways: using a new fuzzy set that
groups the adjacent linguistic terms, merging the adjacent
fuzzy sets if they are very similar, or giving the set of rules
in disjunctive normal form. Another proposal is presented
in [24], where a special consideration to the merging order
is made.

In Takagi–Sugeno-type FRBSs, processes that simplify
the fuzzy models by merging fuzzy rules have also been
proposed [31]–[33]. They consists of two steps. First,
those fuzzy sets with a high degree of similarity are
merged to compose a unique fuzzy set that represent the
collection of similar fuzzy sets and, on the other hand,
irrelevant fuzzy sets are removed. Then, because of the
fuzzy set reduction results in rules with equal antecedents,
they are merged.

B. Combination of Fuzzy Rule Set Reduction and the
Proposed Tuning

This section proposes two different ways of combining a re-
duction process with our tuning method: sequential and simul-
taneously. In the sequential combination, the reduction process

acts independently of the tuning and simply takes a specific
fuzzy model and refines it by reducing its initial number of rules
by selecting a subset of them with good performance. In the si-
multaneous approach, the reduction process is integrated within
the proposed tuning method with the aim of considering the in-
terdependence existing between them. The following two sub-
sections describe both methods.

1) Independent Reduction Process Considered: The fol-
lowing GA-based reduction process is considered.

• The objective (fitness function) will be to minimize the
MSE.

• A binary coding scheme is used. Each gene, one per rule,
can take the allele 0 (which means that the corresponding
rule will not be used) or 1 (otherwise).

• To generate the initial pool, one chromosome with all the
genes taking alleles 1 is generated, while the remaining
chromosomes are randomly generated.

• The standard two-point crossover is used.
• The mutation operator changes the gene to the allele 1

when a gene with allele 0 must be mutated and vice versa.
• A generational GA with Baker’s stochastic universal sam-

pling procedure together with elitism (that ensures to se-
lect the best individual of the previous generation) is con-
sidered.

As we can see, with the fitness function considered previ-
ously, our reduction method mainly searches for improving the
accuracy of the fuzzy model. Therefore, the method will remove
those rules that worsen the performance of the model, i.e., er-
roneous and conflictive rules. Of course, the interpretability is
indirectly improved.

Another possibility could be to consider some interpretability
criteria in the fitness function or pool selection process. How-
ever, we think that an accuracy-oriented approach will interact
better with the tuning method. Thus, irrelevant and redundant
rules will not be directly removed by the reduction method since
they could be used by the tuning process to improve the accu-
racy.

2) Simultaneous Tuning and Reduction Processes: From the
algorithm defined in Section IV, the following changes must
be performed to integrate the reduction process within the pro-
posed tuning method.

• A fourth part is included in the coding scheme. It is a
binary representation of length (number of initial fuzzy
rules). The allele 1 means that the corresponding rule is
used, while 0 means that not.

• Initial pool: For the chromosome containing the initial
knowledge base, alleles 1 are used in the part. The re-
maining chromosomes are divided into four groups. Each
group contains one of the four parts of the coding scheme
with the original values and the other three parts with
random values.

• Crossover operator: The standard two-point crossover is
used in the binary-valued part. Each son is joined
to one of the sons generated from the part. After
that, as shown in Fig. 7, for the case of three different
parts, these two assembled sons are combined with the
four real-valued sons obtained from the and
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TABLE IV
RESULTS OBTAINED WHEN COMBINING TUNING AND REDUCTION PROCESSES

parts. The two best sons from the eight combinations are
selected as offspring to replace their parents.

• Mutation operator: In the part, the operator changes
the gene to the allele 1 when a gene with allele 0 must be
mutated and vice versa.

C. Experimental Study of the Combination Tuning-Reduction

This section analyzes the behavior of combining the reduc-
tion process introduced in the previous section with our tuning
method. To do so, three different possibilities have been consid-
ered: first, tune the initial fuzzy model and then reduce it; first,
reduce the initial fuzzy model and then tune it; and jointly tune
and reduce the initial fuzzy model. The results obtained and an
analysis of them are shown as follows.

1) Experimental Results: Table IV collects the obtained re-
sults when combining tuning and reduction processes. PL-tun
and PAL-tun methods have been selected as tuning processes
for this experiment. The results of these methods and the initial
fuzzy model (generated by the WM method) are also shown.

The values of parameters used are the following: 50 indi-
viduals, 0.6 as crossover probability, 0.2 as mutation proba-
bility per chromosome, and 0.35 for the weight factor in the
max–min–arithmetical crossover (parameter ). With regard to
the number of evaluations, it depends of the application and the
method: 10 000 (rice problem) or 50 000 (electrical problem)
evaluations for independent tuning; 1,000 (rice) or 10 000 (elec-
trical) evaluations for independent reduction; and 11 000 (rice)
or 60 000 (electrical) evaluations for simultaneous tuning and
reduction.

2) Analysis of Results: From the obtained results, we can see
how tuning and reduction processes can significantly improve

the accuracy of a fuzzy model. It is also interesting to verify that
the order of performing both processes is a crucial question.

When reduction is applied after tuning (WM Tuning
Reduction methods), the model is only slightly improved from
both interpretability and accuracy points of view. Hence, no sig-
nificant changes are obtained. To understand this behavior we
should consider that our reduction method is guided by an ac-
curacy measure (the MSE function) to optimize the solution.
Thus, the results obtained show us that both tuning methods ob-
tain a very accurate model profiting from all the rules provided
by the WM method that can not be significantly improved by
removing some of them with an a posteriori reduction.

Nevertheless, the reduction method has an important influ-
ence when it is directly applied over the initial model (the WM

Reduction method). In this case, the interpretability is im-
proved by a significant reduction of the number of rules (62%
for the rice problem and 34% for the electrical one). It is due
to the method removes the erroneous and conflictive rules that
worsen the accuracy of the model.

Once these rules are removed, the posterior tuning process
(WM Reduction Tuning methods) improves even more the
accuracy of the model adapting the parameters to the subset of
rules selected in the reduction stage. Thus, the tuning process
adapts itself to the new rule set extracting a good accuracy from
it. This combination results in a fuzzy model with a good in-
terpretability-accuracy tradeoff. Moreover, the fact of dealing
with a lower number of rules allows the tuning process to be-
have quicker. Fig. 13 shows the linguistic fuzzy models gener-
ated by the sequential WM Reduction PL-tun method for
a run on a specific data set partition (the same partition consid-
ered in Fig. 12) of the electrical problem.
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Fig. 13. Knowledge base (fuzzy rule deep structures) generated by the WM+ Reduction+ PL-tun method for a specific run and data set partition on the electrical
problem. #R=MSE before Reduction + Tuning = 65=58032=55150,#R=MSE after Reduction = 38=42409=37472,#R=MSE after
Tuning = 38=10243=12035. Street stands for street lengths, Town for town area, Building for building area, energy for energy supply, and Costs for maintenance
costs. Sst stands for smallest, S for small, M for medium, L for large, Lst for largest, and m-or-l for more-or-less. (a) Tuned data base. (b) Reduced and tuned rule
base (fuzzy rule surface structures).

Finally, it is interesting to check up that the simultaneous ap-
proaches—WM (Tuning and Reduction) methods—generate
worsen results in number of rules and accuracy degrees than
WM Reduction Tuning methods. The reduction part of
the algorithm only removes those rules that can not be prop-
erly adapted by the tuning process for a better approximation.
This simultaneous action deviates the search toward worse local
optimum. Perhaps it could be solve with a different fitness func-
tion or pool selection that reward the rule number reduction. In
any case, this method will tackle a higher search space than the
sequential Reduction Tuning approach.

VI. CONCLUDING REMARKS

In this contribution, we have introduced a genetic tuning
process for jointly refining as the fuzzy rule symbolic represen-
tations as the meaning of the involved membership functions of
a linguistic fuzzy model. For the former case, we propose the
use of linguistic hedges to perform slight modifications keeping

a good interpretability. For the latter case, two different ways
considering basic or extended expressions are proposed.

Our proposal has shown very good results in terms of ef-
ficiency and accuracy. The good performance of our tuning
method mainly lies in the consideration of tuning at two
different levels of significance and modifying the fuzzy set
shapes without changing their support sets if desired. Moreover,
we have observed that the combination of a simple learning
method to design the preliminary surface structures and number
of rules with our tuning method behaves better than a more
sophisticated one-stage learning process.

On the other hand, we have also analyzed the interaction be-
tween the proposed tuning method and a fuzzy rule set reduction
process. We have shown that a good interpretability-accuracy
tradeoff is obtained by firstly reducing the number of rules and
then tuning the resulting model. In this case, the tuning method
can profit from the selected rules adapting them for a good ac-
curacy.
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APPENDIX

REAL-WORLD MODELING PROBLEMS CONSIDERED IN THE

EXPERIMENTAL STUDIES

Two real-world problems have been considered in the exper-
imental studies performed in this paper. The following subsec-
tions describe them.

A. Rice Taste Evaluation Problem

Qualification of rice taste is usually put into effect by means
of a subjective evaluation called the sensory test. In this test, a
group of experts evaluates the rice according to a set of charac-
teristics associated to it. These factors are: flavor, appearance,
taste, stickiness, and toughness. The use of linguistic fuzzy mod-
eling techniques becomes very interesting to represent the ex-
isting nonlinear relationships of the problem in a legible and
precise way.

To do so, we are going to use the data set presented in [5].
This set is composed of 105 data vectors collecting subjective
evaluations of the six variables in question (the five mentioned
and the overall evaluation of the kind of rice), made up by ex-
perts on this number of kinds of rice grown in Japan.

With the aim of not biasing the learning because of the small
size of the data set, we have randomly obtained ten different
partitions of the said set, composed of 75 pieces of data in the
training set and 30 in the test one. We follow this experimental
setup in this problem to facilitate the comparison with the work
where the data was used [5]. In the probabilistic algorithms, six
runs with different seeds for the pseudorandom sequence are
made for each data partition. Therefore, it involves 60 different
runs of each algorithm for this problem.

Two linguistic terms are considered for each variable fuzzy
partition.

B. The Estimation of Electrical Network
Maintenance Costs Problem

Estimating the maintenance costs of an electrical network in
a town [51] is a complex but interesting problem. Since an ac-
tual measure is very difficult to obtain when medium or low
voltage lines are used, the consideration of models becomes
useful. These estimations allow electrical companies to justify
their expenses. Moreover, the model must be able to explain how
a specific value is computed for a certain town. Our objective
will be to relate the maintenance costs of medium voltage line
with the following four variables: sum of the lengths of all streets
in the town, total area of the town, area occupied by buildings,
and energy supply to the town. We will deal with estimations of
minimum maintenance costs based on a model of the optimal
electrical network for a town. We were provided with a sample
of 1,056 simulated towns.

To develop the different experiments for this problem, a
5-fold cross validation is performed. Thus, the data set is
divided into five subsets of (approximately) equal size. Each
algorithm is applied five times for each problem, each time
leaving out one of the subsets from training, but using only
the omitted subset to compute the test error. The training and
test data partitions used in this problem are freely available
at http://decsai.ugr.es/~casillas/FMLib/. In the probabilistic

algorithms, six runs with different seeds for the pseudo-random
sequence are made for each data partition. Therefore, it involves
30 different runs of each algorithm for this problem.

With this experimental setup that uses public real-world prob-
lems and cross-validation with multiple runs, we try to perform
a sound experimental study, more rigorous than those usually
performed by the fuzzy modeling community as remarked in
[52] and [53].

Five linguistic terms are considered for each variable fuzzy
partition.
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