
An alternative approach for neural network evolution with a genetic

algorithm: Crossover by combinatorial optimization

Nicolás Garcı́a-Pedrajas *, Domingo Ortiz-Boyer, César Hervás-Martı́nez

Department of Computing and Numerical Analysis, University of Córdoba, 14071 Córdoba, Spain

Received 2 July 2004; accepted 11 August 2005

Abstract

In this work we present a new approach to crossover operator in the genetic evolution of neural networks. The most widely used evolutionary

computation paradigm for neural network evolution is evolutionary programming. This paradigm is usually preferred due to the problems caused

by the application of crossover to neural network evolution. However, crossover is the most innovative operator within the field of evolutionary

computation.

One of the most notorious problems with the application of crossover to neural networks is known as the permutation problem. This problem

occurs due to the fact that the same network can be represented in a genetic coding by many different codifications.

Our approach modifies the standard crossover operator taking into account the special features of the individuals to be mated. We present a new

model for mating individuals that considers the structure of the hidden layer and redefines the crossover operator. As each hidden node represents

a non-linear projection of the input variables, we approach the crossover as a problem on combinatorial optimization. We can formulate the

problem as the extraction of a subset of near-optimal projections to create the hidden layer of the new network.

This new approach is compared to a classical crossover in 25 real-world problems with an excellent performance. Moreover, the networks

obtained are much smaller than those obtained with classical crossover operator.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Neural network evolution; Genetic algorithms; Crossover operator
1. Introduction

In the area of neural network design one of the main

problems is finding suitable architectures for solving specific

problems. The choice of such architecture is very important, as

an inadequate network would be unable to learn or will end in

over-fitting the training data. The problem of finding a suitable

architecture and the corresponding weights of the network is a

very complex task (Yao, 1999).

Evolutionary computation is a set of global optimization

techniques that have been widely used in the last few years for

training and/or automatically designing neural networks. There

have been many applications for parametric learning (van

Rooij, Jain, & Johnson, 1996) and for both parametric and

structural learning (Yao, 1999; Yao & Liu, 1997; Angeline,

Saunders, & Pollack, 1994; Odri, Petrovacki, & Krstonosic,
0893-6080/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.neunet.2005.08.014

* Corresponding author. Tel.: C34 957 211032; fax: C34 957 218630.

E-mail addresses: npedrajas@uco.es (N. Garcı́a-Pedrajas), dortiz@uco.es

(D. Ortiz-Boyer), chervas@uco.es (C. Hervás-Martı́nez).
1993; Smalz & Conrad, 1994; Maniezzo, 1994; Moriarty &

Miikkulainen, 1997), since Miller et al. (1991) proposed that

evolutionary computation was a very good candidate to be used

to search the space of topologies because the fitness function

associated with that space is complex, noisy, non-differenti-

able, multi-modal and deceptive.

These works fall into two broad categories of evolutionary

computation: genetic algorithms and evolutionary program-

ming. The difference between these two categories is based

upon two aspects: representation and variation operators.

Representation, as well as variation operators, is standard in

genetic algorithms and depends on the problem in evolutionary

programming. An additional difference between genetic

algorithms and evolutionary programming is the use of the

crossover operator. This operator combines two or more

individuals to produce a, possibly better, new individual. The

benefits of crossover come from the ability to form connected

substrings of the representation that correspond to above-

average solutions (Goldberg, 1989a,b,c). These substrings are

called building blocks. Crossover is not effective in environ-

ments where the fitness of an individual of the population is not

correlated to the expected ability of its representational
Neural Networks 19 (2006) 514–528
www.elsevier.com/locate/neunet

http://www.elsevier.com/locate/neunet

N. Garcı́a-Pedrajas et al. / Neural Networks 19 (2006) 514–528 515
components (Goldberg, 1989a,b,c). Such environments are

called deceptive (Goldberg, 1989a,b,c).

Deception is a very important feature in most represen-

tations of neural networks, so crossover is usually avoided in

evolutionary neural networks (Angeline et al., 1994). One of

the most important forms of deception arises from the many-to-

one mapping from genotypes in the representation space to

phenotypes in the evaluation space. The existence of networks

that are functionally equivalent and with different encodings

makes evolution inefficient, and it is unclear whether crossover

would produce more fitted individuals from two members of

the population. This problem is usually termed as the

permutation problem or the competing conventions problem.

It is obvious that we can obtain a number of structurally

different networks that implement the same input–output

mapping but have different genetic representations.

For that reason, many evolutionary programming methods

have been developed for evolving artificial neural networks,

(Yao & Liu, 1997; Angeline et al., 1994; Moriarty &

Miikkulainen, 1997; Garcı́a-Pedrajas, Hervás-Martı́nez, &

Muñoz-Pérez, 2002; Garcı́a-Pedrajas, Hervás-Martı́nez,

Muñoz-Pérez, 2003; Whitehead & Choate, 1996), but a

comparatively small number of genetic algorithms have been

used for neural network evolution. Nevertheless, removing the

crossover operator has the disadvantage of removing the most

innovative operator within the field of evolutionary

computation.

In this paper, we propose a new approach for neural network

crossover that is less sensitive to the permutation problem and

improves the results of the evolved networks. Our aim is a

redefinition of the crossover operator that avoids the deception

problems stated above.

First of all, for this new approach to neural network

crossover, we take into account the role of the hidden layer in a

neural network. As it is stated in (Haykin, 1999):

Hidden neurons play a critical role in the operation of a

multilayer perceptron with back-propagation learning

because they act as feature detectors. As the learning

process progresses, the hidden neurons begin to gradually

‘discover’ the salient features that characterize the training

data. They do so by performing a nonlinear transformation

on the input data into a new space called the hidden space, or

feature space. In this new space the classes of interest in a

pattern-classification task, for example, may be more easily

separated from each other than in the original input space.

Our approach to the genetic evolution neural networks takes

into account this feature space. We center the evolution on the

hidden node, as it is the most important feature of a neural

network.

From this point of view, neural networks can be considered

similar to basis function models (Denison, Holmes, Mallick, &

Smith, 2002). These models assume that the function to be

implemented, g, is made up of a linear combination of basis

functions and corresponding coefficients. Hence g can be
written:

gðxÞZ
Xk

iZ1

biBiðxÞ; x2X3Rn; (1)

where bZ(b1,.,bk)
0 is the set of coefficients corresponding to

basis functions BZ(B1,.,Bk). Typically, the basis functions in

(1) are non-linear transformations. Neural networks can be

considered another example of basis function models.

Methodologically, there is a major separation in neural network

approaches, as the combination of the basis functions is not

always linear, as in (1), and subsequent sets of basis functions,

represented by hidden layers, can be constructed.

For neural networks, each hidden node can be considered as

a basis function. Thus, a crossover operator will have the effect

of exchanging a subset of basis functions between two

networks or modifying some of the basis functions of the

networks. Our redefinition of this operator tries to develop a

process of exchanging hidden nodes meaningful from the point

of view of the feature subspace.

Let us consider a feedforward neural network with I inputs

and a hidden layer with H nodes. The hidden layer carries out a

non-linear projection of input vector x to a vector h where:

hi Z f
XI

jZ0

wijxj

 !
: (2)

As we have stated, each node performs a non-linear projection

of the input vector. So, hZf(x), and the output layer obtains its

output from vector h. In this context we can consider this

projection as a basis function, so BiðxÞZ f
PI
jZ0

wijxj

 !
, and the

output of the network is:

yðxÞZF
XH

iZ1

biBiðxÞ

 !
(3)

where F is the transfer function of the output layer, and the bi

represents the weights of the connections from the hidden layer

to the output layer. This projection performed by the hidden

layer of a multi-layer perceptron distorts the data structure and

inter-pattern distances (Lerner, Guterman, Aladjem, & Din-

stein, 1999) in order to achieve a better classification. In the

rest of the paper we will show how, from this point of view, we

can redefine the crossover operator in a way that avoids several

of its drawbacks.

This paper is organized as follows: Section 2 reviews the

current approaches of genetic evolution of neural networks and

their corresponding crossover operators; Section 3 explains the

proposed new approach for neural network crossover; Section

4 describes the experimental setup; Section 5 shows the

experimental results; and, finally, Section 6 states the

conclusions of our work.
2. Crossover in genetic evolution of neural networks

Genetic algorithms are based on a representation that is

independent of the problem. The representation is usually

Fig. 1. Standard codification of a neural network by means of the linearization of the connectivity matrix for a real-coded genetic algorithm.

N. Garcı́a-Pedrajas et al. / Neural Networks 19 (2006) 514–528516
a string of binary, integer or real numbers. This representation

(the genotype) codifies a network (the phenotype). This is a

dual representation scheme. The interpretation function maps

between the elements in the recombination space (on which the

search is performed) and the subset of structures that can be

evaluated as potential task solutions. The ability to create better

solutions in a genetic algorithm relies mainly on the operation

of crossover. This operator forms offspring by recombining

representational components from two or more members of the

population.

The most common approach for the genotype of the network

consists of the linearization of the connectivity matrix

(Balakrishnan & Honavar, 1995) (see Fig. 1).

Using this codification, standard crossover exchanges

substrings between the two chromosomes. The result is two

networks where the feature space has been randomly changed.

In fact, this kind of crossover can be considered as a mutation

rather than a crossover, as the offspring may have almost no

behavioral connection with their parents.

Fig. 2 shows the effect on the phenotype of a node, the

projection implemented by the node, after a uniform crossover

operator in a two-dimensional space. We show the projection

carried out by the two parents, and the corresponding

projection carried out by the two offspring. We can see how
ta
nh

(0
.2

5x
1

–
x

2
)

–4–2
02

4
–4 –2 0 2 4

–1

0

1

ta
nh

(
–

x
1

–
x

2)

–4
–2 0 2

4 –4 –2 0 2 4

–1

0

1

Fig. 2. Two nodes and their offspring using standard crossover. The figure shows h

projections of their parents.
the projections of the offspring have no connection with the

projection of their parents.

Another alternative is placing the incoming and outgoing

weights of a hidden node next to each other (Thierens, Suykens,

Vandewalle, & Moor, 1991). The codification of the network of

Fig. 1 using this model is shown in Fig. 3. Nevertheless, the

experience of several authors suggests that it is important to treat

connections from inputs to hidden nodes differently from

connections from hidden nodes to outputs (Pujol & Poli, 1998).

Thierens (1996) presented an encoding that avoids the

permutation problem, but even so, that encoding does not

prevent the disruption of a favorable combination of weights.

This coding avoids different representations for exactly the

same network. The non-redundant codification transforms all

the 2H H! equivalent networks, for a network of H hidden

nodes, to a canonical form.

However, the problem of finding building blocks in the

distributed representation of a neural network is not alleviated

by this codification. We still have the problem that very similar

networks can have very different representations. A mutated

network with just one different connection from its parent

would have a completely different codification.

Moriarty and Miikkulainen (1997) developed a Marker-

Based Encoding that resembles the DNA codification of
–4–2
02

4
–4 –2 0 2 4

–1

0

1

ta
nh

(
–

x
1

+
 0

.5
x

2
)

Pa
re

nt
s

–4
–2 0 2

4 –4 –2 0 2 4

–1

0

1

ta
nh

(0
.2

5x
1

+
 0

.5
x

2
)

O
sp

ri
ng

ow the projections on feature space of the offspring are very different from the

Fig. 3. Codification of a node placing incoming and outgoing weights of a node

together.

N. Garcı́a-Pedrajas et al. / Neural Networks 19 (2006) 514–528 517
chromosomes. Each network is defined by a string of integers

ranging between K100 and 100. Some values of the range are

defined as !startO symbols that mark the beginning of a node

definition. Other values are defined as !endO symbols that

mark the end of the node definition. The node is defined by the

values between these two symbols. The connections of the

node are codified as pairs !source/destination, weightO.

Using this codification, a standard two-point crossover is

applied. Although the results are interesting in several

applications (Moriarty & Miikkulainen, 1996, 1997), the effect

of crossover on networks codified using the Marker-Based

Encoding is usually very disruptive.

Although some successful models of genetically evolved

neural networks can be found in the literature (Floreano &

Urzelai, 2000; Cantú-Paz & Kamath, 2003), we think that these

results could be improved if the specific functionality of the

hidden layer is taken into account.
3. Combinatorial optimization approach to network

crossover

As we have shown in the previous section, the

drawbacks of the standard form of crossover for neural

network evolution are numerous. So, we propose a new

approach for network crossover based on the specific role of

the hidden layer of a neural network in the computation

carried out by the network.

In order to obtain an effective crossover operator, we

must identify the building blocks of neural network

evolution (Yao, 1999). Our basic assumption is that building

blocks can be constituted by nodes or groups of nodes in

the hidden layer. So, if we are able to effectively combine

the hidden nodes of several networks we will obtain better

offspring. In this way, we assume two working design

restrictions as a starting point. The first restriction can be

stated as:

Restriction 1. Each node is an indivisible unit of evolution.

That is, no genetic operator can mate two nodes by mixing their

internal structure.

This restriction is motivated by the fact that the mating of

two nodes at this level produces something that is completely

different from each one of its parents. Each node is a non-linear

projection, the combination of the weights of two nodes will

yield to a completely different projection. In this sense, such

crossover operator is more a mutation operator. Following this

restriction the Bi(x) of (3) cannot be modified by a crossover

operator.
The second design restriction of our work is:

Restriction 2. The combination of different projections

constitute the ‘building blocks’ that must be preserved along

the evolution.

The term ‘projection’ here is wider than the term ‘node’.

Different nodes in a network can represent the same projection,

or very similar projections. In this way, the crossover operator

must discard similar nodes.

The feature subspace that is obtained with the projection

given by the hidden units facilitates the classification of the

patterns. So, we consider that the combination of the

projections of several networks can produce a better subspace

for the classification of the given patterns.

More formally, we have P parent networks, with Hi hidden

nodes, and with only one output without losing generality.

Network k is represented by:

yjðxÞZF
XH1

iZ1

bjiBjiðxÞ

 !

where BjiZ f
PI
kZ1

w
j
ikxk

� �
represents the i-th hidden node of

network j, and bji represents the connection from hidden node i

to the output in network j. As an offspring is a combination of

some of the hidden nodes of these parents, we can define the

output of the offspring, y(x), as it was made up of all the hidden

nodes of the parents, in the following way:

yðxÞZF
XP

jZ1

XHj

iZ1

ajibjiBjiðxÞ

 !
; (4)

where aji2{0, 1} determines the presence/absence of each

hidden node of the parent networks. As the basis functions are

ordered, an offspring can be defined by the values of the aji:

aZ ða1;a2;.;aPÞZ ð0; 1; 0; 0; 0; 1;.; 0Þ: (5)

In this way, the crossover operator can be defined as a

combinatorial optimization problem. We have P parents, each

one being a network of the population. Every network i has a

hidden layer with Hi hidden nodes. Each hidden node

represents a non-linear projection of the input variables onto

a new subspace. The crossover must obtain a subset of these

HZ
P

i Hi projections, of size Ho, Ho%H, that constitutes the

optimal or near optimal combination of the H projections.

Defined in this way the problem is the optimal combination of

H elements. The whole process is depicted in Fig. 4.

Once we have established that the crossover operator is just

a problem of combinatorial optimization, we can apply any

algorithm that is efficient in solving this kind of problem. We

have defined two types of crossover, using genetic algorithms

and simulated annealing. These are two of the most successful

algorithms for combinatorial optimization. Simulated anneal-

ing has been previously used for crossover operation in a

problem of airspace traffic control (Delahaye & Odoni, 1997).

The proposed operator also has some reminiscences of the

global discrete recombination in evolution strategies (Bäck,

Fig. 4. Combinatorial optimization approach to crossover.

N. Garcı́a-Pedrajas et al. / Neural Networks 19 (2006) 514–528518
1996). This operator combines alleles of different parents to

form an offspring.

First at all, we must state our problem formally. Let

UZ fB11ðxÞ;B12ðxÞ;.;BPHP
ðxÞg, be the set of hidden nodes,

J3U, andf(J)R0 a fitness function that assigns to any subset

of U a value of its performance. Our problem can be stated as:

Optimize f(J), where J3U. As J3U, our problem is to

obtain the best subset of U, using as a measure of fitness the

function f(J). The actual form of this function must be defined

in order to implement the optimization algorithm.

In order to define our combinatorial approach to network

crossover, we must identify three aspects of this problem.

These aspects are:

(1) The population of potential solutions that are subject to

optimization, that is, the set U.

(2) The algorithm for combinatorial optimization, that is, the

method for obtaining the optimal subset of U.

(3) The way of evaluating the individuals, that is, the actual

form of f($).

In the following three sections, we will explain in depth

each one of these three elements of the crossover. We consider

a crossover of P parents, each one with Hi hidden nodes, to

obtain an offspring of Ho number of nodes.
3.1. Pool of hidden nodes

In a first approach we can work with an U set formed by all

the hidden nodes of all the parents, with a cardinality of

HUZ
PP
iZ1

Hi. However, this approach has two major drawbacks:

† The cardinality of U could be too high, making the

combinatorial problem more difficult and the searching

process slower. This is specially inappropriate, as the
crossover must not overburden the evolutionary process.

† Some of the nodes of each network are not useful in the

network. Its inclusion in U introduces more complexity

without a compensation in terms of performance of the

offspring.

In order to avoid these two problems we do not include all the

nodes of all the parent networks inU, but only the relevant nodes

for each network are selected for the crossover. Nevertheless,

measuring the relevance of a node within a network is not an

easy task. Many methods have been developed for estimating

the relevance of a hidden node within a network (Mozer &

Smolensky, 1989; Le Cun, Denker, & Solla, 1990; Karnin,

1990; Hassibi & Stork, 1993), but most of them are too

computationally expensive. The most straightforward method

to estimate node relevance within a trained network consists of

evaluating the effect that removing the node has over the error

(Mozer & Smolensky, 1989). The network is evaluated with and

without the node, and the following relevance measure for node

i, ri, is obtained:

ri Z
PerfkKPerfk

Ki

Perfk
; (6)

where Perfk is the performance of the network k and Perfk
Ki is the

performance of the network k without the i-th node. All the

nodes that fall below a certain threshold, Tr, of relevance are not

included in the crossover operation. This threshold must be

small enough to avoid removing nodes that are useful for the

fine-tuning of the network. In our experiments we have set a

threshold of TrZ0.01, that is, only the nodes that account for less

than the 1% of the performance of the network are removed.
3.2. Node combination evaluation

The evaluation of the subset of hidden nodes is not as

straightforward as the evaluation of a whole network. In neural

network evolution, Miller et al. (1991) identified two

approaches: the strong specification scheme, where each

connection of the network is specified by its numerical

representation, and the weak specification scheme, where the

exact structure of the network is not explicitly codified but is

computed based on the information contained in the

chromosome. The former has been more widely used, as the

latter introduces more noise in the fitness function and is more

deceptive, due to the fact that there is a one-to-many mapping

between the space of representation and the solution space.

The evaluation of a subset of nodes can be considered

similar to the weak specification scheme, as we need to train an

output layer before being able to evaluate the performance of

the network. In order to get an accurate estimation of the

performance of the network, the procedure would need to

evaluate the network with several initializations of the weights

of the output node. However, this procedure would be too

computationally expensive. So, we train the output layer once,

and, in order to avoid the noise of a random initialization of the

weights of the output layer, we use the outputs weights of each

N. Garcı́a-Pedrajas et al. / Neural Networks 19 (2006) 514–528 519
node within its original network as initial weights before

applying the backpropagation algorithm.

Once the final individual is obtained, we apply an additional

backpropagation algorithm to set the output weights of the

offspring network. In order to make a fair comparison, this step

is also performed for the standard crossover.
3.3. Combinatorial optimization algorithm

Once we have stated our problem, there are many algorithms

that could be applied to its solution. Among the most widely

used algorithms for combinatorial optimization are simulated

annealing (Kirkpatrick, Gelatt, & Vecchi, 1983), genetic

algorithms (Michalewicz, 1994), particle swarm optimization

(Kennedy & Eberhart, 1995) and ant colonies (Dorigo,

Maniezzo, & Colorni, 1996). However, we have a prerequisite

to be met by any algorithm to be useful in our crossover: it must

not be computationally expensive. On the other hand, it must

also be effective in finding good optima. Mixing these two

conditions, the most suitable approaches are simulated

annealing and genetic algorithms, the latter with a very small

population.
Fig. 5. Simulated anneal
3.3.1. Simulated annealing crossover

Simulated annealing is one of the most common methods

for solving combinatorial problems. We have chosen this

algorithm because it is easy to implement and its computational

cost is moderated. For stating our simulated annealing

algorithm, we must define the value of the temperature, the

initial solution, the way of obtaining the next solution, and the

fitness function. Although it has been suggested that the final

result is greatly affected by these decisions (Hajek, 1988), we

have always preferred the fastest option, in order not to

overburden our evolutionary process.

The temperature is obtained using T(tC1)ZdT(t), T(0)Z
To. There are many other temperature schedules, but there is no

significant difference in their performance, provided they

generate temperatures with comparable speed.

The initial solution is chosen selecting n hidden nodes

randomly, where n is the average number of hidden nodes of

the parents. The current solution is codified as a binary vector,

and each element of the vector codifies whether the

corresponding node of the pool is present/absent in the current

solution. So, we assign an index to every hidden node in U, and

each individual is a binary vector of length HUZcard(U).
ing based crossover.

N. Garcı́a-Pedrajas et al. / Neural Networks 19 (2006) 514–528520
The value of a position of the vector is 1 if the corresponding

hidden node belongs to the individual, and 0 otherwise. This

representation, where each individual is a string of bits that

correspond to the vector a, follows directly from (5).

Theoretical results show that, in order to guarantee the

success of the search process, it is necessary for any solution to

be reachable from any other solution by means of a valid

sequence of steps. In order to achieve this condition, the

random step in every iteration of the algorithm consists of a

random selection among three different moves: addition of a

node from the pool of nodes, deletion of a node, and exchange

of a node with the pool of nodes. The three possible moves are

applied with equal probability. The steps of the simulated

annealing crossover are summarized in Algorithm 1.

The evaluation of each solution is carried out following the

method explained in Section 3.2. This process is shown in Fig. 5.

Algorithm 1: Simulated annealing based

crossover.

Data: P parent networks

Result: An offspring network

Initialize pool of hidden nodes;

Initialize and evaluate initial solution;

old fitnessZ0;

TZTo;

for iZ1 to iterations do

“step”Zrandom {Add node, remove node,

exchange node };

Perform “step”;

new_fitnessZEvaluation of new solution;

if new_fitnessOold_fitness or random(0, 1)!
e-(old_fitnessKnew_fitness)/T then

Accept new solution;

else

Reject solution;

end

TZdT;
end

Train output layer of final solution;
3.3.2. Genetic algorithm crossover

The implemented genetic algorithm for the crossover

operator is as simple as possible. Our objective is obtaining

the best subset of U. The population is small and it is evolved

for a small number of generations. The representation of the

individuals is the same used in the simulated annealing, each

individual is a string of bits of length HU representing the

presence/absence of each hidden node.

For the evolution of the population, we have used the CHC

approach, because it has obtained very good results with small

populations (Eshelman, 1990). CHC stands for Cross genera-

tional elitist selection, Heterogeneous recombination and

Cataclysmic mutation. The non-traditional CHC genetic
algorithm differs from traditional GAs in a number of ways

(Louis & Li, 1997):

(1) To obtain the next generation for a population of size N,

the parents and the offspring is put together and the N best

individual are selected.

(2) To avoid premature convergence, only different individ-

uals, separated by a threshold Hamming distance— in our

implementation 4 bits— are allowed to mate.

(3) During crossover, two parents exchange exactly half of

their non-matching bits. This operator is called Half

Uniform Crossover (HUX) crossover (Eshelman, 1990).

(4) Mutation is not used during the regular evolution. In order

to avoid premature convergence or stagnation of the

search, the population is reinitialized when the individuals

are not diverse. In such a case only the best individual is

kept in the new population.

The procedure for carrying out a crossover using a genetic

algorithm is outlined in Fig. 6. First of all, we obtain the

members of U, which are all the hidden nodes of the parent

networks whose relevance is above the given threshold. With

this pool of hidden nodes, we perform the genetic algorithm.

The best individual is selected and a final backpropagation

training is carried out in order to allow all the output

connections of the hidden nodes to adapt to its new

companions. The process is shown in Algorithm 2.

Algorithm 2: Genetic algorithm based crossover

Data: P parent networks

Result: An offspring network

Initialize pool of hidden nodes;

Initialize and evaluate population;

for iZ1 to generations do

for jZ1 to population_size/2 do

Select two random individuals, i1 and i2,

without replacement;

if Hamming distance (i1, i2)O4 then

Perform HUX crossover;

Add offspring to new population;

end

end

Evaluate new individuals;

Select best population_size individuals as new

population;

end

Train output layer of final solution;

3.4. Permutation problem

Permutation problem can harm the evolutionary process

making crossover operator inefficient. Networks that have

several similar hidden nodes will likely produce poor offspring

when they mate. The proposed crossover does not remove the

permutation problem, as this problem is associated with the

Fig. 6. Genetic algorithm based crossover.

N. Garcı́a-Pedrajas et al. / Neural Networks 19 (2006) 514–528 521
representation of the networks, but can greatly alleviate most of

its harmful effects.

We can identify three fundamental effects of the permu-

tation problem that can harm the efficiency of the crossover.

These scenarios are the result of having different networks

with the same, or almost the same, function and different

codification. In the extreme case let us consider two networks,

n1 and n2, each one having the same four nodes, a, b, c, d,

but arranged in different order, n1Z{a, b, c, d} and n2Z{c, d,

a, b}. Each letter represents a node with a different

functionality. If these two networks mate using a standard

one-point crossover, they may produce two offspring:

n12 Z fa; b; a; bg

n21 Z fc; d; c; dg

The first negative effect is that the offspring will perform worse

than the parents (Angeline et al., 1994), as it will lack key

computational components of its parents. In our method, all the

nodes of the two parents can be inherited by the offspring, so
the potential ability of the offspring is, at least, the same as that

of its parents.

The second negative effect is that each representation is

another convention of the same solution (Schaffer, Whitley, &

Eshelman, 1992), so it is an extra region in the search space.

This effect is greatly attenuated by our model. When two

networks mate, the order of their nodes does not matter, so if

they have nodes with functionalities that are useful together,

there is a high probability that the combinatorial optimization

algorithm will find such useful combination.

If in an iteration of the optimization algorithm an individual

is formed by {a, b, a, b}, the combinatorial optimization

algorithm and the regularization term will remove the

redundant node. After all the iterations of any of the two

combinatorial optimization algorithms proposed, we think that

the probability of obtaining a final individual with two

redundant nodes is almost negligible. Moreover, using more

aggressive selection reduces the risk of exploring several

competing conventions (Branke, 1995), and in a sense, the

pressure of the combinatorial optimization algorithm fitness

N. Garcı́a-Pedrajas et al. / Neural Networks 19 (2006) 514–528522
and regularization terms is very similar to a high selective

selection in the genetic algorithm.

Even if similar nodes are inherited by a descendant, the

relevance threshold imposed on each node to be part of the

crossover operation will prevent the subsequent inheritance of

these two similar nodes.

The third negative effect is the breaking of the behavioral

link between the parents and their offspring. Two networks

with nodes {a, b, a, b} and {c, d, c, d} will be likely to perform

very differently from their parents. In our crossover, the

behavioral link is enforced. The offspring can inherit all

the useful nodes of its parents, so the useful functionality of the

parents is also likely to be inherited.

3.5. Evolutionary process

The evolution of the population of networks is as standard as

possible. The best Pe% individuals of the population are

replicated, the rest of the new population is obtained by

crossover. The new population is subject to random mutation,

with Pr probability, and backpropagation mutation, with Pbp

probability, in this order.

The fitness of each individual is composed of two terms, a

performance term and a regularization term. The performance

term, p, is the number of training patterns correctly classified

by the individual. The regularization term, r, is just the number

of nodes. Other more sophisticated terms can be taken from the

literature (Setiono, 1997) (Hinton, 1993), but they are

computationally expensive and their effect over the perform-

ance of the model is still under discussion.

On the other hand, several studies (Lawrence, Giles, & Tsoi,

1996; Weigend, 1993; Caruana, Lawrence, & Giles, 2001)

have concluded that overtraining is a problem of both small and

large networks. So, our regularization term is intended to

penalize very large networks and hardly affects moderately

large and small networks. As the fitness value is within the

interval [0, 1], the regularization term must has a moderate

effect over small networks, and its relevance must be increased

as the size of the networks grows above small values. In this

way, the fitness of individual i, fi, is given by:

fi Z piK
1

2
ri; (7)

where riZe0:0069HiK1, being Hi the number of nodes of

network i, and pi is just the number of patterns of the training

set correctly classified divided by the total number of training

patterns.

The stop criterion, for all the evolutionary algorithms used in

this paper, is the stagnation of the fitness of the population. The

evolution ends if, during the last 10 generations, the average

fitness of the population does not improve above a certain

threshold. In all the experiments this threshold is set to 10%.

3.6. Node mutation

As in other models of evolutive networks, we have two

types of mutation: parametric and structural mutation.
Parametric mutation is carried out in order to adjust the

weights of the evolved networks. Without parametric mutation

it is very difficult for the evolutive process to fine-tune its

weights. In our model we considered two standard parametric

mutation operations:

† Backpropagation mutation. The network is trained using a

simple back-propagation algorithm for a fixed number of

cycles. We use cross-validation and early-stopping. The

validation set is taken randomly from the training set every

time the back-propagation algorithm is run.

† Random mutation. A small quantity, normally distributed

with zero mean and a small standard deviation, is added to

all the weights of the network.

These two simple mutations are chosen in an attempt to

minimize the effect of mutation on the model, for a fair

comparison of the proposed crossover methodology and the

standard methodology of crossover. In the first set of

experiments, we did not use structural mutation, as we wanted

to compare the performance of the different crossover

operators with the least possible influence of other aspects of

the evolution.

In summary, crossover based on combinatorial optimization

has the following advantages over standard crossover for

neural networks:

† The order of a node within a network is not relevant. This

fact avoids the consequences of the permutation problem.

† Two non-contiguous nodes in a network can be inherited

together. In this way, the potential number of networks that

can be the offspring of a crossover is dramatically

increased. In our approach, given that the cardinality of U

is HU, the number of potential offspring is
PHU

nZ1

ðHU=nÞ. In a

standard two-point crossover, with two parents of length n

and m, n!m, the upper bound for the number of possible

offspring is n2, a value clearly below the former.

† The evaluation of the individuals during the crossover takes

into account the regularization term, so, redundant nodes

are more likely to be removed during this process.
4. Experimental setup

In order to make a fair comparison among the different

methods for the crossover operator, all the experiments were

carried out using the same parameter set. The population has

100 networks with a maximum of hidden nodes of HmaxZ100.

Elitism is PeZ0.1, the probability of random and backprop

mutation is PbpZ0.25 and PrZ0.25, respectively. For back-

prop algorithm hZ0.15 and aZ0.15. For combinatorial

crossover we used five parents, and a relevance threshold of

1%. The simulated annealing algorithm was run 1000 steps.

The population of the genetic algorithm crossover was of 25

individuals and was evolved for 20 generations. All the

algorithms are programmed in C and the code is available upon

request to the authors.

N. Garcı́a-Pedrajas et al. / Neural Networks 19 (2006) 514–528 523
The initialization of the networks was made using the method

proposed in (Le Cun, 1993). This method was applied to the

initialization of the networks in all the experiments. The number

of hidden nodes, H, is randomly selected in the interval H2[1,

Hmax]. The weight of each connection is randomly selected from

K
ffiffiffi
3

p
=ni;

ffiffiffi
3

p
=ni

� �
, ni being the number of inputs to the node.

Each set of available data was divided into two subsets: 75%

of the patterns were used for learning, and the remaining 25%

for testing the generalization of the networks. We have used 25

datasets from the UCI Machine Learning Repository that cover

a wide variety of problems. Testing our model on this problems

can give us a clear idea of its performance.

The comparisons among the performance of the different

methods were made by means of t-tests. In all the tables the

p-values of the corresponding tests are shown. For each

experiment, the execution was repeated 30 times with different

random seeds. From each experiment the result of the evolution

was the smallest network from the 10 best of the population. In

this way, we try to avoid the possibly overtrained best network.

This method of selecting the best network was applied to all the

experiments, regardless of other parameters.
5. Experimental results

In the first series of experiments, we wanted to test the

performance of the model in solving the given classification

problems. This performance is compared with the performance

obtained by the evolutive process using the standard crossover.

The results obtained with these models are shown in Table 1.
Table 1

Results for the classification of the described problems

Problem StdX GaX

Mean SD Mean SD

Anneal 0.1019 0.0332 0.0665 0.0295

Autos 0.3810 0.0638 0.3373 0.0693

Balance 0.0923 0.0122 0.0821 0.0099

Cancer 0.0619 0.0347 0.0046 0.0038

Card 0.1390 0.0105 0.1302 0.0084

Gene 0.1704 0.0132 0.1393 0.0104

German 0.2645 0.0225 0.2507 0.0120

Glass 0.3465 0.0542 0.3466 0.0432

Glass-g2 0.0717 0.0183 0.0490 0.0111

Heart-c 0.1333 0.0322 0.1154 0.0316

Heart-s 0.1436 0.0246 0.1230 0.0170

Hepatitis 0.1105 0.0341 0.0930 0.0179

Horse 0.2846 0.0385 0.2656 0.0265

Hypothyroid 0.0559 0.0029 0.0509 0.0013

Ionosphere 0.1134 0.0229 0.1011 0.0174

Iris 0.0324 0.0165 0.0284 0.0060

Krvs.kp 0.0496 0.0057 0.0383 0.0035

Labor 0.0000 0.0000 0.0000 0.0000

Lymphography 0.2297 0.0610 0.1586 0.0272

Pima 0.2082 0.0221 0.1840 0.0105

Sick 0.0515 0.0048 0.0486 0.0019

Sonar 0.1946 0.0171 0.1888 0.0221

Vote 0.0599 0.0139 0.0522 0.0107

Vowel 0.6188 0.0452 0.5901 0.0434

Zoo 0.0280 0.0186 0.0291 0.0182

For each test we show the average test error and the standard deviation of the test
In all the tables, and in the following discussion, we will use

StdX for standard crossover, GaX for the crossover based on the

genetic algorithm, and SaX for the crossover based on simulated

annealing. The error measure is EZ 1
N

PN
iZ1

ei, where ei is 1 if

pattern i is misclassified and 0 otherwise, and N is the number of

patterns of the corresponding set. In all the tables we show the

average error and the standard deviation. We also show the

p-values of the t-test.

From Table 1 we can see how the proposed crossover

obtains better results than the standard crossover. For 20 of the

25 problems the performance of the crossover based on a

genetic algorithm is better than the standard crossover, the

difference being statistically significant at a confidence level of

0.05. Of the other five, in two of them, labor and zoo, the

performance of all the models is almost of 100%, so it can

hardly be improved. For iris and sonar the performance of GaX

is better but the difference is not statistically significant.

Finally, for glass the performance of GaX and StdX is the

same. The performance of SaX is slightly worse, SaX performs

better than StdX in 18 of the 25 problems.

If we compare the two crossovers based on combinatorial

optimization, the performance of GaX is, in general, above the

performance of SaX. This result enforces the idea underlying

our approach. If the combinatorial optimization is a good idea,

a crossover based on a genetic algorithm should obtain better

results than a crossover based on simulated annealing, as the

former is a better combinatorial optimization algorithm than

the latter. We must note that the parameters of the two
SaX t-test (p-values)

Mean SD StdX-GaX StdX-SaX GaX-SaX

0.0779 0.0256 0.0000 0.0014 0.0575

0.3240 0.0769 0.0065 0.0010 0.3962

0.0829 0.0135 0.0007 0.0063 0.7801

0.0248 0.0217 0.0000 0.0000 0.0000

0.1318 0.0078 0.0008 0.0040 0.4640

0.1388 0.0096 0.0000 0.0000 0.8279

0.2537 0.0147 0.0035 0.0318 0.3592

0.3556 0.0911 0.9955 0.6237 0.6029

0.0533 0.0243 0.0000 0.0017 0.3772

0.1092 0.0235 0.0331 0.0016 0.3965

0.1275 0.0209 0.0004 0.0081 0.3742

0.0939 0.0246 0.0156 0.0342 0.8752

0.2780 0.0216 0.0295 0.4172 0.0506

0.0522 0.0017 0.0000 0.0000 0.0016

0.1034 0.0132 0.0233 0.0435 0.5667

0.0295 0.0080 0.2019 0.3688 0.4712

0.0442 0.0049 0.0000 0.0002 0.0000

0.0000 0.0000 1.0000 1.0000 1.0000

0.1568 0.0385 0.0000 0.0000 0.8349

0.1939 0.0196 0.0000 0.0106 0.0178

0.0508 0.0036 0.0038 0.5218 0.0051

0.1885 0.0256 0.2622 0.3105 0.9713

0.0546 0.0140 0.0194 0.1514 0.4473

0.5938 0.0404 0.0150 0.0419 0.7521

0.0282 0.0188 0.8063 0.9561 0.8231

error. The best result for each problem is shown in italics

N. Garcı́a-Pedrajas et al. / Neural Networks 19 (2006) 514–528524
algorithms are chosen with the idea that the number of

evaluations of the fitness function on both methods would be

the same.

The networks obtained with the proposed model are smaller

than those obtained with the standard crossover (for detailed

results see Table 2). In fact, they are among the smallest

obtained in the literature (Yao & Liu, 1997; Setiono, 2001).

The size of the networks is an interesting consequence of the

combinatorial optimization approach. As the size of a network

is part of its fitness, the combinatorial approach will always

prefer smaller networks, avoiding the addition of superfluous

hidden nodes.

In order to get a clear idea of the comparative size of the

obtained networks, Table 2 also shows the average size of the

networks obtained by previous works for the same problems.

We can see that the networks obtained by combinatorial

optimization are among the smallest ones.
5.1. Comparison with the evolution without crossover

Many papers rely on mutation as the only operator for

evolving neural networks. In order to test whether the inclusion

of crossover, in any of its forms, has a beneficial effect over the

performance of the evolved networks, we have carried out all

the evolutions without using crossover. The best Pe% is

replicated, the rest of the new population is obtained by

mutation. The new population is subject to structural mutation,

with Ps probability, random mutation, with Pr probability, and

backpropagation mutation, with Pbp probability, in that order.
Table 2

Average size of the networks obtained with the three methods and of networks obt

Problem Size (nodes) t-test (p-values)

StdX GaX SaX StdX-GaX StdX-SaX GaX

Anneal 8.40 2.52 3.00 0.0000 0.0000 0.000

Autos 7.80 7.55 4.43 0.7209 0.0000 0.000

Balance 3.07 2.00 3.40 0.0000 0.2794 0.000

Cancer 1.13 1.00 1.00 0.0390 0.0390 1.000

Card 3.33 1.00 1.00 0.0000 0.0000 1.000

Gene 5.50 2.30 2.14 0.0000 0.0000 0.099

German 3.33 1.00 1.00 0.0001 0.0001 1.000

Glass 8.87 7.85 7.54 0.0000 0.0015 0.052

Glass-g2 3.73 3.62 2.80 0.6100 0.0001 0.000

Heart-c 3.37 1.53 2.20 0.0000 0.0064 0.000

Heart-s 4.23 1.50 1.63 0.0000 0.0000 0.517

Hepatitis 3.53 1.00 1.57 0.0000 0.0000 0.000

Horse 8.00 2.17 2.17 0.0000 0.0000 1.000

Hypothyroid 1.60 1.07 1.00 0.0018 0.0003 0.155

Ionosphere 3.53 1.00 1.20 0.0000 0.0000 0.077

Iris 3.13 2.00 2.05 0.0000 0.0000 0.175

Krvs.kp 2.87 1.00 1.00 0.0000 0.0000 1.000

Labor 1.23 1.00 1.00 0.0139 0.0139 1.000

Lymphography 5.60 1.57 1.90 0.0000 0.0000 0.003

Pima 4.63 1.00 1.00 0.0000 0.0000 1.000

Sick 1.90 1.00 1.00 0.0000 0.0000 1.000

Sonar 7.43 1.00 3.13 0.0000 0.0000 0.000

Vote 1.10 1.00 1.07 0.0779 0.7026 0.321

Vowel 8.57 7.27 7.26 0.0000 0.0000 0.966

Zoo 8.27 5.27 5.18 0.0000 0.0000 0.391
We have introduced a structural mutation for compensating

the lack of crossover operation. Otherwise, we thought that the

comparison would not be fair. The probability of this structural

mutation in the experiments, Ps, was of PsZ0.25. The

structural mutation consists of randomly selecting one of the

four following operations: deletion/addition of a node, and

deletion/addition of a connection.

The study is made for all the data sets. We wanted to test the

efficiency of each crossover operator, studying the effect over

the network when it is removed. The detailed results are shown

in Table 3. For each problem we show the averaged

generalisation error obtained, when no crossover is used. The

t-test compares the error means of each crossover operator and

the experiment without crossover.

These results suggest several interesting conclusions about

the role of the crossover in the evolution of neural networks. On

the one hand, we can see that the standard crossover is useful in

some problems, but it has no significant effect on 10 of the 25

problems. On the other hand, combinatorial based crossovers

are useful in 24 of the 25 problems. We can conclude that the use

of the standard crossover is useful in many classification

problems, and that our approach is more efficient in improving

the performance of the obtained networks.
5.2. Effect of the regularization term

Some studies (Lawrence et al., 1996; Weigend, 1993;

Caruana et al., 2001; Weigend, 1994) have shown that over-

training is an effect that appears not only in large networks but
ained in other papers

Size of other methods

-SaX (Setiono, 2001) (Treadgold &

Gedeon, 1999)

(Yang, Parekh, &

Honavar, 1997)

0 6.58 – –

0 8.38 – –

0 10.12 – 12

0 3.40 4.86 14

0 7.22 0.12 –

5 – 0.00 –

0 9.54 – –

8 9.58 4.18 27

1 7.06 – –

0 5.60 0.20 –

5 5.94 0.40 –

1 5.66 – –

0 4.88 0.12 –

5 10.02 4.64 –

9 4.20 – 10

3 3.34 – –

0 7.20 – –

0 2.46 – –

0 6.34 – 72

0 5.88 3.02 –

0 4.80 – –

0 5.18 – –

5 4.42 – –

2 17.44 – 55

9 12.12 – –

Table 3

Results for the classification without using crossover

Problem Generalization t-test (p-values)

Mean SD Best Worst StdX GaX SaX

Anneal 0.1792 0.0571 0.0893 0.3795 0.0000 0.0000 0.0000

Autos 0.4523 0.0663 0.3333 0.6078 0.0001 0.0000 0.0000

Balance 0.1045 0.0131 0.0641 0.1282 0.0004 0.0000 0.0000

Cancer 0.0931 0.0440 0.0230 0.2069 0.0034 0.0000 0.0000

Card 0.1351 0.0103 0.1163 0.1628 0.1548 0.0513 0.1690

Gene 0.2410 0.0216 0.1917 0.2837 0.0000 0.0000 0.0000

German 0.2759 0.0204 0.2320 0.3200 0.0458 0.0000 0.0000

Glass 0.4113 0.0765 0.3019 0.6226 0.0004 0.0001 0.0097

Glass-g2 0.0917 0.0396 0.0250 0.1750 0.0148 0.0000 0.0000

Heart-c 0.1355 0.0358 0.0921 0.2237 0.8037 0.0242 0.0013

Heart-s 0.1490 0.0278 0.0882 0.2059 0.4296 0.0001 0.0012

Hepatitis 0.1202 0.0350 0.0526 0.1842 0.2843 0.0004 0.0014

Horse 0.3011 0.0382 0.2308 0.3846 0.1027 0.0001 0.0056

Hypothyroid 0.0622 0.0045 0.0551 0.0753 0.0000 0.0000 0.0000

Ionosphere 0.1203 0.0183 0.0920 0.1609 0.2030 0.0001 0.0001

Iris 0.0360 0.0148 0.0270 0.0811 0.3764 0.0312 0.0092

Krvs.kp 0.0530 0.0051 0.0438 0.0638 0.0172 0.0000 0.0000

Labor 0.0357 0.0363 0.0000 0.0714 0.0000 0.0000 0.0000

Lymphography 0.2532 0.0686 0.1351 0.3784 0.1675 0.0000 0.0000

Pima 0.2142 0.0219 0.1823 0.2552 0.2891 0.0000 0.0004

Sick 0.0550 0.0032 0.0488 0.0615 0.0013 0.0000 0.0000

Sonar 0.2388 0.0317 0.1827 0.3077 0.0000 0.0000 0.0000

Vote 0.0623 0.0106 0.0370 0.0741 0.4422 0.0005 0.0194

Vowel 0.6725 0.0473 0.5801 0.7814 0.0000 0.0000 0.0000

Zoo 0.0680 0.0422 0.0000 0.2000 0.0000 0.0000 0.0000

For each test we show the average test error, the standard deviation, and the best and worst results. The experiments where the crossover operator does not

significantly improve the results, for a significant level of 0.05, are shown in italics.

N. Garcı́a-Pedrajas et al. / Neural Networks 19 (2006) 514–528 525
also in small networks. So, the use of a regularization term is

under study, as small networks can also suffer from over-

training and it is more likely for a small network to be unable to

learn. In order to test the effect of the regularization term, we

considered two regularization coefficients: X and All. X is the

regularization coefficient applied when the combinatorial

optimization is being carried out. All is the regularization

coefficient applied when the individuals of the population are

being evaluated.

In order to test the effect of regularization we evolved the

population using the four possible combinations of the two

previous coefficients. We carried out 10 runs for each number of

parents. As the experiment with XZAllZ1 coincides with the

initial experiment, we took the first 10 runs of this experiment.

The study is carried out for six of the above studied

problems: glass-g2, heart-c, heart-s, hepatitis, lymphography,
Table 4

Results for the classification of glass-g2, heart-c, heart-s, hepatitis, lymphography,

Problem Generalization

(1,1) (1,0) (0,1) (0,0)

Glass-g2 0.0475 0.0625 0.0675 0.0550

Heart-c 0.1145 0.1118 0.1066 0.1197

Heart-s 0.1221 0.1309 0.1529 0.1368

Hepatitis 0.0974 0.0947 0.0895 0.0947

Lymphography 0.1622 0.1622 0.1730 0.1432

Pima 0.1823 0.1922 0.1984 0.1995

The notation of regularization parameters is (X, All).
and pima. As the behavior of the model is similar using both

simulated annealing and genetic algorithms for the crossover,

in this study we will only use the later in order to reduce the

number of experiments. The results are shown in Table 4.

From the values shown in the table, we can extract some

conclusions about the effect of the regularization term on the

evolution of the networks:

† The effect of the regularization is positive. When we

remove this term, the networks grow bigger and their

generalization error does not significantly decrease, and

even, for some problems, increases.

† Using the regularization term during the combinatorial

optimization is efficient for keeping the networks small,

even if the regularization is not used during the evaluation

of the individuals.
and pima with several combinations of the regularization coefficients

Number of nodes

(1,1) (1,0) (0,1) (0,0)

3.50 3.90 5.10 5.50

1.40 1.80 3.90 4.40

1.30 2.60 2.80 3.90

1.00 1.00 1.20 1.10

1.70 1.90 1.60 5.10

1.00 1.00 1.90 3.60

N. Garcı́a-Pedrajas et al. / Neural Networks 19 (2006) 514–528526
From these results we can affirm that the use of the

regularization term is of interest, as the obtained networks are

smaller and with a better generalization ability.
5.3. Effective number of hidden units

Understanding how and why an evolutive algorithm works

is a very difficult issue. Nevertheless, any insight that we can

gain on the way the algorithm performs is of great interest. In

this section, we present some results that try to explain how the

combinatorial crossover achieves its performance.

In a first step we studied the subspace spanned by the hidden

nodes of the final network of each evolution. The network

performs a non-linear projection of the input vector, x, in a new

subspace whose dimension is given by the number of hidden

nodes, h, of the network. So every input pattern is transformed

in a new point in the h-dimension subspace. In an attempt to

study this new subspace we compute the principal components

of the new point cloud generated by the hidden layer. The

number of significantly non-zero components can be con-

sidered the effective number of hidden units (Weigend, 1993).

Table 5 shows the ratio between effective number of hidden

units and actual number of hidden units for the three methods

in the problems studied. The table shows that the number of

hidden units of the networks obtained by means of GaX y SaX

is closer to the number of effective units. In this way, fewer unit

are needed to classify the patterns, as each unit shares less

information with the rest of the hidden units.
Table 5

Ratio between the effective number of hidden units and the actual number of

hidden units for the 30 runs on every problem

Problem Effective/actual nodes ratio

StdX SaX GaX

Anneal 0.3221 0.4655 0.4828

Autos 0.3318 0.4143 0.3789

Balance 0.6774 0.5926 0.7500

Cancer 1.0000 1.0000 1.0000

Card 0.6286 1.0000 1.0000

Gene 0.3742 0.5000 0.4909

German 0.6136 1.0000 1.0000

Glass 0.3727 0.3771 0.3583

Glass-g2 0.3213 0.4341 0.5213

Heart-c 0.5510 0.6786 0.8696

Heart-s 0.4000 0.6944 0.8400

Hepatitis 0.6667 0.8182 1.0000

Horse 0.3158 0.6250 0.6216

Hypothyroid 0.7600 1.0000 1.0000

Ionosphere 0.4462 0.9524 1.0000

Iris 0.4615 0.5000 0.5000

Krvs.kp 0.4902 1.0000 1.0000

Labor 0.7600 1.0000 1.0000

Lymphography 0.4038 0.5000 0.5000

Pima 0.4912 1.0000 1.0000

Sick 0.7813 1.0000 1.0000

Sonar 0.3067 0.3860 1.0000

Vote 1.0000 1.0000 1.0000

Vowel 0.3445 0.3571 0.3654

Zoo 0.3962 0.4167 0.4043
5.4. Functional representation of nodes

Our aim in this section is the visualization of the

functionality of the nodes. We want to visualize how the

nodes obtained by combinatorial optimization are more

different among them. In order to show the functionality of a

node, we follow the functional representation of a node of

Moriarty and Miikkulainen (1997). In order to obtain the

functional representation of a node, we calculate for each node

its function vector. This function vector is made up of the

outputs of the node when each input is set, by turn, to 1 and the

rest to 0.

In order to represent the functionality of the node, we

perform a principal component analysis of the function vectors,

retaining the first two components. Following this method we

can represent each node by a point in a two-dimensional space.

The position of each node depends on its functionality, and we

can consider that if two nodes are close in the two-dimensional

space their functionality is somewhat similar. On the other

hand, if two nodes are separated, their functionality must be

very different. Fig. 7 shows the representation of the nodes of

the best network of the first run of the algorithms for nine

problems.

The figure shows how the nodes of the networks of the

standard crossover are more clustered, with many nodes

sharing similar functionality. On the other hand, the nodes of

the combinatorial crossover tend to be more spread, so their

collaboration is more effective. We can also see that in some

networks evolved with standard crossover there are nodes

grouped in pairs, these two nodes are probably the same node

after some mutation. This effect does not appear when

combinatorial crossover is used.

6. Conclusions

In this paper, we have proposed a new approach to neural

network crossover. This approach partially avoids the

disadvantages associated with the permutation problem. In

this way, the main source of deception in the use of genetic

algorithms for neural network evolution is removed.

We have performed an exhaustive comparison between the

approach based on combinatorial optimization and the standard

approach. This study has shown that the performance of the

proposed model is better than the performance of the standard

model. Moreover, the networks obtained with our model are

more compact. Their size is among the smallest shown in the

literature for solving the given problems.

Additional experiments have shown that the crossover based

on this new approach significantly improves the performance

of the evolutive process. On the other hand, the standard

crossover has no significant effect over the performance of the

evolution in several of the studied problems.

As a future research line we are working on the clustering of

nodes before the crossover operation. Our idea is to group

similar projections in a cluster before applying the combina-

torial algorithm. Only a representative member of each cluster

will be considered during the optimization.

Anneal Autos Gene

–6
–5
–4
–3
–2
–1
 0
 1
 2
 3
 4
 5

–8 –6 –4 –2 0 2 4 6 8
–8
–6
–4
–2
 0
 2
 4
 6
 8

–8 –6 –4 –2 0 2 4 6 8
–6

–4

–2

 0

 2

 4

 6

 8

–8 –6 –4 –2 0 2 4 6 8

Glass Horse Lymphography

–3

–2

–1

 0

 1

 2

 3

–3 –2 –1 0 1 2 3
–6
–5
–4
–3
–2
–1
 0
 1
 2
 3
 4
 5

–10 –8 –6 –4 –2 0 2 4 6
–5
–4
–3
–2
–1
 0
 1
 2
 3
 4
 5
 6

–4 –2 0 2 4 6 8 10

Sonar Vowel Zoo

–4

–2

 0

 2

 4

 6

 8

–10 –8 –6 –4 –2 0 2 4 6 8
–3

–2

–1

 0

 1

 2

 3

–4 –3 –2 –1 0 1 2 3
–5
–4
–3
–2
–1
 0
 1
 2
 3

–4 –3 –2 –1 0 1 2 3 4

Standard SaX GaX

Fig. 7. Two first principal components for every network of the best ensemble of the first run for anneal, autos, gene, glass, horse, lymphography, sonar, vowel, and

zoo problems.

N. Garcı́a-Pedrajas et al. / Neural Networks 19 (2006) 514–528 527
Acknowledgements

This work was supported in part by the Project TIC2002-

04036-C05-02 of the Spanish CICYT and FEDER funds. The

authors would like to acknowledge R. Moya-Sánchez for her

helping in the final version of this paper and Dr F. Herrera-

Triguero for his valuable advice.

References

Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994). An evolutionary

algorithm that constructs recurrent neural networks. IEEE Transactions on

Neural Networks, 5(1), 54–65.

Bäck, T. (1996). Evolutionary algorithms in theory and practice. New York,

NY: Oxford University Press.

Balakrishnan, K., & Honavar, V. (1995). Evolutionary design of neural

architectures—a pleliminary taxonomy and guide to literature, technical

report CS TR#95-01. Artificial Intelligence Research Group, Department of

Computer Science, Iowa State University, Ames, Iowa 50011-1040, USA

(January 1995).

Branke, J. (1995). Evolutionary algorithms for neural network design and

training. In J. Talander (Ed.), Proceeding of the first nordic workshop on

genetic algorithms and its applications, Vaasa, Finland, 1995.
Cantú-Paz, E., & Kamath, C. (2003). Evolving neural networks to identify

bent-double galaxies in the first survey. Neural Networks, 16, 507–517.

Caruana, R., Lawrence, S., & Giles, L. (2001). Overfitting in neural nets:

Backpropagation, conjugate gradient, and early stopping. In T. K. Leen,

T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information

processing systems 13. Papers from neural information processing systems

(NIPS) 2000 (pp. 402–408). Denver, CO: MIT Press.

Delahaye, D., & Odoni, A. (1997). Airspace congestion smoothing by

stochastic optimization. In P. J. Angeline (Ed.), Conference on evolutionary

programming ’97. Indianapolis, IN: Springer.

Denison, D. G. T., Holmes, C. C., Mallick, B. K., & Smith, A. F. M. (2002).

Bayesian methods for nonlinear classification and regression. Wiley series

in probability and statistics. West Sussex, England: Wiley.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system: Optimization

by a colony of cooperating agents. IEEE Transactions on Systems, Man,

and Cybernetics—Part B, 26(1), 1–13.

Eshelman, L. J. (1990). The CHC adaptive search algorithm: How to have safe

search when engaging in nontraditional genetic recombination. San Mateo,

CA: Morgan Kauffman.

Floreano, D., & Urzelai, J. (2000). Evolutionary robots with on-line self-

organization and behavioral fitness. Neural Networks, 13, 431–443.

Garcı́a-Pedrajas, N., Hervás-Martı́nez, C., & Muñoz-Pérez, J. (2002). Multi-

objective cooperative coevolution of artificial neural networks. Neural

Networks, 15(10), 1255–1274.

N. Garcı́a-Pedrajas et al. / Neural Networks 19 (2006) 514–528528
Garcı́a-Pedrajas, N., Hervás-Martı́nez, C., & Muñoz-Pérez, J. (2003). Covnet:

A cooperative coevolutionary model for evolving artificial neural networks.

IEEE Transactions on Neural Networks, 14(3), 575–596.

Goldberg, D. E. (1989a). Genetic algorithms in search, optimization and

machine learning. Reading, MA: Addison-Wesley.

Goldberg, D. E. (1989b). Genetic algorithms and Walsh functions: Part 2,

deception and its analysis. Complex Systems, 3, 153–171.

Goldberg, D. E. (1989c). Genetic algorithms and Walsh functions: Part 1, a

gentle introduction. Complex Systems, 3, 129–152.

Hajek, B. (1988). Cooling schedules for optimal annealing. Mathematics of

Operations Research, 13, 311–329.

Hassibi, B., & Stork, D. (1993). Second order derivatives for network pruning:

Optimal brain surgeon. In Advances in neural information systems (Vol. 5).

Haykin, S. (1999). Neural networks—A comprehensive foundation (2nd ed.).

Upper Saddle River, NJ: Prentice-Hall.

Hinton, G. E., & van Camp, D. (1993). Keeping neural networks simple by

minimizing the description length of the weights. In Sixth ACM

international conference on computational learning theory ACM, Santa

Cruz, 1993 (pp. 5–13). New York, NY: ACM Press.

Karnin, E. D. (1990). A simple procedure for pruning back-propagation trained

neural networks. IEEE Transactions on Neural Networks, 1(2), 239–242.

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In IEEE

international conference on neural networks. Perth, Australia: IEEE

Service Center.

Kirkpatrick, S., Gelatt Jr., C.D., & Vecchi, M.P. (1983). Optimization by

simulated annealing Science, 220, 671–680.

Lawrence, S., Giles, C. L., & Tsoi, A. C. What size neural network gives

optimal generalization? Convergence properties of backpropagation,

technical report. Institute for Advanced Computer Studies, University of

Maryland (August 1996).

Le Cun, Y., Denker, J. S., & Solla, S. A. (1990). Solla, optimal brain damage. In

D. S. Touretzky (Ed.), Advances in neural information processing (2) (pp.

598–605). Denver, CO: Morgan Kaufmann.

Le Cun, Y. (1993). Efficient learning and second-order methods, a tutorial. In

Advances in neural information processing, Denver, CO (Vol. 6).

Lerner, B., Guterman, H., Aladjem, M., & Dinstein, I. (1999). A comparative

study of neural networks based feature extraction paradigms. Pattern

Recognition Letters, 20(1), 7–14.

Louis, S. J., & Li, G. (1997). Combining robot control strategies using genetic

algorithms with memory. Lecture Notes in Computer Science, Evolutionary

Programming VI, 1213, 431–442.

Maniezzo, V. (1994). Genetic evolution of the topology and weight distribution

of neural networks. IEEE Transactions on Neural Networks, 5(1), 39–53.

Michalewicz, Z. (1994). Genetic algorithmsCdata structuresZevolution

programs. New York: Springer.

Miller, G. F., Todd, P. M., & Hedge, S. U. (1991). Designing neural networks.

Neural Networks, 4, 53–60.

Moriarty, D. E., & Miikkulainen, R. (1996). Efficient reinforcement learning

through symbiotic evolution. Machine Learning, 22, 11–32.

Moriarty, D. E., & Miikkulainen, R. (1997). Forming neural networks through

efficient and adaptive coevolution. Evolutionary Computation, 4(5),

373–399.
Mozer, M. C., & Smolensky, P. (1989). Skeletonization: A technique for

trimming the fat from a network via relevance assessment. In D. S.

Touretzky (Ed.), Advances in neural information processing (1) (pp. 107–

155). Denver, CO: Morgan Kaufmann.

Odri, S. V., Petrovacki, D. P., & Krstonosic, G. A. (1993). Evolutional

development of a multilevel neural network. Neural Networks, 6, 583–595.

Pujol, J. C. F., & Poli, R. (1998). Evolving the topology and the weights of

neural networks using a dual representation. Applied Intelligence, 8(1),

73–84.

Schaffer, J. D., Whitley, L. D., & Eshelman, L. J. (1992). Combinations of

genetic algorithms and neural networks: A survey of the state of the art. In

L. D. Whitley, & J. D. Schaffer (Eds.), Proceedings of COGANN-92

international workshop on combinations of genetic algorithms and neural

networks (pp. 1–37). Los Alamitos, CA: IEEE Computer Society Press.

Setiono, R. (1997). A penalty-function approach for pruning feedforward

neural networks. Neural Computation, 9, 185–204.

Setiono, R. (2001). Feedforward neural network construction using cross

validation. Neural Computation, 13, 2865–2877.

Smalz, R., & Conrad, M. (1994). Combining evolution with credit

apportionment: A new learning algorithm for neural nets. Neural Networks,

7(2), 341–351.

Thierens, D. (1996). Non-redundant genetic coding of neural networks. In

Proceeding of the 1996 IEEE international conference on evolutionary

computation (pp. 571–575). Piscataway, NJ: IEEE Press.

Thierens, D., Suykens, J., Vandewalle, J., & Moor, B. D. (1991). Genetic

weight optimization of a feedforward neural network controller. In

Proceedings of the conference on neural nets and genetic algorithms (pp.

658–663). Berlin: Springer.

Treadgold, N. K., & Gedeon, T. D. (1999). Exploring constructive cascade

networks. IEEE Transactions on Neural Networks, 10(6), 1335–1350.

van Rooij, A. J. F., Jain, L. C., & Johnson, R. P. (1996). Neural networks

training using genetic algorithms. Machine perception and artificial

intelligence (Vol. 26). Singapore: World Scientific.

Weigend, A. S. (1993). On overfitting and the effective number of hidden units.

In M. C. Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, & A. S.

Weigend (Eds.), Proceedings of the 1993 connectionist models summer

school (pp. 335–342). Hillsdale, NJ: Erlbaum Associates.

Weigend, A. S. (1994). On overfitting and the effective number of hidden units.

In M. C. Mozer, P. Smolensky, D. S. Touretzky, J. L. Elmand, & A. S.

Weigend (Eds.), Proceedings of the 1993 connectionist models summer

school (pp. 335–342). Hillside, NJ: Erlbaum Associates.

Whitehead, B. A., & Choate, T. D. (1996). Cooperative–competitive genetic

evolution of radial basis function centers and widths for time series

prediction. IEEE Transactions on Neural Networks, 7(4), 869–880.

Yang, J., Parekh, R., & Honavar, V. DistAI: An inter-pattern distance-based

constructive learning algorithm, technical report TR #97-05. Artificial

Intelligence Research Group, Department of Computer Science, Iowa State

University, Ames, Iowa (February 1997).

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE,

9(87), 1423–1447.

Yao, X., & Liu, Y. (1997). A new evolutionary system for evolving artificial

neural networks. IEEE Transactions on Neural Networks, 8(3), 694–713.

	An alternative approach for neural network evolution with a genetic algorithm: Crossover by combinatorial optimization
	Introduction
	Crossover in genetic evolution of neural networks
	Combinatorial optimization approach to network crossover
	Pool of hidden nodes
	Node combination evaluation
	Combinatorial optimization algorithm
	Permutation problem
	Evolutionary process
	Node mutation

	Experimental setup
	Experimental results
	Comparison with the evolution without crossover
	Effect of the regularization term
	Effective number of hidden units
	Functional representation of nodes

	Conclusions
	Acknowledgements
	References

