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Abstract Data Mining is most commonly used in at-
tempts to induce association rules from databases which
can help decision-makers easily analyze the data and
make good decisions regarding the domains concerned.
Different studies have proposed methods for mining as-
sociation rules from databases with crisp values. How-
ever, the data in many real-world applications consist of
interval and fuzzy values. In this paper we address this
problem, and propose a new data-mining algorithm for
extracting interesting knowledge from databases with
imprecise data. The proposed algorithm integrates im-
precise data concepts and the fuzzy apriori mining algo-
rithm to find interesting fuzzy association rules in given
databases. Experiments for diagnosing dyslexia in early
childhood were made to verify the performance of the
proposed algorithm.
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1 Introduction

Data Mining (DM) is the process used for the automatic
discovery of high level knowledge from real-world, large
and complex data sets. The use of DM to facilitate de-
cision support can lead to improved performance in de-
cision making and can enable the tackling of new types
of problems that have not been addressed before [25].

Discovering association rules is one of several data
mining techniques described in the literature [15]. Asso-
ciation rules are used to represent and identify depen-
dencies between items in a database [38]. An association
rule is an expression X → Y , where X and Y are sets
of items and X ∩ Y = �. It means that if all the items
in X exist in a transaction then all the items in Y are
also in the transaction with a high probability, and X

and Y should not have a common item [1,2].
Research in this field has mainly concentrated on

boolean and quantitative association rules [2,4,6,16,
32]. However, in recent years many researchers have
proposed methods to mine fuzzy association rules from
quantitative data in order to solve some of the prob-
lems introduced by quantitative attributes [9,18,19,22].
The use of fuzzy sets to describe associations between
data extends the type of relationships that may be rep-
resented, facilitates the interpretation of rules in lin-
guistic terms, and avoids unnatural boundaries in the
partitioning of attribute domains [11,12,14,20,31].

Various studies have proposed methods for mining
association rules that have been focused on databases
with crisp values, however the data in many real-world
applications have a certain degree of imprecision (e.g.,
interval or fuzzy values). Sometimes, this imprecision
is small enough to be safely ignored. On other occa-
sions, the uncertainty of the data can be modeled by a
probability distribution. However, there are other prob-



2 A.M. Palacios, J. Alcalá-Fdez

lems where the imprecision is significant and a proba-
bility distribution is not a natural model [7]. Designing
DM algorithms, able to deal with the uncertainty of
the data and exploit better the information contained
in low quality sets of data (LQD), presents a challenge
to workers in this research field [26,35].

Fuzzy statistic considers the use of fuzzy sets to rep-
resent imprecise knowledge about the data [8,37]. Re-
cent works in fuzzy statistic suggest using a fuzzy rep-
resentation when the data are known through a family
of confidence intervals [10], using a possibilistic repre-
sentation to model these kinds of data [28,29]. This
representation assumes that a fuzzy set can be identi-
fied as a nested family of sets where each one of them
contains the true value of the object with a probability
greater than or equal to a certain bound [10].

In this paper, we integrate LQD concepts with the
fuzzy apriori mining algorithm proposed by Hong et al.
in [18] in order to obtain high quality fuzzy associa-
tion rules from databases with LQD. We extend this
algorithm considering a possibilistic representation to
model the input data with inaccurate values, transform-
ing each input value into a fuzzy set. Let us consider a
set of linguistic terms L, L = {l1, . . . , ln}, representing
a fuzzy partition. An inaccurate input will be defined
by the fuzzy set Ã, Ã={µ1/l1 + . . .+ µn/ln}, where µi

is an interval of probabilities instead of a crisp value as
in [18] where µi ∈ [0, 1]. On the other hand, the confi-
dence value of an association rule will be defined by an
interval of probabilities, which will determin the prob-
ability that an association rules provides a high level of
knowledge.

We will also present an experimental study to show
the behaviour of the proposed approach using a low
quality set of data for the diagnosis of dyslexia in early
childhood (Inexpert-57). First, we will revise the fuzzy
association rules obtained with our approach via sup-
port and confidence. Then, we will analyze the level of
knowledge of the fuzzy association rule obtained by our
proposal from the dataset Inexpert-57. Finally, a study
of complexity and scalability of the proposal approach
will be shown.

This paper is organised as follows. The next sec-
tion describes the fuzzy mining algorithm proposed by
Hong et al. to mine association rules from datasets with
quantitative values. Section 3 introduces LQD, high-
light their representation and interpretation. Section 4
details the fuzzy data-mining algorithm proposed to ob-
tain fuzzy association rules from low quality datasets.
An example is given to illustrate the proposed algo-
rithm in Section 5. Section 6 shows the results obtained
by our proposal over a real-world dataset. Finally, in
Section 7 some concluding remarks are made.

2 Fuzzy data-mining algorithm for quantitative
values

The goal of the fuzzy data-mining algorithm presented
in [18] by Hong et al. is to find interesting itemsets and
fuzzy association rules in data bases with quantitative
values, discovering interesting patterns among them.

This method consists of transforming each quanti-
tative value into a fuzzy set of linguistic terms using
membership functions, which assumes that the mem-
bership functions are known in advance. The algorithm
then calculates the scalar cardinality of each linguistic
term in all the instances as the count value and checks
whether the count of each linguistic term is larger than
or equal to the minimum support value to put these
items in the large itemsets Lr. The mining process,
based on fuzzy counts, considers that the intersection
between the membership value of each item is the min-
imum operator. Finally, this method obtains the fuzzy
association rules by the criterion used in the Apriori
algorithm [2].

Hong et al. proposed in [17] a mining approach that
integrated fuzzy-sets concepts with the Apriori algo-
rithm to find interesting itemsets and fuzzy associa-
tion rules in the instances with quantitative values.
Although this approach could quickly find interesting
patterns, some patterns might be missed since only the
linguistic term with the maximum cardinality in each
item is used in the mining process.

In [18], all the important linguistic terms in the min-
ing process are considered, generating a more complete
set of rules than the method proposed in [17], although
its computation time increases. Hong et al. determine
that there is a trade-off between the computation time
and the completeness of rules. Choosing an appropiate
learning method thus depends on the requirements of
the application domains.

3 Low quality data: Representation and
interpretation

In low quality datasets we can not accurately observe
the properties of the object. Consequently, we can not
perceive exactly the value of the object, neither we have
a complete knowledge of the probability distribution of
the observed and the exact value. This meta-knowledge
about an imprecisely observed object will be modeled
with a possibilistic representation that assumes that a
fuzzy set can be identified or represented as a possibility
distribution, that is to say, with the family of all the
probability distributions, where each α-cut of a fuzzy
feature is a random set that contains the unknown crisp
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value of the feature with a probability greater or equal
than 1-α-cut [10] (see Figure 1).

108

143min max α=0

α=0.4

Fig. 1 Fuzzy representation of vague data. Left: A missing
value is codified with an interval that spans the whole range of
the variable, or P ([min,max]) ≤ 1. Right: A compound value
(in this example, five different measurements of the variable)
can be described by a fuzzy membership, that can also be
understood as an upper probability. Each α-cut contains the
true value of the variable with probability at least 1− α.

The possibilistic representation consists of understan-
ding a fuzzy membership function as a nested family of
sets where each one contains the true value of the ob-
ject with a probability greater than or equal to a cer-
tain bound. Notice that this includes the interval and
the crisp situations as particular cases. Therefore, this
representation, which is commonly used in fuzzy statis-
tics, provides us with a common framework for reason-
ing with numbers, words, interval or fuzzy values and
also compound measures or different values of the same
attributes as described in [29].

We can determine that there are several kinds of
representations of LQD. This paper works with three
different types of imprecise data, with an interpretation
based on a fuzzy statistic. In the next sections we will
introduce the representation of the LQD used and the
calculation of their membership value.

3.1 Representation and dominion of low quality values

Real-world datasets are composed of groups of low qua-
lity items where each item describes one property of
an object but without observing the real value of the
object in this item. The representation and dominion of
each low quality item can be defined by several kinds
of inaccurate values:

1. From an interval value X̄ = [x1, x2], where x1 and
x2 are included in the domain of the item. For exam-
ple, an item with a dominion between [0,10] could
be defined as X̄ = [1.5, 3.6].

2. From a fuzzy subset X̃ of a finite set of linguistic
labels associated to a Ruspini fuzzy partition [27].
For instance, let us assume an item with a finite do-
main of five linguistic labels L={Bad, Slow, Regu-
late, Normal, Good}. In this case, a crisp value could

be represented with the fuzzy subset {0.0/Bad +
0.2/Slow + 0.8/Regulate + 0.0/Normal + 0.0/Good},
where the sum of the memberships of a crisp mea-
surement is 1. Nonetheless, an imprecise or vague
measurement could be represented by the fuzzy set
X̃ ∈ F(L) as X̃ = {0.1/Bad + 0.3/Slow + 0.9/Reg-
ulate + 0.0/Normal + 0.0/Good} where, the mem-
bership of each partition defines the upper mem-
bership in that partition [30]. In this case, the sum
of the memberships of an inaccurate value can be
greater than 1.

3. From a fuzzy subset X̃ of a finite set of linguistic
labels, as in the previous representation, but now,
the membership of each partition will be defined
not only with the upper membership but also with
the lower membership. For the example of the previ-
ous representation, the fuzzy set could be defined as
X̃ ={[0,0.1]/Bad + [0.1,0.3]/Slow + [0.7,0.9]/Reg-
ulate + 0.0/Normal + 0.0/Good}.

3.2 Fuzzy membership with low quality data

The fuzzy representation introduced in the previous
section can also be interpreted as a set of bounds for the
probability of the result of the experiment [13]. For ex-
ample, the fuzzy set {0.0/Cold + 0.2/Warn + 0.9/Hot}
means that the probability of the temperature being
‘Cold’ is 0, the probability of ‘Warm’ is not greater than
0.2 and the probability of ‘Hot’ is not greater than 0.9
[30].

In accordance with the representation of the impre-
cise inputs of the dataset and from the interpretation
of LQD, the objective is to obtain a set of bounds
of probabilities for each linguistic label li that com-
poses the fuzzy set Ã of a finite set of linguistic labels
L={l1,. . . ,ln}, where n is the number of labels (see Ta-
ble 1).

In Table 1, we can observe that the upper (p∗) and
lower (p∗) bounds of probabilities are directly obtained
from the value identified with the letter ‘C’. This means
that, if we have a fuzzy set of linguistic labels L={l1,
. . . , ln}, the item represented by the fuzzy subset X̃ =
{[x1l, x2l]ll , . . ., [x1m, x2m]lm}, where LE={ll,. . . ,lm}
⊆ L, is interpreted as a set of bounds of probabilities
for each linguistic label li, where li ∈ LE . Concretely:
the lower (p∗) and upper (p∗) probabilities of li are
p∗i = x1i and p∗i = x2i, respectively. If the linguistic
label li ∈ L is not contained in the subset of linguistic
labels LE then p∗i and p∗i are zero.

From the fuzzy subset identified with the letter ‘B’,
see Table 1, and according to [30] the corresponding
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Id. Dataset of one item Interpretation Training Dataset
A X̄=[x1, x2] {[p∗1, p∗1 ]Al1 , . . ., [p∗n, p∗n]Aln

}
...

...
...

B X̃={xl/ll, . . ., xm/lm } Fuzzy membership ⇒ {[p∗1, p∗1 ]Bl1 , . . ., [p∗n, p∗n]Bln
}

...
...

...

C X̃={[x1l, x2l]/ll, . . ., [x1m, x2m]/lm } {[p∗1, p∗1 ]Cl1 , . . ., [p∗n, p∗n]Cln
}

Table 1 Fuzzy membership as a set of bounds of probabilities for each linguistic label li of the fuzzy set.

lower bound of each linguistic label is implicit from this
fuzzy subset (1):

p∗i ≥ 1− (p∗l + . . .+ p∗i−1 + p∗i+1 + . . .+ p∗m), li ∈ LE .(1)

For instance, from the fuzzy set {0.0/Cold + 0.2/ Warm
+ 0.9/Hot}, the lower bound of ‘Warm’ will be p∗Warm

≥ 1 - (p∗Cold+p∗Hot)=0.1. As in the previous case, if the
linguistic label li ∈ L is not contained in the subset of
linguistic labels LE then p∗i and p∗i are zero.

However, from the interval value identified with the
letter ‘A’ (X̄=[x1,x2]), the upper and lower bounds are
not implicit. Let us suppose that we have a crisp percep-
tion “x” of the properties of an object and a fuzzy set
Ã with a finite set of linguistic labels, L={l1, . . . , ln},
where “n” is the number of labels. The membership
function will be:

fuzz(x)(li) = Px(li) |
n∑

i=1

Px(li) = 1. (2)

If the object is imprecise and all our information is that
“x ∈ X̄”, the upper and lower bounds of probabilities
of each linguistic label are obtained as:

fuzz(X̄)(li) = {fuzz(x)(li) |x ∈ X̄}. (3)

The imprecise object defined by an interval X can
be considered as vague data, due to the intrepretation
defined in [10], where the information of a random vari-
able “x” is:

P (x ∈ [min,max]) ≤ 1 (4)

Figure 2 shows that the set of bounds of probabili-
ties for each linguistic label li, which composes the fuzzy
set, are obtained from the different representations of
low quality inputs (‘A’, ‘B’ and ‘C’).

4 Fuzzy data mining algorithm and low quality
data

In this section, we describe in detail our fuzzy data-
mining algorithm to obtain fuzzy association rules from
datasets with LQD. We take the following variables as
the parameters or inputs of this new proposal:

– A low quality dataset D̃ that is composed of t in-
stances, where each one contains m attributes, and
where X̃i

j represents the item j, 1 ≤ j ≤ m, in the
instance i, 1 ≤ i ≤ t. This implies that the instance
i of D̃ will be formed by (5):

D̃i = {X̃i
j}j=1...m (5)

– A set of membership functions S={L1, . . ., Lm},
where m is the number of attributes and Lj rep-
resents the finite set of linguistic labels which, in
turn, are associated to a Ruspini fuzzy partition Lj

= {l1,. . . ,ln}, where n is the number of linguistic
labels.

– A predefined minimum support value α.
– A predefined confidence value λ.
– The number of cuts to obtain the possible real va-

lues.
– The number of times γ that we sweep the probabil-

ities of each possible value obtained with the cuts.

The objective is obtain a set of fuzzy association rules
from LQD. To achieve this objective the steps are shown
below:

Step1: Transform each item X̃i
j , with 1 ≤ j ≤ m, of

each instance D̃i, 1 ≤ i ≤ t, into a fuzzy set
interpreted as a set of bounds of probabilities
for each linguistic term of Lj (P i

j ={[p∗1, p∗1]il1 ,
. . ., [p∗n, p∗n]iln}).

Step2: Calculate the frecuency of occurrence of item j

in each linguistic term “k” of Lj , that is to say,
Ljk

where “k”, 1 ≤ k ≤ n, represents the parti-
tion k in the set of linguistic terms of the item j,
therefore Lj = {l1,. . . ,lk,. . . ,ln} and Ljk

= lk.

CountLjk
=

⊕t
i=1 P

i

jk
=

⊕t
i=1[p∗k, p∗k]ilk (6)

where t represents the number of instances and⊕
is the fuzzy arithmetic-based sum [21]. The

percentage of CountLjk
will be defined as:

CountLjk
(%) = 1

t

⊕t
i=1[p∗k, p∗k]ilk (7)

All Ljk
are collected to form the candidate set

Cr of r-itemsets, where r represents the number
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Id.

1

2

3

Dataset

X=[x1, x2]

X={[x1l,x2l]/ll,�,[x1m,x2m]/lm}

X={xl/ll,�,xm/lm}

Training Dataset/Objective

{[p*1,p*1]¹l1,�,[p*n,p*n]¹ln}

{[p*1,p*1]²l1,�,[p*n,p*n]²ln}

{[p*1,p*1]³l1,�,[p*n,p*n]³ln}

p*i  ≥ 1 – (p*l+�+p*i-1+p*i+1+�+p*m) and p*i = xi      li є LE

p*i = 0 and p*i = 0                                                   li є LE, li є L

p*i = x1i and p*i = x2i       li є LE

p*i = 0 and p*i = 0          li є LE, li є L

LE = {ll,�,lm}  Set of labels in the dataset

L = {l1,�,ln}  Set of labels in the training dataset

LE ϲ  L 

fuzz(X)(li) = { fuzz(x)(li) |x є X }, li є L

Fig. 2 Set of bounds of probabilities for each linguistic term li ∈ L with L={l1,. . . ,ln}.

of items kept in the candidate set, initially r =
1:

Cr = {∪{Ljk
, ∀k |1 ≤ k ≤ n},

∀j |1 ≤ j ≤ m} (8)

Step3: Check whether CountLjk
(%) for all r-itemset

Ljk
of Cr (k=1 to n for all j=1 to m) is larger

than or equal to the predefined minimum sup-
port α. If CountLjk

(%) satisfies this condition
then the set r-itemsets (Lr) will contain Ljk

.
As CountLjk

(%) is defined by a set of bounds
of probabilities, this condition is satisfied if the
upper bounds (p∗k) is larger than or equal to α.
Thus, all possibly occurring itemsets are con-
sidered. The option of the lower bounds (p∗k)
has been discarded due to the fact that, if an
item is imprecise in all the instances then this
item is never considered. Lr, will be the next
set:

Lr = {Ljk
| max{CountLjk

(%)} ≥ α,
Ljk
∈ Cr} == {Ljk

| p∗k ≥ α, Ljk
∈ Cr}

(9)

Step4: If Lr is not null, then do the next step; other-
wise, exit the algorithm.

Step5: Join the r-itemsets that compose Lr to generate
the new candidate set Cr+1. This set Cr+1 is
obtained in a similar way to the Apriori algo-
rithm [2] except that two Ljk

with the same
attribute j can not simultaneously exist in an
itemset in Cr+1 [18].

Step6: For each (r+1)-itemset obtained in Cr+1, do
the following substeps:

(a) Calculate the fuzzy value of each (r+1)-
itemset (s), of Cr+1, for each instance Di.
The fuzzy value will be a set of bounds
of probabilities obtained from each itemset
that composes (r+1)-itemset:

P
i

s = P
i

1

∧
. . .

∧
P

i

(r+1) (10)

The product t-norm generalizes the agre-
gation or combination between the sets of
probabilities of each itemset of (r+1)-itemset.

P
i

s = P
i

1

∧
. . .

∧
P

i

(r+1) =
⊗(r+1)

j=1 P
i

j (11)

(b) Calculate the frecuency of occurrence of each
(r+1)-itemset s as:

Counts =
⊕t

i=1 P
i

s
(12)
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The percentage of Counts will be defined
as:

Counts(%) = 1
t

⊕t
i=1 P

i

s
(13)

(c) If max{Counts(%)}, is larger than or equal
to the minimum support α then, put the
(r+1)-itemset s in Lr+1.

Step7: If L(r + 1) is null then continue with the next
steps, otherwise update the number of itemsets
in the set of candidates (r=r+1) and repeat the
steps 5 and 6.

Step8: Collect in R the itemsets of each Li, where 2 ≤
i ≤ (r + 1):

R = {Li, 2 ≤ i ≤ (r + 1)} (14)

Step9: Construct all the possibles association rules (X
→ Y) from each large q-itemset s, q ≥ 2, with
items (s1, s2,. . ., sq), of the set R (15):

s1 ∧ . . . ∧ sk−1 ∧ sk+1 ∧ . . . ∧ sq →
→ sk, k = 1 . . . q

(15)

Step10: Determine whether the association rules ob-
tained are relevant and provide interesting pat-
terns or high level knowledge from LQD. Two
substeps are required to determine whether an
association rule is relevant or not:

(a) Calculate the confidence of the rule.
(b) Comparate the previous confidence with the

predefined confidence threshold λ.
Let us suppose that we have a crisp dataset,
Di, the confidence of one association rule ob-
tained from q-itemset s of the set R, Confi-
dence(X → Y)(Ps1 ,...,Psq ), will be defined as:

∑t
i=1 P i

s∑t
i=1(P i

s1
∧...∧P i

sk−1
∧P i

sk+1
∧...∧P i

sq
)

=

= Counts

Countanteced.

(16)

If the inputs are imprecises, D̃i, the confidence
will be defined by an interval value between
[0,1] that represents the upper and lower bounds
of this rule X→Y (17):

Conficende(X → Y )(P̄s1 ,...,P̄sq ) =
= {Confidence(X → Y )(xs1 ,...,xsq ) |
Countanteced. > 0, ∀xsj

∈ P̄sj
}

(17)

The computational cost of Conficende(X →
Y ) is very high and moreover, as the confidence
value of a rule is defined by an interval-value
that contains the real and unknown exact value
of the confidence, depending on the values of
xsj , the rule could be relevant or not. So, if the
value of λ is contained in this interval-value we

do not know whether or not the rule provides
interesting information. An approximation of
such an interval-value is defined in this pro-
posal.
Let us consider a q-itemset s of the set R where
the association rule is s1 ∧ . . .∧ sq−1 → sq and
where Counts = [x1, x2] =X and Countanteced.

= [y1, y2] = Y . In order to determine the real
value of X and Y some “cuts” are applied to
obtain the possible real value of each interval,
Xcut =[x1, x2]cut= xj where xj ∈ X, so that
each cut (xj) is assigned a random probability
(Pxj

) of being the real value and, where the
sum of all probabilities, of all cuts, have to be
1:

PX =
∑cuts

c=1 PXc
=

∑cuts
c=1 P[x1,x2]c = 1 (18)

PY =
∑cuts

c=1 PY c
=

∑cuts
c=1 P[y1,y2]c = 1 (19)

where cuts indicates the number of possible
real values that are obtained from X and Y .
The possible values of each set of bounds of
probabilities X and Y are:

VX = {Xc, c =1 to cuts} (20)

VY = {Y c, c =1 to cuts} (21)

From a value of VY (yj ∈ VY ) and a value of the
set VX (xj ∈ VX), the rule would be deemed
relevant if:

xj ≥ yj ∗ λ, xj ≤ yj , yj > 0 (22)

The possible value xj could have a low proba-
bility of being the real value. As a consequence,
to determine if the rule is relevant besides sat-
isfying (22) the Pxj ≥ 0.5. Notice that, for each
value of the set VY (yj ∈ VY ), all possible val-
ues of the set VX have been considered and a
new set C = {Cyj |yj ∈ VY } is obtained from
the probabilities that determine whether one
rule is relevant or not for each value of the set
VY (yj ∈ Y ):

Cyj =
∑cuts

i=1 Pxi ≥ 0.5 |xi ≥ yj ∗ λ,
xi ≤ yj , yj > 0

(23)

For instance, let us suppose X=[0.4,0.8] and Y
= [0.4,1], where cuts=4 and λ=0.6. This im-
plies that:

VX = {x1, x2, x3, x4} = {0.4, 0.53, 0.66, 0.8}

VY = {y1, y2, y3, y4}) = {0.4, 0.6, 0.8, 1}
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and the random probabilities obtained of being
the possible values are:

PX = 0.15 + 0.58 + 0.2 + 0.07 = 1

PY = 0.01 + 0.28 + 0.4 + 0.31 = 1

where, the set C will be:

C = {Cy1 , Cy2 , Cy3 , Cy4}

where:

Cy1 = (0.15) ≤ 0.5 |0.4 ≥ 0.4 ∗ 0.6,
0.4 ≤ 0.4, 0.4 > 0

Cy2 = (0.15 + 0.58) ≥ 0.5 |
(0.4 ≥ 0.6 ∗ 0.6, 0.4 ≤ 0.6, 0.6 > 0)
(0.53 ≥ 0.6 ∗ 0.6, 0.53 ≤ 0.6, 0.6 > 0)

Cy3 = (0.58 + 0.2 + 0.07) ≥ 0.5 |
(0.4 ≤ 0.8 ∗ 0.6, 0.4 ≤ 0.8, 0.8 > 0)
(0.53 ≥ 0.8 ∗ 0.6, 0.53 ≤ 0.8, 0.8 > 0)
(0.66 ≥ 0.8 ∗ 0.6, 0.66 ≤ 0.8, 0.8 > 0)
(0.8 ≥ 0.8 ∗ 0.6, 0.8 ≤ 0.8, 0.8 > 0)

Cy4 = (0.2 + 0.07) ≤ 0.5 |
(0.4 ≤ 1 ∗ 0.6, 0.4 ≤ 1, 1 > 0)
(0.53 ≤ 1 ∗ 0.6, 0.53 ≤ 1, 1 > 0)
(0.66 ≥ 1 ∗ 0.6, 0.66 ≤ 1, 1 > 0)
(0.8 ≥ 1 ∗ 0.6, 0.8 ≤ 1, 1 > 0)

C = {0.15, 0.73, 0.85, 0.27}

This process is repeated γ times, in order to
sweep the possible probabilities of each possi-
ble value of VX . Thus, for each value of VY

(yj ∈ Y ), it will not only have one probability
that determines if the rule is relevant or not
in this value yj with respect to all the possible
values of VX with the corresponding probabili-
ties, but will have a set of possible probabilities
depending on the random probability assigned
to each possible values of VX .
In the previous example, if γ = 2 we have to
assign new random probabilities to the possible
values of the set VX , obtaining another set C
(C={0.25, 0.53, 0.45, 0.37}). The sets C1 and
C2 are obtained with γ=1 and γ=2:, respec-
tively

C1 = {0.15, 0.73, 0.85, 0.27}
C2 = {0.25, 0.53, 0.45, 0.37}

For each possible value yj ∈ Y , for example
y1 = 0.4, the possible probabilities that deter-
mine whether the rule is relevant or not in this
value 0.4, will be the set:

Cyj
= {Cyj

, ∀Ci, 1 ≤ i ≤ γ} = {0.15, 0.25}

Finally, to determine whether one rule is rele-
vant or not, considering all values of VY , we
need to choose one sets of probabilities Cyj

and if the minimum of Cyj
is larger than or

equal to 0.5 then we can determine that the
rule is relevant. For the reason, these sets are
arranged according to the uniform dominance
defined in [23], which induces a total order and
the median set is choosen. In the previous ex-
ample, Cy1 = [0.15, 0.25], Cy2 = [0.53, 0.73],
Cy3 = [0.45, 0.85] and Cy4 = [0.27, 0.37]. The
total order of these sets will be: Cy1 , Cy4 , Cy2

and Cy3 . In this case, as the number of sets
is par, the sets that represents the median are
the sets Cy4 and Cy2 and, the minimun will be
(0.27+0.53)/2 = 0.4. As the value obtained is
less than 0.5, the rule is not relevant although
for several possible values of VY the rule seems
relevant.

In figure 3, we show a diagram outlining the steps
that are needed to achieve the proposed algorithm.

5 Illustrative example

A small real-world data set is given to illustrate the
proposed data-mining algorithm.This dataset is a study
of the ‘Atheltics event” in the University of Oviedo, in
this case the Jump event, that includes 17 instances and
5 attributes. These attributes are [36,24]: 1) the ratio
between the weight and the height (DPE), 2) tests of
central (abdominal) muscles (MC), 3) test of lower ex-
tremities (EI), 4) the maximum speed in the 40 metre
race (VM) and 5) relevance of the athlete (RA). Ta-
ble 2 shows this dataset where the low quality items
are represented by interval-values or fuzzy subsets (see
Section 3.1).

Let us use three fuzzy regions for each attribute.
Figure 4 shows the fuzzy membership functions for the
different attributes: “RLow”, “RMiddle” and “RHigh”.
These partitions are only relevant for the attributes rep-
resented by interval-values (DPE, MC, EI and VM) due
to RA being defined by a fuzzy set.

The values considered for the input parameters of
this illustrative example are:

– Minimum support (α) = 0.05 (5%)
– Confidence (λ) = 0.9 (90%)
– Number of cuts = 10
– Number of times that we sweep the probabilities (γ)

= 1.

The steps needed to obtain the fuzzy association
rules from LQD are:
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- Dataset D

- Membership functions 

S={L1,�,Lm}, where Lj={l1,�,ln}

- α: Minimum suppor

- λ: Minimum confidence

- cuts: Number of possible real 

values

- φ: Number of sweep of the 

probabilities

INPUTS

Insert Ljk in Lr. 

Generate Lr

Check whether Lr

is null

Check whether 

the items 

belong to the 

same attribute j

Calculate the Count of each 

linguistic term of Lj (CountLjk)

Generate the 

candidate set Cr
r = 1

Yes

Join the r-itemsets 

of Lr
r = r+1

No
Check whether 

max{CountLjk(%)}≥α

Collect in L all itemsets

Yes

Construct the fuzzy 

associate rules

Calculate the possible values of 

the set of bounds of 

probabilities X and Y

Assign a random probability to 

each possible values of the set 

X and Y. Obtain the set Cφ.

Check whether we 

have to recalculate the 

probabilities of X

Transform each Xͥj into a set of 

bounds of probabilities for each 

linguistic term of Lj

Yes

Obtain all the sets Cyj

Apply uniform dominance 
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represents the median

No

Check whether 

min{Cyj}≥0.5 OUTPUT:

Relevants fuzzy 

association rules

Yes

Discard fuzzy 

association rule
No

Yes

No

Delete

No

Fig. 3 Outline of the proposed algorithm.

Ins. DPE MC EI VM RA
1 [8.7,9.7] [47,52] [2.5,2.62] [4.77,4.83] {1}
2 [0.7,1.3] [62,67] [2.2,2.24] [5.18,5.21] {1/0+1/1}
3 [6.8,7.7] [33,38] [2.09,2.16] [5.87,5.9] {0}
4 [3.3,4.1] [44,47] [2.23,2.27] [4.92,5] {1}
5 [0,0.8] [46,50] [2.04,2.14] [5,5.04] {0}
6 [10.7,11.6] [53,57] [2.64,2.72] [4.34,4.4] {1}
7 [3.9,4.7] [47,55] [2.55,2.6] [4.25,4.3] {1}
8 [4.9,5.6] [36,44] [2.15,2.18] [5.01,5.03] {0.9/0+0.4/1}
9 [7.4,8] [45,46] [2.3,2.37] [4.96,5] {0}
10 [11.5,12] [36,40] [1.9,1.94] [5.37,5.46] {0.5/0+0.5/1}
11 [4.9,5.7] [45,50] [2.1,2.14] [4.87,4.94] {0.6/0+0.8/1}
12 [3,3] [47,52] [2.2,2.29] [4.92,5.01] {1}
13 [3.6,4.3] [47,53] [2.3,2.36] [4.86,4.9] {1}
14 [9,9.3] [34,35] [2.34,2.35] [4.99,5.1] {0}
15 [7.4,8.3] [34,35] [2.2,2.26] [5.77,5.83] {0}
16 [8.7,10.1] [45,47] [2,2.15] [5,5.1] {1}
17 [8.2,9] [36,39] [2.12,2.24] [5.06,5.14] {1}

Table 2 Dataset that define the event of Jump as well as whether one athlete is relevance or not in such event.
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Fig. 4 The membership functions used in the items DPE, MC, EI and VM.

Ins. DPE MC EI
DPEL DPEM DPEH MCL MCM MCH EIL EIM EIH

1 0 [0.44,0.44] [0.55,0.55] [0,0.11] [0.88,1] [0,0.11] 0 [0.33,0.44] [0.55,0.66]
2 [0.78,0.88] [0.11,0.21] [0] 0 [0,0.22] [0.77,1] [0.22,0.22] [0.77,0.77] 0
3 0 [0.77,0.77] [0.22,0.22] [0.77,1] [0,0.22] 0 [0.44,0.44] [0.55,0.55] 0
4 [0.33,0.44] [0.55,0.66] 0 [0.22,0.33] [0.66,0.77] 0 [0.11,0.11] [0.88,0.88] 0
5 [0.88,1] [0,0.11] 0 [0,0.22] [0.77,1] 0 [0.44,0.55] [0.44,0.55] 0
6 0 [0.11,0.11] [0.88,0.88] 0 [0.66,0.77] [0.22,0.33] 0 [0,0.11] [0.88,1]
7 [0.22,0.33] [0.66,0.77] 0 [0,0.11] [0.77,1] [0,0.22] 0 [0.33,0.33] [0.66,0.66]
8 [0.11,0.11] [0.88,0.88] 0 [0.44,0.77] [0.22,0.55] 0 [0.33,0.33] [0.66,0.66] 0
9 0 [0.66,0.66] [0.33,0.33] [0.23,0.29] [0.70,0.76] 0 0 [0.88,1] [0,0.11]
10 0 0 [1,1] [0.66,0.77] [0.22,0.33] 0 [1,1] 0 0
11 [0.11,0.11] [0.88,0.88] 0 [0,0.22] [0.77,1] 0 [0.44,0.44] [0.55,0.55] 0
12 0.5 0.5 0 [0,0.11] [0.88,1] [0,0.11] [0.11,0.22] [0.77,0.88] 0
13 [0.33,0.33] [0.66,0.66] 0 [0,0.11] [0.88,1] [0,0.11] 0 [0,0.11] [0.88,1]
14 0 [0.44,0.5] [0.5,0.55] [0.88,0.88] [0.11,0.11] 0 0 [0.90,0.92] [0.07,0.09]
15 0 [0.66,0.66] [0.33,0.33] [0.88,0.88] [0.11,0.11] 0 [0.22,0.22] [0.77,0.77] 0
16 0 [0.33,0.44] [0.55,0.66] [0.22,0.22] [0.77,0.77] 0 [0.44,0.66] [0.33,0.55] 0
17 0 [0.55,0.55] [0.44,0.44] [0.66,0.77] [0.22,0.33] 0 [0.22,0.44] [0.55,0.77] 0

Count [3.28,3.71] [8.28,8.83] [4.83,4.99] [5.01,6.84] [8.70,10.98] [1,1.88] [3.99,0.44] [9.68,10.81] [2.18,2.65]
Count (%) [0.19,0.21] [0.48,0.52] [0.28,0.29] [0.29,0.40] [0.51,0.64] [0.05,0.11] [0.23,0.27] [0.56,0.63] [0.12,0.15]

Table 3 Set of bounds of probabilities for each linguistic term.

Step1: Transform each LQD X̃i
j to obtain the fuzzy

membership value. For instance, the fuzzy mem-
bership value interpreted as a set of bounds of
probabilities from the interval value [47,52], of
the first instance of the attribute MC, will be:

{[0, 0.11]Low + [0.88, 1]Middle + [0, 0.11]High}

where the upper and lower bounds of probabil-
ities of the linguistic label Middle, for example,
are determined from the set of possible mem-
bership values of x, with x ∈ X, which means
with x ∈ [47, 52]. To obtain these possible val-
ues we apply α-cuts to obtain a random set

that contains the unknown crisp value of the
feature with a probability greater than or equal
to 1-α.

Step2: Calculate the frecuency of each fuzzy. For in-
stance, the frecuency of the attribute MC and
the linguistic term Low will be: CountMCLow

=
[0,0.11] ⊕ [0,0] ⊕ [0.77,1] ⊕ . . .⊕ ⊕ [0.22,0.22]
⊕ [0.66,0.77]= [5.01,6.84]. Table 3 and 4 show
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Ins. VM RP
VML VMM VMH RPNo RPY es

1 [0.33,0.33] [0.66,0.66] 0 0 1
2 0 [0.83,0.87] [0.12,0.16] [0,1] [0,1]
3 0 0 [1,1] 1 0
4 [0.11,0.11] [0.88,0.88] 0 0 1
5 [0.04,0.09] [0.90,0.95] 0 1 0
6 [0.88,0.88] [0.11,0.11] 0 0 1
7 [1,1] 0 0 0 1
8 [0.05,0.07] [0.92,0.94] 0 [0.6,0.9] [0.1,0.4]
9 [0.11,0.11] [0.88,0.88] 0 1 0
10 0 [0.55,0.55] [0.44,0.44] 0.5 0.5
11 [0.22,0.22] [0.77,0.77] 0 [0.2,0.6] [0.4,0.8]
12 [0.11,0.11] [0.88,0.88] 0 0 1
13 [0.22,0.22] [0.77,0.77] 0 0 1
14 0 [1,1] 0 1 0
15 0 [0.11,0.11] [0.88,0.88] 1 0
16 0 [1,1] 0 0 1
17 0 [1,1] 0 0 1

Count [3.09,3.16] [11.33,11.44] [2.46,2.49] [6.29,8] [9,10.7]
Count (%) [0.182,0.186] [0.66,0.67] [0.144,0.146] [0.37,0.47] [0.52,0.62]

Table 4 Set of bounds of probabilities for each linguistic term.

Itemset max{Countjk}
DPELow 0.21
DPEMiddle 0.52
DPEHigh 0.29
MCLow 0.4
MCMiddle 0.64
MCHigh 0.11
EILow 0.27
EIMiddle 0.63
EIHigh 0.15
VMLow 0.18
VMMiddle 0.67
VMHigh 0.14
RPNo 0.47
RPY es 0.62

Table 5 Set of 1-itemsets that compose L1.

the frequency of each fuzzy item where each
one will be a candidate (1-itemset).

Cr=1 = {DPEL, DPEM , DPEH ,MCL,MCM ,

MCH , EIL, EIM , EIH , V ML, V MM , V MH ,

RPNo, RPY es}

Step3: Check whether CountLjk
(%) for all r-items in

Cr is larger than or equal to the predefined
minimum support α. Table 5 shows all the 1-
itemsets that compose L1. The itemDPEMiddle

= DPEM , with CountDPEM
(%) = [0.48,0.52],

will be part of L1 due to 0.52 > 0.05.
Step4: Since L1 is not null, the next step is then done.

If L1 is null the algorithm finishes.
Step5: Join Lr (r=1) to generate the candidate Cr+1.

C2 is generated as follows: (DPEL,MCL), (DPEL,
MCM ), . . ., (VMH , RPY es). Table 6 shows a
subset of the candidate C2 from the combina-

Itemset
(DPELow,MCLow)
(DPELow,MCMiddle)
(DPELow,MCHigh)
(DPELow, EILow)
(DPELow, EIMiddle)
(DPELow, EIHigh)
(DPELow, V MLow)
(DPELow, V MMiddle)
(DPELow, V MHigh)
(DPELow, RPNo)
(DPELow, RPSi)

Table 6 Subset of C2. DPEL with the rest of itemset of L1.

tion between DPEL and the rest of the item-
set of L1. Notice that the itemsets (DPEL,
DPEM ), (DPEL,DPEH) and (DPEM ,DPEH)
are not in C2 since the items belong to the same
item DPE.

Step6: For each r-itemset of Cr make the following
substeps:

(a) Transform each r-itemset to obtain the fuzzy
membership value. Table 7 shows the re-
sults of all the instances. For instance, the
value [0,0.19] of the 2-itemset (DPEL,MCM ),
in the instance i=2, is calculated from the
product of the sets of probabilities of each
itemset of r-itemset ([0.78, 0.88] ⊗ [0,0.22]
= [0,0.19]).

(b) Calculate the frequency of each r-itemset.
In Table 7 the results of the r-itemset (DPEL,
MCM ) in all the instances are shown.

(c) Check whether these sets of bounds are larger
than or equal to the minimum support to



Mining Fuzzy Association Rules from Low Quality Data 11

Ins. DPEL MCM DPEL
∧
MCM

1 0 [0.88,1] 0
2 [0.78,0.88] [0,0.22] [0,0.19]
3 0 [0,0.22] 0
4 [0.33,0.44] [0.66,0.77] [0.22,0.34]
5 [0.88,1] [0.77,1] [0.69,1]
6 0 [0.66,0.77] 0
7 [0.22,0.33] [0.77,1] [0.17,0.33]
8 [0.11,0.11] [0.22,0.55] [0.02,0.06]
9 0 [0.70,0.76] 0
10 0 [0.22,0.33] 0
11 [0.11,0.11] [0.77,1] [0.08,0.11]
12 0.5 [0.88,1] [0.44,0.5]
13 [0.33,0.33] [0.88,1] [0.29,0.33]
14 0 [0.11,0.11] 0
15 0 [0.11,0.11] 0
16 0 [0.77,0.77] 0
17 0 [0.22,0.33] 0

count [3.28,3.71] [8.70,10.98] [1.93,2.88]
count (%) [0.19,0.21] [0.51,0.64] [0.11,0.16]

Table 7 fuzzy membership value of DPEL
∧
MCM .

Itemset max{Counts}
(DPEL,MCM ) 0.16
(DPEL,MCH) 0.06
(DPEL, EIL) 0.05
(DPEL, EIM ) 0.15
(DPEL, V MM ) 0.17
(DPEL, RPNo) 0.12
(DPEL, RPY es) 0.15

Table 8 A subset of r-itemset from L2.

insert the r-itemset in L2. From the subset
of candidate C2 (Table 6), the r-itemsets s
that compose Lr+1 (L2) are shown in Table
(8).

Step7: If Lr+1 is null, then do the next step, otherwise
update the number of itemsets in the set of
candidates (r=r+1) and repeat the steps 5 and
6.

Step8: Collect in R the itemsets of each Li, where i ≥
2.

Step9: Construct all the possibles fuzzy association
rules from the itemsets of R. From the subset
of L2 (Table 8), the association rules possible
are shown in Table 9.

Step10: Determine whether the fuzzy association rules
obtained are relevant or must be deleted. Ta-
ble 10 shows the results of Cyj with γ=1 in
the rule “If DPEM and MCL and VMH then
RPNo”, with X = [0.0665, 0.0767] and Y =
[0.0665, 0.0767]. The values of Cyj are arranged
according to the uniform dominance, in this ex-
ample a strict dominance due to the value of γ
being 1, and in this way can choose the set that
represents the median. This fuzzy association

If DPE.Low then MC.Middle;
If MC.Middle then DPE.Low;
If DPE.Low then MC.High;
If MC.High then DPE.Low;
If DPE.Low then EI.Low;
If EI.Low then DPE.Low;
If DPE.Low then EI.Middle;
If EI.Middle then DPE.Low;
If DPE.Low then VM.Middle;
If VM.Middle then DPE.Low;
If DPE.Low then RP.No;
If RP.No then DPE.Low;
If DPE.Low then RP.Si;
If RP.Si then DPE.Low;

Table 9 Fuzzy association rules obtained from L2.

rule will be relevant because its median takes
the value 0.537.

The fuzzy association rules obtained in this illustra-
tive example are shown in Table 11.

6 Experimental Study

Several experiments have been carried on a real-world
dataset Inexpert-57 to evaluate the good behaviour of
this proposed algorithm, which is available in the repos-
itory KEEL-dataset (http://www.keel.es/dataset.php)
[5]. In the following subsections, we describe the real-
world dataset as well as the experiments carried out.
Then, we analyze the fuzzy association rules according
to the value of the minimum support and confidence
and will show the high level of knowledge obtained in
these rules. Finally, we study the complexity and scal-
ability of the proposed algorithm.

6.1 Description of the dataset

Dyslexia can be defined as a learning disability in peo-
ple with normal intellectual coefficient, and without fur-
ther physical or psychological problems that can explain
such a disability. According to [33], Dyslexia is a neuro-
logically based, often familial, disorder which interferes
with the acquisition and processing of language [. . .].
Although dyslexia is lifelong, individuals with dyslexia
frequently respond successfully to timely and appropri-
ate intervention.

In this research we are interested in obtaining fuzzy
association rules in the early diagnosis of dyslexia of
schoolchildren in Asturias (Spain), where this disorder
is not rare. It has been estimated that between 4% and
5% of these schoolchildren have dyslexia. The average
number of children in a Spanish classroom is 25, there-
fore there are cases in most classrooms [3]. Notwith-
standing the widespread presence of dyslexic children,
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Check whether Xcut ≥ (Y cut ∗ λ) and Xcut ≤ Y cut

Y cut Xcut PXcut
y1 ∗ λ=0.069 y2 ∗ λ=0.068 y3 ∗ λ=0.067 . . . y10 ∗ λ=0.059 Ccut

y1=0.076 x1=0.0767 0.15 Yes (x1>y2) (x1>y3) . . . (x1>y10) 0.15
y2=0.075 x2=0.0756 0.07 Yes Yes (x2>y3) . . . (x2>y10) 0.24
y3=0.744 x3=0.0744 0.087 Yes Yes Yes . . . (x3>y10) 0.307
y4=0.733 x4=0.0733 0.23 Yes Yes Yes . . . (x4>y10) 0.537
y5=0.0722 x5=0.0722 0.19 Yes Yes Yes . . . (x5>y10) 0.727
y6=0.0710 x6=0.0710 0.27 Yes Yes Yes . . . (x6>y10) 0.997
y7=0.0699 x7=0.0699 0.003 Yes Yes Yes . . . (x7>y10) 1
y8=0.0688 x8=0.0688 0 No Yes Yes . . . (x8>y10) 0.85
y9=0.0676 x9=0.0676 0 No No Yes . . . (x2>y10) 0.78
y10=0.0665 x10=0.0665 0 No No No . . . Yes 0

Table 10 Steps to determine whether the fuzzy association rule “If DPEM and MCL and VMH then RPNo” is relevant or
must be deleted.

Rule Median

R0: If DPE is Middle and MC is Low and VM is High then RP is No 0.537
R1: IF DPE IS Middle AND EI IS Middle AND VM IS High THEN RP IS No 0.682
R2: IF DPE IS Middle AND VM IS High THEN RP IS No 0.921
R3: IF DPE IS High AND MC IS Middle AND EI IS High THEN RP IS Si 0.5
R4: IF DPE IS High AND EI IS High THEN RP IS Si 0.778
R5: IF DPE IS High AND EI IS High AND VM IS Low THEN RP IS Si 0.614
R6: IF DPE IS High AND VM IS Low THEN RP IS Si 0.581
R7: IF MC IS Low AND EI IS Middle AND VM IS High THEN RP IS No 1
R8: IF MC IS Low AND VM IS High THEN RP IS No 0.6
R9: IF MC IS Middle AND EI IS High THEN RP IS Si 0.5
R10: IF MC IS Middle AND EI IS High AND VM IS Low THEN RP IS Si 0.667
R11: IF EI IS Middle AND VM IS High THEN RP IS No 0.841
R12: IF EI IS High THEN RP IS Si 0.73
R13: IF EI IS High AND VM IS Low THEN RP IS Si 1

Table 11 Fuzzy association rules obtained from the illustrative example.

detecting the problem at this stage is a complex pro-
cess, that depends on many different indicators, mainly
intended to detect whether reading, writing and cal-
culus skills are acquired at the proper rate. Moreover,
there are disorders different to dyslexia that share some
of their symptoms and therefore the tests not only have
to detect abnormal values of the mentioned indicators
but in addition, must also separate those children that
actually suffer from dyslexia from those where the prob-
lem can be related to other causes (inattention, hyper-
activity, etc.).

We have considered a real-world dataset Inexpert-
57 regarding this experimentation. For its elaboration,
all schoolchildren in Asturias were examined by a psy-
chologist in diagnose dyslexia from several tests. With
these tests, from the criterion and knowledge of the
inexpert and expert, several low quality sets of data
were obtained. The objective is to obtain relevant in-
formation through fuzzy association rules when it is
an inexpert in the field of dyslexia (parents, tutors)
who evaluates the children. To this end, the inexpert
expresses what he/she is observing from the tests ob-
tained when one child is evaluated. The tests applied
in Spanish schools for detecting this problem, when it

is an expert who evaluates the children, are shown in
Table 12 (the tests marked with a “*” are not included
in this version of the low quality dataset obtained from
inexpert in the field of dyslexia). Each test observed by
the inexpert is described by several variables providing
more than one item in the low quality set. This im-
plies that we will have sub-items for each test applied.
For example, the test T.A.L.E [34] could be defined
directly by an item, expressed for example with a lin-
guistic terms “Medium”, however, this test is defined
by several items. In Table 13 the items that compose
the analysis of reading of the test TALE are shown.

The real-world dataset of dyslexia used in this pro-
posal, demoninated “Inexpert-57”, is composed of groups
of low quality items where each group of items describes
the behaviour of a child in one test. Besides of these
groups of items, this dataset will contain the level of
dyslexia of this child when it is an expert in the field
who diagnoses the child from the same test that the
inexpert has used. In this way, each case or child has
been individually diagnosed by a psychologist into one
or more of the values “no dyslexia”, “control and re-
vision”, “dyslexic” and “other disorders” (inattention,
hyperactivity, etc.).
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Category Test Description
Verbal comprehension BAPAE Vocabulary

BADIG Verbal orders
BOEHM Basic concepts

Logic reasoning RAVEN∗ Color
BADIG Figures
ABC∗ Actions and details

Memory Digit WISC-R∗ Verbal-additive memory
BADIG∗ Visual memory
ABC Auditive memory

Level of maturation ABC Combination of different tests

Sensory-motor skills BENDER∗ visual-motor coordination
BADIG Perception of shapes
BAPAE∗ Spatial relations, Shapes, Orientation
STAMBACK Auditive perception, Rhythm
HARRIS/HPL Laterality, Pronunciation
ABC Pronunciation
GOODENOUGHT Spatial orientation, Body scheme

Attention Toulose∗ Attention and fatigability
ABC∗ Attention and fatigability

Reading-Writing TALE Analysis of reading and writing

Table 12 Categories of the tests currently applied in Spanish schools for detecting dyslexia when is an expert who evaluates
the children. The tests marked with a “*” are not included in the version of the low quality dataset obtained from inexpert in
the field of dyslexia.

Analysis of Reading. TALE
Item Domain
1. Reading-comprehension [0,10]
2. Global-level {Impossible,Just-read,Low,Regulate,Normal,Good}
3. Finger-tracking {Yes,No,Little,A-lot}
4. Move-head-no-eyes {Yes,No,Little,A-lot}
5. Heard {Comprehensive,No-comprehensive}
6. Intonation {Bad,Good,Regulate,Punctuation-no-respected}
7. Syllables {Yes,No,Ocasionally}
8. Investment {Yes,No,Ocasionally}
9. Nervous {Yes,No}
10. Omission {Yes,No,Ocasionally}
11. Substitution {Yes,No,Ocasionally}
12. Rotation {Yes,No,Ocasionally}
13. Speed {Bad,Good,Regulate,Normal,Slow}
14. Arrhythmic {Yes,No,Ocasionally}
15. Rectification {A-lot,Never,Often,Normal,Just}
16. Silent {Yes,No,Decreases-level}

Table 13 Analysis of reading of the test TALE defined by several items.

This dataset contains vague data, we have collected
these data from 52 schoolchildren of Asturias(Spain)
during our research and where each case has been in-
dividually classified by a psychologist. Each schoolchil-
dren is composed of 57 items. These 57 items are ob-
tained from different tests (Table 12). Figure 5 shows
the major tests as well as the number of items that
compose each test. Moreover, for each item we have

indicated whether it is defined by an interval or by a
finite set of linguistic terms associated with Ruspini’s
partitions.

6.2 Experiments settings

The linguistic partitions are composed of several lin-
guistic terms with uniformly distributed triangulars.
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Fig. 5 Inexpert-57 with their main tests, indicating the number of items in each test as well as whether the items are intervals
or are defined by linguistic terms.

The number of partitions of each item depends on whether
this item is represented by an interval value or fuzzy
subset. In the first case the linguistic partitions are
composed of five linguistic terms, in the second case
the expert defines the linguistic terms and the mem-
bership functions in advance. For example, in the Ta-
ble 13, we can observe the linguistic terms defined in
advance of several items of the test TALE.Reading,
as Reading.Speed whose linguistic terms are L={Bad,
Slow, Regulate, Normal, Good}. Several experiments
have been carried out with different minimum supports
and with different minimum confidences, where the num-
ber of cuts is 7 and γ is 2.

6.3 Analysis of the fuzzy association rules via supports
and confidence

In this section several experiments have been carried
out to analyse the number of fuzzy association rules
obtained by the fuzzy data-mining algorithm from low
quality data. The relationship between the number of
fuzzy association rules with respect to several values
of the minimum support along with different minimum
confidences λ is shown in Figure 6. We can observe that
the number of rules decreases when the minimum sup-

port value increases. Moreover, we appreciate that the
curves obtained have similar shapes and the distance
between them is small with values of the minimum sup-
port larger than 0.2. With minimum support 0.2 and
particularly with 0.1 the distances between the curves is
more elevated, notably when the minimum confidence
takes the value 0.5 or 0.6. This implies that there are
number of rules that are uncommon or are special cases,
highlighting the large distance between curves when the
minimum support is 0.1.

Figure 7 shows the relations between the number of
fuzzy association rules and several values of the mini-
mum confidence along with different minimum support
values. We can observe that the number of rules in-
creases when the minimum confidence decreases. Notice
that the minimum confidence influences the number of
fuzzy rules when the minimum support takes small val-
ues such as 0.1 and 0.2. On the other hand, we ap-
preciate that with a minimum support larger than 0.2,
there are many rules that satisfy the minimum confi-
dence when this is increased.
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Fig. 6 Relationship between the number of fuzzy association rules and the minimum support along with different minimum
confidences.

Fig. 7 Relationship between the number of fuzzy association rules and the minimum confidence along with different minimum
supports.

6.4 High level of knowledge of Inexpert-57

To analyze the fuzzy rules obtained from this proposal,
several experiments have been carried out with the dataset
“Inexpert-57”. The information obtained provides a high
level of knowledge through the fuzzy association rules.
The number of fuzzy association rules obtained with a
minimum support of 0.2 and a minimum confidence of
0.8, in “Inexpert-57”, was 669. An example of the level
and interpretability of information obtained is shown
in the Table 14 with several relevant fuzzy association
rules. These rules show that one child diagnosed as
“No dyslexic” and, in the test of Goodenough, in the
subitem denominated proportions, obtains a “normal”
result, then the child is not going to have problems in
reading due to the typical characteristics such as eyes
move, read with finger, not understanding, etc...are not
obtained. Also, this information provides us with the in-
formation that we will have to control the children that
we see are “No dyslexic”, have a “normal” result in the
test of Goodenought but have problems in reading.

The rules shown in Table 15 provide different infor-
mation to that found in the previous rules. In this case,
these rules determine when one child has to be diag-
nosed as “No dyslexic”. We can observe that the test
of Goodenought and reading are very relevant tests to
diagnose children and particularly two subitems of the
test of reading: investments and substitutions. We can
appreciate that whether the children are right-handed
in the test of Harris is relevant or not due to this vari-
able or test appearing in the most of rules obtained.
This is consequence that most children studied and di-
agnosed are right-handed so we can determine that this
variable is irrelevant.

Others rules provide information in relation to chil-
dren with dyslexia, for example IF Reading-Syllables IS
Yes AND Dyslexia IS Dylexic THEN Writing-Unions IS
Yes. In addition, it is important to highlight that when
the values of the minimum confidences and support are
small then the number of fuzzy rules increases and pro-
vides information about special cases of the dataset and
new items appear in these rules (as BOEHM-Concepts).
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Rules Support-Rule {Cyi} Median{Cyi}
IF Harris IS Right AND

[0.242,0.248]
{[0.159,0.209],[0.191,0.715]

[1,1]Dyslexia IS No-Dylexia THEN [0.191,0.715],[1,1],
THEN Goodenought-Proportions IS Normal [1,1],[1,1],[1,1]}
IF Harris IS Right AND

[0.223,0.248]

{[0.862,0.996],[0.862,0.996]

[0.873,1]
Dyslexia IS No-Dylexia AND [0.873,1],[0.873,1],
Goodenought-Proportions IS Normal [0.873,1],[0.873,1],[1,1]}
THEN Reading-finger is No
IF Harris IS Right AND

[0.223,0.248]

{[0.821,0.924],[0.821,0.924]

[0.963,0.99]
Dyslexia IS No-Dylexia AND [0.963,0.99],[0.963,0.99],
Goodenought-Proportions IS Normal [0.963,0.99],[0.963,0.99],[1,1]}
THEN Reading is Comprensive
IF Harris IS Right AND

[0.223,0.248]

{[0.95,0.996],[0.95,0.996]

[0.957,1]
Dyslexia IS No-Dylexia AND [0.957,1],[0.957,1],
Goodenought-Proportions IS Normal [0.957,1],[0.957,1],[1,1]}
THEN Reading-eyes-moved is No

Table 14 Level of knowledge and interpretability in the fuzzy association rules of Inexpert-57.

Rules Support-Rule {Cyi} Median{Cyi}
IF Harris IS Right AND

[0.204,0.229]

{[0.115,0.431],[0.22,0.99]

[1,1]
Reading-investments IS No AND [0.982,0.991],[1,1],
Goodenought-Proportions IS Normal [1,1],[1,1],[1,1]}
THEN Dyslexia IS No-Dyslexia
IF Harris IS Right AND

[0.212,0.231]

{[0.007,0.018],[0.011,0.027]

[1,1]
Reading-substitutions IS No AND [0.014,0.056],[1,1],
Goodenought-Proportions IS Normal [1,1],[1,1],[1,1]}
THEN Dyslexia IS No-Dyslexia

Table 15 Level of knowledge and interpretability in the fuzzy association rules of Inexpert-57 where the consequent is the
level of dyslexia.

For example, in Table 16 we show several rules obtained
with α = 0.1 and λ=0.5 although, we can observe that
the minimum of the median of the set {Cyi} in some
rules is more elevated than 0.5, for example in the third
rule the minimum is 0.897 or in the last one it is 1.

6.5 Analysis of complexity and scalability

The complexity and scalability of this fuzzy data min-
ing algorithm from LQD has been analysed from several
experiments carried out with an HP EliteBook 8540w,
processor Intel(R) Core(TM)i5, 2.4GHz CPU, 4Gb of
RAM and running in Windows 7. All the experiments
were performed with α = 0.2, λ = 0.8, cuts=10 and
γ = 2.

To analyze the complexity and scalability we com-
pare the relationship between the runtime and the num-
ber of items. Figure 8 shows the relationship between
the runtime and the number of items, observing that
the time increases as well as the number of rules when
the number of items also increases.

7 Conclusions

In this paper, we have proposed a new data-mining al-
gorithm with the aim of getting high quality fuzzy as-
sociation rules from databases with interval and fuzzy
values. This proposal is an extension of the algorithm
proposed by Hong et al., which integrates fuzzy-set con-
cepts with the Apriori mining algorithm [2] from quan-
titative values. To do that, several important aspects
have been considered due to the true value of one data
being unknown and the fuzzy membership value inter-
preted as a set of bounds of probabilities. This affects
the calculation of the frequency of occurrence of the
items, due to it being defined by a set of bounds of
probabilities, as well as the calculation of the confidence
of a rule which is contained in a set of probabilities.

The behaviour and performance of this new algo-
rithm, able to obtain fuzzy association rules from low
quality data, is shown from one real-world dataset based
on the Diagnosis of Dyslexia, obtaining as a result a
high level of knowlegde and interesting patterns. These
fuzzy association rules also provide us with information
about special cases, in the low quality dataset of diag-
nosis of dyslexia, when the value of the minimum sup-
port and confidence decreases. Notice that these rules
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Rules Support-Rule {Cyi} Median{Cyi}
IF Harris-dotted IS Right AND

[0.038,0.106] [0.634,0.899]
Reading-investments IS Yes AND {[0.081,0.358],[0.28,0.285],
Goodenought-Proportions IS Normal AND [0.715,0.72],[0.634,0.899],
Dyslexia IS Dyslexic THEN [0.637,0.899],[0.81,0.978],[0.977,0.98]}
Writing-Omissions IS Yes
IF Harris-dotted IS Right AND

[0.039,0.101] [0.776,0.808]
Boehm-Concepts IS Medium AND {[0.046,0.117],[0.191,0.221],
Goodenought-Proportions IS Normal AND [0.77,0.808],[0.776,0.808],
Dyslexia IS No-Dyslexic THEN [0.883,0.954],[0.964,0.992],[0.989,0.992]}
Reading-nervous IS No
IF Harris-dotted IS Right AND

[0.079,0.11] [0.897,0.992]
Reading IS Regular AND {[0.008,0.103],[0.045,0.604],
Goodenought-Global IS Regular AND [0.067,0.806],[0.897,0.992],
Writing-unions IS Yes THEN [1,1],[1,1],[1,1]}
Dyslexia IS Dyslexic
IF Harris-dotted IS Right AND

[0.095,0.101]
{[1,1],[1,1]

[1,1]Dyslexia IS Other-disorders THEN [1,1],[1,1],
THEN Goodenought-Global IS Regular [1,1],[1,1],[1,1]}

Table 16 Special cases of the dataset “Inexpert-57” with α = 0.1 and λ=0.5.
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Fig. 8 Relationship between the runtime (minutes) and the number of attributes with the 100% of instances, α = 0.2, λ = 0.8,
cuts=10 and γ = 2. The number of rules is also shown.

from LQD provide knowledge about the dependencies
and relation between the items and, therefore, several
items can be excluded or removed due to their being
considered irrelevant.
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