
Noname manuscript No.
(will be inserted by the editor)

Speeding up the evaluation phase of GP classification
algorithms on GPUs

Alberto Cano · Amelia Zafra · Sebastián Ventura

Received: date / Accepted: date

Abstract The efficiency of evolutionary algorithms has
become a studied problem since it is one of the major
weaknesses in these algorithms. Specifically, when these

algorithms are employed for the classification task, the
computational time required by them grows excessively
as the problem complexity increases. This paper pro-

poses an efficient scalable and massively parallel evalu-
ation model using the NVIDIA CUDA GPU program-
ming model to speedup the fitness calculation phase

and greatly reduce the computational time. Experimen-
tal results show that our model significantly reduces
the computational time compared to the sequential ap-

proach, reaching a speedup of up to 820X. Moreover,
the model is able to scale to multiple GPU devices and
can be easily extended to any evolutionary algorithm.

Keywords Evolutionary Algorithms · Genetic

Programming · Classification · Parallel Computing ·
GPU.

1 Introduction

Evolutionary algorithms (EAs) are search methods in-
spired by natural evolution to find a reasonable solu-
tion for data mining and knowledge discovery [Fre02].

Genetic programming (GP) is a specialization of EAs,
where each individual represents a computer program.
It is a machine learning technique used to optimize a

population of computer programs according to a fit-
ness function that determines the program’s ability to

A. Cano · A. Zafra · S. Ventura
Department of Computing and Numerical Analysis
University of Córdoba, 14071 Córdoba, Spain
Tel.: +34-957212218
E-mail: i52caroa@uco.es, azafra@uco.es, sventura@uco.es

perform a task. Recently, GP has been applied to dif-
ferent common data mining tasks such as classifica-
tion [EVH10], feature selection [LKB06], and cluster-

ing [DDFT04]. However, they perform slowly with com-
plex and high dimensional problems. Specifically, in the
case of classification, this slowness is due to the fact

that the model must be evaluated according to a fit-
ness function and training data. Many studies, using
different approaches [Har10,SHM+03], have focused on

solving this problem by improving the execution time
of these algorithms. Recently, the use of GPUs has in-
creased for solving high dimensional and parallelizable

problems and in fact, there are already EA models that
take advantage of this technology [FKB10]. The main
shortcoming of these models is that they do not pro-

vide a general purpose model: they are too specific to
the problem domain or their efficiency could be signifi-
cantly improved.

In this paper, we present an efficient and scalable

GPU-based parallel evaluation model to speedup the
evaluation phase of GP classification algorithms, that
overcomes the shortcomings of the previous models. In

this way, our proposal is presented as a general model
applicable to any domain within the classification task
regardless of its complexity and whose philosophy is

easily adaptable to any other paradigm.

The proposed model parallelizes the evaluation of
the individuals, which is the phase that requires the
most computational time in the evolutionary process

of EAs. Specifically, the efficient and scalable evalua-
tor model designed uses GPUs to speed up the perfor-
mance, receiving a classifier and returning the confu-

sion matrix of that classifier on a database. To show
the generality of the model proposed, it is applied to
some of the most popular GP classification algorithms

and several datasets with distinct complexity. Thus,



2 Alberto Cano et al.

among the datasets used in experiments, there are some

widely used as benchmark datasets on the classifica-
tion task characterized by its simplicity and with oth-
ers that have not been commonly addressed to date

because of their extremely high complexity when ap-
plied to previous models. The use of these datasets of
varied complexity allows us to demonstrate the perfor-

mance of our proposal on any problem complexity and
domain. Experimental results show the efficiency and
generality of our model, which can deal with a vari-

ety of algorithms and application domains, providing
a great speedup of the algorithm’s performance, of up
to 820 times, compared to the non-parallel version ex-

ecuted sequentially. Moreover, the speedup obtained is
higher when the problem complexity increases. The pro-
posal is compared with other different GPU computing

evolutionary learning system called BioHEL [FKB10].
The comparison results show the efficiency far better
obtained by our proposal.

The remainder of this paper is organized as follows.

Section 2 provides an overview of previous works related
to evolutionary classification algorithms and GPU im-
plementations. Section 3 discusses the GP model and

analyzes the computational cost associated with its dif-
ferent phases. Section 4 describes the GPU architec-
ture and the CUDA programming model. Section 5 ex-

plains our proposal and its advantages as a scalable
and efficient evaluation model. Section 6 describes the
experimental study. In Section 7, the results will be an-

nounced and finally the last section presents the final re-
marks of our investigation and outlines future research
work.

2 Related works

GP has been parallelized in multiple ways to take ad-

vantage both of different types of parallel hardware
and of different features of particular problem domains.
Most of the parallel approaches during the last decades

deal with the implementation over CPU machine clus-
ters. More recently, works about parallelization have
been focusing on using graphics processing units (GPUs)

which provide fast parallel hardware for a fraction of
the cost of a traditional parallel system. GPUs are de-
vices with multicore architectures and parallel proces-

sor units. The GPU consists of a large number of proces-
sors and recent devices operate as multiple instruction
multiple data (MIMD) architectures. Today, GPUs can

be programmed by any user to perform general purpose
computation (GPGPU) [GPG]. The use of GPUs has
been already studied for speeding up algorithms within

the framework of evolutionary computation. Concretely,

we can cite some studies about the evaluation process

in genetic algorithms and GP on GPUs [Har10].

Previous investigations have focused on two evalu-

ation approaches [BNKF98]: population parallel or fit-
ness parallel and both methods can exploit the parallel
architecture of the GPU. In the fitness parallel method,

all the fitness cases are executed in parallel with only
one individual being evaluated at a time. This can be
considered an SIMD approach. In the population par-

allel method, multiple individuals are evaluated simul-
taneously. These investigations have proved that for
smaller datasets or population sizes, the overhead in-

troduced by uploading individuals to evaluate is larger
than the increase in computational speed [CM07]. In
these cases there is no benefit in executing the evalu-

ation on a GPU. Therefore, the larger the population
size or the number of instances are, the better the GPU
implementation will perform. Specifically, the perfor-

mance of the population parallel approaches is influ-
enced by the size of the population and the fitness case
parallel approaches are influenced by the number of fit-

ness cases, i.e., the number of training patterns from
the dataset.

Next the more relevant proposals presented to date
are discussed. D. Chitty et al. [CM07] describes the
technique of general purpose computing using graphics

cards and how to extend this technique to GP. The im-
provement in the performance of GP on single processor
architectures is also demonstrated. S. Harding [HB07]

goes on to report on how exactly the evaluation of in-
dividuals on GP could be accelerated; both proposals
are focused on population parallel.

D. Robilliard et al. [RMPF09] proposes a paral-
lelization scheme to exploit the performance of the GPU

on small training sets. To optimize with a modest-sized
training set, instead of sequentially evaluating the GP
solutions parallelizing the training cases, the parallel ca-

pacity of the GPU is shared by the GP programs and
data. Thus, different GP programs are evaluated in par-
allel, and a cluster of elementary processors are assigned

to each of them to treat the training cases in parallel. A
similar technique, but using an implementation based
on the single program multiple data (SPMD) model,

is proposed by W. Langdon and A. Harrison [LH08].
They implement the evaluation process of GP trees
for bioinformatics purposes using GPGPUs, achieving

a speedup of around 8X. The use of SPMD instead
of SIMD affords the opportunity to achieve increased
speedups since, for example, one cluster can interpret

the if branch of a test while another cluster treats the
else branch independently. On the other hand, perform-
ing the same computation inside a cluster is also pos-

sible, but the two branches are processed sequentially



Speeding up the evaluation phase of GP classification algorithms on GPUs 3

in order to respect the SIMD constraint: this is called

divergence and is, of course, less efficient. Moreover,
Maitre et al. [MBL+09] presented an implementation
of a genetic algorithms which performs the evaluation

function using a GPU. However, they have a training
function instead of a traning set, which they run in
parallel over different individuals. Classification fitness

computation is based on learning from a training set
within the GPU device which implies memory occu-
pancy, while other proposals use a mathematical repre-

sentation function as the fitness function.

M. Franco et al. [FKB10] introduces a fitness paral-

lel method for computing fitness in evolutionary learn-
ing systems using the GPU. Their proposal achieves
speedups of up to 52X in certain datasets, performing

a reduction function [W. 09] over the results to reduce
the memory occupancy. However, this proposal does not
scale to multiple devices and its efficiency and its spread

to other algorithms or to more complex problems could
be improved.

These works are focused on parallellizing the evalu-
ation of multiple individuals or training cases and many
of these proposals are limited to small datasets due to

memory constraints where exactly GPU are not opti-
mal. By contrast, our proposal is an efficient hybrid
population and fitness parallel model, that can be easily

adapted to other algorithms, designed to achieve maxi-
mum performance solving classification problems using
datasets with different dimensions and population sizes.

3 Genetic programming algorithms

This section introduces the benefits and the structure
of GP algorithms and describes a GP evolutionary sys-

tem for discovering classification rules in order to un-
derstand the execution process and the time required.

GP, the paradigm on which this paper focuses, is a
learning methodology belonging to the family of evolu-
tionary algorithms [BFM97] introduced by Koza [Koz92].

GP is defined as an automated method for creating
a working computer program from a high-level formu-
lation of a problem. GP performs automatic program

synthesis using Darwinian natural selection and biolog-
ically inspired operations such as recombination, muta-
tion, inversion, gene duplication, and gene deletion. It

is an automated learning methodology used to optimize
a population of computer programs according to a fit-
ness function that determines their ability to perform a

certain task. Among successful evolutionary algorithm
implementations, GP retains a significant position due
to such valuable characteristics as: its flexible variable

length solution representation, the fact that a priori

knowledge is not needed about the statistical distribu-

tion of the data (data distribution free), data in their
original form can be used to operate directly on them,
unknown relationships that exist among data can be

detected and expressed as mathematical expressions,
and, finally, the most important discriminative features
of a class can be discovered. These characteristics suit

these algorithms to be a paradigm of growing interest
both for obtaining classification rules [DDT01,Fre02,
TTLH02] and for other tasks related to prediction, such

as feature selection [LKB06] and the generation of dis-
criminant functions [EVH10].

3.1 GP classification algorithms

In this section we will detail the general structure of
GP algorithms before proceeding to the analysis of its
computational cost.

Individual representation

GP can be employed to construct classifiers using
different kinds of representations, e.g., decision trees,
classification rules, discriminant functions, and many

more. In our case, the individuals in the GP algorithm
are classification rules whose expression tree is com-
posed by terminal and non-terminal nodes. A classi-

fier can be expressed as a set of IF-antecedent-THEN-
consequent rules, in which the antecedent of the rule
consists of a series of conditions to be met by an in-

stance in order to consider that it belongs to the class
specified by the consequent.

Fig. 1: Example of an individual expression tree.

The rule consequent specifies the class to be pre-

dicted for an instance that satisfies all the conditions
of the rule antecedent. The terminal set consists of the
attribute names and attribute values of the dataset be-

ing mined. The function set consists of logical operators



4 Alberto Cano et al.

(AND, OR, NOT), relational operators (<, ≤, =, <>,

≥, >) or interval range operators (IN, OUT). These op-
erators are constrained to certain data type restrictions:
categorical, real or boolean. Fig. 1 shows an example of

the expression tree of an individual.

Generational model

The evolution process of GP algorithms [Deb05],
similar to other evolutionary algorithms, consists of the

following steps:

1. An initial population of individuals is generated us-

ing an initialization criterion.
2. Each individual is evaluated based on the fitness

function to obtain a fitness value that represents its

ability to solve the problem.
3. In each generation, the algorithm selects a subset of

the population to be parents of offspring. The selec-

tion criterion usually picks the best individuals to
be parents, to ensure the survival of the best genes.

4. This subset of individuals is crossed using different

crossover operators, obtaining the offspring.
5. These individuals may be mutated, applying differ-

ent mutation genetic operators.

6. These new individuals must be evaluated using the
fitness function to obtain their fitness values.

7. Different strategies can be employed for the replace-

ment of individuals within the population and the
offspring to ensure that the population size in the
next generation is constant and the best individuals

are kept.
8. The algorithm performs a control stage that deter-

mines whether to finish the execution by finding

acceptable solutions or by having reached a max-
imum number of generations, if not the algorithm
goes back to step 3 and performs a new iteration

(generation).

The pseudo-code of a simple generational algorithm

is shown in Algorithm 1.

Algorithm 1 Generational Algorithm
Require: max generations

1: Initialize (P)
2: Evaluate (P)
3: num generations ← 0
4: while num generations < max generations do
5: P ← Parent selection (Population)
6: C ← Crossover (P)
7: M ← Mutation (C)
8: Evaluate (M)
9: Population ← Replacement (M ∪ Population)
10: num generations++
11: end while

Evaluation: fitness function

The evaluation stage is the evaluation of the fitness
function over the individuals. When a rule or individ-
ual is used to classify a given training instance from

the dataset, one of these four possible values can be ob-
tained: true positive (tp), false positive (fp), true nega-
tive (tn) and false negative (fn). The true positive and

true negative are correct classifications, while the false
positive and false negative are incorrect classifications.

– true positive: the rule predicts the class and the
class of the given instance is indeed that class.

– false positive: the rule predicts a class but the class

of the given instance is not that class.
– true negative: the rule does not predict the class

and the class of the given instance is indeed not that

class.
– false negative: the rule does not predict the class

but the class of the given instance is in fact that

class.

The results of the individual’s evaluations over all

the patterns from a dataset are used to build the con-
fusion matrix which allows us to apply different quality
indexes to get the individual’s fitness value and its cal-

culation is usually the one that requires more comput-
ing time. Therefore, our model will also perform this
calculation so that each algorithm can apply the most

convenient fitness function.

The main problem of the evaluation is the compu-
tational time required for the match process because it
involves comparing all the rules with all the instances

of the dataset. The number of evaluations is huge when
the population size or the number of instances increases,
thus the algorithm must perform up to millions of eval-

uations in each generation.

Evaluation: computational study

Several previous experiments have been conducted
to evaluate the computational time of the different stages

of the generational algorithm. These experiments exe-
cute the different algorithms described in Section 6.1
over the problem domains proposed in Section 6.3. The

population size was set to 50, 100 and 200 individuals,
whereas the number of generations was set to 100 iter-
ations. The results of the average execution time of the

different stages of the algorithms among all the config-
urations are shown in Table 1.

The experience using these GP algorithms proves
that on average around 94% of the time is taken by

the evaluation stage. This percentage is mainly linked



Speeding up the evaluation phase of GP classification algorithms on GPUs 5

to the algorithm, the population size and the number

of patterns, increasing up to 99% on large problems.
Anyway, the evaluation phase is always more expen-
sive regardless of the algorithm or its parameters. We

can conclude that evaluation takes most of the execu-
tion time so the most significant improvement would
be obtained by accelerating this phase. Therefore, we

propose a parallel GPU model detailed in Section 5 to
speed up the evaluation phase.

Table 1: GP classification execution time.

Phase Percentage
Initialization 8.96%

Creation 0.39%
Evaluation 8.57%

Generation 91.04%
Selection 0.01%
Crossover 0.01%
Mutation 0.03%
Evaluation 85.32%
Replacement 0.03%
Control 5.64%

Total 100 %

4 CUDA programming model

Computer unified device architecture (CUDA) [CUD] is

a parallel computing architecture developed by NVIDIA
that allows programmers to take advantage of the com-
puting capacity of NVIDIA GPUs in a general purpose

manner. The CUDA programming model executes ker-
nels as batches of parallel threads in a SIMD program-
ming style. These kernels comprise thousands to mil-

lions of lightweight GPU threads per each kernel invo-
cation.

CUDA’s threads are organized into a two-level hi-

erarchy represented in Fig. 2: at the higher one, all the
threads in a data-parallel execution phase form a grid.
Each call to a kernel execution initiates a grid composed

of many thread groupings, called thread blocks. All the
blocks in a grid have the same number of threads, with
a maximum of 512. The maximum number of thread

blocks is 65535 x 65535, so each device can run up to
65535 x 65535 x 512 = 2 · 1012 threads per kernel call.

To properly identify threads within the grid, each

thread in a thread block has a unique ID in the form
of a three-dimensional coordinate, and each block in a
grid also has a unique two-dimensional coordinate.

Thread blocks are executed in streaming multipro-
cessors. A stream multiprocessor can perform zero over-
head scheduling to interleave warps and hide the over-

head of long-latency arithmetic and memory operations.

There are four different main memory spaces: global,

constant, shared and local. These GPU memories are
specialized and have different access times, lifetimes and
output limitations.

– Global memory: is a large, long-latency memory
that exists physically as an off-chip dynamic device

memory. Threads can read and write global memory
to share data and must write the kernel’s output to
be readable after the kernel terminates. However, a

better way to share data and improve performance
is to take advantage of shared memory.

– Shared memory: is a small, low-latency memory

that exists physically as on-chip registers and its
contents are only maintained during thread block
execution and are discarded when the thread block
completes. Kernels that read or write a known range

of global memory with spatial or temporal locality
can employ shared memory as a software-managed
cache. Such caching potentially reduces global mem-

ory bandwidth demands and improves overall per-
formance.

– Local memory: each thread also has its own local

memory space as registers, so the number of regis-
ters a thread uses determines the number of concur-
rent threads executed in the multiprocesor, which is

called multiprocessor occupancy. To avoid wasting
hundreds of cycles while a thread waits for a long-
latency global-memory load or store to complete, a

common technique is to execute batches of global
accesses, one per thread, exploiting the hardware’s
warp scheduling to overlap the threads’ access la-

tencies.
– Constant memory: is specialized for situations in

which many threads will read the same data simul-

taneously. This type of memory stores data written
by the host thread, is accessed constantly and does
not change during the execution of the kernel. A

value read from the constant cache is broadcast to
all threads in a warp, effectively serving 32 loads
from memory with a single-cache access. This en-

ables a fast, single-ported cache to feed multiple si-
multaneous memory accesses. The amount of con-
stant memory is 64 KB.

For maximum performance, these memory accesses
must be coalesced as with accesses to global memory.

Global memory resides in device memory and is ac-
cessed via 32, 64, or 128-byte segment memory trans-
actions. When a warp executes an instruction that ac-

cesses global memory, it coalesces the memory accesses
of the threads within the warp into one or more of
these memory transactions depending on the size of the

word accessed by each thread and the distribution of



6 Alberto Cano et al.

Fig. 2: CUDA threads and blocks model.

the memory addresses across the threads. In general,
the more transactions are necessary, the more unused

words are transferred in addition to the words accessed
by the threads, reducing the instruction throughput ac-
cordingly.

To maximize global memory throughput, it is there-
fore important to maximize coalescing by following the
most optimal access patterns, using data types that

meet the size and alignment requirement or padding
data in some cases, for example, when accessing a two-
dimensional array. For these accesses to be fully co-

alesced, both the width of the thread block and the
width of the array must be multiple of the warp size.

5 Model description

This section details an efficient GPU-based evaluation
model for fitness computation. Once it has been proved

that the evaluation phase is the one that requires the
most of the computational time, this section discusses
the procedure of the fitness function to understand its

cost in terms of runtime and memory occupancy. We
then employ this knowledge to propose an efficient GPU-
based evaluation model in order to maximize the per-

formance based on optimization principles [RRB+08]
and the recommendations of the NVIDIA CUDA pro-
gramming model guide [CUD].

5.1 Evaluation complexity

The most computationally expensive phase is evalua-

tion since it involves the match of all the individuals
generated over all the patterns. Algorithm 2 shows the
pseudo-code of the fitness function. For each individ-

ual its genotype must be interpreted or translated into

an executable format and then it is evaluated over the
training set. The evaluation process of the individu-

als is usually implemented in two loops, where each
individual iterates each pattern and checks if the rule
covers that pattern. Considering that the population

size is P and the training set size is T , the number
of iterations is O(P × T ). These two loops make the
algorithm really slow when the population size or the

pattern count increases because the total number of it-
erations is the product of these two parameters. This
one by one iterative model is slow but it only requires

4 × populationSize × sizeof(int) bytes from memory,
i.e., the four integer counters for tp, tn, fp and fn values
for each individual, this is O(P ) complex.

Algorithm 2 Evaluation: fitness function
Require: population size, number instances

1: for each individual within the population do
2: tp ← 0, fp ← 0, tn ← 0, fn ← 0
3: for each instance from the dataset do
4: if individual’s rule covers actual instance then

5: if the consequent matches predicted class then
6: tp++
7: else
8: fp++
9: end if
10: else
11: if the consequent matches predicted class then
12: fn++
13: else
14: tn++
15: end if
16: end if

17: end for
18: fitnessValue ← computeFitness(tp,tn,fp,fn)
19: end for



Speeding up the evaluation phase of GP classification algorithms on GPUs 7

Fig. 3: Model schema.

5.2 Efficient GPU-based evaluation

The execution of the fitness function over the individ-
uals is completely independent from one individual to

another. Hence, the parallelization of the individuals
is feasible. A naive way to do this is to perform the
evaluations in parallel using several CPU threads, one

per individual. The main problem is that affordable PC
systems today only run CPUs with 4 or 8 cores, thus
larger populations will need to serialize its execution

so the speedup would be limited up to the number of
cores that there is. This is where GPGPU systems can
exploit its massively parallel model.

Using the GPU, the fitness function can be exe-
cuted over all individuals concurrently. Furthermore,

the simple match of a rule over an instance is a self-
dependent operation: there is no interference with any
other evaluation. Hence, the matches of all the individ-

uals over all the instances can be performed in parallel
in the GPU. This means that one thread represents
the single match of a pattern over an instance. The to-

tal number of GPU threads required would be equal
to the number of iterations from the loop of the se-
quential version. Once each thread has obtained the re-

sult of its match in the GPU device, these results have
to be copied back to the host memory and summed
up to get the fitness values. This approach would be

very slow because in every generation it will be neces-
sary to copy a structure of size O(P × T ), specifically
populationSize×numberInstances×sizeof(int) bytes

from device memory to host memory, i.e, copying the
match results obtained from the coverage of every indi-
vidual over every pattern. This is completely inefficient

because the copy transactions time would be larger than

the speedup obtained. Therefore, to reduce the copy
structure size it is necessary to calculate the final re-

sult for each individual inside the GPU and then only
copy a structure size O(P ) containing the fitness values.
Hence, our fitness calculation model involves two steps:

matching process and reducing the results for fitness
values computation. These two tasks correspond to two
different kernels detailed in 5.2.2.

The source code of our model can be compiled into a
shared library to provide the user the functions to per-

form evaluations in GPU devices for any evolutionary
system. The schema of the model is shown in Fig. 3.

At first, the user must call a function to perform the
dynamic memory allocation. This function allocates the
memory space and loads the dataset instances to the

GPU global memory. Moreover, it runs one host thread
per GPU device because the thread context is manda-
torily associated to only one GPU device. Each host

thread runs over one GPU and performs the evaluation
of a subset of the individuals from the population. The
execution of the host threads stops once the instances

are loaded to the GPU awaiting a trigger. The evaluate
function call is the trigger that wakes the threads to
perform the evaluations over their population’s subset.

Evaluating the present individuals require the copy of
their phenotypes to a GPU memory space. The GPU
constant memory is the best location for storing the

individual phenotypes because it provides broadcast to
all the device threads in a warp. The host threads ex-
ecute the kernels as batches of parallel threads, first

the match kernel obtains the results of the match pro-
cess and then the reduction kernel calculates the fitness
values from these results. The fitness values must be

copied back to host memory and associated to the indi-



8 Alberto Cano et al.

A(0,0) A(1,0) ... A(N,0) A(0,1) A(1,1) ... A(N,1) ... A(0,I) ... A(N,I)

Fig. 4: Uncoalesced instances data array structure.

...

...

...

Fig. 5: Uncoalesced attributes request.

A(0,0) A(0,1) ... A(0,I) A(1,0) A(1,1) ... A(1,I) ... A(N,0) ... A(N,I)

Fig. 6: Coalesced instances data array structure.

... ... ...

Fig. 7: Coalesced attributes request.

A(0,0) ... A(0,I) X A(1,0) ... A(1,I) X ... A(N,0) ... A(N,I) X

Fig. 8: Fully coalesced intra-array padding instances data array structure.

... X ... X ... X

Fig. 9: Fully coalesced attributes request.

R(0,0) ... R(0,I) X R(1,0) ... R(1,I) X ... R(N,0) ... R(N,I) X

Fig. 10: Results data array structure.

viduals. Once all the individuals from the thread have
been evaluated, the host thread sends a signal to the
main thread telling it its job has finished and the al-

gorithm process can continue once all the host threads
have sent the go-ahead. This stop and go model contin-
ues while more generations are performed. At the end,

a free memory function must be called to deallocate the
dynamic memory previously allocated.

5.2.1 Data structures

The scheme proposed attempts to make full use of global

and constant memory. The purpose is to optimize mem-
ory usage to achieve maximum memory throughput.
Global memory is employed to store the instances from

the dataset, the results of the match process, and the
fitness values.

The most common dataset structure is a 2D ma-
trix where each row is an instance and each column is
an attribute. Loading the dataset to the GPU is sim-

ple, allocate a 2D array of width numberInstances ×
numberAttributes and copy the instances to the GPU.
This approach, represented in Fig. 4, is simple-minded

and it works but for maximum performance, the mem-
ory accesses must be coalesced. When a warp executes
an instruction that accesses global memory, it coalesces

the memory accesses of the threads within the warp

into one or more 32, 64, or 128-byte memory transac-
tions depending on the size of the word accessed by each
thread and the distribution of the memory addresses

across the threads. In general, the more transactions
are necessary, the more unused words are transferred
in addition to the words accessed by the threads, re-

ducing the instruction throughput accordingly.

The threads in the match kernel perform the match
process of the classifiers over the instances. The i thread

performs the match process over the i instance. There-
fore, consecutive threads are executed over consecutive
instances. The threads execute the phenotype of the

individuals represented in reverse polish notation using
a stack and an interpreter. The phenotype follows the
individual representation shown in 3.1. Thus, when at-

tribute nodes have to obtain the attribute values for
each instance covered by the threads within the warp,
the attributes addresses are spaced numberAttributes

memory addresses (stride is numberAttributes×sizeof
(datatype)). Depending on the number of attributes, a
memory transaction would transfer more or less use-

ful values. Anyway, this memory access pattern shown
in Fig. 5 is altogether inefficient because the memory
transfer engine must split the memory request into many

memory transactions that are issued independently.

The second approach shown in Fig. 6 for storing

the instances is derived from the first one. The problem



Speeding up the evaluation phase of GP classification algorithms on GPUs 9

is the stride of the memory requests which is number-

Attributes. The solution is to lower the stride to one
transposing the 2D array that stores the instances. The
length of the array remains constant but instead of

storing all the attributes of an instance first, it stores
the first attributes from all the instances. Now, the
memory access pattern shown in Fig. 7 demands at-

tributes which are stored in consecutive memory ad-
dresses. Therefore, a single 128-byte memory transac-
tion would transfer the 32 integer or float attributes

requested by the threads in the warp.

For these accesses to be fully coalesced, both the
width of the thread block and the number of the in-

stances must be a multiple of the warp size. The third
approach for achieving fully coalesced accesses is shown
in Figs. 8 and 9. Intra-array padding is necessary to

align the addresses requested to the memory trans-
fer segment sizes. Thus, the array must be expanded
to multiple(numberInstances, 32)×numberAttributes

values.

The individuals to be evaluated must be uploaded

in each generation to the GPU constant memory. The
GPU has a read-only constant cache that is shared by
all functional units and speeds up reads from the con-

stant memory space, which resides in device memory.
All the threads in a warp perform the match process
of the same individual over different instances. Thus,

memory requests point to the same node and memory
address at a given time. Servicing one memory read re-
quest to several threads simultaneously is called broad-

cast. The resulting requests are serviced at the through-
put of the constant cache in case of a cache hit, or at
the throughput of device memory otherwise.

The results of the match process for each individ-
ual and instance must be stored in global memory for
counting. Again, the memory accesses must be coa-

lesced to device global memory. The best data struc-
ture is a 2D array numberInstances× populationSize
shown in Fig. 10. Hence, the results write operations

and the subsequent read operations for counting are
both fully coalesced.

The fitness values calculated by the reduction ker-
nel must be stored in global memory, then copied back
to host memory and set to the individuals. A simple

structure to store the fitness values of the individuals
is a 1D array of length populationSize.

5.2.2 Evaluation process on GPU

The evaluation process on the GPU is performed us-
ing two kernel functions. The first kernel performs the
match operations between the individuals and the in-

stances storing a certain result. Each thread is in charge

of a single match. The second kernel counts the results

of an individual by a reduction operation. This 2-kernel
model allows the user to perform the match processes
and the fitness values calculations completely indepen-

dently. Once the results of the match process are ob-
tained, any fitness function can be employed to calcu-
late the fitness values. This requires copying back to

global memory a large amount of data at the end of the
first kernel. M. Franco [FKB10] proposes to minimise
the volume of data by performing a reduction in the first

kernel. However, the experiments carried out indicate
to us that the impact in the run-time of reducing data
in the first kernel is larger than that of storing the whole

data array because our approach allows the kernels to
avoid synchronization between threads and unnecessary
delays. Furthermore, the threads block dimensions can

be ideally configured for each kernel independently.

Match kernel

The first kernel performs in parallel the match op-
erations between the classifiers and the instances. Al-
gorithm 3 shows the pseudo-code for this kernel.

Algorithm 3 Match kernel

1: instance ← blockDim.y * blockIdx.y + threadIdx.y;
2: if instance < numberInstances then
3: resultMemPosition ← blockIdx.x * numberInstance-

sAligned + instance;
4: if covers(classifier[blockIdx.x],instance) then
5: if classifiedClass == instancesClass[instance] then
6: result[resultMemPosition] ← tp
7: else
8: result[resultMemPosition] ← fp
9: end if
10: else

11: if classifiedClass != instancesClass[instance] then
12: result[resultMemPosition] ← tn
13: else
14: result[resultMemPosition] ← fn
15: end if
16: end if
17: end if

The number of matches and hence the total number

of threads is populationSize× numberInstances. The
maximum amount of threads per block is 512 or 1024
depending on the device’s computing capability. How-

ever, optimal values are multiples of the warp size. A
GPU multiprocessor relies on thread-level parallelism
to maximize utilization of its functional units. Utiliza-

tion is therefore directly linked to the number of res-
ident warps. At every instruction issue time, a warp
scheduler selects a warp that is ready to execute, if any,

and issues the next instruction to the active threads of



10 Alberto Cano et al.

the warp. The number of clock cycles it takes for a warp

to be ready to execute its next instruction is called la-
tency, and full utilization is achieved when the warp
scheduler always has some instruction to issue for some

warp at every clock cycle during that latency period,
i.e., when the latency of each warp is completely hid-
den by other warps.

The CUDA occupancy calculator spreadsheet allows
of computing the multiprocessor occupancy of a GPU
by a given CUDA kernel. The multiprocessor occupancy

is the ratio of active warps to the maximum number of
warps supported on a multiprocessor of the GPU. The
optimal number of threads per block obtained from the

experiments carried out for this kernel is 128 for devices
of compute capability 1.x, distributed in 4 warps of 32
threads. The active thread blocks per multiprocessor

is 8. Thus, the active warps per multiprocessor is 32.
This means a 100% occupancy of each multiprocessor
for devices of compute capability 1.x. Recent devices of

compute capability 2.x requires 192 threads per block to
achieve 48 active warps per multiprocesor and a 100%
occupancy. The number of threads per block does not

matter, since the model is adapted to achieve maximum
performance in any case.

Fig. 11: Match kernel 2D grid of thread blocks.

The kernel is executed using a 2D grid of thread

blocks as shown in Fig. 11. The first dimension length is
populationSize. Using N threads per block, the number
of thread blocks to cover all the instances is ceil(number

Instances/N) in the second dimension of the grid. Thus,
the total number of thread blocks is populationSize×
ceil(numberInstances/N). This number is important

as it concerns the scalability of the model in future de-
vices. NVIDIA recommends that one run at least twice
as many thread blocks as the number of multiproces-

sors.

Reduction kernel

The second kernel reduces the results previously
calculated in the first kernel and obtains the fitness
value for each individual. The naive reduction operation

shown in Fig. 13 sums in parallel the values of an array
reducing iteratively the information. Our approach does
not need to sum the values, but counting the number of

tp, fp, tn and fn resulted for each individual from the
match kernel. These four values are employed to build
the confusion matrix. The confusion matrix allows us to

apply different quality indexes defined by the authors
to get the individual’s fitness value.

Fig. 13: Parallel reduction algorithm.

Designing an efficient reduction kernel is not sim-

ple because it is the parallelization of a natively se-
quential task. In fact, NVIDIA propose six different ap-
proaches [CUD]. Some of the proposals take advantage

of the device shared memory. Shared memory provides
a small but fast memory shared by all the threads in
a block. It is quite desirable when the threads require

synchronization and work together to accomplish a task
like reduction.

A first approach to count the number of tp, fp, tn
and fn in the results array using N threads is immedi-
ate. Each thread counts for the Nth part of the array,

specifically numberInstances/numberThreads items,
and then the values for each thread are summed. This
2-level reduction is not optimal because the best would

be the N/2-level reduction, but reducing each level re-
quires the synchronization of the threads. Barrier syn-
chronization can impact performance by forcing the

multiprocessor to idle. Therefore, a 2 or 3-level reduc-
tion has been proved to perform the best.

To achieve a 100% occupancy, the reduction ker-
nel must employ 128 or 192 threads, for devices of
compute capability 1.x or 2.x, respectively. However,

it is not trivial to organize the threads to count the



Speeding up the evaluation phase of GP classification algorithms on GPUs 11

Fig. 12: Coalesced reduction kernel.

items. The first approach involves the thread i count-
ing numberInstances/numberThreads items from the
threadIdx× numberInstances/numberThreads item.

The threads in a thread-warp would request the items
spaced numberInstances memory addresses. Therefore,
once again one has a coalescing and undesirable prob-

lem. Solving the memory requests pattern is naive. The
threads would count again numberInstances/number
Threads items but for coalescing purposes the memory

access pattern would be iteration×numberThreads+
threadIdx. This way, the threads in a warp request con-
secutive memory addresses that can be serviced in fewer

memory transactions. This second approach is shown
in Fig. 12. The reduction kernel is executed using a 1D
grid of thread blocks whose length is populationSize.

Using 128 or 192 threads per block, each thread block
performs the reduction of the results for an individual.
A shared memory array of length 4× numberThreads

keeps the temporary counts for all the threads. Once all
the items have been counted, a synchronization barrier
is called and the threads wait until all the threads in the

thread block have reached this point and all global and
shared memory accesses made by these threads prior to
the synchronization point are visible to all threads in

the block. Finally, only one thread per block performs
the last sum, calculates the fitness value and writes it
to global memory.

6 Experimental study

This section describes the details of the experiments,

discusses the application domains, the algorithms used,
and the settings of the tests.

6.1 Parallelized methods with our proposal

To show the flexibility and applicability of our model,
three different GP classification algorithms proposed
in the literature are tested using our proposal in the

same way as could be applied to other algorithms or
paradigms. Next, the major specifications of each of
the proposals that have been considered in the study

are detailed.

1) Falco, Cioppa and Tarantino [DDT01] propose a
method to get the fitness of the classifier by evaluating
the antecedent over all the patterns within the dataset.

Falco et al. uses the logical operators AND, OR, NOT,
the relational operators =, <, >, ≤, ≥ and two numer-
ical interval comparator operators IN and OUT. The

evolution process is repeated as many times as classes
holds the dataset. In each iteration the algorithm fo-
cuses on a class and keeps the best rule obtained to

build the classifier.
The crossover operator selects two parent nodes and

swaps the two subtrees. The crossover is contrained by

two restrictions: the nodes must be compatible and the
depth of the tree generated must not exceed a preset
depth.

The mutation operator can be applied either to a
terminal node or a non terminal node. This operator
selects a node randomly, if it is a terminal node, it is re-

placed by another randomly selected compatible termi-
nal node, otherwise, the non terminal node is replaced
by another randomly selected compatible terminal node

with the same arity and compatibility.
The fitness function calculates the difference be-

tween the number of instances where the rule correctly

predicts the membership or not of the class and number
of examples where the opposite occurs and the predic-
tion is wrong. Finally, the fitness function is defined

as:

fitness = nI − ((tp + tn)− (fp + fn)) + α ∗N

where nI is the number of instances, α is a value be-
tween 0 and 1 and N is the number of nodes in the rule.

The closer is α to 1, the more importance is given to
simplicity.

2) Tan, Tay, Lee and Heng [TTLH02] proposes a

modified version of the steady-state algorithm [BNKF98]
which uses an external population and elitism to ensure
that some of the best individuals of the current gener-

ation survive in the next generation.
The fitness function combines two indicators that

are commonplace in the domain, namely the sensitivity

(Se) and the specifity (Sp), defined as follows:

Se =
tp

tp+w1∗fn Sp = tn
tn+w2∗fp



12 Alberto Cano et al.

The parameters w1 and w2 are used to weight the

influence of the false negatives and false positives cases
in the fitness calculation. This is very important be-
cause these values are critical in problems such as di-

agnosis. Decreasing w1 or increasing w2 generally im-
proves the results but also increases the number of rules.
The range [0.2 to 1] for w1 y [1-20] for w2 is usually rea-

sonable for the most cases. Therefore, the fitness func-
tion is defined by the product of these two parameters.

fitness = Se ∗ Sp

The proposal of Tan et al. is similar to that of Falco
et al. but the OR operator because combinations of
AND and NOT operators which can generate all the

necessary rules. Therefore, the simplicity of the rules is
affected. Tan et al. also introduces the token competi-
tion technique proposed by Wond and Leung [WL00]

and it is employed as an alternative niche approach to
promote diversity. Most of the time, only a few rules are
useful and cover most of the instances while most oth-

ers are redundant. The token competition is an effective
way to eliminate redundant rules.

3) Bojarczuk, Lopes and Freitas [BLFM04] presents

a method in which each rule is evaluated for all of the
classes simultaneously for a pattern. The classifier is
formed by taking the best individual for each class gen-

erated during the evolutionary process. The Bojarczuk
et al. algorithm does not have a mutation operator.

This proposal uses the logical operators AND, OR

and NOT, although AND and NOT would be sufficient,
this way the size of the generated rules is reduced. GP
does not produce simple solutions. The comprehensibil-

ity of a rule is inversely proportional to its size. There-
fore Bojarczuk et al. define the simplicity (Sy) of a rule:

Sy = maxnodes−0.5∗numnodes−0.5
maxnodes−1

where maxnodes is the maximum depth of the syntax-
tree, numnodes is the number of nodes of the current
rule, and Se and Sp are the sensitivity and the speci-

fity parameters described in the Tan et al., with w1 and
w2 equal to 1. The fitness value is the product of these
three parameters.

fitness = Se ∗ Sp ∗ Sy

These three methods implement the match kernel
and the reduction kernel. The match kernel obtains the

results from the match processes of the prediction of the
examples with their actual class. The reduction kernel
counts the tp, tn, fp and fn values and computes the

fitness values.

6.2 Comparison with other proposal

One of the most recent works and similar to our pro-
posal is the one by M. Franco et al. [FKB10]. This work

speeds up the evaluation of the BioHEL system using
GPGPUs. BioHEL is an evolutionary learning system
designed to cope with large-scale datasets. They pro-

vide the results, the profiler information, the CUDA
and the serial version of the software in the website
http://www.cs.nott.ac.uk/~mxf/biohel. The exper-

iments carried out compare our model and its speedup
to the speedup obtained from the CUDA version of Bio-
HEL system over several problem domains in order to

demonstrate the improvements provided by the paral-
lelization model proposed. The configuration settings of
the BioHEL system were the provided by the authors

in the configuration files.

6.3 Problem domains used in the experiments

To evaluate the performance of the proposed GP evalu-
ation model, some datasets selected from the UCI ma-

chine learning repository [NA07] and the KEEL web-
site [AFSG+09] are benchmarked using the algorithms
previously described. These datasets are very varied

considering different degrees of complexity. Thus, the
number of instances ranges from the simplest contain-
ing 150 instances to the most complex containing one

million instances. Also, the number of attributes and
classes are different in different datasets. This infor-
mation is summarized in Table 2. The wide variety of

datasets considered allows us to evaluate the model per-
formance in both low and high problem complexity. It
is interesting to note that some of these datasets such as

KDDcup or Poker have not been commonly addressed
to date because they are not memory and CPU man-
ageable by traditional models.

Table 2: Complexity of the datasets tested.

Dataset #Instances #Attributes #Classes

Iris 150 4 3
New-thyroid 215 5 3
Ecoli 336 7 8
Contraceptive 1473 9 3
Thyroid 7200 21 3
Penbased 10992 16 10
Shuttle 58000 9 7
Connect-4 67557 42 3
KDDcup 494020 41 23
Poker 1025010 10 10



Speeding up the evaluation phase of GP classification algorithms on GPUs 13

6.4 General experimental settings

The GPU evaluation code is compiled into a shared li-
brary and loaded into the JCLEC [VRZ+07] framework
using JNI. JCLEC is a software system for evolution-

ary computation research developed in the Java pro-
gramming language. Using the library, our model can
be easily employed in any evolutionary learning system.

Experiments were run on two PCs both equipped
with an Intel Core i7 quad-core processor running at
2.66GHz and 12 GB of DDR3 host memory. One PC

features two NVIDIA GeForce 285 GTX video cards
equipped with 2GB of GDDR3 video RAM and the
other one features two NVIDIA GeForce 480 GTX video

cards equipped with 1.5GB of GDDR5 video RAM. No
overclock was made to any of the hardware. The oper-
ating system was GNU/Linux Ubuntu 10.4 64 bit.

The purpose of the experiments is to analyze the ef-
fect of the dataset complexity on the performance of the
GPU evaluation model and the scalability of the pro-

posal. Each algorithm is executed over all the datasets
using a sequential approach, a threaded CPU approach,
and a massively parallel GPU approach.

7 Results

This section discusses the experimental results. The
first section compares the performance of our proposal

over different algorithms. The second section provides
the results of the BioHEL system and compares them
with the obtained by our proposal.

7.1 Results obtained using our proposal

In this section we discuss the performance achieved by
our proposal using three different GP algorithms. The

execution time and the speedups of the three classifica-
tion algorithms solving the various problems considered
are shown in Tables 3, 4 and 5 where each column is

labeled with the execution configuration indicated from
left to right as follows: the dataset, the execution time
of the native sequential version coded in Java expressed

in seconds, the speedup of the model proposed using
JNI and one CPU thread, two CPU threads, four CPU
threads, one GTX 285 GPU, two GTX 285 GPUs, and

with one and two GTX 480 GPUs. The results corre-
spond to the executions of the algorithms with a pop-
ulation of 200 individuals and 100 generations.

The results in the tables provide useful information
that in some cases, the external CPU evaluation is in-
efficient for certain datasets such as Iris, New-thyroid

or Ecoli. This is because the time taken to transfer the

data from the Java virtual machine memory to the na-

tive memory is higher than just doing the evaluation
in the Java virtual machine. However, in all the cases,
regardless of the size of the dataset, the native GPU

evaluation is always considerably faster. If we look at
the results of the smallests datasets such as Iris, New-
thyroid and Ecoli, it can be seen that its speedup is

acceptable and specifically Ecoli performs up to 25X
faster. Speeding up these small datasets would not be
too useful because of the short run time required, but

it is worthwhile for larger data sets. On the other hand,
if we focus on complex datasets, the speedup is greater
because the model can take full advantage of the GPU

multiprocessors’ offering them many instances to par-
allelize. Notice that KDDcup and Poker datasets per-
form up to 653X and 820X faster, respectively. We can

also appreciate that the scalability of the proposal is al-
most perfect, since doubling the number of threads or
the graphics devices almost halves the execution time.
Fig. 14 summarizes the average speedup, depending on

the number of instances.
The fact of obtaining significant enhacements in all

problem domains (both small and complex datasets) as

has been seen is because our proposal is a hybrid model
that takes advantage of both the parallelization of the
individuals and the instances. A great speedup is not

only achieved by classifying a large number of instances
but by a large enough population. The classification of
small datasets does not require many individuals but

high dimensional problems usually require a large pop-
ulation to provide diversity in the population genetics.
Therefore, a great speedup is achieved by maximizing

both parameters. These results allow us to determine
that the proposed model achieves a high speedup in
the algorithms employed. Specifically, the best speedup

is 820X when using the Falco et al. algorithm and the
poker dataset, hence the execution time can be impres-
sively reduced from 30 hours to only two minutes.

7.2 Results of other proposal

This section discusses the results obtained by BioHEL.
The results for the BioHEL system are shown in Table 6

where the first column indicates the execution time of
the serial version expressed in seconds, the second col-
umn shows the speedup of the CUDA version using a

NVIDIA GTX 285 GPU, and the third using a NVIDIA
GTX 480 GPU. These results show that for a dataset
with a low number of instances the CUDA version of

BioHEL performs slower than the serial version. How-
ever, the speedup obtained is higher when the number
of instances increases, achieving a speedup of up to 34

times compared to the serial version.



14 Alberto Cano et al.

Table 3: Falco et al. algorithm execution time and speedups.

Execution Time (s) Speedup
Dataset Java 1 CPU 2 CPU 4 CPU 1 285 2 285 1 480 2 480

Iris 2.0 0.48 0.94 1.49 2.96 4.68 2.91 8.02
New-thyroid 4.0 0.54 1.03 1.99 4.61 9.46 5.18 16.06
Ecoli 13.7 0.49 0.94 1.38 6.36 10.92 9.05 17.56
Contraceptive 26.6 1.29 2.52 3.47 31.43 55.29 50.18 93.64
Thyroid 103.0 0.60 1.15 2.31 37.88 69.66 75.70 155.86
Penbased 1434.1 1.15 2.26 4.37 111.85 207.99 191.67 391.61
Shuttle 1889.5 1.03 2.02 3.87 86.01 162.62 182.19 356.17
Connect-4 1778.5 1.09 2.14 3.87 116.46 223.82 201.57 392.86
KDDcup 154183.0 0.91 1.77 3.30 136.82 251.71 335.78 653.60
Poker 108831.6 1.25 2.46 4.69 209.61 401.77 416.30 820.18

Table 4: Bojarczuk et al. algorithm execution time and speedups.

Execution Time (s) Speedup
Dataset Java 1 CPU 2 CPU 4 CPU 1 285 2 285 1 480 2 480
Iris 0.5 0.50 0.96 1.75 2.03 4.21 2.39 5.84
New-thyroid 0.8 0.51 1.02 1.43 2.99 5.85 3.19 9.45
Ecoli 1.3 0.52 1.02 1.15 3.80 8.05 5.59 11.39
Contraceptive 5.4 1.20 2.40 2.47 14.58 31.81 26.41 53.86
Thyroid 27.0 0.56 1.11 2.19 25.93 49.53 56.23 120.50
Penbased 42.6 0.96 1.92 3.81 18.55 36.51 68.01 147.55
Shuttle 222.5 1.18 2.35 4.66 34.08 67.84 117.85 253.13
Connect-4 298.9 0.69 1.35 2.65 42.60 84.92 106.14 214.73
KDDcup 3325.8 0.79 1.55 2.98 30.89 61.80 135.28 306.22
Poker 6527.2 1.18 2.32 4.45 39.02 77.87 185.81 399.85

Table 5: Tan et al. algorithm execution time and speedups.

Execution Time (s) Speedup
Dataset Java 1 CPU 2 CPU 4 CPU 1 285 2 285 1 480 2 480
Iris 2.6 0.44 0.80 1.01 2.94 5.44 4.90 9.73
New-thyroid 6.0 0.77 1.43 1.78 7.13 12.03 9.15 21.74
Ecoli 22.5 0.60 1.16 2.09 9.33 16.26 14.18 25.92
Contraceptive 39.9 1.28 2.44 3.89 40.00 64.52 60.60 126.99
Thyroid 208.5 1.10 2.11 2.66 64.06 103.77 147.74 279.44
Penbased 917.1 1.15 2.23 4.25 86.58 148.24 177.78 343.24
Shuttle 3558.0 1.09 2.09 3.92 95.18 161.84 222.96 431.80
Connect-4 1920.6 1.35 2.62 4.91 123.56 213.59 249.81 478.83
KDDcup 185826.6 0.87 1.69 3.20 83.82 138.53 253.83 493.14
Poker 119070.4 1.27 2.46 4.66 158.76 268.69 374.66 701.41

1000 10000 100000 1000000

Number of instances

1.00

10.00

100.00

1000.00

S
p
e
e
d
u
p

1 285

2 285

1 480

2 480

Fig. 14: Average speedups.



Speeding up the evaluation phase of GP classification algorithms on GPUs 15

Table 6: BioHEL execution time and speedups.

Execution Time (s) Speedup
Dataset Serial CUDA 285 CUDA 480
Iris 0.5 0.64 0.66
New-thyroid 0.9 0.93 1.32
Ecoli 3.7 1.14 6.82
Contraceptive 3.3 3.48 3.94
Thyroid 26.4 2.76 8.70
Penbased 147.9 5.22 20.26
Shuttle 418.4 11.54 27.84
Connect-4 340.4 10.18 12.24
KDDcup 503.4 14.95 28.97
Poker 3290.9 11.93 34.02

The speedup results for the BioHEL system shown
in Table 6 compared with the results obtained by our
proposal shown in Tables 3, 4 and 5 demonstrate the

better performance of our model. One of the best ad-
vantages of our proposal is that it scales to multiple
GPU devices whereas BioHEL does not. Both BioHEL

and our proposal employ a 2 kernel model. However,
we do not to perform a one-level parallel reduction in
the match kernel, in order to avoid synchronization be-

tween threads and unnecessary delays even if it means
storing the whole data array. Thus, the memory require-
ments are larger but the reduction performs faster as

the memory accesses are fully coalesced and synchro-
nized. Moreover, our proposal improves the instruction
throughput upto 1.45, i.e., the number of instructions
that can be executed in a unit of time. Therefore, our

proposal achieves 1 Teraflops performance using two
GPUs NVIDIA GTX 480 with 480 cores running at
700 MHz. This information is provided in the CUDA

profiler available in the respective websites.
Additional information of the paper such as the de-

tails of the kernels, the datasets employed, the experi-

mental results and the CUDA profiler information are
published in the website:
http://www.uco.es/grupos/kdis/kdiswiki/SOCOGPU

8 Conclusions and future work

The classification of large datasets using EAs is a time
consuming computation as the problem complexity in-

creases. To solve this problem, many studies have aimed
at optimizing the computational time of EAs. In recent
years, these studies have focused on the use of GPU

devices whose main advantage over previous proposals
are their massively parallel MIMD execution model that
allows researchers to perform parallel computing where

million threads can run concurrently using affordable
hardware.

In this paper there has been proposed a GPU eval-

uation model to speed up the evaluation phase of GP

classification algorithms. The parallel execution model

proposed along with the computational requirements
of the evaluation of individuals, creates an ideal ex-
ecution environment where GPUs are powerful. Ex-

perimental results show that our GPU-based proposal
greatly reduces the execution time using a massively
parallel model that takes advantage of fine-grained and

coarse-grained parallelization to achieve a good scal-
ability as the number of GPUs increases. Specifically,
its performance is better in high dimensional problems

and databases with a large number of patterns where
our proposal has achieved a speedup of up to 820X com-
pared to the non-parallel version.

The results obtained are very promising. However,
more work can be done in this area. Specifically, the de-
velopment of hybrid models is interesting from the per-

spective of evolving in parallel a population of individ-
uals. The classical approach of genetic algorithms is not
completely parallelizable because of the serialization of

the execution path of certain pieces of code. There have
been several proposals to overcome these limitations
achieving excellent results. The different models used to

perform distributed computing and parallelization ap-
proaches focus on two approaches [DM93]: The islands
model, where several isolated subpopulations evolve in

parallel and periodically swap their best individuals
from neighboring islands, and the neighborhood model
that evolves a single population and each individual is

placed in a cell of a matrix.

These two models are available for use in MIMD
parallel architectures in the case of islands and SIMD

models for the neighborhood. Therefore, both perspec-
tives can be combined to develop multiple models of
parallel and distributed algorithms [HB09], which take

advantage of the parallel threads in the GPU, the use
of multiple GPUs, and the distribution of computation
across multiple machines networked with these GPUs.

Acknowledgements This work has been financed in part
by the TIN2008-06681-C06-03 project of the Spanish Inter-
Ministerial Commission of Science and Technology (CICYT),
the P08-TIC-3720 project of the Andalusian Science and Tech-
nology Department, and FEDER funds.

References

[AFSG+09] J. Alcalá-Fdez, L. Sánchez, S. Garćıa, M. del Je-
sus, S. Ventura, J. Garrell, J. Otero, C. Romero,
J. Bacardit, V. Rivas, J. Fernández, and F. Her-
rera. KEEL: A Software Tool to Assess Evolu-
tionary Algorithms for Data Mining Problems.
Soft Computing - A Fusion of Foundations, Method-

ologies and Applications, 13:307–318, 2009.



16 Alberto Cano et al.

[BFM97] T. Bäck, D. Fogel, and Z. Michalewicz. Handbook
of evolutionary computation. Oxford Univ. Press,
1997.

[BLFM04] C. C. Bojarczuk, H. S. Lopes, A. A. Freitas, and
E. L. Michalkiewicz. A constrained-syntax ge-
netic programming system for discovering classi-
fication rules: application to medical data sets.
Artificial Intelligence in Medicine, 30(1):27–48,
2004.

[BNKF98] W. Banzhaf, P. Nordin, R. E. Keller, and F. D.
Francone. Genetic Programming – An Introduc-
tion; On the Automatic Evolution of Computer Pro-
grams and its Applications. Morgan Kaufmann,
San Francisco, CA, USA, January 1998.

[CM07] D. M. Chitty and Q. Malvern. A data paral-
lel approach to genetic programming using pro-
grammable graphics hardware. In GECCO 07:
Proceedings of the 9th annual conference on Ge-
netic and evolutionary computation, pages 1566–
1573. ACM Press, 2007.

[CUD] NVIDIA Programming and Best Practices
Guide, http://www.nvidia.com/cuda, November
2010.

[DDFT04] I. De Falco, A. Della Cioppa, F. Fontanella, and
E. Tarantino. An Innovative Approach to Ge-
netic Programming-based Clustering. In 9th On-
line World Conference on Soft Computing in Indus-
trial Applications, 2004.

[DDT01] I. De Falco, A. Della Cioppa, and E. Tarantino.
Discovering interesting classification rules with
genetic programming. Applied Soft Computing,
1(4):257–269, 2001.

[Deb05] K. Deb. A population-based algorithm-generator
for real-parameter optimization. Soft Computing,
9:236–253, 2005.

[DM93] M. Dorigo and V. Maniezzo. Parallel genetic al-
gorithms: Introduction and overview of current
research. In Parallel Genetic Algorithms: Theory
and Applications, pages 5–42. IOS Press, Amster-
dam, The Netherlands, 1993.

[EVH10] P. G. Espejo, S. Ventura, and F. Herrera. A Sur-
vey on the Application of Genetic Programming
to Classification. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and
Reviews), 40(2):121–144, 2010.

[FKB10] M. A. Franco, N. Krasnogor, and J. Bacardit.
Speeding up the evaluation of evolutionary learn-
ing systems using GPGPUs. In Proceedings of the
12th annual conference on Genetic and evolution-
ary computation, GECCO ’10, pages 1039–1046,
New York, NY, USA, 2010. ACM.

[Fre02] A. A. Freitas. Data Mining and Knowledge Discov-
ery with Evolutionary Algorithms. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2002.

[GPG] General-Purpose Computation on Graphics
Hardware, http://www.gpgpu.org, November
2010.

[Har10] S. Harding. Genetic Programming on
Graphics Processing Units Bibliography,
http://www.gpgpgpu.com, November 2010.

[HB07] S. Harding and W. Banzhaf. Fast genetic pro-
gramming and artificial developmental systems
on gpus. In High Performance Computing Sys-
tems and Applications, 2007. HPCS 2007, pages
2–2, 2007.

[HB09] S. Harding and W. Banzhaf. Distributed genetic
programming on GPUs using CUDA. In Work-

shop on Parallel Architectures and Bioinspired Al-
gorithms, Raleigh, USA, 2009.

[Koz92] J. R. Koza. Genetic Programming: On the Pro-

gramming of Computers by Means of Natural Selec-
tion (Complex Adaptive Systems). The MIT Press,
1992.

[LH08] W. B. Langdon and A. P. Harrison. GP on SPMD
parallel graphics hardware for mega bioinformat-
ics data mining. Soft Computing, 12(12):1169–
1183, 2008.

[LKB06] J. Landry, L. D. Kosta, and T. Bernier. Discrim-
inant feature selection by genetic programming:
Towards a domain independent multi-class ob-
ject detection system. Journal of Systemics, Cy-
bernetics and Informatics, 3(1), 2006.

[MBL+09] O. Maitre, L. A. Baumes, N. Lachiche, A. Corma,
and P. Collet. Coarse grain parallelization of evo-
lutionary algorithms on gpgpu cards with easea.
In Proceedings of the 11th Annual conference on
Genetic and evolutionary computation, GECCO
’09, pages 1403–1410, New York, NY, USA, 2009.
ACM.

[NA07] D. J. Newman and A. Asuncion. UCI machine
learning repository, 2007.

[RMPF09] D. Robilliard, V. Marion-Poty, and C. Fonlupt.
Genetic programming on graphics processing
units. Genetic Programming and Evolvable Ma-
chines, 10:447–471, 2009.

[RRB+08] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S.
Stone, D. B. Kirk, and W. W. Hwu. Optimiza-
tion principles and application performance eval-
uation of a multithreaded GPU using CUDA. In
Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming,
PPoPP ’08, pages 73–82, New York, NY, USA,
2008. ACM.

[SHM+03] T. Schmitz, S. Hohmann, K. Meier, J. Schem-
mel, and F. Schürmann. Speeding up hardware
evolution: a coprocessor for evolutionary algo-
rithms. In Proceedings of the 5th international con-
ference on Evolvable systems: from biology to hard-

ware, ICES’03, pages 274–285. Springer-Verlag,
2003.

[TTLH02] K. C. Tan, A. Tay, T. H. Lee, and C. M.
Heng. Mining multiple comprehensible classifi-
cation rules using genetic programming. In Pro-
ceedings of the Evolutionary Computation on 2002.
CEC ’02. Proceedings of the 2002 Congress, vol-
ume 2 of CEC ’02, pages 1302–1307, Washington,
DC, USA, 2002. IEEE Computer Society.

[VRZ+07] S. Ventura, C. Romero, A. Zafra, J. A. Del-
gado, and C. Hervás. JCLEC: a Java framework
for evolutionary computation. Soft Computing,
12:381–392, 2007.

[W. 09] W. W. Hwu. Illinois ECE 498AL: Pro-
gramming Massively Parallel Processors, Lec-
ture 13: Reductions and their Implementation,
http://nanohub.org/resources/7376, 2009.

[WL00] M. Leung Wong and K. Sak Leung. Data Mining
Using Grammar-Based Genetic Programming and

Applications. Kluwer Academic Publishers, Nor-
well, MA, USA, 2000.


