
J Heuristics (2007) 13: 265–314
DOI 10.1007/s10732-007-9018-2

Improving crossover operator for real-coded genetic
algorithms using virtual parents

Domingo Ortiz-Boyer · César Hervás-Martínez ·
Nicolás García-Pedrajas

Received: 4 August 2005 / Revised: 20 July 2006 /
Accepted: 2 August 2006 / Published online: 25 April 2007
© Springer Science+Business Media, LLC 2007

Abstract The crossover operator is the most innovative and relevant operator in real-
coded genetic algorithms. In this work we propose a new strategy to improve the
performance of this operator by the creation of virtual parents obtained from the pop-
ulation parameters of localisation and dispersion of the best individuals. The idea
consists of mating these virtual parents with individuals of the population. In this
way, the offspring are created in the most promising regions. This strategy has been
incorporated into several crossover operators. After analysing the results we can con-
clude that this strategy significantly improves the performance of the algorithm in
most problems analysed.

Keywords Real-coded genetic algorithms · Crossover operator · Optimisation
methods

1 Introduction

Genetic algorithms are multiple, iterative, stochastic, general purpose searching al-
gorithms based on natural evolution (Goldberg 1989; Holland 1975). They maintain
a population of individuals (sometimes called chromosomes) made up of series of
variables (or genes) that represent a possible solution to the given problem. A fitness
function must be defined that measures the capability of each individual in solving
the problem. The algorithm proceeds iteratively (each iteration is called a generation)
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selecting the best individuals according to the fitness functions which are subject to
the operations of crossover and mutation in order to obtain better solutions. If the GA
is well designed it should converge to a reasonably good solution.

Although in the initial formulation of GAs the solutions were codified using a
binary alphabet, their properties are not subject to the use of binary strings (Antonisse
1989; Radcliffe 1992). Binary representation, however, can be problematic in tasks
that require a high numerical precision, as it can limit the window through which the
algorithm sees the real problem (Koza 1992). This is the reason that problem specific
GA operators for other representations have been developed. One of the most used
representations is real coding, whose power is widely justified in several theoretical
studies, e.g.: (Wright 1991; Goldberg 1991; Radcliffe 1991; Eshelman and Schaffer
1993). This is the most natural codification in continuous domain problems, where
each gene represents a variable of the problem. A GA using this codification is usually
termed Real-Coded Genetic Algorithm (RCGA).

RCGAs have shown their ability to solve a wide variety of real-world problems.
Among others, they have been applied to parameter estimation (Ortiz-Boyer et al.
2003), neural networks (Bebis et al. 1997; García-Pedrajas et al. 2005a, 2005b),
aerospace design (Périauz et al. 1995; Hajela 2002), biotechnology (Roubos et al.
1999), economic (McNeils 2001) and constrained parameter optimisation problems
(Michalewicz 1992; Ortiz-Boyer et al. 2002).

In RCGAs the selection process and crossover and mutation operators establish a
balance between the exploration and exploitation of the search space. The selection
process drives the search towards the promising regions. The mutation operator in-
creases the diversity of the population, lost during the selection phase, by means of
the random mutation of one or more genes of the individual. It is an exploration oper-
ator which aims at avoiding premature convergence to suboptimal solutions. In fact,
this operator implements a random search and inherits the features of such a search
(Bäck 1996).

Crossover is the most innovative operator. It is a method for sharing information
between individuals that combines the features of two or more individuals, the par-
ents, to create potentially better offspring. The underlying idea is that the exchanging
of genetic material among good individuals is bound to generate even better individ-
uals. Crossover operator exploits the available information from the population. It is
considered the primary search operator in a GA (Holland 1975; De Jong and Spears
1992). Most works focused on improving the performance of GAs are devoted to
this operator (Liepins and Vose 1992; Kita 2001; Beyer and Deb 2001; Herrera et al.
2003; Hervás-Martínez and Ortiz-Boyer 2005).

Numerous crossover operators have been developed for RCGAs. The first at-
tempts implemented an exploitative search, or depth search, as they generated off-
spring only in the region bounded by the parents. Among others we can mention
simple crossover (Goldberg 1989), two-point crossover (Eshelman et al. 1989), uni-
form crossover (Syswerda 1989), flat crossover (Radcliffe 1991) and arithmetical
crossover (Michalewicz 1992). This exploitative search can lead to a diminishing di-
versity of the population and, thus, a premature convergence. In order to avoid this
circumstance, the operators BLX, Fuzzy crossover (Voigt et al. 1995) and Simulated
Binary Crossover (SBX) (Deb and Agrawal 1995) have been proposed. They gener-
ate offspring in the exploration region near the parents, and not only within the region
bounded by them.
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These operators carry out a sampling around the region where the parents are
placed, but do not take into account the fitness of the parents. As our objective
is generating offspring better than its parents an alternative approach would be to
generate offspring closer to the best parent as in the case of Linear BGA crossover
(Schlierkamp-Voosen 1994). Nevertheless, these approaches may favour a quick con-
vergence towards local optima. This problem might be overcome if we use, instead
of just two parents, the information given by the population features of localisation
and dispersion of a specially suitable subset of the population.

Another alternative is the use of an offspring selection mechanism. One of the
most widely used selects the best offspring to form the next population (Wright 1991).
Aiming at avoiding premature convergence, in (Affenzeller and Wagner 2003) an off-
spring selection mechanism is proposed where a part of the population is made by the
offspring that have better fitness than their parents, and the other part by offspring that
have a fitness worse than their parents. Based on this idea, SASEGASA (Self Adap-
tive SEgregative Genetic Algorithm with Simulated Annealing aspects) (Affenzeller
and Wagner 2004) increases the broadness of the search process using different sub-
populations and crossover operators and joins the population after local premature
convergence in order to end up with a population including all genetic information
sufficient for locating a global optimum.

Our approach is based on using the features of localisation and dispersion of a spe-
cially suitable subset of the population to construct three virtual parents that will be
used in the crossover process. The localisation estimator of the values of the genes of
the best n individuals of the population forms the first virtual individual. The disper-
sion estimator of these n individuals is used to obtain a confidence interval that with
probability (1 − α) contains the true value of the localisation estimator. The bounds
of this confidence interval form the other two virtual parents.

In order to encourage the search within the most promising search regions, we
propose the use of any crossover operator to mate these virtual individuals with the
individuals of the population. This mating favours the generation of offspring that has
higher probability of obtaining better descendants.

The same underlying theoretical principles have previously been used in the defi-
nition of two crossover operators based on confidence intervals: CIXL2 (Ortiz-Boyer
et al. 2005) and CIXL1 (Hervás-Martínez et al. 2003). However, the use of virtual
individuals that reflect the features of the best individuals of the population can be
advantageously incorporated to any kind of crossover. So, in this work we present
the application of this methodology to the most widely used crossover operators, and
study its influence on the performance of the crossover.

The remainder of the paper is organised as follows: Sect. 2 states the theoretical
basis of the construction of virtual individuals using confidence intervals; Sect. 3
explains the basis of the extension of crossover operators using virtual parents and
proposes versions of the most common crossovers; Sect. 4 studies the effect on the
behaviour of the operator of using virtual parents; Sect. 5 describes the experimental
setup; Sect. 6 shows a statistical analysis of the results of the experiments; and Sect. 7
states the conclusion of our paper.
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2 Construction of confidence intervals

For the definition of the virtual individuals that identify the most promising search
regions we need to estimate the parameters of localisation and dispersion of the dis-
tributions associated with the best individuals. In this section we explain how to con-
struct a confidence interval where, with a probability (1 − α), the true value of the
localisation parameter belongs.

Both the estimator of the localisation parameters and the confidence interval can
be obtained using an L2 norm, if we assume a normal distribution, or using an L1

norm if we assume an unknown distribution.

2.1 Estimators based on L2 norm

Let β be the set of N individuals with p genes that make up the population and
β∗ ⊂ β the set of the best n individuals. If we assume that the genes β∗

i of the individ-
uals belonging to β∗ are independent random variables with a continuous distribution
H(β∗

i ) with a localisation parameter μβ∗
i
, we can define the model

β∗
i = μβ∗

i
+ ei, for i = 1, . . . , p, (1)

ei being a random variable. If we suppose that, for each gene i, the best n individuals
form a random sample {β∗

i1, β
∗
i2, . . . , β

∗
in} of the distribution of β∗

i , then the model
takes the form

β∗
ij = μβ∗

i
+ eij , for i = 1, . . . , p and j = 1, . . . , n. (2)

If we consider the L2 norm defined by

‖β∗
i ‖2 =

n∑

j=1

(β∗
ij )

2, (3)

and we use the estimator of μβ∗
i

associated with the steepest gradient descent method,
that is

S2(μβ∗
i
) = −∂D2(μβ∗

i
)

∂μβ∗
i

, (4)

where the dispersion function induced by the L2 norm is

D2(μβ∗
i
) =

n∑

j=1

(β∗
ij − μβ∗

i
)2, (5)

from (4) we obtain

S2(μβ∗
i
) = 2

n∑

j=1

(β∗
ij − μβ∗

i
), (6)
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and making (6) equal to 0 yields

μ̂β∗
i

=
∑n

j=1 β∗
ij

n
= β̄∗

i . (7)

Hence, the estimator of the negative gradient of the localisation parameter by
means of the L2 norm is the mean of the distribution of β∗

i (Kendall and Stuart 1977),
that is, μ̂β∗

i
= β̄∗

i .

The sample mean estimator is a linear estimator,1 so it has the properties of unbi-
asedness2 and consistency,3 and it follows a normal distribution N(μβ∗

i
, σ 2

β∗
i
/n) when

the distribution of the genes H(β∗
i ) is normal. Under this hypothesis, we construct a

bilateral confidence interval for the localisation of the genes of the best n individu-
als, using the studentization method, the mean as the localisation parameter, and the
standard deviation Sβ∗

i
as the dispersion parameter:

ICI =
[
β̄∗

i − tn−1,α/2
Sβ∗

i√
n

; β̄∗
i + tn−1,α/2

Sβ∗
i√
n

]
, (8)

where tn−1,α/2 is the value of Student’s t distribution with n − 1 degrees of freedom,
and 1−α is the confidence coefficient, that is, the probability that the interval contains
the true value of the population’s mean.

From this definition of the confidence interval, we define three intervals to create
three “virtual” parents, formed by the lower limits of the confidence interval of each
gene, CILL,4 the upper limits, CIUL,5 and the means CIM.6 These parents have the
statistical information of the localisation features and dispersion of the best individ-
uals of the population, that is, the genetic information the fittest individuals share.
Their definition is:

CILL = (CILL1, . . . ,CILLi , . . . ,CILLp),

CIUL = (CIUL1, . . . ,CIULi , . . . ,CIULp), (9)

CIM = (CIM1, . . . ,CIMi , . . . ,CIMp),

where

CILLi = β̄∗
i − tn−1,α/2

Sβ∗
i√
n

,

1It is a linear combination of the sample values.
2An estimator θ̂ is an unbiased estimator of θ if the expected value of the estimator is the parameter to be

estimate: E[θ̂] = θ .
3A consistent estimator is an estimator that converges in probability to the quantity being estimated as the
sample size grows.
4Confidence Interval Lower Limit.
5Confidence Interval Upper Limit.
6Confidence Interval Mean.
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CIULi = β̄∗
i + tn−1,α/2

Sβ∗
i√
n

, (10)

CIMi = β̄i .

The CILL and CIUL individuals divide the domain of each gene into four subin-
tervals: Di ≡ I 1

i ∪ I 2
i ∪ I 3

i ∪ I 4
i , where I 1

i ≡ [ai,CILLi ); I 2
i ≡ [CILLi ,CIMi];

I 3
i ≡ (CIMi ,CIULi]; I 4

i ≡ (CIULi , bi]; ai and bi being the bounds of the domain.

2.2 Estimators based on L1 norm

In the previous section we have assumed that the values of the genes of the best in-
dividuals follow a normal distribution and we have used the estimators β̄i and Sβi

,
which are the most efficient estimators for normal distributions. If the normality hy-
pothesis is not fulfilled the estimators will be negatively affected. This situation may
be common in multimodal problems, and in the first stages of the evolution when the
best individuals are spread over the search space. On the other hand, the influence
of the gross error7 over the mean can produce large fluctuations of the confidence
interval from one generation to the next. This will make it difficult to get a stable
search direction. This circumstance will also produce an increment of Sβi

and the
construction of less homogeneous confidence intervals.

In order to avoid these problems, we will also use L1 norm to estimate robust
intervals that do not depend on the distribution of the individuals. So, using model (2),
we analyse an estimator of the localisation parameter for the ith gene based on the
minimisation of the dispersion function induced by the L1 norm. The L1 norm is
defined as

‖β∗
i ‖1 =

n∑

j=1

|β∗
ij |, (11)

hence the associated dispersion and negative gradient functions are given respectively
by

D1(μβ∗
i
) =

n∑

j=1

|β∗
ij − μβ∗

i
| (12)

and

S1(μβ∗
i
) =

n∑

j=1

sign(β∗
ij − μβ∗

i
). (13)

Letting H(β∗
i ) denote the empirical distribution function, the estimating equation

is defined by:

n−1
n∑

j=1

sign(β∗
ij − μβ∗

i
) =

∫
sign(β∗

i − μβ∗
i
)dH(β∗

i ) = 0. (14)

7An estimator is not sensitive to gross error if the presence of a small number of outliers cannot have a
disproportionate effect on the estimate.
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The solution of the equation is the median, μ̂β∗
i

= Mβ∗
i
, of the distribution of the

β∗
i (Hettmansperger and McKean 1998), defined by

Mβ∗
i

=
⎧
⎨

⎩

β∗
i(j) + β∗

i(j+1)

2
if n = 2j ,

β∗
i(j) if n = 2j + 1.

(15)

The median is a better localisation estimator than the sample mean when the form
of H(β∗

i ) distribution is not known.
We have assumed that the distribution function of β∗

i , H(β∗
i ), is continuous, so

the probability that k of the n observations of the β∗
i will not be above the median

Mβ∗
i

is

P

(
n∑

j=1

I (β∗
ij < Mβ∗

i
) = k

)
=

(
n

k

)
(H(Mβ∗

i
))k(1 − H(Mβ∗

i
))n−k, (16)

where I (.) is the indicator function. If we take into account that H(Mβ∗
i
) = 1

2 , the
probability of the event is

(
n

k

)(
1

2

)k (
1 − 1

2

)n−k

. (17)

So, the distribution of the statistic
∑n

j=1 I (β∗
ij < Mβ∗

i
), that is, the number of

individuals whose β∗
i gene is not above the median, will be a binomial distribution of

parameter n and 1
2 , B(n, 1

2 ), that is

P

(
n∑

j=1

I (β∗
ij < Mβ∗

i
) = k

)
=

(
n

k

)(
1

2

)n

for k = 0, . . . , n. (18)

We cannot use the studentization method (Kendall and Stuart 1977) to build the
confidence interval of the estimator sample median Mβ∗

i
, because the binomial dis-

tribution does not fulfill the hypothesis to apply the method. In such a case, we apply
the method of Neyman (1937), which does not depend on the sample distribution of
the estimator of the localisation parameter.

Therefore, in order to determine the (1 − α) confidence interval, assuming the
values of the genes are ordered, we must find μ̂β∗

i(L)
and μ̂β∗

i(U)
such as that

P(μ̂β∗
i(L)

≤ Mβ∗
i

≤ μ̂β∗
i(U)

) = 1 − α. (19)

Hence, we must find

μ̂β∗
i(L)

= inf

{
t :

n∑

j=1

I (β∗
i(j) < t) < n − k

}
= #{j : (β∗

i(j) < t) < n − k}, (20)

where inf is the infimum, # means the number of elements in the set, and k is given
by P(B(n, 1

2 ) ≤ k) = α/2. Hence, μ̂β∗
i(L)

= β∗
i(k+1). A similar argument shows that
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μ̂β∗
i(U)

= β∗
i(n−k). In summary, the (1 − α) L1 confidence interval based on the esti-

mator Mβ∗
i

is

[β∗
i(k+1), β

∗
i(n−k)] where P

(
B

(
n,

1

2

)
≤ k

)
= α/2 determines k. (21)

This interval is a distribution-free or non-parametric confidence interval since the
confidence coefficient is determined from the binomial distribution without making
any assumption of the underlying gene distribution.

As the binomial distribution is discrete, it may happen that we cannot obtain dis-
crete values of β∗

i(k+1) and β∗
i(n−k) that verify P(β∗

i(k+1) ≤ μβ∗
i

≤ β∗
i(n−k)) = 1 − α.

This effect is specially important if the number of best individuals considered is small.
In such cases, a nonlinear interpolation method is used (Hettmansperger and

McKean 1998) for obtaining the values of the lower bound, using β∗
i(k) and β∗

i(k+1),
and the upper bound, using β∗

i(n−k)
and β∗

i(n−k+1)
, of the confidence interval.

The interpolation method is the following. Let γ = 1 − α be the desired con-
fidence interval, and the two possible intervals taken from the binomial tables be
(β∗

i(k), β
∗
i(n−k+1)), with a confidence coefficient of γk , and (β∗

i(k+1), β
∗
i(n−k)) with a

confidence coefficient of γk+1, where γk+1 ≤ γ ≤ γk . Then, the interpolated bounds
of the interval are:

μ̂β∗
i(L)

= (1 − λ)β∗
i(k) + λβ∗

i(k+1), and (22)

μ̂β∗
i(U)

= (1 − λ)β∗
i(n−k+1) + λβ∗

i(n−k), (23)

where

λ = (n − k)I

k + (n − 2k)I
, and (24)

I = γk − γ

γk − γk+1
. (25)

Thus, the distribution of the genes of the three virtual parents obtained using L1
norm are independent of the distribution of the best individuals of the population.
These individuals are given by:

CILLi = μ̂β∗
i(L)

,

CIULi = μ̂β∗
i(U)

, (26)

CIMi = Mβ∗
i
.

2.3 Analysis of applicability to discrete problems

The identification of the most promising search regions proposed in this paper re-
quires a continuous search space. In discrete search spaces, where the values of the
genes depend on the domain, the codification, and the constraints of the problem,
this idea is difficult to apply. Nevertheless, we can work with the probability of each
gene of having a certain value. To obtain such probability we must take into account
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the values that a gene can take, the constraints on those values, and other constraints
given by the problem.

This information is necessary to identify the distribution function that the values
of the genes of the bests individuals follow. Under the assumption of that distribution
we should determine the best estimators for the localisation and dispersion values and
construct the virtual individuals using these estimators. If the localisation estimator
or the bounds of the confidence interval take values outside the domain, it would be
necessary to define a mechanism to force the virtual individuals to the feasible region
in order to be evaluated.

In summary, although the paper is devoted to improving crossover operator for
real-coded genetic algorithms, whose field of application is optimisation problems in
continuous domains, the study of a specific discrete problem with the ideas presented
above might achieve a methodology for problems defined in discrete domains.

3 Crossovers based on virtual parents

The proposed methodology uses the three virtual individuals obtained using norms
L1 and L2 as virtual parents to be used in any crossover operator. The method-
ology creates one offspring βs = {βs

1, β
s
2, . . . , β

s
i , . . . , β

s
p} from an individual of

the population βf = {βf

1 , β
f

2 , . . . , β
f
i , . . . , β

f
p } and a virtual individual VP ∈

{CILL,CIM,CIUL}, following:

• β
f
i ∈ I 1

i : if the fitness of βf is higher than CILL, then βs
i = Crossover-

VP(β
f
i ,CILLi ), else βs

i = CrossoverVP(CILLi , β
f
i )

• β
f
i ∈ I 2

i and the fitness of CILL is higher than CIM: if the fitness of βf is

higher than CILL, then βs
i = CrossoverVP(β

f
i ,CILLi ), else βs

i = Crossover-

VP(CILLi , β
f
i )

• β
f
i ∈ I 2

i and the fitness of CIM is higher than CILL: if the fitness of βf is higher

than CIM, then βs
i = CrossoverVP(β

f
i ,CIMi ), else βs

i = CrossoverVP(CIMi , β
f
i )

• β
f
i ∈ I 3

i and the fitness of CIUL is higher than CIM: if the fitness of βf is

higher than CIUL, then βs
i = CrossoverVP(β

f
i ,CIULi ), else βs

i = Crossover-

VP(CIULi , β
f
i )

• β
f
i ∈ I 3

i and the fitness of CIM is higher than CIUL: if the fitness of βf is higher

than CIM, then βs
i = CrossoverVP(β

f
i ,CIMi ), else βs

i = CrossoverVP(CIMi , β
f
i )

• β
f
i ∈ I 4

i : if the fitness of βf is higher than CIUL, then βs
i = Crossover-

VP(β
f
i ,CIULi ), else βs

i = CrossoverVP(CIULi , β
f
i )

where CrossoverVP(bestparent,worstparent) represents the crossover operator adapted
following the general rules:

• If the operator produces two descendants each one closer to each parent, as SBX
and Fuzzy operators do, we will only generate the descendant closer to the parent
with the best fitness.

• If the operator produces just one descendant near the best parents, as BGA does,
the original formulation of the crossover is kept.
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Fig. 1 Graphic representation
of the original crossovers (a)
and their corresponding
adaptation using virtual parents

for the case when β
f
i

∈ I1
i (b).

The dotted line shows the region
where the offspring is generated
for the case when the fitness of
βf is better than the fitness of
VP = {CILL,CIM,CIUL}, and
the continuous line the region
otherwise

(a)

• If the operator uses an interval bounded by the parent, as Flat crossover does, or
somewhat wider, BLX, the bound of the interval closest to the worst parent will be
moved to the medium point of the interval made up by the two parents.

In the following sections we show the adaptation of several of the most widely
used crossover operators using these basic principles. The operators chosen are SBX,
Fuzzy, Arithmetical, BGA, BLX and Flat. Figure 1 shows a graphic representation of
the original crossovers (on the left) and their corresponding adaptation using virtual
parents for the case when β

f
i ∈ I 1

i (on the right). The dotted line shows the region
where the offspring is generated for the case when the fitness of βf is better than the
fitness of V P = {CILL,CIM,CIUL}, and the continuous line the region otherwise.

3.1 SBX crossover

SBX (Simulated Binary Crossover) was proposed in (Deb and Agrawal 1995).
The operator simulates the effect of one point binary crossover. Given two parents
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Fig. 1 (Continued)

(b)

βf1 , βf2 the crossover generates two descendants whose genes β
s1
i = 1

2 [(1 +
Bk)β

f1
i + (1 − Bk)β

f2
i ] and β

s2
i = 1

2 [(1 − Bk)β
f1
i + (1 + Bk)β

f2
i ], where Bk ≥ 0

is a sample from a random number generator having the density

p(B) =
{

1
2 (η + 1)Bη, if 0 ≤ B ≤ 1,
1
2 (η + 1) 1

Bη+2 , if B > 1.
(27)

This distribution can easily be obtained from a uniform u(0,1) random number
source by the transformation

B(u) =
⎧
⎨

⎩
(2u)

1
η+1 , if u ≤ 1

2 ,

( 1
2(1−u)

)
1

η+1 , if u > 1
2 .

(28)

Figure 1 shows how the offspring is generated near the two parents depending
on the distribution function given above whose amplitude is governed by the para-
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Table 1 Triangular probability
distributions for fuzzy crossover Distribution Minimum Mode Maximum

φ
β

f1
i

β
f1
i

− d|βf2
i

− β
f1
i

| β
f1
i

β
f1
i

+ d|βf2
i

− β
f1
i

|
φ

β
f2
i

β
f2
i

− d|βf2
i

− β
f1
i

| β
f2
i

β
f2
i

+ d|βf2
i

− β
f1
i

|

meter η. A value of η = 5 has shown a good compromise between exploration and
exploitation for a wide range of problems (Deb and Beyer 2001; Herrera et al. 2003).

SBXVP crossover Given a parent βf ∈ β and a virtual individual VP = {CILL,
CIM, CIUL} the genes of the offspring βs

i = 1
2 [(1 + Bk)β

f
i + (1 − Bk)VPi] if the

fitness of βf is better than the fitness of VP. Otherwise, βs
i = 1

2 [(1 − Bk)β
f
i + (1 +

Bk)V Pi]. Figure 1 shows the case when β
f
i ∈ I 1

i . The dotted line shows the distrib-
ution used for the generation of the offspring in the first case, and the continuous line
in the second case.

3.2 Fuzzy crossover

In this operator (Voigt et al. 1995) given two parents βf1 , βf2 two descendants are
generated in such a way that the probability that βs

i takes a value zi is given by
the distribution p(zi) ∈ {φ

β
f1
i

, φ
β

f2
i

}, where φ
β

f1
i

and φ
β

f2
i

are triangular probability

distributions whose features for β
f1
i ≤ β

f2
i and d ∈ [0,1] are shown in Table 1.

The parameter d defines the amplitude of the triangular distribution, d = 0.5 being
a suitable value (Voigt et al. 1995; Voigt 1995; Herrera and Lozano 2000) for a wide
range of problems (Fig. 1).

FuzzyVP crossover This crossover is adapted in the same way as SBX crossover.
If the fitness of βf is better than the fitness of the VP the distribution used is φ

β
f
i

,

otherwise φVPi
. These two distributions are shown in Fig. 1, the former with a dotted

line and the latter with a continuous line.

3.3 Arithmetical crossover

Two descendants are created, β
s1
i = λβ

f1
i + (1 −λ)β

f2
i and β

s2
i = λβ

f2
i + (1 −λ)β

f1
i ,

where λ ∈ [0,1] is a constant (Michalewicz 1992). This crossover tends to generate
solutions near the centre of the search space. A value of λ = 0.25 is common in the
works where this operator is used (Michalewicz 1992; Herrera et al. 2003) (Fig. 1).

ArithmeticalVP crossover If the fitness of βf is better than the fitness of VP, βs
i =

λVPi + (1 − λ)β
f
i , or βs

i = λβ
f
i + (1 − λ)VPi otherwise. With a value of λ = 0.25

offspring are generated near the best individual (Fig. 1). A value of λ > 0.5 implies
inverting the two cases to keep the behaviour of the operator.
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3.4 Linear BGA crossover

Given two parents βf1 , βf2 and considering that βf1 is the individual with the best
fitness, a descendant is created βs whose genes βs

i = β
f1
i ± rangiγ�, where � =

β
f2
i −β

f1
i

‖βf1 −βf2 ‖ . The sign “−” is chosen with probability 0.9. Usually rangi = 0.5(bi − ai)

and γ = ∑15
k=0 αk2−k , where αi ∈ {0,1} is randomly generated with p(αi = 1) = 1

16
(Schlierkamp-Voosen 1994). This operator is based on Mühlenbein’s mutation (Müh-
lebein and Schlierkamp-Voosen 1993) and performs a search near the best individual,
whose amplitude depends on both the distance between the values of the genes and
the distances between the chromosomes (Fig. 1). The high probability of a negative
sign makes the crossover very exploratory and most of the descendants are generated
outside the interval defined by the parents.

Linear BGAVP crossover The only difference with the original crossover is that in
this version of the operator only a parent from the population βf is involved together
with a virtual individual VP = {CILL,CIM,CIUL}. If βf has a better fitness than

VP, βs
i = β

f
i ± rangiγ�, where � = VPi−β

f
i

‖βf −V P‖ . Otherwise, βs
i = VPi ± rangiγ�,

where � = β
f
i −VPi

‖VP−βf ‖ . Figure 1 shows both cases.

3.5 BLX crossover

Given two parents βf1 , βf2 a descendant is created βs whose genes βs
i are cho-

sen randomly in the interval [min−I · α,max + I · α], being max = max(β
f1
i , β

f2
i ),

min = min(β
f1
i , β

f2
i ) and I = max−min (Eshelman and Schaffer 1993). If α = 0 this

crossover is the same as Flat crossover. For α = 0.5, the probability that the genes of
the offspring take values within and without the interval of the values of their parents
is the same. In (Herrera et al. 1998) different values of α are tested obtaining a best
value of α = 0.5.

BLXVP crossover Given a parent βf ∈ β and a virtual individual VP = {CILL,
CIM, CIUL} the genes βs

i of the offspring are chosen randomly in the interval

[min−I · αL,max+I · αU ], being max = max(β
f
i ,VPi ), min = min(β

f
i ,VPi ) and

I = max−min. If the individual whose gene is min has a better fitness than the indi-
vidual whose gene is max belongs to then αL = −0.5 and αU = α, otherwise αL = α

and αL = −0.5. In this way the bound of the interval closest to the worst parent is
moved to the middle point of the interval defined by the two parents.

Figure 1 shows the case for βf ∈ I 1. If the fitness of βf is better than the fitness of
CILL the offspring are generated in the dotted segment, otherwise they are generated
in the continuous segment.

3.6 Flat crossover

It creates a descendant whose genes βs
i are randomly generated in the interval

[βf1
i , β

f2
i ] (Radcliffe 1991). It is an exploitative crossover (Fig. 1).
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FlatVP crossover As in the case of BLX crossover, if the fitness of βf is better than
the fitness of VP, βs

i takes values in the interval [βf
i , β

f
i + (VPi − β

f
i )/2], otherwise

it takes values in [VPi ,VPi + (β
f
i − VPi )/2] (Fig. 1).

4 Virtual parent effect

This section aims at analysing the effect of using virtual parents as they have been
defined in the previous sections. We study this effect on BLX crossover, as it is one of
the most widely used, and its two modifications BLXL2VP, when we use L2 norm,
and BLXL1VP, when we use L1 norm.

The study is made using a unimodal function, Sphere (De Jong 1975), and a mul-
timodal function, Rastrigin (Rastrigin 1974) (Table 2). In order to be able to study the
effect of virtual parents we use 5 dimensions, a positive domain xi ∈ [0,12] and an
optimum value shifted to x∗ = {10,10,10,10,10} with f (x∗) = 0. The RCGA used
is the same as the one in the experiments (see Sect. 5) with a limit of 100 generations.
For constructing the confidence intervals we use n = 5, and a confidence coefficient
of 1 − α = 0.99. The algorithm is run once for each operator using the same initial
population and the same series of random values.

For the Sphere function, simple and strongly convex, Fig. 2 shows that BLX
does not always generate offspring nearer the optimum values xi = 10. Besides, for
BLXL2VP (Fig. 3) and BLXL1VP (Fig. 4) the offspring is always nearer the op-
timum than the parents. The genes of the virtual parents have a marked tendency
towards the optimum of the function. The offspring tends to approach the virtual
parents and therefore the optimum of the function. Figures 3f and 4f show that the
offspring generated using the virtual parents always has better fitness than its parents.
On the other hand, the average fitness of the offspring generated by BLX (Fig. 2f)
is almost always worse than the fitness of their parents. This has an effect on the
convergence speed, and the RCGA using virtual parents converges faster.

The Rastrigin function has a contour made up of a large number of local minima
whose value increases with the distance to the global minimum. As in the case of
Sphere, BLX does not always generates offspring closer to the optimum than their
parents (Fig. 5). The multimodality of this function makes the hypothesis of normal-
ity of the best n individuals less probable. This might explain the poor performance
of BLXL2VP (Fig. 6). On the other hand, the confidence intervals constructed for
BLXL1VP (Fig. 7) are independent of the distribution of the individuals, and their
behaviour is better. The multimodality of the function prevents the offspring always
being nearer the optimum than their parents, however in most cases the offspring is
closer to the optimum. Figure 7f shows that the average fitness of the descendants us-
ing BLXL1VP is better, as a general rule, than the fitness of their parents. Moreover,
the offspring generated by BLXL2VP (Fig. 6f) does not consistently generate better
offspring. The behaviour of BLX (Fig. 5f) is similar to the behaviour for Sphere, the
offspring has a fitness similar to their parents.

The parameter n is responsible for determining the region where the search will
be directed. If n is small, the population will move to the most promising individuals
quickly. This may be convenient for increasing the convergence speed. Nevertheless,
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Table 2 Definition of each function together with its features

Function Definition Multimodal? Separable? Regular?

Sphere fSph(x) = ∑p
i=1 x2

i
no yes n/a

xi ∈ [−5.12,5.12]
x∗ = (0,0, . . . ,0);fSph(x∗) = 0

Schwefel’s fSchDS(x) = ∑p
i=1(

∑i
j=1 xj )2 no no n/a

Double sum xi ∈ [−65.536,65.536]
x∗ = (0,0, . . . ,0);fSchDS(x∗) = 0

Rosenbrock fRos(x) = ∑p−1
i=1 [100(xi+1 − x2

i
)2 + (xi − 1)2] no no n/a

xi ∈ [−2.048,2.048]
x∗ = (1,1, . . . ,1);fRos(x∗) = 0

Rastrigin fRas(x) = 10p + ∑p
i=1(x2

i
− 10 cos(2πxi)) yes yes n/a

xi ∈ [−5.12,5.12]
x∗ = (0,0, . . . ,0);fRas(x∗) = 0

Schwefel fSch(x) = 418.9829 · p + ∑p
i=1 xi sin(

√|xi |) yes yes n/a

xi ∈ [−512.03,511.97]
x∗ = (−420.9687, . . . ,−420.9687);fSch(x∗) = 0

Weierstrass fWei(x) = ∑p
i=1(

∑kmax
k=0 [ak cos(2πbkxi ]) + 2p yes no n/a

xi ∈ [−0.5,0.5];a = 0.5;b = 3;kmax = 20

x∗(0,0, . . . ,0);fWei(x∗) = 0

Schaffer fSchaf(x1, x2, x3 · · ·xp) yes no n/a

= F(x1, x2) + F(x2, x3) + · · · + F(xp, x1)

F (x, y) = 0.5 + sin2(
√

x2+y2)−0.5
(1+0.001(x2+y2))2

xi ∈ [−100,100]
x∗(0,0, . . . ,0);fSchaf(x∗) = 0

Ackley fAck(x) = 20 + e − 20 exp(−0.2
√

1
p

∑p
i=1 x2

i
) yes no yes

− exp( 1
p

∑p
i=1 cos(2πxi))

xi ∈ [−30,30]
x∗ = (0,0, . . . ,0);fAck(x∗) = 0

Griewangk fGri(x) = 1 + ∑p
i=1

x2
i

400p
− ∏p

i=1 cos( xi√
i
) yes no yes

xi ∈ [−600,600]
x∗(0,0, . . . ,0);fGri(x∗) = 0

Fletcher fFle(x) = ∑p
i=1(Ai − Bi)

2 yes no no

Powell Ai = ∑p
j=1(aij sinαj + bij cosαj )

Bi = ∑p
j=1(aij sinxj + bij cosxj )

xi , αi ∈ [−π,π ]; aij , bij ∈ [−100,100]
x∗ = α;fFle(x∗) = 0

Langerman fLan(x) = −∑m
i=1 ci · exp(− 1

π

∑p
j=1(xj − aij )2) yes no no

· cos(π
∑p

j=1(xj − aij )2)

xi ∈ [0,10];m = p

x∗ = random;fLan(x∗) = random
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Fig. 2 Average values of the 5
genes of the parents and
offspring (a–e) and fitness of the
fittest individual and average
fitness of the parents and
offspring (f) for Sphere using
BLX

(a)

(b)

(c)

it can produce a premature convergence to suboptimal values. If n is large, both the
shifting and the speed of convergence will be smaller. However, the evolutionary
process will be more robust, this feature being perfectly adequate for the optimisation
of multimodal, non-separable, highly epistatic functions.
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Fig. 2 (Continued)

(d)

(e)

(f)

Previous works (Hervás-Martínez et al. 2003; Ortiz-Boyer et al. 2005; Hervás-
Martínez and Ortiz-Boyer 2005) show that the selection of the best n = 5 indi-
viduals of the population would suffice for obtaining a localisation estimator good
enough to guide the search process even for multimodal functions where a small
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Fig. 3 Average values of the 5
genes of the parents and
offspring together with values of
the three virtual parents (a–e)
and fitness of the fittest
individual and average fitness of
the parents and offspring (f) for
Sphere using BLXL2VP

(a)

(b)

(c)

value of n could favour the convergence to local optima. However, if the vir-
tual parents have a worse fitness than the parent from the population, the off-
spring is generated near the latter, and the domain can be explored in multiple di-
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Fig. 3 (Continued)

(d)

(e)

(f)

rections. In this way, the premature convergence to suboptimal virtual parents is
avoided.

Figures 6 and 7 show BLXL2VP and BLXL1VP are able to avoid these local min-
ima for Rastrigin function. If the virtual parents have worse fitness than the individual
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Fig. 4 Average values of the 5
genes of the parents and
offspring together with values of
the three virtual parents (a–e)
and fitness of the fittest
individual and average fitness of
the parents and offspring (f) for
Sphere using BLXL1VP

(a)

(b)

(c)

with whom it mates, the offspring is not generated near these virtual parents, but in
the proximity of the other parent. In this way, the displacement of the population to-
wards regions where the improvement of the fitness is not significant is prevented.
So, in several cases, after a phase where the genes of the virtual parents converge to a



Improving crossover operator for real-coded genetic algorithms 285

Fig. 4 (Continued)

(d)

(e)

(f)

local optimum, this optimum is left as fitter individuals are generated in its proximity
which allows the localisation of a more promising region.



286 D. Ortiz-Boyer et al.

Fig. 5 Average values of the 5
genes of the parents and
offspring (a–e) and fitness of the
fittest individual and average
fitness of the parents and
offspring (f) for Rastrigin using
BLX

(a)

(b)

(c)

5 Experimental setup

In order to study the performance of the proposed methodology we use a generational
RCGA (Bäck et al. 1997) with a population of 101 individuals randomly initialised.
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Fig. 5 (Continued)

(d)

(e)

(f)

In (Zhang and Kim 2000) an experimental comparative study was carried out of
the performance of different selection methods. The study concludes that the meth-
ods of ranking and tournament selection obtain better results than the methods of
proportional and Genitor selection. We chose the binary tournament selection for its
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Fig. 6 Average values of the 5
genes of the parents and
offspring together with values of
the three virtual parents (a–e)
and fitness of the fittest
individual and average fitness of
the parents and offspring (f) for
Rastrigin using BLXL2VP

(a)

(b)

(c)

simplicity. Tournament selection runs a tournament between two individuals and se-
lects the winner. In order to assure that the best individuals always survive to the next
generation, we use elitism, the best individual of the population in generation t is
always included in the population in generation t + 1. The convenience of the use
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Fig. 6 (Continued)

(d)

(e)

(f)

of elitism has been proved, both theoretically (Rudolph 1994) and empirically (Bäck
1996; Michalewicz 1992; Zhang and Kim 2000).

As mutation operator we have chosen the non-uniform mutation with parameter
b = 5 (Michalewicz 1992) as its dynamic nature makes it very suitable for a wide
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Fig. 7 Average values of the 5
genes of the parents and
offspring together with values of
the three virtual parents (a–e)
and fitness of the fittest
individual and average fitness of
the parents and offspring (f) for
Rastrigin using BLXL1VP

(a)

(b)

(c)

variety of problems (Herrera and Lozano 2000). This operator performs a uniform
search in the initial stages of the evolution, and a localised search in the final stages
allowing fine tuning of the solution. For the mutation probability, values in the in-
terval pm ∈ [0.001,0.1] are usual (De Jong 1975; Herrera et al. 1998; Michalewicz
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Fig. 7 (Continued)

(d)

(e)

(f)

1992; Bäck 1996). We have chosen a value of pm = 0.05 for both models. We have
used a crossover probability of pc = 0.6 because is commonly used in the literature
(De Jong 1975; Herrera et al. 1998). The general structure of the genetic algorithm is
shown in Fig. 8.
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Fig. 8 Structure of the genetic
algorithm, where t is the current
generation

Genetic algorithm
begin

t ← 0
initialize β(t)

evaluate β(t)

while (not stop-criterion) do
begin

t ← t + 1
select β(t) from β(t − 1)

crossover β(t)

mutate β(t)

evaluate β(t)

end
end

The parameters of the operator are common to the standard version and when
virtual parents are used. Following the literature with use SBX with η = 5, Fuzzy
crossover with d = 0.5, Arithmetical crossover with λ = 0.25, linear BGA crossover
with rangi = 0.5(bi − ai) and BLX crossover with α = 0.5. For constructing the
confidence intervals we use n = 5. Although in multimodal functions a larger value
might be suitable, previous works (Ortiz-Boyer et al. 2005; Hervás-Martínez and
Ortiz-Boyer 2005; Hervás-Martínez et al. 2003) show that a value of n = 5 is large
enough to identify the most promising regions of the search space. For obtaining the
confidence interval of the localisation estimator we use a confidence coefficient of
1 − α = 0.99.

Each experiment is repeated 30 times with different random seeds following the
recommendations of (Czarn et al. 2004) for avoiding noise due to seed. We have
used a different random series for each implemented item: initialisation of the popu-
lation, selection, crossover, and mutation. For each set of experiments with the same
algorithm we use a different set of seeds. The sets of seeds is common for all the
experiments. That is, seeds for experiment 1 of algorithm a is different from the set
of seeds for experiment 2 of algorithm a, but experiment 1 of algorithm b uses the
same seeds as experiment 1 of algorithm a.

The stopping criterion is the number of evaluations of the fitness function and
we use a limit of 300,000 evaluations (Eiben et al. 1998; De Jong et al. 1998). The
precision of the solutions is bounded by the precision of the data type used in the
implementation of the genetic algorithm. We have used a double precision data type
of 64 bits following the specification ANSI/IEEE STD 754-1985 (IEEE Standard for
Binary Floating-Point Arithmetic). This data type has a precision of 15–17 digits.

For the evaluation of the performance of the proposed methodology with respect
to the problem typology we have used a set of well characterised functions instead of
a large number of functions. This set is made up of functions with different modality,
separability and regularity. In this way, we try to discover whether the use of virtual
parents can improve the performance of a RCGA in specific types of functions.

Taking into account that dimensionality is a factor that has effects on the complex-
ity of the functions (Friedman et al. 1994), and in order to establish the same degree
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of difficulty, we have chosen a dimensionality of p = 30 for all the functions. Table 2
shows the definition of the functions, with their main features and the localisation of
the optima.

The Sphere function (De Jong 1975) is a simple and strongly convex function.
The Schwefel’s double sum function (Schwefel 1995) is a function whose gradient is
not oriented along their axis due to the correlation among their variables. In this way,
the algorithms that use the gradient method converge very slowly. The Rosembrock
function (Rosenbrock 1960), defined as a two-dimensional function, has a deep valley
with the shape of a parabola of the form x2

1 = x2 that leads to the global minimum.
The non-linearity of the valley makes many algorithms converge slowly because they
change the direction of the search repeatedly. The extended version of this function
that we use was proposed by Spedicato (1975). Many authors considered this func-
tion as challenging for any optimisation algorithm (Schlierkamp-Voosen 1994). Its
difficulty is mainly due to the non-linear interaction among its variables.

The Rastrigin function (1974) has a contour made up of a large number of lo-
cal minima whose value increases with the distance to the global minimum. The
Schwefel function (1981) is a function whose main difficulty is the existence of a
second best minimum far from the global minimum, where many search algorithms
are trapped. Moreover, the global minimum is near the bounds of the domain.

The Weierstrass function (1872) is highly multimodal, continuous everywhere
but differentiable nowhere. This shows the fractal nature, that is, it doesn’t get any
“smoother” as one looks closer (a prerequisite for differentiability).

The expanded Schaffer’s F6, or sine envelop sine wave a function (Schaffer et al.
1989), which we call Schaffer function or fSchaf, is highly multimodal and nonsepara-
ble. Its global minimum is encircled by countless second minimum points. Since the
second minimum points have a larger absorbing basin, they are extremely deceptive.

The Ackley (1987) function has an exponential term that covers its surface with
numerous local minima. The complexity of this function is moderate. An algorithm
that only uses the steepest gradient descent will be trapped in a local optima, but any
search strategy that analyses a wider region will be able to cross the valley among the
optima and achieve better results. The Griewangk function (Bäck et al. 1997) has a
product term that introduces strong interdependence among the variables. As in the
Ackley function, the optima of the Griewangk function are regularly distributed.

The functions of Fletcher–Powell (1963) and Langerman (Bersini et al. 1996) are
highly multimodal, as Ackley and Griewangk, but they are non-symmetrical and
their local optima are randomly distributed. In this way, the objective function has
no implicit symmetry advantages that might simplify the optimisation for certain al-
gorithms. Fletcher–Powell function achieves the random distribution of the optima
choosing randomly the values of the matrices a and b, and of the vector α. We have
used the values provided in (Bäck 1996). For the Langerman function, we have used
the values of a and c referenced in (Eiben and Bäck 1997). In contrast with the rest
of functions, Langerman is a maximisation problem.

6 Experimental results

This work is focused on the improvement of one of the components of a RCGA, so it
is not the aim of this paper to achieve the highest quality solutions for the considered
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Table 5 Sign test result for each crossover operator

Crossover XL2VP XL1VP

Win Draw Loss Sign Test Win Draw Loss Sign Test

SBX 11 0 0 0.000 10 0 1 0.012

Fuzzy 8 0 3 0.227 9 0 2 0.065

Arithmetical 9 0 2 0.065 9 0 2 0.065

BGA 4 0 7 0.549 9 0 2 0.065

BLX 9 0 2 0.065 7 0 4 0.549

Flat 9 0 2 0.065 9 0 2 0.065

benchmarks. For recent results on the proposed problems the reader is referred to
(Affenzeller and Wagner 2004; Auger and Hansen 2005).

The analysis of the results of this work aims at two objectives: to determine
whether given a crossover X, its alternatives XL2VP and XL1VP are able to out-
perform it, and study its influence on the performance of the RCGA in function of
the features of the problem to solve.

From the results of Tables 3 and 4, where the average and standard deviations
of best individuals are shown, we have performed a sign test (Hollander and Wolfe
1973) over the win/draw/loss record of each original crossover X and its alternatives
XL2VP and XL1VP. The results of these sign tests are shown in Table 5. With a con-
fidence level of 90%, SBX, Arithmetical and Flat crossover are improved with both
new strategies. For Fuzzy crossover the improvement is significant for FuzzyL1VP.
For BLX the improvement is significant for BLXL2VP. Only for BGA the alternative
XL2VP does not improve the performance of the operator. However, the results ob-
tained with BGAL1VP are significantly better than those obtained with the original
BGA. As a summary, the best alternative is XL1VP that significantly improves all the
operators, with the exception of BLX.

These results show that the use of virtual parents involves, as a general rule, an im-
provement on the performance of the RCGA, especially when XL1VP is used. Nev-
ertheless, a further analysis, taking into account the type of problem posed by each
function, is recommendable to test the validity of that statement. So, for each function
we have performed a multiple comparison test between the original crossover and its
two alternatives. First, we carry out a Levene test (Miller 1996; Levene 1960) with a
confidence level of 95% for evaluating the equality of variances. If the hypothesis that
the variances are equal is accepted, we perform a Bonferroni test (Miller 1996) for
ranking the means. If the test of Levene results in rejecting the equality of covariance
matrixes, we perform a Tamhane test (Tamhane and Dunlop 2000).

Tables 3 and 4 show the results obtained following the above methodology. The
superscript of the average fitness shows the rank of the result with respect to the
other methods. Columns αX

XL2VP, αXL1VP
X and αXL2VP

XL1VP show the significant level of
the differences between the average fitness of the original crossover and XL2VP, the
original crossover and XL1VP, and between XL2VP and XL1VP. The values are
marked with an “*” when the Levene test suggested a Bonferroni test. Additionally,
for determining the influence on the convergence speed of the crossover, Figs. 9, 10,
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Fig. 9 Evolution of the average
fitness of the best individual in
30 runs, in logarithmic scale,
using original crossovers X and
their alternatives XL2VP and
XL1VP for functions fSph

11, 12, 13 and 14 show the evolution of the average fitness of the best individuals
over 30 runs of the algorithm, in logarithmic scale.

For Sphere function, the fact that it is easy to optimise and the fitness behaves
as a singular random variable with sample variance near 0, prevents performing the
comparison test for several crossovers. However, the best results are obtained using
XL2VP, except for BGA for which the best alternative is BGAL1VP. The behaviour
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Fig. 10 Evolution of the
average fitness of the best
individual in 30 runs, in
logarithmic scale, using original
crossovers X and their
alternatives XL2VP and XL1VP
for functions fSchDS and fRos

of fSchDS is similar. The significantly best results are obtained, at a confidence level of
95%, with, in that order, XL2VP, XL1VP and the original crossover, except for BGA
where the best results are obtained with the original crossover but without significant
differences with BGAL2VP. For fRos for 4 of the 6 operators the best alternative
is XL2VP. For BGA, BGAL2VP is the second best operator after BGAL1VP, but
without significant differences. The same happens for Fuzzy crossover, but in this
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Fig. 10 (Continued)

case the differences are significant. Figs. 9 and 10 show that for these three functions
the use of virtual parents makes the convergence faster.

If we take into account that in unimodal functions the probability that the best
individuals follow a normal distribution is high, it is reasonable that the performance
of XL2VP would be better than the performance of XL1VP. That is the case for fSph,
fSchDS and fRos.
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Fig. 11 Evolution of the
average fitness of the best
individual in 30 runs, in
logarithmic scale, using original
crossovers X and their
alternatives XL2VP and XL1VP
for functions fRas and fSch

For multimodal functions, both separable, fRas and fSch, and non-separable, fWei

and fSchaf, XL1VP is significantly the best, except for fRas where SBXL2VP per-
forms significantly better than SBXL1VP (although both perform better than SBX).
Figures 11 and 12 show that the use of virtual parents not only involves a clear im-
provement in the convergence but also a better final solution of the RCGA. The results
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Fig. 11 (Continued)

show that the independence from the distribution of the best individuals of XL1VP is
an advantage when dealing with multimodal functions.

For fAck and fGri, although they are also multimodal and non-separable, the reg-
ularity with which the maxima are distributed makes their study more difficult. For
fAck the use of virtual parents involves a significant improvement of the results with
respect to the original operator but whether alternative, XL2VP or XL1VP, achieves
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Fig. 12 Evolution of the
average fitness of the best
individual in 30 runs, in
logarithmic scale, using original
crossover X and their
alternatives XL2VP and XL1VP
for functions fWei and fSchaf

better results depends on the basic crossover. Figure 13 shows that both methods,
XL2VP and XL1VP, improve the convergence of the RCGA. For fGri the use of vir-
tual parents only improves the results for SBX and BGA crossovers. Figure 13 shows
that XL2VP and XL1VP converge faster until generation 200,000, however from that
point a change in the slope of the curve makes four of the original operators converge
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Fig. 12 (Continued)

to better solutions. This behaviour of fGri might mean the necessity of using more
individuals to localise the most promising search region.

Due to their complexity, fFle and fLan functions are challenging for any algorithm.
For fFle XL1VP involves an improvement for four of the original crossover, although
this improvement is not always significant. For fLan the application of XL2VP is al-
ways the best performing one and is a significant improvement with respect to the
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Fig. 13 Evolution of the
average fitness of the best
individual in 30 runs, in
logarithmic scale, using original
crossover X and their
alternatives XL2VP and XL1VP
for functions fAck and fGri

original operator. Figure 14 shows that the use of virtual parents improves the con-
vergence speed. Due to the difficulties all algorithms have on these two functions, it
is not feasible to extract generalisable conclusions from these results.

Table 6 shows a comparison between the results obtained using CIXL1 and CIXL2
and the best crossover of the previous analysis. In 9 out of 11 functions, the best
result is obtained using a crossover that implements the proposed philosophy, for
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Fig. 13 (Continued)

the other 2 functions the best results are obtained with CIXL2 for one of them and
BLX for the other. Hence, the proposed methodology is advantageous not only to the
original operators but also it is able to improve the original implementation proposed
in CIXL1 and CIXL2.
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Fig. 14 Evolution of the
average fitness of the best
individual in 30 runs, in
logarithmic scale, using original
crossover X and their
alternatives XL2VP and XL1VP
for functions fFle and fLan

7 Conclusions

In this work we have proposed a new strategy for crossover based on the use of three
virtual parents created from the features of localisation and dispersion of the best
individuals of the population. This strategy can be incorporated into any operator,
and in this work we present versions of SBX, Fuzzy, Arithmetical, BGA, BLX and
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Fig. 14 (Continued)

Flat operators using this strategy. For each operator we have defined two alternatives:
XL2VP and XL1VP. For XL2VP the estimators of localisation and dispersion assume
a normal distribution of the individuals, and XL1VP is a non-parametric method.

The reported results show that either XL2VP or XL1VP improve, most of the time,
the results using the original crossover. As a general rule, the high probability of the
best individuals of the population of following a normal distribution in unimodal
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problems makes XL2VP more suitable for this kind of problem. On the other hand,
in multimodal problems where it is more difficult to make any assumption about the
distribution of the genes of the best individuals, using XL1VP is more advisable,
as it uses a non-parametric confidence interval, since the confidence coefficient is
determined from the binomial distribution without making any assumption of the
underlying gene distribution. Nevertheless, the experiments show that the original
crossover and the regularity of the distribution of optima may have an effect on the
performance of both methods, XL2VP and XL1VP.

Although using virtual parents that drive the population towards the most promis-
ing search regions might suggest a greater likelihood of being trapped in local min-
ima, especially in multimodal functions, this circumstance has not been observed in
the experiments reported here. The crossover strategy proposed allows the genera-
tion of descendants near the parents from the population only if the fitness of those
parents is better than the fitness of the virtual parents. In this way the shifting of the
population towards the region where the virtual parents are placed is prevented unless
those virtual parents mean a significant improvement in the fitness.

Additional research is very interesting in some areas of this work, especially the
selection of the individuals from the population to make up the virtual parents, tak-
ing into account the problem to be solved, to improve the identification of the most
promising regions of the search space. In such a case it will be necessary to study the
possible noise induced by the selection method in the distribution of the genes of the
best individuals.

In multimodal, nonseparable with many chaotically scattered optima functions it
might be interesting to divide the population into different clusters and obtain dif-
ferent virtual individuals from each cluster. In this way, we can implement a multi-
directional search strategy.
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