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Available online 20 November 2009

Keywords:

Banking crises prediction

Product unit neural networks

Radial basis function neural networks

Logistic regression

Hybrid methods
83/$ - see front matter & 2009 Elsevier Ltd. A

016/j.omega.2009.11.001

esponding author. Tel.: +34 91 885 6731; fax

ail address: sancho.salcedo@uah.es (S. Salced
a b s t r a c t

As the current crisis has painfully proved, the financial system plays a crucial role in economic

development. Although the current crisis is being of an exceptional magnitude, financial crises are

example of financial instability. In this paper we introduce a novel model for detection and prediction of

crises, based on the hybridization of a standard logistic regression with product unit (PU) neural

networks and radial basis function (RBF) networks. These hybrid approaches are fully described in the

paper, and applied to the detection and prediction of banking crises by using a large database of

countries in the period 1981–1999. The proposed techniques are shown to perform better than other

existing statistical and artificial intelligence methods in this problem.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The recent financial collapse has stressed the crucial role of the
financial system to guarantee the economic development. The
financial system is responsible for the allocation of resources over
time and among different alternatives of investment, by pricing
the postposition of consumption (free risk rate) and pricing the
risk (risk premium). A correct functioning of the financial system
allows economies to reach higher levels of real growth, as well as
more stable macroeconomic conditions. On the other hand, good
macroeconomic policies are a prerequisite for financial stability.
Therefore sound macroeconomic policies together with a devel-
oped financial system reinforce each other guaranteeing financial
stability and sustainable growth.

Apart from the current financial crisis, in the last 20 years at
least 10 countries have experienced the simultaneous onset of
banking and currency crisis, with contractions in gross domestic
product of between 5% and 12% in the first year of the crisis, and
negative or only slightly positive growth for several years
thereafter [1,2]. This emphasizes the fact that preserving financial
stability is one of the main goals for policy-makers from the
beginning of the monetary systems. It is the special role that
ll rights reserved.

: +34 91 885 6699.
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banks play in the financial system and their specificities as money
issuers that explain why a great number of financial crises have
had the banking sector as protagonist. In the 1980s and 1990s,
several countries including developed economies, developing
countries, and economies in transition, have experienced severe
banking crises. Such a proliferation of large scale banking sector
problems has raised widespread concern, as banking crises
disrupt the flow of credit to households and enterprisers, reducing
investment and consumption, and possibly forcing viable firms
into bankruptcy. Banking crises may also jeopardize the function-
ing of the payments system and, by undermining confidence in
domestic financial institutions, they may cause a decline in
domestic savings and/or a large scale capital outflow. Finally, a
systemic crisis may force even solid banks to go bankrupt.

In most countries, policy-makers have attempted to diminish
the consequences of banking crises through various types of
interventions, ranging from the pursuit of a loose monetary policy
to the bail out of insolvent financial institutions with public funds.
However, even when they are carefully designed, rescue opera-
tions have several drawbacks: they are often very costly for the
budget; they may allow inefficient banks to remain in business;
they are likely to create the expectation of future bail outs,
reducing incentives for adequate risk management by banks and
other markets participants (moral hazard); managerial incentives
are also weakened when, as it is often the case, rescue operations
force healthy banks to bear the losses of ailing institutions.
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Finally, loose monetary policy to shore up banking sector losses
can be inflationary and, in countries with an exchange rate
commitment, it may trigger a speculative attack against the
currency. This way, preventing the occurrence of systemic
banking problems is undoubtedly a major objective for policy-
makers, and understanding the mechanisms that are behind
banking crises in the last 15 years is a first step in this direction.

A number of previous studies have analysed different aspects
of banking systems [3–5] and episodes of banking sector distress
occurred. Most of these works consist of case studies, many of
them applying econometric analysis of different situations. For
example in [6] an econometric model is used to predict bank
failures using Mexican data for the period 1991–1995. In a more
recent work [7], the behaviour of a number of macroeconomic
variables of the months before and after a banking crisis is
analysed. Thus, the authors try to identify variables that act as
‘‘early warning signals’’ for crises. Other studies apply classical
statistical techniques such as discriminant, logit or probit analysis
[8–11], etc. However, although the obtained results have been
satisfactory, all these techniques present the drawback that they
make some assumptions about the model or the data distribution
that are not usually satisfied. So in order to avoid these
inconveniences of statistical methods, it has been recently
suggested in the economic field the use of soft-computing
techniques, mainly neural networks or evolutionary computation
algorithms [12,13].

In recent years, artificial neural networks (ANNs) have been
successfully used for modelling financial time series [14–16], for
controlling complex manufacturing processes [17] and bankruptcy
prediction [18,19]. The most popular neural network model is
maybe the back propagation (BP) neural network [20] due to its
simple architecture yet powerful problem-solving ability. In ANNs,
the hidden neurons are the functional units and can be considered
as generators of function spaces. Most existing neuron models are
based on the summing operation of the inputs, and, more
particularly, on sigmoidal unit functions, resulting in what is
known as the multilayer perceptron (MLP). However, alternatives
to MLP have arisen in the last few years: product unit neural
network (PUNN) models are an alternative to MLPs and are based
on multiplicative neurons instead of additive ones. They corre-
spond to a special class of feed-forward neural network introduced
by Durbin and Rumelhart [21]. While MLP network models have
been very successful, networks that make use of product units
(PUs) have the added advantage of increased information capacity
[21]. That is, smaller PUNNs architectures can be used than those
used with MLPs [22]. They aim to overcome the non-linear effects
of variables by means of non-linear basis functions, constructed
with the product of the inputs raised to arbitrary powers. These
basis functions express the possible strong interactions between
the variables, where the exponents may even take on real values
and are suitable for automatic adjustment. Another interesting
alternative to MLPs are radial basis function neural networks
(RBFNNs). RBFNNs can be considered a local approximation
procedure, and the improvement in both its approximation ability
as well as in the construction of its architecture has been
noteworthy [23]. RBFNNs have been used in the most varied
domains, from function approximation to pattern classification,
time series prediction, data mining, signals processing, and non-
linear system modelling and control [24]. RBFNNs use, in general,
hyper-ellipsoids to split the pattern space. In many cases, PU and
RBF networks are trained by using evolutionary algorithms (EAs),
obtaining with this method advantages respect to traditional
training approaches [25–27].

In this paper we consider the hybridization of these novel
networks (PUs and RBFs) with a standard logistic regression to
improve the performance of the classifiers in the problem of bank
crises prediction. Logistic regression (LR) has become a widely used
and accepted method of analysis of binary or multi-class outcome
variables as it is more flexible and it can predict the probability of
the state of a dichotomous variable (in our case, the probability of
crisis) based on the predictor variables (in our case, macroeco-
nomic variables). The hybridization of LR and PUNNs or RBFNNs is
done by considering a recent work in classifier construction [28],
where the hybridization of the LR model and evolutionary PUNNs
(EPUNNs) to obtain binary classifiers is proposed. In a first step, an
evolutionary algorithm [25] is used to determine the basic
structure of the product unit model. That step can be seen as a
global search in the space of the model coefficients. Once the basis
functions have been determined by the EA, a transformation of the
input space is considered. This transformation is performed by
adding the non-linear transformations of the input variables given
by the PU functions obtained by the EA. The final model is linear in
these new variables together with the initial covariates. On the
other hand, the hybridization of the LR and evolutionary RBFNNs is
also tested in this paper, in such a way that we combine a linear
model with a radial basis function neural network (RBFNN) non-
linear model and then we estimate the coefficients using logistic
regression. In this paper we show that the hybrid models involving
LR, PUNNs and RBFNNs outperforms several other existing
classification techniques in the problem of banking crises predic-
tion, and they are therefore a very interesting tool to take into
account in this field.

The structure of the rest of the paper is as follows: next section
briefly describes the main variables that are considered as key in
banking crises detection. Section 3 describes in detail the hybrid
models LR-PUNNs and LR-RBFNNs proposed in this paper. A brief
description of the evolutionary algorithm used in the first training
of the networks is also included. Section 4 presents the
experimental section of the paper, in which we test the good
performance of the proposed approaches in a Financial Crisis
Database, formed by a sample of data of 79 countries in the period
1981–1999. Finally, the paper is closed with some remarks and
conclusions in Section 5.
2. Data and variables involved in banking crises detection

This section defines the independent and the dependent
variables involved in the present study. As for the dependent
variables, the literature offers several definitions of financial
instability. In [29] financial stability is defined in terms of its
ability to help the economic system allocate resources, manage
risks, and absorb shocks. Another strand of the literature focuses
on extreme realizations of financial instability. According to [30] a
financial crisis is a disruption to financial markets in which
adverse selection and moral hazard become much worse, so that
financial markets are unable to efficiently channel funds to those
who have the most productive investment opportunities. How-
ever, in this paper we identity financial instability with banking
crisis, because it is the most common example of financial
instability given the especial role banks play in the financial
system. Once more, academics, central banks and officials offer
several definitions of banking crisis [11,31]. Many of these
definitions completely solve the problem of how to summarize
such description in one single quantitative indicator, or a set of
them. On the other hand, these indicators are not readably
available for a large number of countries, or there are not enough
comparable cross-country data to construct some of the indica-
tors. The empirical literature identifies banking crises as events,
expressed through a binary variable, constructed with the help of
cross-country surveys [32]. This is the approach that we follow in
this work as well. The dependent variable is defined as: systemic
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and non-systemic banking crises dummy equals one during
episodes identified as in [32].

The independent variables included are dictated by the theory
on the determinants of banking crisis. All the independent
variables are connected with the risks faced by banks. There are
risks common to all, no matter the business. However, the typical
risks faced by banks are the following ones:
�

can

non
The credit risk is the risk that borrowers become unable or
unwilling to service their debt. Thus, the theory predicts that a
shock which adversely affects the economic performance of
bank borrowers, and which cannot be diversified, should be
positively correlated with systemic banking crises. The
empirical literature has highlighted a number of economic
shocks associated with episodes of banking sector problems:
cyclical output downturns, terms of trade deteriorations,
declines in asset prices such as equity and real estate [7,11].

�
 The interest rate risk: because the asset side of bank balance

sheets usually consists of loans of longer maturity at fixed
interest rates, the rate of return on assets cannot be adjusted
quickly enough, and banks must bear losses. Thus, a large
increase in short-term interest rates is likely to be a major
source of systemic banking sector problems. The increase in
short-term interest rates may be due to several factors, such as
an increasing in inflation rate, a shift towards more restrictive
monetary policy which raises real rates, an increase in
international interest rates, the removal of interest rate
controls due to financial liberalization, or the need to defend
the exchange rate against a speculative attack1 [7].

�
 The currency risk occurs when banks borrow in foreign

currency and lend in domestic currency. In this case, an
unexpected depreciation of the domestic currency threatens
bank profitability. Foreign currency debt was a source of
banking problems in Mexico in 1995, in the Nordic Countries
in the early 1990s, and in Turkey in 1994 [30].

�
 Liquidity risk: when bank deposits are not insured, deteriora-

tion in the quality of a bank’s asset portfolio may trigger a run,
as depositors rush to withdraw their funds before the bank
declares bankruptcy. Because bank assets are typically illiquid,
runs on deposits accelerate the onset of insolvency. The
possibility of self-fulfilling runs make banks especially vulner-
able financial institutions. A run on an individual bank should
not threaten the banking system as a whole unless partially
informed depositors take it as a signal that other banks are also
at risk (contagion). In these circumstances, bank runs turn into
a banking panic.

For all these reasons, as independent variables we employ a set
of macroeconomic and financial variables, both qualitative
(exchange rate target, monetary policy target, central bank
independence and previous crisis) and quantitative (the rest of
the variables). Among the macroeconomic variables we include:
the real growth of Gross Domestic Product (GDP), the level of real
GDP per capita, the inflation rate and the real interest rate to
capture the external conditions that countries face. Among the
financial variables we include domestic credit growth, bank cash
to total assets, bank foreign liabilities to foreign assets and the
previous crises as a measure of the degree of confidence of the
depositors in the financial stability.

We also explore the role of monetary policy. The existing
literature on monetary policy has concentrated on issues more
1 Higher real interest rates are likely to hurt bank balance sheets even if they

be passed on to borrowers, as higher lending rates result in a larger fraction of

-performing loans.
different than financial stability (mainly price stability but also
output stabilization). The impact of the monetary policy design on
financial stability is related to the very much debated question of
the relation between price stability and financial stability. The
economic literature is divided as to whether there are synergies or
a trade-off between them [30,33]. If synergies existed between
the two objectives it would seem safe to argue that the
same monetary policy design which helps achieve price stability
also fosters financial stability [34]. However, if there were a trade-
off, it would be much harder to establish an a priori on the impact
of price stability on financial stability. Among the variables
related with monetary policy we include the monetary policy
regime and the degree of independence of the central bank. This
debate has become more important in light of the recent
turbulences.
3. Description of the hybrid methodologies proposed

The hybrid models we analyse in this paper for the prediction
of banking crises are LR models based on the hybridization of the
standard linear model and non-linear terms. These non-linear
models are constructed with basis functions obtained from
evolutionary product unit neural networks (EPUNNs) and evolu-
tionary radial basis functions neural networks (ERBFNNs). In this
section we describe the main characteristics of the elements
considered for the hybridization: binary LR approach, EPUNNs
and ERBFNNs.

3.1. Binary logistic regression (LR)

Typically, in supervised classification, a set of nT training
samples ðx1; y1Þ; . . . ; ðxnT

; ynT
Þ is given. The inputs xi (i.e. the set of

macroeconomic and financial variables) form a feature space X,
and the output yi (i.e. the ‘‘systemic crisis’’ class) has a class label
c, which belongs to a finite set C. A classification rule is designed
based on the training data, so that, given a new input xi with the
corresponding values for the macroeconomic variables, a class c

from C with the smallest probability of error is assigned to it.
In this paper the situation considered is the following: a binary

outcome variable y (‘‘systemic crisis’’ (crisis) or ‘‘non-systemic
crisis’’ (non-crisis)) is observed together with a vector xi ¼ ð1; xi1;

xi2; . . . ; xikÞ of covariates for each of the nT training samples
(assuming that the vector of inputs includes the constant term 1
to accommodate the intercept). The two-class is coded via a 0=1
response yi, where yi ¼ 1 for a crisis sample and yi ¼ 0 for non-
crisis samples. Let p be the conditional probability associated with
the first class. Logistic regression (LR) is a widely used statistical
modelling technique in which the probability p of the dichot-
omous outcome event is related to a set of explanatory variables x
in the form:

logitðpÞ ¼ ln
p

1�p

� �
¼ fLRðx;bÞ ¼ bTx ð1Þ

where b¼ ðb0;b1; . . . ;bkÞ is the vector of the coefficients of the
model, bT is the transpose vector and fLRðx;bÞ is the LR model. We
refer to p=ð1�pÞ as odds-ratio and to expression (1) as the log-
odds or logit transformation. A simple calculation in Eq. (1) shows
that the probability of occurrence of an event as a function of the
covariates is non-linear and is given by

pðx;bÞ ¼
ebTx

1þebTx
ð2Þ

The complementary event probability can therefore be
obtained as ð1�pðx;bÞÞ. Once the conditional probability function
defined in (2) is known, the Bayesian (optimal) decision rule can
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be constructed as

rðxÞ ¼ sign ln
pðx;bÞ

1�pðx;bÞ

� �� �

Given the set of macroeconomic variables x for a specific bank,
the probability p that the bank belongs to the first class can be
determined from (2). Similar to the maximum-likelihood classi-
fication, these class probabilities for each new bank may be
outputted to produce a soft classification. The results from this
paper advocate the utility of the LR as a potential approach for the
soft classification similar to other recent approaches such as the
MLP neural networks or the decision tree regression. A hard
classification can be produced by considering a cut-off or thresh-
old probability to assign the corresponding class. Observe that LR
not only constructs a decision rule but it also finds a function that
for any input vector defines the probability p that the vector x
belongs to the first class.

Let D¼ fðxl; ylÞ;1r lrnTg be the training dataset, where the
number of samples is nT. Here it is assumed that the training
sample is a realization of a set of independent and identically
distributed random variables. The unknown regression coeffi-
cients bi, which have to be estimated from the data, are directly
interpretable as log-odds ratios or, in term of expðbiÞ, as odds
ratios. That log-likelihood used as the error function is

lðbÞ ¼
XnT

l ¼ 1

yl log pðxl;bÞþð1�ylÞ logð1�pðx;bÞÞ ð3Þ

The estimation of the coefficient vector b is usually carried out
by means of an iterative procedure like the Newton–Raphson
algorithm or the iteratively reweighted least squares (IRLS) [35].
In this paper, two different algorithms have been considered for
obtaining the maximum likelihood solution for the logistic
regression model, both available in the WEKA machine learning
workbench [36]:
�
 MultiLogistic: It is an algorithm for building a multinomial
logistic regression model with a ridge estimator to guard
against overfitting by penalizing large coefficients, based on
the work by le Cessie and van Houwelingen [37]. In order to
find the coefficient vector b for which lðbÞ in (3) is minimized, a
quasi-Newton method is used.

�
 SimpleLogistic: It is based on applying LogitBoost algorithm with

simple regression functions and determining the optimum
number of iterations by a five fold cross-validation: the data are
equally splitted five times into training and test, LogitBoost is
run on every training set up to a maximum number of iterations
(500) and the classification error on the respective test set is
logged. Afterwards, LogitBoost is run again on all data using the
number of iterations that gave the smallest error on the test set
averaged over the five folds. Further details about the algorithm
can be found in [38].

3.2. Neural network models to hybridize with LR

This subsection presents the evolutionary product unit neural
networks (EPUNNs) and evolutionary radial basis functions neural
networks (RBFNNs) considered in the paper. First we briefly
introduce the PUNNs and RBFNNs, then we describe the Evolu-
tionary Algorithm used to train these models, and finally we
present the hybrid models proposed and used in the paper.

3.2.1. Product unit neural networks (PUNNs) and radial basis

functions neural networks (RBFNNs)

PUNNs are an alternative to MLPs, and are based on multi-
plicative neurons instead of additive ones. A multiplicative
neuron is given by
Qk

i ¼ 1 x
wji

i , where k is the number of the inputs.
When the exponents are f0;1g, a higher-order unit is obtained,
namely the sigma–pi unit [39]. In contrast to the sigma–pi unit, in
the PU the exponents are not fixed and may even take real values.
Product unit based neural networks have several advantages,
including increased information capacity and the ability to
express strong interactions between input variables. Furthermore,
it is possible to obtain upper bounds of the Vapnik–Chervonenkis
(VC) dimension of product unit neural networks similar to those
obtained for MLP [40]. Despite these advantages, PUNNs have a
major handicap: they have more local minima and more
probability of becoming trapped in them [22]. The main reason
for this difficulty is that small changes in the exponents can cause
large changes in the total error surface and therefore their
training is more difficult than the training of standard MLPs.
Several efforts have been made to carry out learning methods for
product units [22]. The back propagation algorithm, which is the
most common algorithm for training multilayer neural networks,
does not work very well with the product units because of its
complex error surface.

RBFNNs can be considered a local approximation procedure,
and the improvement in both its approximation ability as well as
in the construction of its architecture has been noteworthy [23].
RBFNNs use, in general, hyper-ellipsoids to split the pattern space.
This is different from MLPs which build their classifications on
hyper-planes, defined by a weighted sum. In RBFNNs, the main
problem is how to determine the hidden centres’ number and
their locations. If all the training samples are selected as hidden
centres, the generalization capability of the network will become
very poor so that many noised or deformed samples will be
unable to be recognized, although the network is guaranteed to
converge to some satisfying solution. Alternatively, there are
many approaches to determine the hidden centres. For instance,
the number and position of the RBFs may be fixed and defined a
priori [41]; they may be determined by input clustering (k-means
clustering, fuzzy k-means clustering, hierarchical clustering and
self-organizing map neural networks) [42]. An interesting alter-
native is to evolve RBFNNs using evolutionary algorithms (EAs). In
[43] a very complete state of the art of the different approaches
and characteristics of a wide range of EA and RBFNN combinations
is given.

In this work, we define a common framework for both PUNNs
and RBFNNs. The structure of the neural network considered is
described in Fig. 1: an input layer with k neurons, a neuron for
every input variable, a hidden layer with m neurons and an output
layer with one neuron.

There is no connection between the neurons of a layer and
none between the input and output layers either. The activation
function of the j-th neuron in the hidden layer is given by Bjðx;wjÞ

and the activation function of the output neuron is given by

f ðx; hÞ ¼ b0þ
Xm
j ¼ 1

bjBjðx;wjÞ ð4Þ

where bj is the weight of the connection between the hidden
neuron j and the output neuron and h is the vector of parameters
of the neural net. The transfer function of all hidden and output
neurons is the identity function. The difference between PUNNs
and RBFNNs is related to the activation function considered in the
hidden layer. In this way, Product Units (PUs) are considered for
PUNNs:

Bjðx;wjÞ ¼
Yk

i ¼ 1

x
wji

i ð5Þ

where wji is the weight of the connection between input neuron i

and hidden neuron j and wj ¼ ðwj1; . . . ;wjkÞ is the weight vector.
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On the other hand, Gaussian RBFs are considered for RBFNNs:

Bjðx;wjÞ ¼ exp �
x�cj

�� ��2

r2
j

 !
ð6Þ

where wj ¼ ðcj; rjÞ, cj ¼ ðcj1; cj2; . . . ; cjkÞ is the centre or average of
the j-th Gaussian RBF transformation, rj is the corresponding
radius or standard deviation and cji; rjAR.

We consider the softmax activation function [20] given by

gðx; hÞ ¼
exp f ðx; hÞ

1þexp f ðx; hÞ
ð7Þ

where f ðx;hÞ is the output of the output neuron for pattern x and
gðx; hÞ is the probability that a pattern x belongs to the crisis class.
With this model, the cross-entropy error function is defined by
Eq. (3), but substituting bTx with gðx; hÞ.

3.2.2. Evolutionary programming algorithm

In order to estimate the parameters and the structure of the
PUNNs or RBFNNs that minimizes the classification error function,
an evolutionary algorithm (EA) has been considered. The
algorithm is similar to the one proposed by [44]. The popula-
tion-based evolutionary algorithm for architectural design and
the estimation of real-coefficients have points in common with
other evolutionary algorithms in the bibliography [26,45,46]. The
search begins with an initial population. This population is
updated in each generation using a population-update algorithm,
and is subject to the evolutionary operations of replication and
mutation. Crossover is not used due to its potential disadvantages
in evolving artificial networks [45]. For this reason, this EA
belongs to the evolutionary programming (EP) paradigm. The
general structure of the EA is detailed next:

Evolutionary programming (EP)
(1)
 Generate a random population of size NP.

(2)
 Repeat until the maximum number of generations.

(a) Apply parametric mutation to the best 10% of individuals.
(b) Apply structural mutation to the remaining 90% of

individuals.
(c) Calculate the fitness of every individual in the population.
(d) Add best fitted individual of the last generation (elitist
algorithm).

(e) Rank the individuals with respect to their fitness.
(f) Best 10% of population individuals are replicated and

substitute the worst 10% of individuals.

(3)
 Select the best individual of the population in the last

generation and return it as the final solution.
First, the initial population is generated: the algorithm begins
with the random generation of a larger number of networks than
the number of networks used during the evolutionary process.
10NP networks are generated, where NP is the number of
individuals of the population to be trained during the evolutionary
process. We consider the cross-entropy lðhÞ as the error function of
an individual gðx; hÞ of the population, g being a PUNN or a RBFNN;
and then, the fitness measure is a decreasing strictly transforma-
tion of the error function lðhÞ given by AðgÞ ¼ 1=ð1þ lðhÞÞ, where
0oAðgÞr1.

The adjustment of both weights and structure of the NNs is
performed by the complementary action of two mutation
operators: parametric and structural mutation. Parametric muta-
tion implies a modification in the coefficients (bj and wji) of the
model, using a self adaptive simulated annealing algorithm [47].
Structural mutation modifies the topology of the neural nets,
helping the algorithm to avoid local minima and increasing the
diversity of the trained individuals. Five structural mutations are
applied sequentially to each network: neuron deletion, connec-
tion deletion, neuron addition, connection addition and neuron
fusion. In order to define the topology of the neural networks
generated in the evolution process, two parameters are consid-
ered: m and ME. They correspond to the minimum and the
maximum number of hidden neurons in the whole evolutionary
process. In order to obtain an initial population formed by models
simpler than the most complex models possible, parameters must
fulfil the condition mrME.

More details about the EA can be found in [27,44]. Moreover,
some specific characteristics of the algorithm need to be adapted
for evolving RBFNNs. These characteristics can be found in [48].
For the experimental section, we will denote the RBFNNs obtained
by the EP algorithm as evolutionary radial basis functions (ERBF
method) and the PUNNs obtained by this EP algorithm as
evolutionary product units (EPU method).

3.2.3. Logistic regression using product units (LRPU) and radial basis

functions (LRRBF)

Logistic regression using product units (LRPUs) and using
radial basis functions (LRRBFs) are two hybrid methods that
considers the EP presented in the previous section in order to
obtain a PUNN or a RBFNN structure and hidden neuron weights
accurate enough. When these are obtained, it applies a multi-
logistic regression maximum likelihood (ML) optimization over
the basis functions (PUs or RBFs) of the NN selected. So the
generic model is given by

f ðx; hÞ ¼ a0þ
Xm

j ¼ 1

bjBjðx;wjÞ ð8Þ

where h¼ ða;WÞ, a¼ ða0;b1; . . . ;bmÞ and W¼ ðw1;w2; . . . ;wmÞ,
with wj ¼ ðwj1;wj2; . . . ;wjkÞ, wjiAR. The coefficients W are given
by the EP algorithm, they not being adjusted by the ML method.
The ML method only optimizes the linear part of the model, i.e.
the a coefficients.

Two different multilogistic regression algorithms are applied,
both available in the WEKA machine learning workbench [36]: (1)
MultiLogistic [37], which considers all initial and RBF covariates
and (2) SimpleLogistic [38], which incrementally constructs the
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model and applies cross-validation, resulting in an automatic
covariate selection. Bjðx;wjÞ is defined with (5) or (6), what,
together with the two ML algorithms, results in four different
methods: MultiLogistic regression using product units (LRPU),
SimpleLogistic regression using product units ðLRPU�Þ, Multi-
Logistic regression using RBFs (LRRBF) and SimpleLogistic regres-
sion using RBFs ðLRRBF�Þ.

3.2.4. Logistic regression using initial covariates and product units

(LRIPU) and radial basis functions (LRIRBF)

These models extend those presented in the previous subsec-
tion, considering the initial covariates x of the problem. Their
generic expression is given by

f ðx; hÞ ¼ a0þ
Xk

i ¼ 1

aixiþ
Xm

j ¼ 1

bjBjðx;wjÞ ð9Þ

where h¼ ða;WÞ, a¼ ða0;a1; . . . ;ak;b1; . . . ;bmÞ and W¼ ðw1;w2;

. . . ;wmÞ, with wj ¼ ðwj1;wj2; . . . ;wjkÞ, wjiAR. The values adjusted
with the ML method correspond again to the a vector, the
coefficients W being given by the EP algorithm.

In the same way that with the previously presented models,
two different logistic regression algorithms are applied (Simple-
Logistic and MultiLogistic) over the two different models defined
by considering (5) or (6) for Bjðx;wjÞ, what finally results in four
different methods: MultiLogistic regression using initial covari-
ates and PUs (LRIPU), SimpleLogistic regression using initial
covariates and PUs ðLRIPU�Þ, MultiLogistic regression using initial
covariates and RBFs (LRRBF) and SimpleLogistic regression using
initial covariates and RBFs ðLRIRBF�Þ.
4. Computational experiments and results

This section is structured in several subsections. First, we
describe the Database used to evaluate the performance of our
hybrid approaches. Several existing algorithms for comparison
purposes are described in Section 4.2, and the complete experi-
mental design organization is shown in Section 4.3. Finally, the
main results obtained with the proposed techniques are pre-
sented in Section 4.4.

4.1. Database description

The Financial Crisis Database used in this study is formed by a
sample of 79 countries in the period 1981–1999 (annual data).
The database has 521 samples, 164 are crisis samples, and the rest
are non-crisis cases.

The dependent variable is:
�
 Systemic and non-systemic banking crises dummy: equals one
during episodes identified as in [32]. They present information
on 117 systemic banking crises (defined as much or all of bank
capital being exhausted) that have occurred since the late
1970s in 93 countries and 51 smaller non-systemic banking
crises in 45 countries during that period. The information on
crises is cross-checked with that of [9] and with International
Monetary Fund staff reports and financial news.

And the independent variables are the following:
�
 Monetary policy strategies: these variables (Exchange rate
target, Monetary policy target) are dummies. The exchange
rate target takes four values depending on the exchange rate
regime: free floating (FF), managed floating (MF), pegged
currencies (PC) and currency board (CB). The Monetary policy
target equals one during periods in which targets were based
on monetary aggregates, two when the objective was inflation,
three when the two variables are into the objective function
and zero in other cases, according to the chronology of the
Bank of England survey of monetary frameworks, in [49]. Since
it provides a chronology for the 1990s, we have complemented
it with information from other sources for the previous years.
Regarding exchange rate arrangements, we use classifications
of exchange rate strategies in [50,51], and [52] for Latin
America countries. Data for monetary and inflation targets
were complemented with the information taken from [51,53].
It should be noted that some judgement has gone into the
classification of regimes.

�
 Central bank independence: measures to what extent the

central banks are legally independent according to their
charters, following the approach in [33]. This variable goes
from 0 (least independent) to 1 (most independent) and is
taken from [33], for the 1970s and 1980s and for the 1990s
from [49,54]. The index of independence is assumed to be
constant through every year of each decade.

�
 Inflation: percentage change in the GDP deflator. Source:

International Monetary Fund, International Financial Statistics,
line 99bir.

�
 Real interest rate: nominal interest rate minus inflation in the

same period, calculated as the percentage change in the GDP
deflator. Source: International Monetary Fund, International
Financial Statistics. Where available, money market rate (line
60B); otherwise, the commercial bank deposit interest rate
(line 60l); otherwise, a rate charged by the central bank to
domestic banks such as the discount rate (line 60).

�
 Net capital flows to GDP: capital account plus financial account

plus net errors and omissions. Source: International Monetary
Fund, International Financial Statistics, lines ð78bcdþ78bjdþ
78cadÞ.

�
 Real GDP per capita in 1995 US dollars: this variable is expressed

in US dollars instead of purchasing power parity (PPP) for
reasons of data availability. GDP per capita in PPP was
available only for two points in time. Source: The World Bank,
World Tables; and The European Bank for Reconstruction and
Development (EBRD), Transition Report, for some transition
countries.

�
 Real GDP growth: percentage change in GDP Volume
ð1995¼ 100Þ. Source: International Monetary Fund, Interna-
tional Financial Statistics (line 99bvp) where available; other-
wise, The World Bank, World Tables; and EBRD, Transition
Report, for some transition countries.

�
 World real GDP growth: percentage change in GDP volume
ð1995¼ 100Þ. Source: International Monetary Fund, Interna-
tional Financial Statistics (line 99bvp) where available; other-
wise, The World Bank, World Tables; and EBRD, Transition
Report, for some transition countries.

�
 Domestic Credit growth: percentage change in domestic credit,

claims on private sector. Source: International Monetary Fund,
International Financial Statistics, line 32d.

�
 Bank Cash to total assets: Reserves of deposit money banks

divided by total assets of deposit money banks. Source:
International Monetary Fund, International Financial Statistics,
line 20 divided by lines ð22aþ22bþ22cþ22dþ22fÞ.

�
 Bank foreign liabilities to foreign assets: deposit money banks

foreign liabilities to foreign assets. Source: International
Monetary Fund, International Financial Statistics, lines
ð26cþ26clÞ divided by line 21.

�
 Previous crises: this variable equals zero if the country has not

have a previous crisis; one, if the country has suffered one
previous crisis; two, in case of two or three previous crisis, and,
three, otherwise.



ARTICLE IN PRESS

P.A. Gutiérrez et al. / Omega 38 (2010) 333–344 339
4.2. Alternative statistical and artificial intelligence methods used for

comparison purposes
Different state-of-the-art statistical and artificial intelligence algo-
rithms have been implemented for comparison purposes. Specifically,
the results of the following algorithms have been compared with the
soft-computing techniques presented in this paper:
(1)
 The logistic model tree (LMT) [38] classifier.

(2)
 The C4.5 classification tree inducer [36].

(3)
 The k nearest neighbour (k-NN) classifier.

(4)
 The support vector machine (SVM) classifier [35] with RBF

kernels and using the sequential minimal optimization (SMO)
algorithm.
(5)
 A Gaussian radial basis function network (RBFNetwork) [36],
deriving the centres and width of hidden units using k-means,
and combining the outputs obtained from the hidden layer
using logistic regression.
(6)
 The multilayer perceptron (MLP) neural network [20], trained
with a simple Back Propagation (BP) algorithm.
(7)
 The Naive Bayes standard learning algorithm (NaiveBayes) [36].

(8)
 The RoughSet methodology for classification [55].
These algorithms have been selected for comparison since they
are some of the best performing algorithms of recent literature on
classification problems. Many of these approaches have also been
tested before in bankruptcy detection problem. The detailed
description and some previous results of these methods can be
found in [35,36,38,56–58].

4.3. Experimental design

The evaluation of the different models has been performed
using four different measures: correctly classified rate (CCR) or
accuracy, area under the receiver operating characteristic curve
(AUC), specificity (Sp) and sensitivity (Se). Part of these measures
are obtained from the contingency or confusion matrix MðgÞ of a
classifier g:
Target
 Predicted
Non-crisis
 Crisis
Non-crisis
 nTN
 nFP
Crisis
 nFN
 nTP
where nTN represents the number of true negative examples (i.e.
patterns correctly predicted as non-crisis), nFP represents the
number of false positive examples (i.e. patterns predicted as crisis
when they are really non-crisis patterns), nFN represents the
number of false negative examples (i.e. patterns predicted as non-
crisis when they are really crisis patterns), and nTP represents the
number of true positive examples (i.e. patterns correctly pre-
dicted as crisis). The diagonal corresponds to correctly classified
patterns and the off-diagonal to mistakes in the classification task.

Using this confusion matrix, the following measures can be
derived:
�
 The correctly classified rate (CCR) or accuracy is defined as

CCR¼
nTNþnTP

nTNþnFNþnFPþnTP
ð10Þ

that is, the rate of all the correct predictions.

�
 The specificity (Sp) is defined as

Sp¼
nTN

nTNþnFP
ð11Þ
that is, the rate of non-crisis examples that are correctly
classified.

�
 The sensitivity (Se) is defined as

Se¼
nTP

nTPþnFN
ð12Þ

that is, the rate of crisis examples that are correctly classified.
By using these measures, it is possible to analyse the two kind

of errors that can be committed in a binary classification problem:
type I error or false negative (FN) rate (negative instances that
were erroneously reported as being positive, FN¼ 1�Sp) and type
II error or false positive (FP) rate (positive instances that were
erroneously reported as being negative, FP¼ 1�Se). This analysis
is important because the cost of classifying a banking sector in
crisis as non-crisis is more serious than classifying a healthy one
as crisis [59]. Note that all these measures are obtained using a 0:5
probability threshold for the classification of the banking crises.
However, the use of arbitrary cut-off probabilities makes the
computed error rates difficult to interpret [60]. However, the use
of a relevant pay-off function and prior probabilities to determine
the optional cut-off probability could introduce some kind of bias
on the results, which could favour the models proposed.

Receiver operating characteristics (ROC) graphs are useful for
organizing classifiers and visualizing their performance. ROC
graphs are two-dimensional graphs in which TP rate is plotted on
the Y axis and FP rate is plotted on the X axis. An ROC graph
depicts relative trade-offs between benefits (true positives) and
costs (false positives). The diagonal line y¼ x represents the
strategy of randomly guessing a class. For example, if a classifier
randomly guesses the positive class half the time, it can be
expected to get half the positives and half the negatives correct;
this yields the point ð0:5;0:5Þ in ROC space.

Some classifiers naturally yield an instance probability or
score, a numeric value that represents the degree to which an
instance is a member of a class. Such a ranking or scoring classifier
can be used with a threshold to produce a discrete (binary)
classifier. Each threshold value produces a different point in ROC
space, and if we join all these points we obtain an ROC curve. To
compare classifiers we may want to reduce ROC performance to a
single scalar value representing expected performance. A com-
mon method is to calculate the area under the ROC curve,
abbreviated AUC. Since the AUC is a portion of the area of the unit
square, its value will always be between 0 and 1. However,
because random guessing produces the diagonal line between
ð0;0Þ and ð1;1Þ, which has an area of 0.5, no realistic classifier
should have an AUC less than 0.5. More details about the ROC
curves and the AUC measure can be found in [61]. Bradley [62] has
compared popular machine learning algorithms using AUC, and
found that AUC exhibits several desirable properties compared to
accuracy. For example, AUC has increased sensitivity in analysis of
variance (ANOVA) tests, is independent to the decision threshold,
and is invariant to a priori class probability distributions [62].
Moreover, the AUC measure is more sensitive to the errors on the
positive class, since it has an important statistical meaning: it is
equivalent to the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly
chosen negative instance, considering also all possible thresholds.

Because of these reasons, the AUC has been selected as the
main comparison measure in this work, since it avoids the use of
arbitrary cut-off probabilities in prediction tests, what makes the
computed error rates difficult to interpret.

The different soft computing experiments were conducted
using a software package developed in JAVA by the authors, as an
extension of the JCLEC framework (http://jclec.sourceforge.net/)
[63]. This software package is available in the non-commercial

http://jclec.sourceforge.net/
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JAVA tool named KEEL (http://www.keel.es) [64]. We used WEKA
[36] (http://www.cs.waikato.ac.nz/ml/weka) for obtaining the
results of the rest of methods, considering each method default
parameter values.

The parameter values used in the hybrid techniques proposed
are the following: to start processing data, each of the input
variables was scaled in the rank ½1;2� for PUNNs and ½�2;2� for
RBFNNs. Weights are assigned using a uniform distribution
defined throughout two intervals, ½�2;2� for connections of
RBFNNs between the input layer and hidden layer, ½�5;5� for
connections of PUNNs between the input layer and hidden layer,
and, for all kinds of neurons, ½�10;10� for connections between
the hidden layer and the output layer. The initial value of the radii
rj for RBFNNs is obtained as a random value in the interval
ð0; dmax�, where dmax is the maximum distance between two
training input examples. The minimum and maximum number of
hidden neurons for RBFNN models are m¼ 7 and ME ¼ 9
respectively, and m¼ 1 and ME ¼ 3 for PUNNs.

The size of the population is NP ¼ 500. We have considered
að0Þ ¼ 0:5, l¼ 0:1 and s¼ 5 for the parametric mutations. For the
structural mutations, the number of hidden neurons that can be
added or removed in a structural mutation is within the
½Dmin;Dmax� ¼ ½1;2� interval. The ratio of the number of connec-
tions to add or delete in the hidden and the output layer during
structural mutations is Do ¼ 0:05 and Dh ¼ 0:3.

The stop criterion is reached whenever one of the following
two conditions is fulfilled: the variance of the fitness of the best
10% of the population is less than 10�4 or 500 generations are
completed.

In order to assess the ability of the models in an out-of-time
dataset, the dataset has been split in two subsequent time periods,
holding the later for evaluation of the model only. Consequently,
the training information table consisted of 442 samples (305 non-
crisis and 137 crisis samples) from 79 countries in the period
1981–1997 (annual data) described by the variables explained in
Section 2. The test or generalization information table consisted of
79 data described by the same variables in the period 1998–1999
(52 non-crisis and 27 crisis samples). Since the LRPU, LRPU�, LRRBF,
LRRBF�, LRIPU, LRIPU�, LRIRBF and LRIRBF� methods are stochastic,
the training process was repeated 30 times in order to evaluate the
randomness of the evolutionary method.

4.4. Results

The experimental results presented in this paper are struc-
tured in two subsections. The first subsection studies which of the
hybrid techniques proposed yields a better trade-off between
performance and complexity of the model obtained. The second
subsection compares the best performing techniques to the other
statistical and artificial intelligence methods.

4.4.1. Comparison of the different hybrid techniques proposed

In this subsection, the different hybrid techniques presented in
Section 3.2 are compared to each other, with regards to the basis
function used for the hidden layer of the models. In this way, the
following methods are compared:
�
 Product unit methods: EPU, LRPU, LRPU�, LRIPU and LRIPU�.

�
 Radial basis function methods: ERBF, LRRBF, LRRBF�, LRIRBF

and LRIRBF�.

The results obtained with all these methods are included in
Table 1, where the four measures previously presented are
obtained over the generalization set (CCRG, AUCG, SpG and SeG).
The training results has not been considered, since it is well-known
that the results in the training sample are upwards biased [65]. The
mean and the standard deviation values of these measures for the
best models obtained in the 30 executions of the different
algorithms were calculated and included in the table. Similar
results have been included for the number of links or connections
(#conn.) of these models. From a purely quantitative point of view,
the best mean CCRG is obtained by ERBF, the best mean AUCG by
LRIPU�, the best mean SpG by LRPU�, the best mean SeG by LRIRBF�

and the lowest mean number of connections is associated to the
LRPU� method. Moreover, RBF methods result, in general, in a
higher number of connections and the use of the SimpleLogistic
algorithm (included in those methods with a final �) always
reduces the number of connections and avoids over-fitting.

We have used a statistical independent t-test for analysing
whether there is a significant difference between the means of
the hybrid RBF and PU algorithms. As we previously observed, the
AUCG measure is independent of the threshold selected, so the
AUCG will be the test variable to analyse the differences of
performance between the different algorithms. The results of
these tests are included in Table 2. From the analysis of these
results, it can be concluded that LRIRBF� method obtains
significant better results than LRIRBF and LRRBF methods, and
that LRIPU� obtains significant better results than all the other
methods. Taking into account that the highest mean AUCG is
obtained by the LRIPU� method and that it also results in almost
the lowest number of connections (what means a higher
interpretability, as we will check in Section 4.5), the method
selected for banking crises prediction is LRIPU�.
4.4.2. Comparison with other statistical and artificial intelligence

methods

In this section we focus on the LRIPU� method, as it is the best
in terms of AUCG among the different hybrid approaches proposed
in this paper. In order to complete the experimental section, a
comparison of this method with well-known techniques for
classification given in Section 4.2 has been carried out. These
other techniques are deterministic, so we have selected the best
AUCG model of the 30 runs to perform the comparison. Table 3
presents the results obtained with the different techniques, and
the result obtained by the LRIPU� network. The results of the
second best hybrid method (LRIRBF�) are also shown for
reference. The AUCG results for the RoughtSets method could
not be obtained, as this method does not include a threshold that
allows to represent the ROC curve. However, there are standard
techniques for obtaining probability estimates (and consequently
ROC curves) for those methods which do not directly output a
probability value (LMT, C4.5, k-NN and LibSVM, see [36] for more
details).

Note that the LRIPU� network obtains the best result in
terms of CCRG and SpG over all techniques compared. The best
results in terms of SeG are obtained by the LMT and C4.5
methods, but with a high decrease in CCRG and SpG. RoughSets
are an interesting alternative, obtaining a slightly lower SeG

than LMT and C4.5, but without losing so much accuracy.
However, the LRIPU� and LRIBF� networks results in the highest
AUCG, what make them the most competitive classifiers, given
that the AUCG measure comprises the behaviour of the classifier
for all possible thresholds. The differences in AUCG are really
significant with respect to techniques such as LMT, C4.5, k-NN,
RBFNetwork or MLP. In general, these results show that the
proposed hybrid approaches based on LR and PU or RBF
networks are robust approaches to tackle the prediction of
banking crises, and obtain better results than the majority of
the existing alternative methods.

http://www.keel.es
http://www.cs.waikato.ac.nz/ml/weka
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Table 1
Statistical results (mean and standard deviation, SD) of the CCRG, AUCG, specificity (SpG), sensitivity (SeG) and number of connections (#conn.) obtained using the different

soft computing methods proposed.

Method CCRG AUCG SpG SeG #conn.

Mean7SD Mean7SD Mean7SD Mean7SD Mean7SD

ERBF 84:9473:05 0:895070:0270 91:8673:60 71:6074:60 72:93715:30

LRRBF 83:7673:16 0:884270:0323 90:4573:44 70:8675:65 71:67716:56

LRRBF� 84:3972:87 0:880470:0681 91:7373:58 70:2576:56 66:37716:03

LRIRBF 77:9373:80 0:843470:0316 81:3575:32 71:3675:32 93:67716:56

LRIRBF� 83:8873:05 0:902770:0272 89:6874:59 72:7273:44 64:97712:75

EPU 82:1973:97 0:876870:0428 92:3775:43 62:59710:03 22:0378:88

LRPU 82:7874:12 0:876670:0461 92:9575:61 63:21710:15 22:0378:88

LRPU� 83:0874:30 0:881970:0349 93:7275:20 62:5979:19 21:0378:90

LRIPU 80:7672:22 0:861270:0432 85:6472:89 71:3675:50 44:0378:88

LRIPU� 84:8173:03 0:904370:0239 91:4774:91 71:9874:09 25:10711:77

The best quantitative result is represented in bold face.

Table 2
p-Value results of a pair-wise relationated t-test comparing the AUCG values of

the different variants of the methods associated for each basis function considered

(PU and RBF).

PU methods RBF methods

Methods compared p-Value Methods compared p-Value

ERBF vs. LRRBF 0.010a EPU vs. LRPU 0.904

LRRBF� 0.235 LRPU� 0.270

LRIRBF 0.000a LRIPU 0.011a

LRIRBF� 0.076 LRIPU� 0.000b

LRRBF vs. LRRBF� 0.663 LRPU vs. LRPU� 0.342

LRIRBF 0.000a LRIPU 0.010a

LRIRBF� 0.004b LRIPU� 0.001b

LRRBF� vs. LRIRBF 0.001a LRPU� vs. LRIPU 0.016a

LRIRBF� 0.097 LRIPU� 0.000b

LRIRBF vs. LRIRBF� 0.000b LRIPU vs. LRIPU� 0.000b

a the first method is significantly better than the second one with a¼ 0:05.
b the second method is significantly better than the first one with a¼ 0:05.

Table 3
Results of the CCRG, AUCG, specificity (SpG) and sensitivity (SeG) of the best hybrid

method proposed compared to those obtained using different statistical and

artificial intelligence methods.

Method CCRG AUCG SpG SeG

LMT 74.68 0.7347 67.31 88.89
C4.5 78.48 0.7244 73.08 88.89
KNN 63.29 0.6232 65.38 59.26

LibSVM 83.54 0.7949 92.31 66.67

SLogistic 83.54 0.8875 88.46 74.07

RBFNetwork 67.09 0.6182 98.08 7.41

MLP 69.62 0.7265 71.15 66.67

NaiveBayes 67.09 0.8775 98.08 7.41

MultiLogistic 82.28 0.8782 86.54 74.07

RoughSets 86.08 – 88.46 81.48

LRIRBF� 84.81 0.9209 90.38 74.07

LRIPU� 91.14 0.9295 100.00 74.07

The best quantitative result is represented in bold face.

Table 4

Probability expression of the best LRIPU� model, CCRG, AUCG values and testing

confusion matrix associated with this model.

Best LRIPU� crisis probability model

pCrisis ¼ 1�
ef ðx;hÞ

1þef ðx;hÞ

f ðx; hÞ ¼ 6:15�2:14x15�4:72PU1þ2:29PU2

PU1 ¼ x�4:72
11 x�0:41

19

PU2 ¼ x0:65
4 x�0:25

10 x�1:29
14 x�3:86

22

x4’ðexchange¼MFÞ; x10’ðcbanIndepÞ; x11’ðrealIntRatÞ;

x14’ðforLiabRevÞ; x15’ðgdpGrowthÞ; x19’ðpreviousCrisis¼ 0Þ;

x22’ðpreviousCrisis¼ 3Þ;

xi A ½1:0;2:0�

CCRG ¼ 91:14%;AUCG ¼ 0:9295

Generalization confusion matrix

Predicted

Target 0 1

0 52 0

1 7 20
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4.5. Discussion

The economical interpretation of the model is based on the
output of the LRIPU� network, presented in Table 4. This is the
model that shows the best performance in terms of AUCG. It is
important to note that this model is highly non-linear, and so a
direct interpretation in terms of individual variables is not
adequate, since the model must be considered as a whole. With
this in mind, an analysis of the variables included in the model
could be useful to extract some conclusions.

In the model considered it is possible to see that the most
important set of variables is represented by the first PU (PU1)
since its coefficient has the highest absolute value. A three-
dimensional graphical representation of the non-linear relation-
ship between the value associated to this PU and the two
corresponding input variables has been included in Fig. 2, where
it is important to take into account that the input variables are
scaled (XiA ½1;2�). Starting with the interpretation of this PU1

node, it shows that low real interest rates positively contribute to
an increase of the probability to enter in a crisis from a situation
of non-crisis. This result contradicts findings of some previous
studies where high interest rates appear to be one of the usual
triggers of a financial crisis [66,67]. However, the fact that real
interest rates enter in this model with opposite sign could be
pointing at an interesting result more in line with what we have
seen in the current crisis: too low interest rates could be an
incentive for investor’s search for yield, therefore reducing the
risk aversion and constituting the seed for a financial bubble that
when burst could trigger a financial crisis.
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Fig. 2. Three-dimensional graphical representation of the non-linear relationship between the value associated with the PU1 and the two corresponding input variables, in

the crisis probability model given by the LRIPU� network.
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The second node (PU2) predicts that, when a country is in a
lasting crisis (more than three years), a managed floating rate
regime together with a less independent central bank and low
foreign liabilities ratio reduces the probability of continuing in
crisis next year. Again, this result is not fully in line with
previous analysis, where it is proposed that a stronger currency
policy commitment (pegged currency regime, currency board)
and a more independent central bank positively contribute to
overcome a crisis. It is commonly accepted that a stronger policy
commitment allows a country to gain credibility (initialization of
economic stabilization policies that could be unpopular),
whereas an independent central bank contributes again to
restore confidence in the these policies [68]. Regarding the
foreign liabilities conclusions, they are more mixed since some
of them justify a positive contribution to the crisis. This is due to
the currency risk associated with foreign liabilities could
materialize if a depreciation occurs, this being the origin of a
crisis. However, others justify that foreign liabilities could be a
stabilizing factor when local deposits fell. The interpretation
here could be related with the interaction of the two policy
variables and the situation of low foreign liabilities. When the
currency risk is moderate because the volume of foreign
liabilities is not too high, monetary policies that allow for
certain degree of flexibility allow for a degree of discretion to
adapt the currency value that could be more credible than
tougher commitments.

The ability of this kind of models to capture non-linear
relationships could well explain the apparent contradictory
results we find. Therefore, we can extract some useful conclusions
from the above results:
�
 Currency and monetary policies (currency regime, monetary
policy design and central bank independence) are very
important determinants in explaining a crisis.
�
 The effect of these policies is not linear regarding the
probability of crisis. Depending on the circumstances (how
willing the social agents are to accept short term sacrifices,
climate of confidence, development of the country, etc.) and
the exact policy mix, the effect of a specific tool is different.

�
 Among the relevant circumstances that determine the effect of

the different policy tools is the length of the crisis, which in is
turn related with the willingness of the people to accept
policies that imply short term sacrifices in order to overcome
the crisis and therefore with the credibility of certain policies.

These results should be taken with caution as, similar to other
empirical studies focused in the identification of potential crisis,
our model is also subjected to some weaknesses and limitations,
especially as potential tools for policy-makers. First, the concen-
tration on banking crisis in the emerging economies has
influenced the type of indicators selected since the available data
for these economies are typically much less complete in terms of
quantity and quality. Moreover, the availability of data influences
the sampling process, introducing a selection bias. A second
weakness of these models is the lack of variables which capture
the contagion effect, given again the lack of available information
on direct linkages between banks (via interbank exposures) or
indirect links (via payment systems). A third drawback is that
models do not usually distinguish between periods of fragility and
periods of crisis. This would be a distinction very useful for policy-
makers, because it could help to identify what policies could avoid
that a situation of fragility turns into a crisis.
5. Conclusions

In this paper we have presented several new hybrid algorithms
mixing logistic regression with product unit neural networks
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(PUNNs) or radial basis function neural networks (RBFNNs) for
detecting and predicting banking crises. Both hybrid approaches
consist in the evolutionary training of a PUNN or a RBFNN using
an evolutionary algorithm (EA). Once the basis functions have
been determined by the EA, a transformation of the input space is
considered. This transformation is performed by adding the non-
linear transformations of the input variables given by the PU or
RBF functions obtained by the EA. The final model obtained is
linear in these new variables together with the initial covariates.
In this paper we have tested these hybrid approaches in a
Financial Crisis Database, formed by macroeconomic variables of
79 countries in the periods 1981–1997 (training data) and 1998–
1999 (test data), and the corresponding crisis/no crisis decision
variable. The hybrid models have been shown to be very strong in
the problem of bank crisis prediction. The AUC measure has been
presented and applied to the evaluation of the different models,
since it avoids the use of arbitrary cut-off probabilities, evaluating
the models for all possible thresholds. The results obtained have
proven the good performance of the proposed approaches, that
improve the results of other existing Statistical and Artificial
Intelligence techniques in the problem of detecting and predicting
banking crises.
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Alcalá and Comunidad de Madrid under Grant no. CCG07-UAH/
AMB-3993, by the TIN 2008-06681-C06-03 project of the Spanish
Inter-Ministerial Commission of Science and Technology (MICYT),
FEDER funds and by the P08-TIC-3745 project of the ‘‘Junta de
Andalucı́a’’ (Spain). The authors also wish to thank the Editor-in-
Chief, the Associate Editor and anonymous reviewers for the
excellent review process carried out to our paper, with very
helpful and valuable comments and suggestions.

References

[1] Stiglitz J, Furman J. Evidence and insights from East Asia. Brookings papers on
economic activity, number 2; 1998.

[2] Hanson J. Postcrisis challenges and risks in East Asia and Latin America. In:
Caprio et al., editors. Financial crisis; 2006.

[3] Tsionas EG, Papadakis EN. A bayesian approach to statistical inference in
stochastic DEA. Omega 2010;38(4), doi:10.1016/j.omega.2009.02.003.

[4] Delis MD. Competitive conditions in the Central and Eastern European
banking systems. Omega 2010;38(4), doi:10.1016/j.omega.2008.09.002.

[5] Fiordelisi F, Molyneux P. Total factor productivity and shareholder returns in
banking. Omega 2010;38(4), doi:10.1016/j.omega.2008.07.009.
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