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Abstract

For diagnosing dyslexia in early childhood, children have to solve non-writing based,
graphical tests. Curently, these tests are processed by a human expert; applying artifi-
cial intelligence techniques to this problem is not trivial. On the one hand, the evalua-
tion of some of these tests is subjective and different experts can assign different scores
to the same answer. On the other hand, the result of the diagnosis is also uncertain,
because sometimes an expert wants to assign two different labels to the same case: cer-
tain symptoms are compatible with both dyslexia an an attention disorder, and a finer
distinction is not possible for young children.

Having said that, exploiting the information in uncertain datasets has been recently
acknowledged as a new challenge in Genetic Fuzzy Systems. In this paper we pro-
pose using a genetic cooperative-competitive algorithm for designing a linguistically
understandable, rule-based classifier that can tackle this problem, being a first step of
a web-based, automated pre-screening application that can be used by the parents for
detecting those symptoms that advise taking the children to a psychologist for an indi-
vidual examination.
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1. Introduction

Dyslexia can be defined as a learning disability in people with normal intellectual
coefficient, and without further physical or psychological problems that can explain
such disability. According to the Orton Society [19],

Dyslexia is a neurologically based, often familial, disorder which inter-
feres with the acquisition and processing of language [...]. Although dyslexia
is lifelong, individuals with dyslexia frequently respond successfully to
timely and appropriate intervention.
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In this research we are interested in the early diagnosis (ages between 6 and 8) of
schoolchildren of Asturias (Spain), where this disorder is not rare. It has been estimated
that between 4% and 5% of these schoolchildren have dyslexia. The average number of
children in a Spanish classroom is 25, therefore there are cases at most classrooms [1].
Notwithstanding the widespread presence of dyslexic children, detecting the problem
at this stage is a complex process, that depends on many different indicators, mainly
intended to detect whether reading, writing and calculus skills are being acquired at
the proper rate. Moreover, there are disorders different than dyslexia that share some
of their symptoms and therefore the tests not only have to detect abnormal values of
the mentioned indicators; in addition, they must also separate those children which
actually suffer dyslexia from those where the problem can be related to other causes
(inattention, hyperactivity, etc.)

All schoolchildren at Asturias are routinely examined by a psychologist that can
diagnose dyslexia (in Table 1 there is a list of the tests that are applied in Spanish
schools for detecting this problem). Nevertheless, an early detection of the problem
can allay the treatment. We are in the first stages of the design of an automated pre-
screening application that can be used by the parents of preschoolers for detecting
those symptoms that advise taking their children to a psychologist for an individual
examination. We want that this automated application includes a fuzzy rule based
system (FRBS), whose knowledge base is to be obtained from a sample of labelled
data by means of a genetic algorithm. Using Soft Computing techniques for diagnosing
dyslexia seems to us a natural choice, because of the properties of our data (linguistic
terms, and vague measurements). As a matter of fact, there are many references where
fuzzy techniques were used to learn medical diagnosis models from data. In particular,
in [6] and [11], fuzzy techniques have been used in the diagnosis of disabilities in
language. However, in all of the preceding works, the data was crisp or categorical.
Instead, most of our measurements are not crisp, as we will discuss later. Moreover, a
high percentage of cases have missing values. None of the cited approaches are directly
applicable to the problem at hand.

For building this FRBS, we have collected data from 65 schoolchildren during our
research, comprising their answers to the tests in Figure 1. In addition, each case
has been individually classified by a phychologist into one or more of the classes “no
dislexia”, “control and revision”, “dyslexic” and “other disorders” (inattention, hyper-
activity, etc.) It is remarked that we have not tried to remove the uncertainty in our
data prior to the learning, but we will introduce a novel rule extraction algorithm that
is able to exploit better the information contained in these low quality sets of data.
Summarizing, in this paper we will propose a new methodology for designing an aug-
mented Genetic Fuzzy System (GFS) that can operate with low quality data, and apply
the resulting knowledge base for determining, on the basis of the answers to certain
graphical tests, whether a preschooler should be diagnosed by an expert. In a machine
learning context, this means that we will design a classifier that is able to operate when
we cannot accurately observe all the properties of the object. In the most simple case
(interval-valued data) we will perceive sets that contain these values. In the general
case, we will be given a nested family of sets, each one of them containing the true
value with a probability higher or equal than its level; we will represent each of these
families by means of a fuzzy set, with a possibilistic interpretation.

2



Category Test Description
Verbal comprehension BAPAE Vocabulary

BADIG Verbal orders
BOEHM Basic concepts

Logic reasoning RAVEN Color
BADIG Figures
ABC Actions and details

Memory Digit WISC-R Verbal-additive memory
BADIG Visual memory
ABC Auditive memory

Level of maturation ABC Combination of different tests
Sensory-motor skills BENDER visual-motor coordination

ABD Motor coordination
BADIG Perception of shapes
BAPAE Spatial relations, Shapes, Orientation
STAMBACK Auditive perception, Rhythm
HARRIS/HPL Laterality, Pronunciation
ABC Pronunciation
GOODENOUGHT Spatial orientation, Body scheme

Attention Toulose Attention and fatigability
ABC Attention and fatigability

Reading-Writing TALE Analysis of reading and writing

Table 1: Categories of the tests currently applied in Spanish schools for detecting dyslexia in children be-
tween six and eight years.

In the remaining of the paper we will discuss in detail the particular properties of the
data originated in the mentioned tests (Section 2), the use of fuzzy sets for representing
this data (Section 3), how this data can be fed to a FRBS to produce a set of outputs
(Section 4), the measurement of the performance of a FRBS with this data, and how
to genetically optimize it (Section 5). In Section 6 we will apply the new algorithm
to different benchmark and real-world problems, and compare the results to those of
the crisp algorithms and with previous works. In Section 7 we conclude the paper and
discuss future work in the subject.

2. Subjectiveness and uncertainty in the evaluation of a test

At the present time, an automated classification is not being used and an expert in
dyslexia or psychologist is needed for diagnosing each case. Take, for instance, the
sensory-motor skills test “BENDER” [2]. In this test, the child has to copy the geomet-
ric drawings displayed in Figure 1, and the expert has to score each copy depending on
the differences with the original.

In Figure 2 we have included actual copies of the fifth drawing of Bender’s test by
eight children in our study. Interestingly enough, for evaluating these differences the
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Figure 1: Example of Bender’s tests for detecting dyslexia. This test contains nine geometric drawings that
the child has to copy.

human expert follows by hand an algorithm described by a list of linguistic “if–then”
rules (see the aforementioned reference [2] for a complete description of these). In
this case, the expert has to decide whether the angles, relative positions, orientations
and other geometrical properties have been accurately copied or not. In particular, the
evaluation criterion about the angles for this fifth drawing is given by the rules that
follow:

• If both angles measure 90 degrees and both small curves are equal then assign 3
points.

• If one angle does not measure 90 degrees or one small curve is not well copied
then assign 2 points.

• If neither angle measures 90 degrees or none of the small curves are well copied
then assign 1 point.

• If one angle or one small curve is missing then assign 0 points.

The authors of this rule-based algorithm did not envision the use of approximate
reasoning techniques for interpolating between the scores, however it is clear that there
is still a degree of subjectiveness in the task of scoring a figure and arguably this means
that there is uncertainty on the input data. In particular, we have found that

1. it is possible than two experts assign a different number of points to the same
drawing,

2. it is natural for some experts to assign a range of values to a drawing (i.e. “the
score of the drawing is between 1 and 2”) and

3. sometimes the experts prefer using a linguistic term (i.e. “near 2”).
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Figure 2: Different copies about the fifth figure and the expert has to decide whether the figure is correct or
not.

In our experimentation we have given the experts freedom for expressing the score of
the tests to their best convenience, thus our data comprises a mix of numerical, interval-
valued and fuzzy data.

Furthermore, this imprecision in the scoring propagates through the output of the
algorithm and sometimes the expert doubts about the diagnosing. For example, in the
left part of Figure 3 and also in Table 2 we have displayed the scoring assigned by
the expert to a child that she labelled as “no dyslexic”. By contrast, in Table 3 and
in the right part of the same Figure 3 we can see the drawing of a child for who the
expert could not decide between “no dyslexic” and “control and revision” (this last
label means that the individual is marked as suspicious and the test is repeated at the
end of the term). Comparing the evaluations in Tables 2 and 3 we observe that this
last child is near the group average in most tests, but below average in others. While
the total score might suggest that the child does not suffer from dyslexia, some of the
results could be interpreted otherwise, thus the labeling of the individual with multiple
classes provides us with more information than any of the alternatives.

Lower Medium-Lower Medium Medium-Higher Higher
1.- Verbal comprehension
Vocabulary ( ) ( ) ( ) (x) ( )
Verbal orders ( ) ( ) ( ) (x) ( )
Basic concepts ( ) ( ) ( ) ( ) (x)
2.- Reasoning ( ) ( ) ( ) ( ) (x)
3.- Visual-motor coordination ( ) ( ) (x) ( ) ( )
4.- Verbal memory ( ) ( ) ( ) ( ) (x)
5.- Perceptive ability
Perception of shapes ( ) ( ) ( ) ( ) (x)
Spatial orientation ( ) ( ) ( ) (x) ( )
6.- Auditive perception rhythm ( ) ( ) ( ) ( ) (x)
7.- Laterality Right Left Crusade Ambidextrous

(x) ( ) ( ) ( )
8.- Pronunciation Correct

Table 2: Results of the test the one child diagnosed as “no dyslexia”.
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Figure 3: Left: Bender’s test of one child assigned to the class “no dyslexia”. Right: The same test solved
by a child for who the expert could not decide between the classes “no dyslexia” and “control and revision”.

Lower Medium-Lower Medium Medium-Higher Higher
1.- Verbal comprehension
Vocabulary (x) ( ) ( ) ( ) ( )
Verbal orders ( ) (x) ( ) ( ) ( )
Basic concepts ( ) ( ) (x) ( ) ( )
2.- Reasoning ( ) ( ) (x) ( ) ( )
3.- Visual-motor coordination ( ) (x) ( ) ( ) ( )
4.- Verbal memory ( ) ( ) (x) ( ) ( )
5.- Perceptive ability
Perception of shapes ( ) ( ) (x) ( ) ( )
Spatial orientation ( ) ( ) ( ) ( ) (x)
6.- Auditive perception rhythm ( ) (x) ( ) ( ) ( )
7.- Laterality Right Left Crusade Ambidextrous

(x) ( ) ( ) ( )
8.- Pronunciation Correct

Table 3: Results of the test where the expert could not decide between the classes “no dyslexia” and “control
and revision”. Observe that we might as well have classified the child as “dyslexic”.

Another example is shown in Figure 4, where we have represented two Bender’s
tests made at the begining of the course (6 year old child) and at the end, seven
months later. This expert was in doubt about the assignment of this child to the classes
“dyslexic” or “attention disorder / hyperactivity”. In this case, an early decision is
very important in order to choose an adequate education but in the first evaluation we
lack information for completely deciding which label to choose. Having these cases
in mind, we have allowed that the expert marks any individual with as many labels as
he/she wish.
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Figure 4: Bender’s Test of one child assign in the “class {2,4}”. The left picture is doing in the begining of
the course and the picture of the right in the end of the course.

3. Fuzzy sets, aggregated data and metainformation

In the preceding section we have stated that our dataset contains uncertain values in
both output and input variables. On the one hand, each child might be assigned more
than one label, thus the desired output of the system may be partially known. On the
other hand, in the input side, we have found cases where the expert prefers using a
range of numbers or a linguistic value. To this we can add those cases where more than
one expert evaluates the same case and they do not agree in the score, or those where
the result of a test is missing.

In these situations, an aggregated value signals that our information is incomplete.
For example, a child who is assigned two class labels does not suffer from two different
problems; we are only stating that we cannot make a finer distinction. Accordingly, a
child who has not been diagnosed would be labelled with the set of all class marks.
With respect to the input values, a score of [1, 2] in a test means that the actual score
is an unknown number between 1 and 2. Lastly, those cases where the input value is
linguistic or we have unreconciled scores by different experts have a similar semantic;
there is a only partial knowledge about the actual value of the attribute.

In this work we will unify the treatment of all these cases by means of a possibilistic
representation. We will use fuzzy sets for representing metainformation, understood as
our knowledge about the uncertainty of the data. In particular, we will admit that we
cannot perceive the actual value of a variable, neither we have a complete knowledge
about the probability distribution of the difference between the perceived and the actual
values. This incomplete knowledge will be modeled with a fuzzy set, which we will
identify with the family of all the probability distributions for which the alpha-cuts of
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this fuzzy set have a probability mass higher or equal than 1-alpha [4]. Observe that
this includes the interval and the crisp situations as particular cases. For instance, the
interval [1, 2] mentioned before is regarded as the family of probability distributions
whose support is contained in [1, 2]. Missing values are represented by an interval
that spans the whole range of the variable. It is also easy to assign a meaning to the
linguistic value “near 2” that we mentioned in the preceding section, or to reconcile
different values of the same attribute, building a membership function from a bootstrap
estimation of the distribution of a central tendency measure of the data, as described in
[17].

Fuzzy datasets like these originated in our interpretation are the main research area
in fuzzy statistics, however this kind of information is seldom considered in Genetic
Fuzzy Systems (GFS) [3][7]. GFSs obtain Fuzzy Rule Based Systems (FRBS) from
crisp data, and the role of fuzzy sets in a FRBS is to model vague asserts, using fuzzy
logic-based tools. Fuzzy logic techniques are not, generally speaking, compatible with
those fuzzy statistical techniques used for modeling vague observations of variables
[15], thus we need to design an extension of the fuzzy logic-based reasoning methods
that closes the gap between standard FRBS and the use of fuzzy sets for modeling
metainformation, as described before. This extension will be explained in the next
section.

4. An Extension Principle-based Reasoning Method

In this section we discuss how to compute the output of an FRBS, given a vague
input. At a first glance, this should consist in computing the cylindrical extension of
the input, intersecting it with the fuzzy graph implicitely defined by the FRBS, and
projecting this intersection on the output space. However, this procedure is not valid,
because its result can be a nonnormal fuzzy set, that has not possibilistic meaning. In
this section we adapt a reasoning method, that was proposed in [17] for fuzzy models,
to the classification case and extend it to weighted fuzzy rules.

Let us make clear the problem with the help of a particular case; consider a fuzzy
classifier comprising M rules:

if (x is Ãi ) then class is Ci with confidence wi, (1)

and let us use the single-winner inference mechanism. In the first place, let us suppose
that we have a crisp perception x of the properties of an object. Its class is, therefore,

class(x) = Carg maxi{ eAi(x)·wi} (2)

In the second place, let the object be imprecisely observed, thus all our information is
“x ∈ X .” If we apply the fuzzy logic based approach mentioned before, the class of
the object is still a singleton:

class’(X) = Carg maxi{min{ eAi(x)·wi|x∈X}} (3)

which is not the result we need. We want to obtain the set of labels that follows:

class(X) = {Carg maxi{ eAi(x)·wi} | x ∈ X} (4)
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or, in other words,
class(X) = {class(x) | x ∈ X}. (5)

which is different than eq. (3).
To solve this discrepancy, we propose to use the reasoning method that follows:

Let X be the input space, let Nc be the number of classes, thus K = {1, . . . , Nc} is
the output space, and let {Ãi → (Ci, wi)}i=1,...,M be a set of M fuzzy rules. Recall
that, given a crisp input x ∈ X , the most common reasoning method for computing the
output of a FRBS takes two stages [3]:

1. An intermediate fuzzy set is composed:

õut(x)(k) = max
i=1,...,M

Ci=k

Ãi(x) · wi (6)

2. This intermediate fuzzy set is transformed in a crisp value defuz(õut(x)) ∈ K
by means of a suitable defuzzification operator. In classification problems, the
“maximum” defuzzification is mostly used. Therefore, the value defuz(õut(x)) ∈
K is often equivalent to

defuz(õut(x)) = arg max
k
{õut(x)(k)}. (7)

The extension to set valued inputs is as follows: Given an input A ⊆ X (that, in our
context, means “all we know about the input is that it is in the set A”),

1. We determine a family of intermediate fuzzy sets in the universeF(K), õut(A) ∈
℘(F(K)), defined as

õut(A) = {õut(x) s. t. x ∈ A} (8)

2. An element of ℘(K) (that is to say, a set of crisp outputs defuz(õut(A)) ∈ ℘(K))
is obtained, according to the following definition:

defuz(õut(A)) = {defuz(õut(x)) s. t. x ∈ A}. (9)

Lastly, given a fuzzy input Ã ∈ F(X), we will assign it, according to the Extension
Principle (which is compatible with the possibilistic interpretation of fuzzy sets) a fuzzy
set computed as follows:

1. We determine an intermediate fuzzy set on the universeF(K), õut(Ã) ∈ F(F(K)),
defined as

õut(Ã)(B̃) = sup{Ã(x) s. t. õut(x) = B̃},
∀B̃ ∈ F(K) (10)

2. An element of F(K) (that is to say, a fuzzy output) defuz(õut(Ã)) ∈ F(K) is
obtained as follows:

defuz (õut(Ã))(k) =
sup{Ã(x) s. t. defuz(õut(x)) = k},
∀k ∈ K.

(11)

Observe that the fuzzy set defuz(õut(Ã)) is associated to the nested family of sets
{defuz(õut(Ãα))}α∈[0,1], and that explains the possibilistic interpretation of this pro-
cedure.
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4.1. FRBS with weights in the consequent part: definition of confidence for imprecise
data

The weights of the rules will be obtained through extensions of the four heuristic
methods defined in [9], that in the remaining of the paper will be denoted CFI, CFII,
CFIII, CFIV. All these heuristics depend on the confidence degree of the fuzzy rule
under study (and also on the confidence degrees of those fuzzy rules with the same
antecedent and different consequents) and therefore it is needed to extend the definition
of the concept of “confidence” to fuzzy data before we can use this kind of rules in
problems with low quality data. This extension is as follows:

Definition 1. Let {(x1, c1), . . . , (xm, cm)} be a crisp training set, and let the confi-
dence of a fuzzy rule c(Ai ⇒ Ci) for this crisp dataset be [9]:

c(Ai ⇒ Ci)(x1,c1,...,xm,cm) =

∑
cp=Ci

µAi
(xp)∑m

p=1 µAi(xp)
. (12)

For a a low quality (fuzzy) dataset {(X̃1, c1), . . . , (X̃m, cm)}, we will define the confi-
dence of a rule as the direct application of the extension principle to eq. (12), which is
the fuzzy subset of [0, 1] given by

c̃(Ai ⇒ Ci)( eX1,c1,..., eXm,cm)(t) =

max
{

min{µX1(x1), . . . , µXm(xm)} | c(Ai ⇒ Ci)(x1,c1,...,xm,cm) = t
}
.

(13)

5. Definition of the extended Genetic Fuzzy System

The GFS that we will generalize to vague data was introduced in [8]. We have
chosen this algorithm because of its balance between simplicity and performance. The
pseudocode of this algorithm is shown in Figure 5. It can be seen that it depends on two
functions: “assignConsequent” (line 6) and “assignFitness” (line 9). These functions
are also listed in Figures 6 and 7.

It is remarked that we have not included in this explanation details about the repre-
sentation of individuals, genetic operators or the initialization of the initial population,
as these do not depend on the input data being crisp or fuzzy and can be found else-
where [8, 9, 10]. Observe also that this algorithm does not codify the consequent of
the fuzzy rules in the genetic individual. The function “assignConsequent” determines
the class label that matches an antecedent with a maximum confidence. The function
“assignFitness,” in turn, determines the winner rule for each object in the training set
and increments the fitness of the corresponding individual if its consequent matches
the class of the object.

5.1. Generalized GFS
Generalizing a GFS to imprecise data involves changes to the inference mecha-

nism, that we have discussed in Section 4, and also to the fitness function, as we have
introduced in the preceding paragraphs (see also [15] for a deeper explanation). In the
remainder of this subsection, we will study how to alter the functions “assignConse-
quent” and “assignFitness”. This comprises

10



function GFS
1 Initialize population
2 for iter in {1, . . . , Iterations}
3 for sub in {1, . . . , subPop}
4 Select parents
5 Crossover and mutation
6 assignConsequent(offspring)
7 end for sub
8 Replace the worst subPop individuals
9 assignFitness(population,dataset)
10 end for iter
11 Purge unused rules
return population

Figure 5: Outline of the GFS that will be generalized [8]. Each chromosome codifies one rule. The fitness
of the classifier is distributed among the rules at each generation.

function assignConsequent(rule)
1 for example in {1, . . . , N}
2 m = membership(Antecedent,example)
3 weight[class[example]] = weight[class[example]] + m
4 end for example
5 mostFrequent = 0
6 for c in {1, . . . , Nc}
7 if (weight[c]>weight[mostFrequent]) then
8 mostFrequent = c
9 end if
10 end for c
11 Consequent = mostFrequent
12 CF[rule] = computeConfidenceOfConsequent
return rule

Figure 6: The consequent of a rule is not codified in the GA, but it is assigned the most frequent class label,
between those compatible with the antecedent of the rule [8].
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1. new procedures for assigning of the consequents,
2. computing set-valued fitness functions, and
3. the genetic selection and replacement of the worst individuals, including a short

discussion about the meaning of “best” and “worst” when the fitness is a set-
valued function.

5.1.1. Assignment of consequents
The assignment of consequents seen in Figure 6 is extended in Figure 8. The origi-

nal assigment consisted in computing the confidences of the rules “if (x is Ã) then class
is C” for all the values of “C”, then selecting the alternative with maximum confidence.
In this paper the weight of a rule and the assignment of consequents depends on the
defuzzified value of the confidence defined in eq. (13), approximated as explained in
lines 4 to 11 of Figure 8.

The operation “dominates” used in line 8 can have different meanings, ranging
from the strict dominance (A dominates B iff a < b for all a ∈ A, b ∈ B) [18] to
other definitions that induce a total order in the set of confidences. Generally speaking,
we have to select one of the values in the set of nondominated confidences and use its
corresponding consequent. In this paper, we have used the uniform dominance defined
in [12], that induces a total order and thus the set of nondominated consequents has
size 1.

5.1.2. Computation of fitness
The error of the FRBS at an imprecisely perceived object is a fuzzy set. The number

of errors of the whole classifier can be obtained by adding these individual errors with
interval or fuzzy arithmetic operators.

In case that the i-th object of the training set is perceived through a crisp set, the
output of the FRBS is a set of classes:

CFRBS(Xi) = {Carg maxj{ eAj(x)·wj} | x ∈ Xi}. (14)

Accordingly, for a fuzzy value X̃i the output is the fuzzy subset of {1, . . . , Nc} that
follows:

C̃FRBS(Xi)(k) = max{α | k ∈ CFRBS([Xi]α)} (15)

for k ∈ {1, . . . , Nc}. It can be inferred that the theoretical expression of the fitness
function of the FRBS is:

f̃ =
⊕

ẽi (16)

where ẽi is a fuzzy subset of {0, 1}, whose α-cuts are:

[ẽi]α =

 1 CFRBS([Xi]α) = Ci and #(Ci) = 1
0 CFRBS([Xi]α) ∩ Ci = ∅
{0, 1} else

(17)

In words, if the output of the FRBS is a single class label that matches the class label
of the example, this point scores 1. If the set of classes emitted by the FRBS does not
intersect with that of the object, this point scores 0. Otherwise, it scores the set {0, 1}.
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function assignFitness(population,dataset)
1 for example in {1, . . . , N}
2 winnerRule = 0
3 bestMatch = 0
4 for rule in {1, . . . , M}
5 m = membership(Antecedent[rule],example)*CF[rule]
6 if (m>bestMatch) then
7 winnerRule = rule
8 bestMatch = m
9 end if
10 end for rule
11 if (consequent(winnerRule)==class(example)) then
12 fitness[winnerRule] = fitness[winnerRule] + 1
13 end if
14 end for example
return fitness

Figure 7: The fitness of an individual is the number of examples that it classifies correctly. Single-winner
inference is used, thus at most one rule changes its fitness when the rule base is evaluated in an example [8].

function assignImpreciseConsequent(rule)
1 for c in {1, . . . , Nc}
2 grade = 0
3 compExample = 0
4 for example in {1, . . . , N}
5 em = fuzMembership(Antecedent,example,c)
6 grade = grade ⊕ em
7 if (sup {x : em(x) > 0} > 0) then
8 compExample = compExample + 1
9 end if
10 end for example
11 weight[c] = grade � compExample
12 end for c
13 mostFrequent = {1, . . . , Nc}
14 for c in {1, . . . , Nc}
15 for c1 in {c+1, . . . , Nc}
16 if (weight[c] dominates weight[c1]) then
17 mostFrequent = mostFrequent - { c1}
18 end if
19 end for c1

20 end for c
21 Consequent = select(mostFrequent)
22 CF[rule] = computeConfidenceOfConsequent
return rule

Figure 8: If the examples are imprecise, we might not know the most frequent class label –lines 13 to 20–.
In this paper we have used the dominance proposed in [12] to reduce this set to one element.
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function assignImpreciseFitnessApprox(population,dataset)
1 for example in {1, . . . , N}
2 setWinnerRule = ∅
3 for r in {1, . . . , M}
4 dominated = FALSE
5 r.em = fuzMembership(Antecedent[r],example)*CF[r]
6 for sRule in setWinnerRule
7 if (sRule dominates r) then
8 dominated = TRUE
9 end if
10 end for sRule
11 if (not dominated and r.em > 0) then
12 for sRule in setWinnerRule
13 if (r.em dominates sRule) then
14 setWinnerRule = setWinnerRule −{ sRule }
15 end if
16 end for sRule
17 setWinnerRule = setWinnerRule ∪{ r }
18 end if
19 end for r
20 if (setWinnerRule == ∅) then
21 setWinnerRule = setWinnerRule ∪{ rule freq class }
22 setOfCons= ∅
23 for sRule in setWinnerRule
24 setOfCons= setOfCons ∪{ consequent(sRule) }
25 end for sRule
26 deltaFit= 0
27 if ({class(example)} == setOfCons and

size(setOfCons)==1) then
28 deltaFit = {1}
29 else
30 if ({class(example)}∩ setOfCons 6= ∅) then
31 deltaFit = {0, 1}
32 end if
33 end if
34 Select winnerRule ∈ setWinnerRule
35 fitness[winnerRule] = fitness[winnerRule] ⊕ deltaFit
36 end for example
return fitness

Figure 9: Generalization of the function “assignFitness” to imprecise data. If the example is imprecisely
perceived, there are three ambiguities that must be resolved: (a) some different crisp values compatible
the same example might correspond to different winner rules –lines 3 to 19—, (b) these rules might have
different consequent, thus we do not know if the rule base fails in the example –lines 22 to 33– and (c) we
must assign credit to just one of these rules –lines 34 and 35–.
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The evaluation of this function is computationally very expensive, and we will
use an approximation, described in Figure 9 for interval-valued data. This algorithm
computes an interval of values for the matching between each rule and the input, then
discards all rules that can not be the winner rule, and approximates the output of the
FRBS by the set of the consequents of the non-discarded rules. This set includes the
theoretical output, but sometimes it also includes extra class labels. In Figure 10 we
have also included a more accurate approximation which is based on a sample of values
of the support of the input. This second approximation will be used in the next section
to better determine the quality of a classifier, but our learning will be guided by the
function in Figure 9, because of its lower cost.

function assignImpreciseFitnessExhaustive(population,dataset)
1 for dataset in {1, . . . , 1000}
2 fitness[dataset] = 0
3 for example in {1, . . . , N}
4 bestMatch = 0
5 WRule = -1
6 for r in {1, . . . , M}
7 m = membership(Antecedent[r],example)*CF[r]
8 if (m > bestMatch) then
9 WRule = r
10 bestMatch = m
11 end if
12 end for r
13 if (WRule == -1) then
14 WRule = rule fre class
15 end if
16 if (consequent(WRule) == class(example)) then
17 score = 1
18 else
19 if consequent(WRule) ⊂ class(example)) then
20 score= {0, 1}
21 end if
22 end if
23 fitness[dataset] = fitness[dataset] ⊕ score
24 end for example
25 end for dataset
26 fitness=0
27 for dataset in {1, . . . , 1000}
28 fitness=fitness ⊕ fitness[dataset]
29 end for dataset
30 fitness=mean(fitness)
return fitness

Figure 10: Other generalization of the function “assignFitness” to interval-valued data. This function is
computationally too expensive for being used as a fitness function; it will be used instead for obtaining better
estimations of test errors of the final rule bases. Lines 16–20 deal with the case where an object has imprecise
output, i.e. “the class is A or C”; otherwise, the value of the variable “score” is crisp.
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function assignConsequent(rule)
1 for example in {1, . . . , N}
2 m = membership(Antecedent,example) * ω(example)
3 weight[class[example]] = weight[class[example]] + m
4 end for example
5 mostFrequent = 0
6 for c in {1, . . . , Nc}
7 if (weight[c]>weight[mostFrequent]) then
8 mostFrequent = c
9 end if
10 end for c
11 Consequent = mostFrequent
return rule

function assignFitness(population,dataset)
1 for example in {1, . . . , N}
2 winnerRule = 0
3 bestMatch = 0
4 for rule in {1, . . . , M}
5 m = membership(Antecedent[rule],example)*CF[rule]
6 if (m>bestMatch) then
7 winnerRule = rule
8 bestMatch = m
9 end if
10 end for rule
11 if (consequent(winnerRule)==class(example)) then
12 fitness[winnerRule] = fitness[winnerRule] + * ω(example)
13 end if
14 end for example
return fitness

Figure 11: The original algorithm in [8] is altered as shown in lines 2 (function assignConsequent) and 12
(function assignFitness) so that is able to learn from a database where each example has a fractional degree
of importance “ω(example).”
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5.1.3. Genetic selection and replacement
There are two other parts in the original algorithm that must be altered in order to

use an imprecise fitness function: (a) the selection of the individuals in [8] is based on
a tournament, that depends on a total order on the set of fitness values. And (b) the
same happens with the removal of the worst individuals. In both cases, we have used
the uniform dominance defined in [12] to impose such a total order.

6. Numerical results

In this part we apply the algorithms described in the paper to different subsets of
the data that we have described in Section 2. The purpose of this study is double:

1. Comparing the new approach (learning rules for diagnosing dyslexia from vague
data with a genetic algorithm that uses a fuzzy valued fitness function) to the
results of a crisp valued fitness function-based GFS.

2. Determining whether our data contains information enough for any of these
GFSs to produce a powerful enough FRBS, than can be used by unqualified
personnel for screening prescholars and detect dyslexia as early as possible.

Therefore, we want to isolate the benefits of using fuzzy sets-based metainforma-
tion in this particular problem, and determine whether there is a statistically significant
improvement in the learning process due to the use of a fuzzy fitness function. To
achieve this, we have built a crisp version of each dataset by removing the uncertainty
in both input and output variables. We have applied the original algorithm in [8, 9] to
these crisp versions, and the results have been compared with those of the approach
presented here. Details about the procedures for removing the fuzziness of the mea-
surements are also given in the following.

6.1. Description of the datasets

We have considered 5 different datasets regarding this experimentation. Their
names are “Dyslexic-12”, “Dyslexic-12-01”, “Dyslexic-12-12”, “Dyslexic-11-01” and
“Dyslexic-11-12”. The first three datasets contain vague data in both input and output
variables, and in the last two we have avoided the use of fuzzy sets and intervals for
representing data, thus they have precise inputs and vague outputs. It is remarked that
all these problems are real-world data and thus we do not know the best attainable error
with a FRBS.

The output variable for each of these datasets is a subset of the labels that follow:

• No Dyslexic

• Control and revision

• Dyslexic

• Inattention, hyperactivity or other problems
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It is remarked that the class “control and revision” is not, properly speaking, a valid
diagnosis. Being intermediate between “no dyslexic” and “dyslexic” it could have
been represented by a set of classes, however the expert expressed her concerns about
some particular properties of these cases, thus we have decided to make a compared
analysis where these individuals are treated separately first and later they are integrated
into either alternative.

Concretizing, the datasets “Dyslexic-12”, “Dyslexic-12-01”, “Dyslexic-12-12” have
65 objects and 12 features. There is imprecision in both the input and the output, and
also missing values. These three datasets differ only in their outputs:

• “Dyslexic-12” comprises the four mentioned classes

• “Dyslexic-12-01” does not make use of the class “control and revision”, whose
members are included in class “No dyslexic”.

• “Dyslexic-12-12” does not make use of the class “control and revision”, whose
members are included in class “Dyslexic”.

The last two datasets, “Dyslexic-11-01” and “Dyslexic-11-12” have, as we have
mentioned, crisp inputs and imprecise outputs. We have not considered, in this last
case, the class “control and revision”; summarizing, the datasets “Dyslexic-11” are
two:

• “Dyslexic-11-01” does not make use of the class “control and revision”, whose
members are included in class “No dyslexic”.

• “Dyslexic-11-12” does not make use of the class “control and revision”, whose
members are included in class “Dyslexic”.

Both datasets have 65 objects, 3 classes, and 11 features. There is imprecision in the
output but not in the input, and there are missing values.

6.2. Experimental settings

All the experiments have been run with a population size of 100, probabilities of
crossover and mutation of 0.9 and 0.1, respectively, and limited to 200 generations.
The fuzzy partitions of the labels are uniform and their size depends of the problem.
All the experiments are repeated 100 times for bootstrap resamples with replacement
of the training set. The test set comprises the “out of the bag” elements.

6.2.1. Methodology for comparing results between crisp and low quality data-based
algorithms

Comparing results of crisp and low quality data-based algorithms is difficult, as it
requires using a method for removing the observation error from the data, and an in-
adequate removal may distort the results. In this section we have applied the following
rules, proposed first in [14], for producing crisp data from imprecise data:

• For removing the uncertainty of an input variable, intervals are replaced by its
midpoint and fuzzy sets are replaced by their center of gravity.
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• For removing the imprecision of an output variable, each sample is been repli-
cated so many times as different alternatives exist, as described in [13]. Each
replication is assigned a degree of importance such that the contribution of the
example to the total fitness is not influenced by the number of replicas. For
instance, an example (x = 2, C = {A,B}) is converted in two examples
(x = 2, C = A) and (x = 2, C = B), and each one of them is assigned an
importance 0.5. It is remarked that this use of weighted instances (not to be
confused with the weights in the consequent of the rules that has also been intro-
duced here) required a small change of the original algorithm, which has been
already shown in Figure 11. Lastly, it is remarked that this procedure essentially
assumes a prior uniform probability distribution on the output variable for those
cases that are labelled with more than one class.

6.2.2. Statistical significance of results and graphical comparison
The statistical comparison between samples of fuzzy data is not a mature field yet

[5] and there is still some controversy in the definition of the most appropriate statis-
tical tests. We have decided not to compute an interval of p-values (as proposed in
the mentioned reference and cites contained therein) but to make a graphical represen-
tation, based on boxplots, instead. In the remaining of this section we will use two
different presentations of the results:

1. Tables: In the “Crisp” columns we represent the error of the original GFS [8]
with weights in both examples and rules. Conversely, in the “Low Quality data”
columnms, we show the results of the learning: the mean fitness (training error)
of the 100 repetitions, and an interval that contains the test error, computed with
the exhaustive algorithm described in Figure 10. The column “Low Quality [14]”
contains the results of an earlier GFS proposed by us in [14].

2. Boxplots: The boxplots are not standard because we represent crisp and impre-
cise results. We propose using a box showing the 75% percentile of the max-
imum and the 25% percentile of the minimum error (thus the box displays at
least the 50% of data). In addition, we represent the interval-valued median of
the maximum and minimum fitness. For this reason, we draw two marks inside
the box.

6.3. Analysis of the results and discussion

The compared results of the crisp GFS, the fuzzy fitness driven version and our for-
mer algorithm in [14] are shown in Tables 4 and 5, and the statistical significance of the
differences is displayed in Figures 12 and 13. As a first conclusion, the new algorithm
is a significant improvement over the crisp GFS, showing that, in this problem, it is
preferable to use an algorithm which is capable of learning rules with low quality data
than removing the interval or fuzzy information and using a conventional algorithm.
Of a secondary importance, the use of weights in the consequents does not seem to
noticeably improve the power of the classification system. If weights are to be used,
the most effective strategy for assigning a confidence degree to the consequent of a
rule is, in this case, CFIII . However, the use of weights for dealing with multi-labelled
instances outperforms the approach used in previous works [14] (which was based in

19



Crisp Low Quality Low Quality [14]
Dataset Train Test Fitness Train Test Error (Exh.) Test Error (Exh.)
Dyslexic-12 (4 labels) CF 0 0.444 [0.572,0.694] [0.003,0.237] [0.405,0.548] [0.421,0.558]
Dyslexic-12 (4 labels) CF I 0.430 [0.572,0.692] [0.072,0.303] [0.413,0.553]
Dyslexic-12 (4 labels) CF II 0.426 [0.566,0.687] [0.007,0.244] [0.423,0.564]
Dyslexic-12 (4 labels) CF III 0.483 [0.584,0.695] [0.066,0.244] [0.448,0.555]
Dyslexic-12 (4 labels) CF IV 0.487 [0.591,0.700] [0.052,0.244] [0.450,0.559]
Dyslexic-12 (5 labels) CF 0 0.556 [0.614,0.731] [1.538,0.233] [0.480,0.621] [0.490,0.609]
Dyslexic-12 (5 labels) CF I 0.560 [0.612,0.730] [0.086,0.308] [0.487,0.629]
Dyslexic-12 (5 labels) CF II 0.557 [0.614,0.731] [3.076,0.238] [0.480,0.620]
Dyslexic-12 (5 labels) CF III 0.581 [0.618,0.728] [0.065,0.238] [0.505,0.608]
Dyslexic-12 (5 labels) CF IV 0.582 [0.621,0.731] [0.057,0.238] [0.504,0.610]
Dyslexic-12-01 (4 labels) CF 0 0.336 [0.452,0.553] [0.005,0.193] [0.330,0.440] [0.219,0.759]
Dyslexic-12-01 (4 labels) CF I 0.340 [0.456,0.556] [0.083,0.268] [0.344,0.450]
Dyslexic-12-01 (4 labels) CF II 0.348 [0.460,0.559] [0.007,0.198] [0.338,0.449]
Dyslexic-12-01 (4 labels) CF III 0.377 [0.472,0.562] [0.065,0.197] [0.359,0.440]
Dyslexic-12-01 (4 labels) CF IV 0.383 [0.472,0.563] [0.066,0.199] [0.367,0.444]
Dyslexic-12-01 (5 labels) CF 0 0.460 [0.508,0.605] [0.0,0.187] [0.394,0.522] [0.323,0.797]
Dyslexic-12-01 (5 labels) CF I 0.458 [0.507,0.605] [0.088,0.264] [0.398,0.527]
Dyslexic-12-01 (5 labels) CF II 0.466 [0.509,0.607] [9.230,0.192] [0.393,0.520]
Dyslexic-12-01 (5 labels) CF III 0.488 [0.515,0.604] [0.066,0.192] [0.413,0.503]
Dyslexic-12-01 (5 labels) CF IV 0.487 [0.518,0.608] [0.067,0.193] [0.414,0.502]
Dyslexic-12-12 (4 labels) CF 0 0.390 [0.511,0.664] [0.003,0.243] [0.325,0.509] [0.199,0.757]
Dyslexic-12-12 (4 labels) CF I 0.376 [0.506,0.659] [0.049,0.280] [0.332,0.516]
Dyslexic-12-12 (4 labels) CF II 0.391 [0.503,0.658] [0.005,0.245] [0.341,0.523]
Dyslexic-12-12 (4 labels) CF III 0.418 [0.517,0.667] [0.028,0.244] [0.354,0.508]
Dyslexic-12-12 (4 labels) CF IV 0.424 [0.520,0.670] [0.023,0.246] [0.362,0.516]
Dyslexic-12-12 (5 labels) CF 0 0.485 [0.539,0.692] [0.0,0.239] [0.393,0.591] [0.211,0.700]
Dyslexic-12-12 (5 labels) CF I 0.484 [0.540,0.692] [0.050,0.280] [0.399,0.599]
Dyslexic-12-12 (5 labels) CF II 0.485 [0.539,0.691] [0.0,0.240] [0.396,0.593]
Dyslexic-12-12 (5 labels) CF III 0.515 [0.538,0.688] [0.023,0.240] [0.411,0.574]
Dyslexic-12-12 (5 labels) CF IV 0.513 [0.540,0.690] [0.024,0.240] [0.408,0.571]

Table 4: Means of 100 repetitions of the generalized GFS for the imprecise datasets “Dyslexic-12”,
“Dyslexic-12-01” and “Dyslexic-12-12” with 4 and 5 labels/variable.

instance duplication), as deduced from the comparison between the two last columns
in Tables 4 and 5; notice that the upper bound of the test error has been consistently
decreased in all the experiments.

From a different scope, we have found that the FRBS is powerful enough for sepa-
rating the dyslexic children from those with hyperactivity, attention disorders or other
problems. The differences between the results in the three datasets shown in Table
4 seem also to support the necessity of the class “control and revision” as a fourth
category in the diagnose. This can be seen, for instance, in the results of the dataset
“Dyslexic-12” and 4 labels, that are similar to those of “Dyslexic-12-01” and better
than “Dyslexic-12-12”. We have also observed that, if the class “control and revision”
is not used, the individuals in this class tend to be assigned to the group “no dyslexic”
rather than to the group “dyslexic”. In other words, even though the most probable
evolution of a child in this class is towards the absence of dyslexia, the existence of this
group is recommended, as it permits following the evolution of these possibly prob-
lematic schoolchildren.
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Figure 12: Boxplots illustrating the distance of the 100 repetitions of original and extended GFS in the
problem “Dyslexic-12”, “Dyslexic-12-01” and “Dyslexic-12-12” with 4/5 labels
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Crisp Low Quality Low Quality [14]
Dataset Train Test Fitness Train Test Error (Exh.) Test Error (Exh.)
Dyslexic-11-01 (4 labels) CF 0 0.332 [0.423,0.546] [0.017,0.237] [0.332,0.473] [0.375,0.566]
Dyslexic-11-01 (4 labels) CF I 0.321 [0.424,0.546] [0.019,0.224] [0.327,0.477]
Dyslexic-11-01 (4 labels) CF II 0.316 [0.418,0.540] [0.016,0.221] [0.322,0.471]
Dyslexic-11-01 (4 labels) CF III 0.338 [0.440,0.548] [0.106,0.221] [0.342,0.454]
Dyslexic-11-01 (4 labels) CF IV 0.353 [0.432,0.540] [0.106,0.222] [0.341,0.450]
Dyslexic-11-12 (4 labels) CF 0 0.350 [0.516,0.675] [0.022,0.263] [0.384,0.571] [0.491,0.600]
Dyslexic-11-12 (4 labels) CF I 0.355 [0.524,0.684] [0.025,0.254] [0.399,0.581]
Dyslexic-11-12 (4 labels) CF II 0.350 [0.517,0.677] [0.029,0.258] [0.403,0.584]
Dyslexic-11-12 (4 labels) CF III 0.388 [0.528,0.684] [0.070,0.256] [0.427,0.575]
Dyslexic-11-12 (4 labels) CF IV 0.387 [0.522,0.676] [0.068,0.256] [0.418,0.568]

Table 5: Means of 100 repetitions of the generalized GFS and original GFS for the dataset “Dyslexic-11-01”
and “Dyslexic-11-12”.
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Figure 13: Boxplots illustrating the distance of the 100 repetitions of crisp and generalized GFS in the dataset
“Dyslexic-11-01” and “Dyslexic-11-12”.
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With respect to the results in the datasets “Dyslexic-11-01” and “Dyslexic-11-12”
in Table 5 and Figure 13 (these should be compared to “Dyslexic-12-01 (4 labels)”
and ‘Dyslexic-12-12 (4 labels)” in Table 4, respectively) , the first conclusion is that
the classification power of the system decreases when the uncertain attributes are not
used in the input variables, and the difference with respect to the crisp algorithm is also
smaller, confirming our hypothesis that the use of fuzzy metainformation during the
learning can improve the results of the FRBS.

7. Concluding remarks

The relevance of the use of fuzzy metadata in the diagnosis of dyslexia is related
to the high cost of the data acquisition. Obtaining data from 65 children required
months of work, thus any progress that we can make for better exploiting of the data
justifies the use of a rather complex learning algorithm as the proposed in this paper.
We have found that the new technique makes a difference and allows us to draw sounder
conclusions from the same data than standard GFSs. In addition, in this paper we have
introduced some minor changes on the basic algorithm: the use of weighted instances
for dealing with multi-labelled instances and the use of weights in the consequents.
The first change has proven itself effective, not so the second.

Nevertheless, the main objective of the extended GFS in the scope of this research
was to obtain a FRBS from low quality data that can be used by unqualified personnel
to detect whether a children has suspicious symptoms and then suggest consulting with
the psychologist. This objective is not fully achieved, because the percentage of mis-
classifications is still high. This does not necessarily mean that this objective cannot
be achieved; being a prescreening, we should work further in extending the concept
of confusion matrix to fuzzy data and use techniques of imbalanced classification and
Bayesian minimum risk classifiers in order to obtain an adequate screening, where the
probability of a dyslexic student is not being detected can be bounded by a low enough
value.
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