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Abstract We cannot deny the effort that the scientific
community is devoting to the explanation of the features
of the crossover operator of real-coded genetic algo-
rithms and its effect over the evolutive process. This
paper is another step in that direction, we analyze the
behavior of the Confidence Interval Based Crossover
using L2 Norm (CIXL2). This crossover is based on the
learning of the statistical features of localization and
dispersion of the best individuals of the population. The
crossover obtains, by means of a L2 norm, the estima-
tors of the parameters of localization and dispersion of
the distributions of the fittest individuals. From this
estimation three virtual parents are created using the
localization parameter and the lower and upper bounds
of the bilateral confidence intervals of the gene values of
the best individuals of the population. This paper studies
the statistical features of the offspring generated by this
crossover and corroborates this study showing the
behavior of the crossover in a set of test functions.

Keywords Real-coded genetic algorithms � Statistical
features learning � Confidence intervals � L2-norm

1 Introduction

From the beginnings of the evolutionary computation,
many papers have been centered in the study of cross-
over operator. This operator is the most innovative, as
the mutation operator inherits many of the features of
the operators of random search methods [1]. The
crossover operator combines the features of two or more
individuals to create a, possibly better, offspring. The
operator is based on the idea that the combination of
good individuals will produce better individuals.

Initially, the theoretical studies were developed for
binary crossovers from the schema theory [13]. Never-
theless, genetic algorithms (GAs) that use binary cod-
ing find certain difficulties when they are used in
multidimensional continuous search spaces where a
great numerical precision is required [17]. That is the
reason why in problems of optimization in continuous
domains real-coded genetic algorithms (RCGAs) are
used [3, 7, 9, 11, 18, 23]. The first studies that justified,
in a formal way, the power of RCGAs appeared in
1991 [8, 22, 23].

Most of the studies developed for crossover of real-
coded individuals are based on empirical results, how-
ever there are a few theoretical studies worth to mention.
In [16] it is proved that the distribution of the offspring
generated by the unimodal normal distribution cross-
over (UNDX) keeps the vector mean and covariance
matrix of the distribution of the parents. This is called
statistics preservation. In [2] it is made a theoretical study
of the self-adapted features of the crossover operator
that is centered in statistical features of the population
such as the mean and the standard deviation of the
population. Its theoretical conclusions are validated in
the experimental phase. There are also other works with
similar features [5, 15].

This paper is focused on the analysis of the confi-
dence interval based crossover using L2 norm (CIXL2),
whose interesting performance in problems in continu-
ous domains has been established in previous works [12,
20]. Firstly, we will carry out a theoretical study of the
behavior of the mean and variance of the distribution of
the offspring with regard to the distribution of its par-
ents. Secondly, we will corroborate the theoretical con-
clusions in practice with several experiments of
optimization of real valued functions with different
features.

The remainder of this paper is organized as follows.
In Sect. 2 we present the definition of the CIXL2
crossover operator, and in Sect. 3 we made a theoretical
study of its behavior. The theoretical conclusions are
verified in the experimental stage whose results are
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shown in Sect. 4. Finally, Sect. 5 states the final con-
clusions of our work.

2 Confidence interval based crossover

Let b be the set of N individuals that form the popula-
tion, b� � b the subset of the n fittest individuals, and q
the number of genes on each chromosome. Let us as-
sume that the genes, bi, of the chromosomes of the
individuals in b� are independent random variables with
a normal distribution and with a localization parameter
lbi

. Then we have the model bi ¼ lbi
þ ei; for all i=1,

. . . ; q, being ei a random variable.
If we assume that the n fittest individuals form

actually a simple random sample ðbi1 ; bi2 ; . . . ; binÞ of the
normal distribution of the fittest individuals of the
population bb

i , the model can be written:

bb
ij ¼ lbb

i
þ eij; for j ¼ 1; 2; . . . ; n and i ¼ 1; . . . ; q:

ð1Þ
Let us consider the L2 norm, defined as

kbb
i k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
j¼1ðb

b
ijÞ

2
q

, then we can define the dispersion
function, D2, induced by the L2 norm as:

D2ðlbb
i
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
j¼1ðb

b
ij � lbb

i
Þ2

q

. The estimator, using this

dispersion function, of the localization parameter is the
mean of the distribution bb

i , that is,
�bb

i ¼ l̂bb
i
.

The sample mean estimator is a linear estimator, so it
has the properties of unbiasedness and consistency, and
when the distribution of the genes is normal, it follows a
normal distribution Nðlbb

i
; r2

bb
i
=nÞ. Under these assump-

tions we can construct a bilateral confidence interval for
the localization of the genes using the sample mean as
localization parameter. This confidence interval, for a
confidence coefficient 1� a, has the form:

I1�aðlbb
i
Þ ¼ �bb

i � tn�1;a=2
Sbb

i
ffiffiffi

n
p ; �bb

i þ tn�1;a=2
Sbb

i
ffiffiffi

n
p

� �

; ð2Þ

where Sb ¼
�

Pn
j¼1ðb

b
ij � �bb

i Þ
2=ðn� 1Þ

�1=2
is the standard

deviation, and tn�1 is a Student t of n� 1 degrees of
freedom.

2.1 Hypothesis of normality

In all the above framework, we have assumed that the
values of the genes of the best individuals are normally
distributed. With that hypothesis we can use 2 for
obtaining the confidence interval of every gene.

However, due to the special features of the evolu-
tionary process, it is plausible that the hypothesis of
normality would not be fulfilled in all cases. Even
when the hypothesis is fulfilled, its degree of fulfill-
ment may vary depending on the problem or the
evolutionary process. If we initialize the values fol-
lowing and uniform distribution, the most common
situation, in the first stages of the evolution the

distributions of the genes will have long tails that will
tend to diminish along the evolutionary process.
Eventually, the initial distribution will produce a dis-
tribution with very short tails and almost all the
individuals will be concentrated in a small interval
within the search space. It is also possible to have a
distribution with more than one peak when the pop-
ulation is moving from a local minimum to another
local minimum or when the population is distributed
among several local minima.

In this scenario, we have decided to assume an
a priori distribution of the genes of the best individuals
of the population, accepting that any hypothesis on the
distribution would not be fulfilled up to the same degree
during all the evolutionary process. In our case it would
be advisable to choose a distribution where the ampli-
tude of the interval is big enough to contain the confi-
dence intervals of as many distributions as possible. In
this way we guarantee that at least the 100ð1� aÞ% of
the values of the genes are within the confidence interval.
So, we will choose the distribution whose value of
tn�1a=2 is the maximum or, at least, is near the maxi-
mum. With certain restrictions, the normal distribution
is the distribution that best reflects these features. That is
the reason why we have chosen the normal distribution
to model the distribution of the values of the genes of the
best individuals of the population.

2.2 Crossover operator method

From the confidence interval of (2) we build three
individuals that are considered the parents in the pro-
posed crossover. These three parents are formed by: all
the lower limit values of the confidence intervals of the
genes, individual CILL; all the upper limit values of the
confidence intervals of the genes, individual CIUL; and
all the means of the confidence intervals of the genes,
individual CIM. These individuals divide the domain of
the gene values, Di, into three subintervals: IL

i �
½ai;CILLiÞ, ICI

i � ½CILLi;CIULi�, and IR
i � ðCIULi; bi�,

being ai and bi the bounds of the search domain.
The interval based crossover operator using L2 norm,

CIXL2, creates an offspring bs, from an individual of the
population, bf ¼ ðbf

1 ; b
f
2 ; . . . ; bf

p Þ, and the three individ-
uals, CILL, CIUL, and CIM, obtained from the confi-
dence interval. We consider these four individuals and
their fitness (being f ðbÞ the fitness value of individual b)
and distinguish three cases depending on the position of
bf in one of the three subintervals defined above. These
three cases are:

Case 1: bf
i 2 ICI

i . If f ðbf Þ � f ðCIMÞ then bs
i ¼ rðbf

i �
CIMiÞ þ bf

i else bs
i ¼ rðCIMi � bf

i Þþ CIMi.
Case 2: bf

i 2 IL
i . If f ðbf Þ � f ðCILLÞ then bs

i ¼ rðbf
i �

CILLiÞ þ bf
i else bs

i ¼ rðCILLi� bf
i Þ þ CILLi.

Case 3: bf
i 2 IR

i . If f ðbf Þ � f ðCIULÞ then bs
i ¼ rðbf

i �
CIULiÞ þ bf

i else bs
i ¼ rðCIULi� bf

i Þþ CIULi
(Fig. 1).
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where r is a uniform random number belonging to
[0, 1].

3 Theoretical analysis of CIXL2 crossover

This analysis is centered in determining the behavior
of the mean and the standard deviation of the distri-
bution of the offspring with regard to the distribution
of its parents. As the operator distinguishes three
different cases we must make a separate analysis for
each one.

3.1 Case 1

Let us assume that the gene involved in the crossover,
bf

i , is within the confidence interval, bf
i 2 ICI

i . We con-
sider that in the j-th generation bf

i 2 Nðl; r2Þ, and that,
provided that the population is large enough, the sample
of the fittest individuals of the population is also nor-
mally distributed, bb

i 2 Nðlbb
i
; r2

bb
i
Þ; and that the two

distributions are independent. With these assumptions
the distribution of the mean of the confidence interval,
CIMi, follows a normal distribution, CIMi ¼
�bb
i 2 Nðlbb

i
; r2

bb
i
=nÞ.

We have two possible events, f ðbf Þ � f ðCIMÞ with a
probability p, and f ðbf Þ < f ðCIMÞ with a probability
1� p. In the first event the distribution of the offspring is
normal, as it is a linear combination of normal distri-
butions, bs

i ¼ ð1þ rÞbf
i � rCIMi:

bs
i 2 N ð1þ rÞl� rlbb

i
; ð1þ rÞ2r2 þ r2

r2
bb

i

n

 !

: ð3Þ

In general, it can be expected that at the beginning of
the evolution r2 � r2

bb
i
and l 6¼ lbb

i
, due to the fact that

the subpopulation of the n fittest individuals is a subset
of the whole population. Along the evolution, due to the
selection pressure, l! lbb

i
and r2 ! r2

bb
i
, yielding:

bs
i ! N lbb

i
; r2

bb
i
ð1þ rÞ2 þ r2

n

� �� �

: ð4Þ

In the second event, f ðbf Þ < f ðCIMÞ, the distribution
of the offspring is normal, as it is a linear combination of
normal distributions, bs

i ¼ ð1þ rÞCIMi � rbf
i :

bs
i 2 N ð1þ rÞlbb

i
� rl; ð1þ rÞ2

r2
bb

i

n
þ r2r2

 !

; ð5Þ

and, following the same reasoning above:

bs
i ! N lbb

i
; r2

bb
i

ð1þ rÞ2

n
þ r2

 ! !

: ð6Þ

So, the distribution of the generated offspring by
means of this crossover will be a mixture of normal
distributions, and so a normal itself, of mean:

Eðbs
i Þ ¼ plbb

i
þ ð1� pÞlbb

i
¼ lbb

i
; ð7Þ

and variance:

V ðbs
i Þ ¼ p2r2

bb
i
ð1þ rÞ2 þ r2

n

� �

þ ð1� pÞ2r2
bb

i

ð1þ rÞ2

n
þ r2

 !

¼ V ðbb
i Þ p2 ð1þ rÞ2 þ r2

n

� ��

þð1� pÞ2 ð1þ rÞ2

n
þ r2

 !#

: ð8Þ

We can conclude that, if bf
i 2 ICI

i , the distribution of
the offspring obtained using a CIXL2 crossover is
normal. The mean is the same as the mean of the fittest
individuals, and the variance depends on the choice of
the parameter n, the random value r and the fitness
landscape that will determine the value of p.

3.1.1 Analysis of the variance

In this section we will analyze the relation among n, r
and p, and the influence of these three values over the
variance of the offspring. We can distinguish three cases:

a) If p ¼ P ðf ðbf Þ � f ðCIMÞÞ ¼ 0, substituting in (8)

V ðbs
i Þ ¼

ð1þ rÞ2

n
þ r2

 !

V ðbb
i Þ ð9Þ

so, if n � 1þr
1�r then V ðbs

i Þ � V ðbb
i Þ, that is, the variance of

the offspring is less or equal than the variance of the best
individuals of the population in the previous generation.

If r ¼ 0 then n � 1, and if r ¼ 1 then n!1. Con-
sidering that r is a random value in the interval ½0; 1� the
probability that V ðbs

i Þ � V ðbb
i Þ will depend on n and r.

b) If p ¼ P ðf ðbf Þ � f ðCIMÞÞ ¼ 1, following the same
reasoning, if n � � r

2þr then V ðbs
i Þ � V ðbb

i Þ.
If r ¼ 0 then n � 0, and if r ¼ 1 then n � �1=3. So,

for any value of r and n we will always have
V ðbs

i Þ � V ðbb
i Þ.

c) If p ¼ P ðf ðbf Þ � f ðCIMÞÞ ¼ 1=2, if n � 1þ2rþ2r2
3�2r�2r2 then

V ðbs
i Þ � V ðbb

i Þ. If r ¼ 0 then n � 1=3, and if r ¼ 1 then
n � �5. So the condition V ðbs

i Þ � V ðbb
i Þ will be met for

any value of r and n.
Case a), for certain values of n, favors the dispersion

of the offspring around the mean of the best individuals,
propitiating the avoidance of local minima. However,
cases b) and c) will narrow the search to a reduced area

Fig. 1 Graphic representation of case 3 of the crossover based on
confidence intervals
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around the optimum favoring the precision of the
solution and the convergence rate.

3.2 Case 2

We assume that the gene involved in the crossover, bf
i , is

outside the confidence interval, bf
i 2 IL

i . With the same
hypothesis of the previous case, we have that
bf

i 2 Nðl; r2Þ, bb
i 2 Nðlbb

i
; r2

bb
i
Þ and that the two distri-

butions are independent. The mean and variance of the
lower bound of the confidence interval, CILLi, is

EðCILLiÞ ¼ E �bb
i � tn�1;a=2

Sbb
i
ffiffiffi

n
p

� �

¼ lbb
i
� tn�1;a=2

EðSbb
i
Þ
ffiffiffi

n
p ð10Þ

As the distribution of the statistic
ðn�1ÞS2

bb
i

r2

bb
i

, under the

hypothesis of normality, follows a distribution v2n�1, then

EðS2
bb

i
Þ ¼ r2

bb
i

ð11Þ

so, ignoring terms of order n
1
2 [14]

EðSbb
i
Þ ¼ rbb

i
ð12Þ

Substituting this result in (10)

EðCILLiÞ ¼ lbb
i
� tn�1;a=2

rbb
i
ffiffiffi

n
p ð13Þ

�bb
i and Sbb

i
are independent random variables and the

variance of CILLi is obtained from

V ðCILLiÞ ¼ V ð�bb
i Þ þ t2n�1;a=2

V ðSbb
i
Þ

n
ð14Þ

If we consider that

V ðbb
i Þ ¼

r2
bb

i

n
;

V ðS2
bb

i
Þ ¼ 2ðn� 1Þ

r4
bb

i

ðn� 1Þ2
¼

2r4
bb

i

n� 1
; ð15Þ

and

V ðSbb
i
Þ ¼

V ðS2
bb

i
Þ

4r2
bb

i

; ð16Þ

then

V ðSbb
i
Þ ¼

r2
bb

i

2ðn� 1Þ : ð17Þ

Substituting in (14)

V ðCILLiÞ ¼
r2

bb
i

n
þ t2n�1;a=2

r2
bb

i

2nðn� 1Þ : ð18Þ

Depending on the crossover dynamic we have two
possible events, f ðbf Þ � f ðCILLÞ with a probability p,
and f ðbf Þ < f ðCIMÞ with a probability 1� p. In the first

case we have bs
i ¼ ð1þ rÞbf

i � rCILLi and the mean of
the distribution of the offspring is

Eðbs
i Þ ¼ ð1þ rÞEðbf

i Þ � rEðCILLiÞ ð19Þ
and the variance is

V ðbs
i Þ ¼ ð1þ rÞ2V ðbf

i Þ þ r2V ðCILLiÞ: ð20Þ
Using the equations (19) y (20) and considering a

high selective pressure, Eðbf
i Þ ! EðCILLiÞ and

V ðbf
i Þ ! V ðCILLiÞ , we have

Eðbs
i Þ ¼ Eðbf

i Þ ¼ EðCILLiÞ ¼ lbb
i
� tn�1;a=2

rbb
i
ffiffiffi

n
p ð21Þ

and

V ðbs
i Þ ¼ V ðCILLiÞð1þ 2r þ 2r2Þ

¼
r2

bb
i

n
þ t2n�1;a=2

r2
bb

i

2nðn� 1Þ

 !

ð1þ 2r þ 2r2Þ

¼ r2
bb

i

2ðn� 1Þ þ t2n�1;a=2
2nðn� 1Þ

 !

ð1þ 2r þ 2r2Þ ð22Þ

In the second case, f ðbf Þ < f ðCILLÞ with probability
1� p, and being bs

i ¼ ð1þ rÞCILLi � rbf
i , the mean and

variance of the distribution of the offspring are

Eðbs
i Þ ¼ EðCILLiÞ ¼ lbb

i
� tn�1;a=2

rbb
i
ffiffiffi

n
p ð23Þ

and

V ðbs
i Þ ¼ r2

bb
i

2ðn� 1Þ þ t2n�1;a=2
2nðn� 1Þ

 !

ð1þ 2r þ 2r2Þ ð24Þ

We have, as in case 1, the linear combination of two
distributions, its mean is given by

Eðbs
i Þ ¼pEðCILLiÞ þ ð1� pÞEðCILLiÞ ¼ EðCILLiÞ

¼ lbb
i
� tn�1;a=2

rbb
i
ffiffiffi

n
p ð25Þ

and its variance

V ðbs
i Þ ¼ p2r2

bb
i

2ðn� 1Þ þ t2n�1;a=2
2nðn� 1Þ

 !

	 ð1þ 2r þ 2r2Þ

þ ð1� pÞ2r2
bb

i

2ðn� 1Þ þ t2n�1;a=2
2nðn� 1Þ

 !

	 ð1þ 2r þ 2r2Þ

¼ V ðbb
i Þ

2nþ t2n�1;a=2
2n2

 !

	 ð1þ 2r þ 2r2Þð1� 2p þ 2p2Þ ð26Þ
We can conclude that if bf

i 2 IL
i , the mean of the

distribution of the offspring obtained using a CIXL2
crossover is , if n!1 or 1� a! 0 or rbb

i
! 0,

Eðbs
i Þ ¼ lbb

i
. So, Eðbs

i Þ � lbb
i
and the difference among
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the means will be larger if the values of n are small or the
values of 1� a are large. This effect is specially signifi-
cant in the first stages of the evolution when V ðbb

i Þ is
very large. The variance will depend on the choice of n
and 1� a, that will set the value of tn�1;a=2, the random
quantity r and the fitness landscape that will determine
p. The effect of these parameters will be analyzed in the
next section.

3.2.1 Analysis of the variance

In this section we analyze the relation among 1� a, r
and p and their influence over the variance of the off-
spring. We can distinguish three cases:
a) and b) If p ¼ P ðf ðbf Þ � f ðCILLÞÞ is 0 or 1 then

V ðbs
i Þ ¼ V ðbb

i Þ
2ðn� 1Þ þ t2n�1;a=2

2nðn� 1Þ

 !

ð1þ 2r þ 2r2Þ ð27Þ

so, if

2ðn� 1Þ þ t2n�1;a=2
2nðn� 1Þ

 !

ð1þ 2r þ 2r2Þ � 1 ð28Þ

then V ðbs
i Þ � V ðbb

i Þ.
If we suppose that r ¼ 0 the condition will be

2ðn� 1Þ þ t2n�1;a=2
2nðn� 1Þ � 1 ð29Þ

which is fulfilled if

n � 1þ
t2n�1;a=2
ffiffi

ð
p

2Þ
ð30Þ

This last condition is true for the pairs
fð1� a � 0:99; n > 4Þ; ð1� a � 0:70; n > 2Þ; :::g. If we
suppose r ¼ 1 the condition is

10ðn� 1Þ þ 5t2n�1;a=2
2nðn� 1Þ � 1 ð31Þ

which is true when

n � 3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 5

2
t2n�1;a=2

r

ð32Þ

This condition is true for the pairs fð1� a �
0:99; n > 8Þ; ð1� a � 0:70; n > 5Þ; :::g. Considering that
r is a random number within the interval ½0; 1�, for
V ðbs

i Þ � V ðbb
i Þ we must take pairs fulfilling fð1� a �

0:99; n > 8Þ; ð1� a � 0:70; n > 5Þ; :::g, and for V ðbs
i Þ >

V ðbb
i Þ the pair must fulfill fð1� a � 0:99; n � 4Þ;

ð1� a � 0:90; n � 2Þ; :::g, in other case it will depend on
the value of r.
c) If p ¼ P ðf ðbf Þ � f ðCIMÞÞ ¼ 1=2 then

V ðbs
i Þ ¼

1

2
V ðbb

i Þ
2ðn� 1Þ þ t2n�1;a=2

2nðn� 1Þ

 !

	 ð1þ 2r þ 2r2Þ ð33Þ

if the condition

2ðn� 1Þ þ t2n�1;a=2
4nðn� 1Þ

 !

ð1þ 2r þ 2r2Þ � 1 ð34Þ

is met, then V ðbs
i Þ � V ðbb

i Þ. For r ¼ 0 the condition is
reduced to

2ðn� 1Þ þ t2n�1;a=2
4nðn� 1Þ � 1 ð35Þ

that it is fulfilled if

n � 3

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2n�1;a=2
q

4
ð36Þ

that will be fulfilled for the pairs fð1� a � 0:99;
n > 3Þ; ð1� a � 0:70; n > 1Þ; :::g. For r ¼ 1 the condi-
tion

10ðn� 1Þ þ 5t2n�1;a=2
4nðn� 1Þ � 1 ð37Þ

must be met. This condition if true when

n �
7þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ t2n�1;a=2
q

4
ð38Þ

which is fulfilled for the pairs fð1� a � 0:99;
n > 8Þ; ð1� a � 0:70; n > 7Þ; :::g. Considering that r is a
random number in the interval ½0; 1�, for V ðbs

i Þ � V ðbb
i Þ

we must take pairs that fulfill fð1� a � 0:99;
n > 8Þ; ð1� a � 0:70; n > 7Þ; :::g and for V ðbs

i Þ > V ðbb
i Þ

we must take pairs that verify fð1� a � 0:99;
n � 3Þ; ð1� a � 0:89; n � 2Þ; :::g, in other case it will
depend on the value of r.

As we can see, if bf
i 2 IL

i the mean of the genes of
the offspring will be shifted from lbb

i
to bf

i , the wider
the confidence interval the more drastic this effect.
This will happen more frequently in multimodal
functions and in the first stages of evolution. On the
other hand, as the evolution progresses the variance of
the values of the genes of the offspring will tend to be
smaller than the variance of the best individuals of the
population, except to a small range of values of 1� a
and n. This way the offspring will tend to be clustered
in an area far from the best individuals and nearer to
the lower bound of the confidence interval. This will
allow changes in the tendency of the search very
useful in multimodal functions or in the first stages of
the evolution.

3.3 Case 3

For this case, bf
i 2 IU

i , the conclusions are the same of
case 2. The only difference is that the mean will be
shifted to the right, to bf

i , following

Eðbs
i Þ ¼ EðCIULiÞ ¼ lbb

i
þ tn�1;a=2

rbb
i
ffiffiffi

n
p ð39Þ
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3.4 Summary of cases

From the previous study we can conclude that in case 1,
CIXL2 will create individuals with a strong exploratory
component centered in the mean of the values of the
genes of the best individuals. Nevertheless, the ampli-
tude of the exploitation region will increase if the dis-
persion of the best individuals increases. This will
happen mainly in three situations: if the fitness land-
scape is highly multimodal, in the first stages of the
evolutive process, and with large values of n.

Cases 2 and 3 allow the generation of individuals with
a strong exploratory component that tend to place
themselves in the bounds of the confidence interval. The
variance of these individuals will be less than the vari-
ance of the best individuals, this will favor the explora-
tion and shifting of the population to the lower bound of
the confidence interval. The displacement will be more
drastic if the confidence interval is wider.

So, the balance between exploration and exploitation
near the best individuals of the population will highly
depend on the fitness landscape that will determine the
features of the best individuals of the population.
CIXL2 will be more exploratory as the multimodality
degree of the problem increases, helping the process to
avoid being trapped in local minima. On the other hand,
in unimodal problems the exploratory component will
be small encouraging a fast convergence.

4 Experimental analysis of CIXL2 crossover

This section will experimentally analyze the evolution of
the mean and standard deviation of the individuals
generated by CIXL2 crossover regarding their parents
and the best individuals of the population. We will also
study the evolution of the fitness of the offspring with
regard to its parents and the best individuals of the
population.

We have chosen for the parameters of the CIXL2
crossover n ¼ 5 and 1� a ¼ 0:7. As it is common in
GAs, there can be several copies of the best individuals
in the population; when we select n individuals we take
care that these individuals are different.

The values of n and 1� a used in this paper have been
obtained in a previous work [19] where the sensibility of
the crossover to these parameters is analyzed. In that
previous work we used the set of test functions proposed
in [6]. We considered the values for n ¼ f5; 10; 30g and
1� a ¼ f0:70; 0:90; 0:95g; the conclusion of that work
was that the values n ¼ 5 and 1� a ¼ 0:7 establish a
balance between exploration and exploitation that is
very adequate for most of the problems. However,
higher values of n and 1� a favor the exploratory
component of the crossover making the operator more
robust when optimizing multimodal functions, but also
slower in terms of convergence. Similar results have been
obtained in [21], where it is proposed the utilization of a
RCGA using CIXL2 as an alternative to classic least

squares estimation methods for non-linear models,and
in [20] where CIXL2 is applied to the optimization of
functions with restrictions.

The RCGA uses a fixed size population of 100 indi-
viduals, randomly initialized, a crossover probability of
0:6, a probability of gene mutation of 0:05, and a tour-
nament selection method with 2 opponents, and elitism.
Each experiment will be repeated 10 times with different
random seeds and the population will evolve for 100
generations. As mutation operator we have chosen the
non-uniform mutation with parameter b ¼ 5 [18] as its
dynamic nature make it very suitable for a wide variety
of problems [10].

We have analyzed the behavior of CIXL2 using three
functions [4] with different features, as this behavior
depends on the fitness landscape of each function. These
functions are shown on the following table:

Sphere is a simple, continuous, strongly convex,
unimodal and separable function. Rastrigin is a con-
tinuous, scalable, multi-modal and separable function,
its contour is made up by a large number of local min-
ima whose values increase with the distance to the global
minimum. The minimum of both functions is 0 and it is
located in the center of their domains, xi ¼ f0; 0; :::; 0g.
Sphere+4 is identical to Sphere but its optimum is
shifted from the center of the domain in order to avoid
that the RCGA will be favored by this fact. This func-
tion will illustrate the behavior of CIXL2 when the
optimum is near the bounds of the domain of the
function.

The results that are shown in the following sections
are obtained for a dimensionality of q ¼ 2 for inter-
pretability’s sake. Optimization of functions with a
higher q would require more generations for the con-
vergence of the GA and the visualization of the behavior
of the mean and standard deviation of the offspring with
regard to their parents and the best individuals of the
population in each generation would be hardly possible.
We will study the first of the two genes, as their behavior
is similar.

4.1 Sphere

Figure 2 shows the evolution of the mean of the value of
gene 0 of the offspring with regard to its parents in one
of the 10 runs of the experiment. It show how the mean

Function Expression

Sphere f1ðxÞ ¼
Pq

i¼1 x2I
xi 2 ½�5:12; 5:12�

Sphere+4 f2ðxÞ ¼
Pq

i¼1ðxi þ 4Þ2

xi 2 ½�5:12; 5:12�
Rastrigin f3ðxÞ ¼ 10qþ

Pq
i¼1ðx2i � 10 cosð2pxiÞÞ

xi 2 ½�5:12; 5:12�
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of the offspring is always less than the mean of its par-
ents and tends to 0, the mean value of the 0 allele of the
best individuals (CIM0), as it was proved in the theo-
retical study. This behavior is most marked in the last
generations when the individuals of the population are
concentrated in the region bounded by the confidence
interval.

We can observe in the figure that, in most genera-
tions, when the parents are placed in one side of the
optimum the offspring is situated in the opposite side but
nearer the optimum. This is due to the attraction effect
of CILL, CIM and CIUL individuals when they have
better fitness than the parents. This way, the searching
process tends to be centered around the optimum with a
search domain increasingly restricted. As the optimum is
in the center of the domain an effect of zig-zag is ob-
served around the optimum that it is shown on Fig. 2.
So, as the evolutive process proceeds the search becomes
more exploitative in contrast with the more exploratory
search of the first stages. In both cases, the search is
driven by the best n individuals of the population.

The Fig. 2 represent the values of gene 0 of CILL,
CIM and CIUL individuals. Their values converge very
fast towards the optimum from a large initial amplitude
to a small final amplitude that favors the fine tuning of
the solution. This behavior is quite reasonable as Sphere

is an unimodal and strongly convex function, and
CIXL2 centers the search in the subset of the best
individuals of the population. Also, its exploitative
component is emphasized in this kind of functions as we
have stated in the theoretical study.

Figure 3 shows, in logarithmic scale, the standard
deviation of the values of gene 0 of parents and offspring
on every generation and the value of the standard
deviation of gene 0 of the best n individuals. We can
observe that the variance of the offspring is always less
or equal than the variance of the parents with an strong
tendency to converge towards the best individuals of the
population, which favors the convergence of the algo-
rithm. However, due to the features of the function, the
best individuals quickly concentrate around the opti-
mum and their standard deviation sensibly differs from
the deviation of the offspring which has larger diversity.
Although, the standard deviation of the offspring tends
to approach the deviation of the best individuals.

It is noticeable the exponential decrease of the stan-
dard deviation of the best individuals for this functions.
Such exponential decrease helps the convergence and the
fine tuning of the solution.

We can see in Fig. 4, in logarithmic scale, how the
averaged fitness of the best individuals on the 10 runs of
the RCGA of the generated offspring from the parents is
always better and tends to approach to the best indi-
viduals of the population. This results is coherent with
Fig. 2 where the mean of the genes of the offspring is
nearer the optimum than its parents, and along the
evolution this mean tends to the mean of the best indi-
viduals. This feature, together with the fact that the
function is convex and unimodal, guarantees in all cases
an improvement in the fitness of the offspring with re-
gard to its parents and a progressive tendency to the best
individuals.

Figure 4 also shows how the averaged value of the
best n individuals and the best individual of the popu-
lation decreases exponentially, the later being slightly
better. This verifies the fast convergence and the fine
tuning of the solution of CIXL2 in unimodal functions
similar to Sphere.

Fig. 2 Values of gene 0 in one of the 10 runs of the RCGA for CILL,
CIM and CIUL individuals, and averaged values of parents and
offspring for Sphere function

Fig. 3 Standard deviation in logarithmic scale of gene 0 in one of the
10 runs of the RCGA for all the parents, offspring, and n best
individuals in a generation for Sphere function

Fig. 4 Averaged fitness in logarithmic scale in 10 runs of parents,
offspring, the best and the n best individuals of the population for
Sphere function
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4.2 Sphere+4

The behavior of CIXL2 in this function is somewhat dif-
ferent from the behavior for the original Sphere function.
On Fig. 5 we can see how, as in Sphere, the mean of gene 0
of the generated offspring is closer to themeanof the best n
individuals than the mean of its parents, and tends to the
mean of the best n individuals that is located around the
optimum in�4. However, the alternation of sign between
parents and offspring does not happen, in contrast with
Sphere function. In this case, the mean of the parents is
usually above the optimum value and the mean of the
offspring is below the optimum value. This is due to the
fact that CIXL2 tends to balance the population around
the mean of the best individuals of the population; as the
optimum is shifted to the bound of the domain and
the initialization of the population is uniform, most of
the parents have values above �4. So, the crossover gen-
erates children in the opposite side, the interval ½�4; 5:12�,
in order to balance the population and make the mean
of the population tend to the best individuals.

The speed of convergence, as in Sphere, is very high.
The wideness of the confidence interval, delimited by
CILL0 and CIUL0, diminishes quickly and the individuals
of the population concentrate speedily around the con-
fidence interval.

The behavior of parents and offspring in terms of
standard deviation, Fig. 6, is similar to their behavior in
Sphere function. Nevertheless, the standard deviation of
the best individuals suffers wide oscillations for a short
period of time once it reaches its minimum. One possible
reason of this behavior is the existence in the population
of several copies of the best individuals. In such cases,
the selection of n different individuals could lead to
consider individuals far from the optimum value. This
suboptimal individuals will contribute to an exploration
of the search space even in advanced stages of evolution,
which could be very useful in multimodal functions.

Figure 7 shows the behavior of parents and offspring
in terms of fitness value. This behavior is almost iden-
tical to the case of Sphere, with more differences between
parents and offspring at the beginning of the evolution.
The behavior of the averaged fitness of the best indi-
viduals reflects the effect in the standard deviation that
we have discussed in the previous paragraph.

4.3 Rastrigin

Figure 8 shows how once the population is stabilized
around the mean of the best individuals, the mean of the
offspring is near than its parent of the mean of the best

Fig. 5 Values of gene 0 in one of the 10 runs of the RCGA for CILL,
CIM and CIUL individuals, and averaged values of parents and
offspring for Sphere+4 function

Fig. 6 Standard deviation in logarithmic scale of one of the 10 runs of
parents, offspring and best n individuals in a generation for function
Sphere+4

Fig. 7 Averaged fitness in logarithmic scale in 10 runs of parents,
offspring, best and n best individuals of the population for function
Sphere+4

Fig. 8 Values of gene 0 in one of the 10 runs of the RCGA for CILL,
CIM and CIUL individuals, and averaged values of parents and
offspring for Rastrigin function
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individuals of the population. But, during the evolution,
it can happen that the best individuals would concen-
trate around a local optimum and the amplitude of the
confidence interval would drastically diminish. This
stage will end if the confidence interval widens and the
mean of the best individuals is shifted to the optimum,
which will happen when some of the best individuals
were outside the neighborhood of the local minima. This
fact would happen if the status of the evolution corre-
sponds with one of the cases of the theoretical study
where the mean of the offspring is shifted to the bounds
of the domain or the standard deviation increases, pro-
pitiating the creation of individuals outside the neigh-
borhood of the local minima. The mutation operator
will also contribute to the creation of such individuals.

The convergence of the best individuals to local
minima will be less probable with a larger n. But, once
the best individuals are trapped in local minima is easier
to get out of them if n is small, because the impact of an
individual far from the local minima will be more
important. Moreover, it is more probable that in a few
generations there will be several copies of the best indi-
viduals and the algorithm must look for alternative
individuals that help to abandon the local minima.

Figure 8 shows how in this transition periods, when
the mean is shifted and the confidence interval becomes
very wide, the offspring does not have a clear tendency
change. One possible explanation is that, due to the
multimodality of the function, the individuals CILL,
CIM and CIUL do not always have a better fitness than
the parents. The offspring is not strongly attracted to the
confidence interval if these individuals are worse than
the parents.

On Fig. 9 we can see how the standard deviation of
the offspring is not always less that the deviation of its
parents, specially in the transition periods when the
standard deviation of the best individuals is very large,
even larger than the deviation of the parents and off-
spring. This is a reasonable behavior if we take into
account the multimodality of the function and Fig. 8.
On the other hand, in more advanced stages of evolution
the standard deviation hit high peaks after reaching a

minimum, as in Sphere+4. In this occasion the peaks
are more numerous as the function is multimodal.
Nevertheless, the reason why these peaks appear is the
same that in Sphere+4.

On Fig. 10 we can see how the averaged fitness of the
offspring is not always better than the fitness of its
parents, due to the multimodality of the function. In
contrast with the two previous functions, at the begin-
ning the value of the function decreases slowly till the
optimum is targeted and the descent becomes exponen-
tial. The descent in the value of the best individuals is
clearly stepped in the transition stage with abrupt fells in
the transitions between different local minima. The fit-
ness of the best individuals also suffers oscillations in the
last stages of the evolutionary process in concordance
with the behavior of the standard deviation.

5 Conclusions and future work

In this paper we have shown the features of CIXL2
crossover, both theoretically and experimentally. As the
theoretical study assumes several hypothesis, such as
normality and independence of the distributions, that
are difficult to verify in real problems, we have carried
out the experimental study to support that the theoret-
ical conclusions have their correspondence in the
experiments. Nevertheless, as the hypothesis are not al-
ways fulfilled in the experiments, the behavior of the
mean and standard deviation developed in the theoret-
ical study must be apprehended in terms of tendencies in
the experimental study.

In the experimental study, we have corroborated that
CIXL2 generates an offspring that tends to approach
CILL, CIM and CIUL individuals, that is, the mean of
the best individuals of the population within a certain
confidence interval, provided that the fitness of these
individuals is better than the fitness of the rest of indi-
viduals that participate in the crossover. These virtual
parents summarize the features of the best individuals of
the population, and transmit such features to the off-
spring if they mean an evolutive improvement. In uni-
modal functions, such as Sphere and Sphere+4, where

Fig. 9 Standard deviation in logarithmic scale of gene 0 in one of the
10 runs of parents, offspring, and best n individuals in a generation for
Rastrigin function

Fig. 10 Averaged fitness in logarithmic scale of parents, offspring,
best and n best individuals for Rastrigin function
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the fitness of the virtual parents is better than the fitness
of the parent from the population, the generated indi-
viduals are always closer to the best individuals than its
parents, approaching quickly the mean of the best
individuals. But, in multimodal functions, such as
Rastrigin, the fitness of CILL, CIM and CIUL indi-
viduals is not always better than the fitness of the parent
and the offspring does not tends clearly to these indi-
viduals till their fitness is improved.

We have also shown that in unimodal functions
CIXL2 crossover reduces the standard deviation of the
offspring with regard to the deviation of its parents. The
deviation of the offspring tends to the deviation of the
best individuals. This tendency is not so clear in multi-
modal functions where, during certain periods of time,
the standard deviation of the offspring is larger than the
deviation of its parents and even larger than the devia-
tion of the best individuals of the population.

So, we can conclude that CIXL2 establishes a balance
between exploration and exploitation around the best
individuals of the population. This balance depends on
the shape of the fitness landscape, as this shape deter-
mines the features of the distributions of the best indi-
viduals. CIXL2 will be more exploratory as the
multimodality of the function increases, diminishing the
risk of being trapped in local minima. In unimodal
functions the exploitative component will be predomi-
nant allowing a fast convergence. In both cases, at the
last stages of the evolution, when the best individuals are
concentrated around the optimum, the crossover will be
mainly exploitative, favoring a local fine tuning of the
solution.

The theoretical study states that the statistical fea-
tures of the offspring depend not only on the fitness
landscape, but also on the parameters of the crossover.
Although we have made some efforts in this direction,
[19], one of our future research lines is an exhaustive
study of the optimal values for the number of best
individuals, n, the confidence coefficient, 1� a, and the
range of r for each kind of problem.

It will also be interesting a study of some dynamic
strategies of modification of the values of the parameters
of the crossover along the evolution. The aim would be
to increase the exploratory component of the crossover
at the beginning of the evolution and the exploitative
component at the end of the evolution, in order to im-
prove the robustness, speed of convergence and local
fine tuning to the RCGA.
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