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Boundarymodels havebeen recognized asuseful tools topredict the ability ofmicroorganisms togrowat limiting
conditions. However, at these conditions, microbial behaviour can vary, being difficult to distinguish between
growth or no growth. In this paper, the data from the study of Valero et al. [Valero, A., Pérez-Rodríguez, F.,
Carrasco, E., Fuentes-Alventosa, J.M., García-Gimeno, R.M., Zurera, G., 2009. Modelling the growth boundaries of
Staphylococcus aureus: Effect of temperature, pH and water activity. International Journal of Food Microbiology
133 (1–2), 186–194]belonging togrowth/nogrowth conditionsof Staphylococcusaureus against temperature, pH
and aw were divided into three categorical classes: growth (G), growth transition (GT) and no growth (NG).
Subsequently, theyweremodelled by using a Radial Basis Function Neural Network (RBFNN) in order to create a
multi-classification model that was able to predict the probability of belonging at one of the three mentioned
classes. Themodelwas developed through anover sampling procedure using amemetic algorithm(MA) in order
to balance in part the size of the classes and to improve the accuracy of the classifier. The multi-classification
model, namedSmoteMemeticRadial Basis Function(SMRBF)providedaquite goodadjustment to data observed,
being able to correctly classify the 86.30% of training data and the 82.26% of generalization data for the three
observed classes in the bestmodel. Besides, the highnumber of replicates per condition tested (n=30) produced
a smooth transition between growth and no growth. At the most stringent conditions, the probability of
belonging to class GT was higher, thus justifying the inclusion of the class in the new model. The SMRBF model
presented in this study can be used to better define microbial growth/no growth interface and the variability
associated to these conditions so as to apply this knowledge to a food safety in a decision-making process.

Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.
1. Introduction

Boundary models have been arisen in the predictive microbiology
field as an approach to determine the ability of growth of microorgan-
isms. In this respect, several works have been published in recent years
for both spoilage and pathogenic microorganisms, due to the necessity
of gaining knowledge, by mathematical models, about the microbial
behaviour in limiting conditions that just prevent growth.

Consequently, these mathematical models may lead to more realistic
estimations of food safety risks, and can provide useful quantitative data
for the development of processes that allow production of safer food
products (Koutsoumanis et al., 2005). Several mathematical approaches
have been developed based on deterministic estimates ofminimal values
of environmental parameters at which growth can occur (Pitt, 1992),
polynomial and non-linear equations (Presser et al., 1998; Salter et al.,
2001; Skandamis et al., 2007; Valero et al., 2007a) that canbe built using a
logistic regression procedure proposed by Ratkowsky and Ross (1995) or
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ArtificialNeuralNetworks (ANNs)whichcanbeapplied todefinegrowth/
no growth interface of microorganisms (Hajmeer and Basheer, 2003).

The importance of the use of ANNs in predictive microbiology
(Garcia-Gimeno et al., 2005; Zurera-Cosano et al., 2005; Hervás-
Martínez et al., 2006) as an alternative to regression techniques was
stated by Basheer and Hajmeer (2000) due to their flexibility and high
degree of accuracy to fit to experimental data. It is important to realize
that ANN's often contain a high number of parameters (Hajmeer et al.,
1997).Although ifwecompareANNs topolynomialmodels, thenumber
of parameters of ANNs is competitivebecause thenumber of parameters
increases in a non-linearly way when increasing the number of
conditions and/or degree of the polynomial model (Geeraerd et al.,
1998).However, ANNsoffer a number of advantages, including ability to
implicitly detect complex non-linear relationships between dependent
and independent variables, and the ability to detect all possible
interactions between predictor variables. Disadvantages include its
“black box” nature, greater computational burden, and proneness to
overfitting. Generally, sigmoid functions have been widely used to built
the ANNs structure (Multi-Layer Perceptron type networks) (Leshno et
al., 1993) togetherwith other types of ANNs such asGaussian networks,
hts reserved.
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Fig. 1. Structure of Radial Basis Function Neural Networks.
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General Regression Neural Network models or Radial Basis Functions
(Musavi et al., 1992; Mulgrew, 1996).

Hajmeer and Basheer (2002) used a Probabilistic Neural Network
(PNN) approach for classification of bacterial growth/no growth data
and modeling the probability of growth of a pathogenic Escherichia coli
R31 in response to temperature and water activity. They found that
PNNs were shown to outperform linear and non-linear regression
models in both classification accuracy and ease. Later on, ANNs were
used to predict the growth/no growth interface (Valero et al., 2007b)
and survival/death of E. coliO157:H7 inmayonnaisemodel systems (Yu
et al., 2006) or Listeria monocytogenes in chorizos (Hajmeer et al., 2006).

Many pattern classification systems were developed for two-class
classification problems and theoretical studies of learning have
focused almost entirely on learning binary functions (Natarajan,
1991) including the well-known support vector machines (SVM)
(Vapnik, 1998) or ANN algorithms such as the perceptron or the error
back propagation algorithm (Bishop, 1996). For most of these
algorithms, the extension from two-class to the multi-class pattern
classification problem is non-trivial, and often leads to an unexpected
complexity or weaker performances (Anand et al., 1995; Price et al.,
1995; Allwein et al., 2001; Gelenbe and Hussain, 2002).

Logistic regression models provide numerical values of probability of
growth (pG) being the categorization into the classes “growth” or “no
growth”which are determined by setting a cut point (generally P=0.5).
The main output of a logistic regression model can be a value of
probability equal, for instance, to 0.23. This means that the chance of
growth of a givenmicroorganism is 23% (thus, no growth77%).However,
observed probabilities are subjected to different variability sources,
which are especially important at limiting conditions (when probability
of growth is around 0.5). This is mainly related to the variability in
microbial responses since if the observed probability of growth at one
specific condition is 0.23 it is highly probable that this value will not be
the same if the microorganism is subjected again to the same condition.
Besides this, conditions in which binary responses are observed can be
catalogued as no growth, but, when repeating the experiment, these
conditions could be classified as growth or vice versa. That is, conditions
where the probability of growth is neither 0 nor 1 are highly dependent
on microbial responses, which are also associated to high variability.
Therefore, by adding new information about the probability of growth
associated to these conditions, growth/no growth models can provide
alternative and more accurate estimations. In the present study, the
logistic regression model from the study of Valero et al. (2009) was
modified by providing a categorical classification of Staphylococcus
aureus growth as a function of temperature, pH andwater activity (aw) in
three different classes: “growth” (pG) that included conditions in which
the probability of growth is equal to 1; “no growth” which were
conditions where the probability of growth is 0, and a new class
denominated “growth transition (GT)” that encompassed all conditions
where probability of growth was different from 0 to 1. In our approach,
we aremodeling theprobability of belonging of eachpattern to each class
instead of modeling the probability of growth or no growth.

At the best of our knowledge very few attempts in the predictive
microbiology field that includes a multi-classification structure to
model microbial growth/no growth have been performed. One
approach was the study of Le Marc et al. (2005) that combined the
concept of the Minimum Convex Polyhedron (MCP) previously
introduced in Baranyi et al., (1996) with a logistic regression method
to model microbial growth/no growth boundaries. They obtained
predicted probabilities corresponding to zones of the model domain
belonging to growth, no growth and uncertainty regions. However,
the uncertainty region was built in zones where no data were
available. Besides, the MCP was linked to microbial observations in
ComBase (where no available data are found in some cases) and is has
also to be used in combination with a logistic regression model.

We understand that there are some difficulties that can be
encountered to develop a multi-classification procedure. Firstly, it
would be necessary to increase the number of replicates per condition
tested, and secondly, it is not so easy to determine, a priori, the size of
each class evaluated. This fact can produce a non-balanced structure
of these classes, which leads to decrease the performance capacity of
the standard classifiers.

For this reason, in this work, a novel approach will be tackled by
considering a non-balancedmulti-classificationmodel in three different
classes (G, GT and NG). A radial basis function neural network (RBFNN)
will be proposed as a classification tool and discriminant functions of G/
GT/NG from the best model will be derived.

2. Learning methodology

2.1. Base classifier

We considered radial basis functions neural networks (RBFNNs)
(Freeman and Saad, 1995; Orr, 1995; Hwang and Bang, 1997) with
softmax outputs and the standard structure as the base classification
model. A scheme of these models is given in Fig. 1, where J is the
number of classes (in our case, J=3, since we had 3 classes: G, GT and
NG) and m is the number of hidden nodes or RBFs of the neural net.
The inputs of the neural net are represented by the vector x, fl(x, θl) is
the output of the neural net for each of the l-th class, and, after
applying the softmax transformation, these outputs are transformed
into probabilities that the pattern x belong to the corresponding class,
pl(x, θl). Finally, θ=(θ1,…, θJ−1) is the vector including all the
parameters of the neural net.

The activation function of the j-th node in the hidden layer is given
by:

Bjðx;wjÞ = exp −
‖x−cj‖

2

r2j

 !
; ð1Þ

wherewj=(cj, rj) is the vector of parameters of the j-th hidden node,
cj=(cj1,…, cjk) is the centre of this node, rj is the corresponding
radium and cji is the weight of the connection between the i-th input
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node and the j-th RBF. The activation function of the l-th output node
is given by:

flðx; θlÞ = βl
0 + ∑

m

j=1
βl
jBjðx;wjÞ; l = 1;2;3 ð2Þ

where θl=(β0
l , β1

l ,…, βm
l ,w1,…,wm), βj

l is theweight of the connection
between the j-th RBF hidden node and the l-th output node and β0

l is
the bias of the l-th output node. The transfer function of all output
nodes is the identity function.

In order to tackle a multi-classification problem, the outputs of the
model have been interpreted from the point of view of probability
through the use of the softmax activation function (Richard and
David, 1989), which is given by:

plðx; θlÞ =
expflðx; θlÞ

∑3
j = 1expfjðx; θjÞ

; l = 1;2;3 ð3Þ

where fj(x, θl) is theoutput of the joutputneuron forpatternx andpl(x, θl)
is the probability a pattern x has of belonging to class j.

Using the softmax activation function presented in Eq. (3), the
class predicted by the ANN corresponds to the node in the output
layer whose output value is the greatest. In this way, the optimum
classification rule C(x) is the following:

CðxÞ = l̂; where l̂ = argmaxlplðx; θlÞ; for l = 1;2;3: ð4Þ

The best RBFNN is determined by means of a memetic algorithm
(MA) (detailed in Section 2.4) that optimizes the error function given
by the negative log-likelihood for N observations associated with the
RBFNN model:

L⁎ðθÞ = 1
N

∑
N

n=1
½−∑

2

l=1
yðlÞn flðxn; θlÞ +

+ log∑
2

l=1
expflðxn; θlÞ�: ð5Þ

where yn
(l) is equal to 1 if the pattern xn belongs to the l-th class and

equal to 0 otherwise. From a statistical point of view, the approach can
be seen as a non-linear multinominal logistic regression, where we
optimize log-likelihood using a MA.

2.2. Data preprocessing

Sampling strategies, such as over and undersampling, are extremely
popular in tackling the problem of class imbalance, i.e., either the minority
class is oversampled, the majority classes are undersampled, or some
combinationof the two isdeployed(as isdescribed in(Seiffert et al., 2010)).

In the preprocessing stage, we have applied an oversampling
process to the minority class, in our case, the GT class. In this way, the
initial dataset has been modified and more synthetic samples of this
class have been created. Specifically, the number of minority class
patterns (GT patterns) was doubled. The aim was to decrease the
problem of imbalanced rate, by selecting the GT class for applying the
re-sampling procedure, since this class included originally a half of the
number of patterns of the other classes (G and NG).

Synthetic examples were obtained by applying the Synthetic
Minority Oversampling Technique (SMOTE) algorithm (Chawla et al.,
2002). SMOTE is an oversampling method where the minority class is
oversampled by taking each minority class sample and introducing
synthetic examples along the line segments joining any/all of the k
minority class nearest neighbours. Depending upon the amount of
oversampling required, neighbours from the k nearest neighbours are
randomly chosen. Our implementation currently uses five nearest
neighbours as the maximum value of the k parameter.
2.3. Base evolutionary algorithm

The basic framework of the evolutionary algorithm (EA) is the
following: the search begins with an initial population of RBFNNs and,
in each iteration, a population-update algorithm which evolves both
its structure and weights is applied. The population is subjected to the
operations of replication, mutation and recombination.

The general structure of the EA can be supported in the following
steps:

1. Generate initial population with randomly generated networks.
2. Evaluate the fitness score for each individual of the population on

the objective function.
3. Copy the best individual to the next generation.
4. Thebest 20%of thepopulation substitutes theworst 20%of individuals.
5. Apply crossover operators to the best 10% of the population.
6. Apply parametric mutation operators to the second best 10% of the

population.
7. Apply structuralmutationoperators to the rest of thepopulation (80%).

We considered L⁎(θ) defined in (Eq. (5)) as the error function of an
individual g of the population. The fitness measure needed for
evaluating the individuals is a strictly decreasing transformation of
the error function L⁎(θ) given by

AðgÞ = 1
1 + L⁎ðθÞ ; 0bAðgÞ≤1: ð6Þ

The crossover operator considered is the binary and multipoint
crossover operators. The severity of a mutation to an individual RBFNN
model is dictated by the temperature T(g) of the RBFNN model. T(g) is
related to A(g) by means of the expression T(g)=1−A(g), 0≤T(g)b1
and, for that reason, T(g) is in descent throughout the evolutionary
process, making abrupt changes at the beginning (exploration) and soft
changes at the end (exploitation), since it is supposed that the A(g) of
the individuals in the population must improve in each iteration of the
evolutionary process.

Parametric mutation consists of a simulated annealing algorithm
(Martínez-Estudillo et al., 2008). Structural mutation implies a
modification in the structure of the RBFNNs and allows the exploration
of different regions in the search space, helping to keep the diversity of
the population. There are four different structural mutations: hidden
node addition, hidden node deletion, connection addition and connec-
tion deletion. These four mutations are applied sequentially to each
network. More information about genetic operators proposed can be
seen in Gutiérrez et al. (2009, 2010).

2.4. Memetic algorithm: Smote Memetic Radial Basis Function

The Smote Memetic Radial Basis Function (SMRBF) consists of
applying the previously described base evolutionary algorithm but
including a local search to some specifically selected individuals. This
memetic algorithm (MA) includes an optimization clustering process
applied in specific stages of the evolutionary process. In this clustering
process, each RBFNNmodel or individual is represented by the set of its
accuracies per class. For example, an individual with the Confusion
Matrix of the Eq. (7), is represented for the vector [52/60=0.86, 23/
29=0.79, 51/57=0.89], since these values are its accuracies per class.
The clustering algorithm is able to obtain groups of individuals that have
a similar behaviour for the different classes.

Confusion Matrix =
52 6 2
3 23 3
0 6 51

0
@

1
A: ð7Þ

After that, we apply iRprop+algorithm (Igel and Hüsken, 2003) to
the individual closest to the centroid obtained in each cluster. It is
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important to note that each cluster has been determined by means of
the standard k-means (Fukunaga, 1999) applied over the specific
space previously stated. Finally, the optimized individuals are
returned to the population with its fitness and values updated since
our MA is based on the Lamarckian model (Whitley et al., 1994).

The SMRBF algorithm is detailed in 2. In order to evaluate the effect
of the preprocessing step where the GT class is oversampled, we also
considered what we call the Memetic Radial Basis Function (MRBF)
algorithm. This algorithm follows the same flow diagram that SMRBF
methodology but it does not include the preprocessing stage.

3. Computational experiments

3.1. Database description

Theoriginal datasetwas taken fromValero et al. (2009) describing the
growth/no growth boundaries of a five strain cocktail of S. aureus as a
function of temperature, pH and aw by an ordinary logistic regression
model. Datawere collected at 8, 10, 13, 16 and 19 °C at pH levels from 4.5
to 7.5 (0.5 intervals) and at 19 levels of aw (from 0.856 to 0.999 at regular
intervals). The conditions in which S. aureus always grows have been
labeled as growth (G), those in which never grows as no growth (NG),
and finally, those for which sometimes grows and sometimes not
(it grows between 1 and 29 times of the 30 replicates tested per
condition), as growth transition (GT). For data processing, out of 287
conditionsperformed, 146were selected formodel training and141were
chosen for model generalization. From the 146 conditions selected to
train themodel, 60 conditionswere classified as G, 29 as GT and 57 asNG.
For the conditions used to validate the performance of the model (141
conditions), 57 were classified as G, 28 as GT, and 56 as NG. More details
can be found in Valero et al. (2009).

3.2. Alternative statistical and artificial intelligence methods used for
comparison purposes

Different state-of-the-art statistical and artificial intelligence
algorithms have been implemented for comparison purposes. In
this way, the proposed method was compared to the following
algorithms:

• The MRBF method (detailed in Section 2.4). As our approach applies
an oversampling procedure in the preprocessing stage, it is
necessary to compare its performance to the original MRBF method.

• Multi-logistic regression methods (Witten and Frank, 2005):
– MultiLogistic (MLogistic): It is an algorithm for building a multino-

mial logistic regressionmodelwith a ridge estimator to guard against
overfitting by penalizing large coefficients, based on the work by le
Cessie and van Houwelingen (le Cessie and van Houwelingen, 1992).
In order to find the coefficient vector, a Quasi-Newton Method is
used.

– SimpleLogistic (SLogistic): It is based on applying LogitBoost
algorithm with simple regression functions and determining the
optimumnumber of iterations by afive fold cross-validation: thedata
is equally split five times into training and test, LogitBoost is run on
every training set up to a maximum number of iterations (500) and
the classification error on the respective test set is logged. Afterwards,
LogitBoost is run again on all data using the number of iterations that
gave the smallest error on the test set averaged over the five folds.
Further details about the algorithm can be found in Landwehr et al.
(2005).

We consider the pH, water activity (aw) and temperature (T) as the
initial co-variates (MLogistic(standard model) and SLogistic(standard
model)). The model can be expressed as:

Y = b0 + b1 · T + b2 · pH + b3 · aw ð8Þ
where Y is the dependent variable, b0 the intercept of model, and b1,
b2, b3 the partial regression coefficients. In order to allow a fair
comparison between the new developed model and existing classic
approaches, we applied the SMOTE algorithm in the patterns of the GT
class in combination with the standard logistic regression models.

Furthermore, we compare our approach to logistic regression
methods with square and cross product terms in the model (as
suggested in Le Marc et al. (2005))): MLogistic(Le Marc et al. (2005)
model) and SLogistic(Le Marc et al. (2005) model). This model is
expressed as:

Y = b0 + b1 · T + b2 · pH + b3 · aw + b4 · T · pH + b5 · T · aw

+ b6 · pH · aw + b7 · T · pH · aw:

ð9Þ

As we did with the standard logistic regression models, the SMOTE
algorithmwas also applied to the pattern of the GT class in combination
with the Le Marc et al. (2005) approach.

• AGaussian RBFNetwork (RBFN) (Nabney, 2004), deriving the centres
and width of hidden units using k-means and combining the outputs
obtained from the hidden layer using logistic regression. k-means is
applied separately to each class to derive k clusters for each class.

• The C - SVM algorithm (Hastie et al., 2001) with RBF kernels (SVM).
From a structural point of view, the SVMs are related to RBFNNs and
they have become one of the most popular and developed methods
nowadays. In order to face the multi-class case, a “1-against-1”
approach has been considered, following the recommendations of
Hsu and Lin (Chen et al., 2009).

We also compared our proposal to specific methods for imbal-
anced data: the OverSampling and SmoteOverSampling methods
proposed in Zhou and Liu (2006). These methods have been selected
due to their similarities to the model proposed. They use MLP neural
networks as the base classifier, and the model is trained by the RProp
algorithm. The main differences with our approach are the following:
ourmodel is trained by aMA andwe used RBFNN as the base classifier.

3.3. Performance measures and algorithms' parameters

Classifiers were evaluated by two measures derived from the
confusion matrix: the Correct Classification Rate (CCR) and the
Minimum Sensitivity (MS) over the generalization dataset.

The contingency or confusion matrix M(g) for a classification
problem with J classes, N training or generalization patterns and g as
classifier is given by the following expression:

The CCR measure or accuracy is defined as:

M = nij; ∑
J

i;j=1
nij = N

( )
ð10Þ

where nij represents the number of times the patterns are predicted
by classifier g to be in class j when they really belong to class i. The
diagonal corresponds to correctly classified patterns and the off-
diagonal to mistakes in the classification task.

CCR = ð1=NÞ ∑
J

j=1
njj; ð11Þ

that is, the rate of all the correct predictions.
Let Si=nii / fi be the number of patterns correctly predicted to be in

class i with respect to the total number of patterns in class i
(sensitivity for class i). The MS measure is defined as:

MS = min Si; i = 1;…; Jf g ð12Þ

that is, the accuracy for the class that is worst classified.



Table 1
Comparison with other statistical and artificial intelligence methods: Correct
Classification Rate and Minimum Sensitivity in the generalization set (CCRG(%) and
MSG(%), respectively).

Method CCRG (%) MSG (%)

MLogistic(standard model) 76.60 39.29
SLogistic(standard model) 76.60 32.14
SMOTE+MLogistic(standard model) 71.63 50.00
SMOTE+SLogistic(standard model) 70.92 50.00
MLogistic((Le Marc et al., 2005) model) 80.56 50.00
SLogistic((Le Marc et al., 2005) model) 75.88 32.14
SMOTE+MLogistic((Le Marc et al., 2005) model) 75.17 53.57
SMOTE+SLogistic((Le Marc et al., 2005) model) 74.46 46.42
RBFN 75.18 39.29
SVM 80.98 42.86
OverSampling 78.58±2.24 52.14±8.11
SmoteOverSampling 75.60±4.03 60.21±13.29
MRBF 79.71±3.34 53.21±9.59
SMRBF 81.07±1.60 75.32±3.28

The best result is in bold face and the second best result in italics.
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The parameter values used in the hybrid techniques proposed
were the following: we performed a simple linear rescaling of the
input variables in the interval [−2, 2], Xi

* being the transformed
variables. The connection between hidden and output layer were
initialized in the [−5, 5] interval. The initial value of the radii rj was
obtained in the interval (0, dmax], where dmax is themaximumdistance
between two training input examples.

The size of the population was N=500. For the structural
mutation, the number of nodes that can be added or removed was
within the [1,2] interval, and the number of connections to add or
delete in the hidden and the output layer during structural mutations
was within the [1,7] interval. The number of clusters was k=6 for the
k-means algorithm. The iRprop+local improvement procedure was
performed every 50 generations, 8 times during the evolution. In this
way, the algorithm stopped when 400 generations were completed.
For the iRprop+algorithm, we consider a maximum of 75 cycles.

For the selection of the SVM hyperparameters (regularization
parameter, C, and width of the Gaussian functions, γ), a grid search
algorithm was applied with a ten-fold cross-validation, using the
following ranges: C∈{2−5, 2−3, …, 215} and γ {2−15, 2−13, …, 23}.

For the MRBF, SMRBF and the specific methods for imbalanced
data, we ran the procedures 30 times because they are based on
random values and do not return the same result for each execution.
For the other methods, the results were obtained running them only
one time, because all are deterministic methods.

The MRBF algorithm was implemented in JAVA. For the SMRBF
method, the MRBF algorithm was slightly modified, applying the over-
sampling procedure in the preprocessing stage. The base evolutionary
algorithm (with several modification to the proposed in this paper) is
available in KEEL1. KEEL is a software tool to assess evolutionary
algorithms for Data Mining problems including regression, classifica-
tion, clustering, pattern mining and so on (Alcala-Fdez et al., 2008).

We also used “libsvm” (Chang and Lin, 2001) to obtain the results
of the SVM method, WEKA (Witten and Frank, 2005) to obtain the
results of the RBFN, MLogistic and SLogistic and the CSNN2 software
package to obtain the results of the OverSampling and SmoteOver-
Sampling methods.

4. Results and discussion

4.1. Statistical analysis

A comparison of the SMRBF method with well-known classification
techniques given in 3.2 has been carried out. Table 1 shows the results
obtained with the different techniques tested. A descriptive analysis of
the results leads to the following remarks: the SMRBFmethod obtained
the best result in terms ofMSG and CCRG over all techniques compared.

To ascertain the statistical significance of the differences between
the means (in CCRG and MSG for each stochastic methodology:
OverSampling, Smote, MRBF and SMRBF), the non-parametric Kolmo-
gorov–Smirnov test (K–S test) was used to evaluate if the CCRG andMSG
values followed a normal distribution. The K–S test showed that a
normal distribution can be assumed because the critical levels, P-values,
were higher than 0.05 in all cases. In order to determine the best
methodology, an ANOVA statistical method test was carried out. The
results of theANOVA analysis for the CCRG andMSG values show that the
methodology effect was statistically significant at a level of signification
of 5%. Once this test guaranteed that there were significant differences
between the results of the different methods, we performed a multiple
comparison test on the CCRG and MSG values in order to establish an
order between the different methods. First, we carried out a Levene test
(Miller, 1996) for evaluating the equality of variances. Then, we
performed a Tamhane test (Tamhane and Dunlop, 2000), because the
1 http://www.keel.es.
2 http://lamda.nju.edu.cn/datacode/CSNN.htm.
variances are not equal (either for CCRG or MSG), in order to rank the
different methods. Our aim was to find the methodology whose
performance (in CCR and MS) was significantly better than that of the
rest of the methodologies.

If we analyze the average results for accuracy CCR we can observe
that the SMRBF methodology obtained better results than those
obtained with other methodologies. On the other hand, the results of
the average MS show that the SMRBF methodology obtained a
significant better performance, for a level of signification of 5%, than
the other methodologies. Therefore, SMRBF is the classification
methodology recommended in this paper for the problem analyzed.

It has been proven in Table 1 that the application of the SMOTE
algorithm in combination with logistic regression techniques is not
suitable, since the final model obtained less accuracy in correctly
classifying the generalization data. The application of the SMOTE
algorithm in combination to the logistic regression models improved
the Minimum Sensitivity (MS) results but decreased the accuracy
results (CCR). A priori, we could think that MS and CCR objectives
could be positively correlated, but while this may be true for small
values ofMS and CCR, it is not for values close to 1 on bothMS and CCR,
as we can see in the results obtained by the logistic regression models
(see Table 1). Despite this, the SMRBF yields improve the CCR and the
MS values obtained by the memetic algorithm (MRBF method).

In general, these results show that the proposed approaches based
on RBFNNs are robust to tackle the multi-classification of the growth
boundaries of S. aureus, obtaining better results than the majority of
the existing alternative methods.

4.2. Analysis of the best SMRBF model

4.2.1. Model implementation
We selected the best SMRBF model of the different models

obtained in order to perform a further analysis of it. For a correct
implementation of the SMRBF multi-classification model it would be
necessary: (i) to evaluate its performance capacity, (ii) to compare the
observations with predictions, by considering a classification into G,
GT and NG classes and finally, (iii) to study the conditions that imply a
transition from G to GT and NG and vice versa.

4.2.2. Classification accuracy of the SMRBF model
The outputs of this model are the values of probability that a

pattern falls within each class: G (pG), GT (pGT) and NG (pNG). We
considered the softmax activation function in such a way that each
pattern is associated to the class with higher probability (Eq. (4)).

It should be highlighted that the robustness of the SMRBF model is
given by the number of replicates tested per condition (n=30) which
provided a more reliable classification in three classes. These results are

http://www.keel.es
http://lamda.nju.edu.cn/datacode/CSNN.htm


Table 2
Probability expression of the best SMRBF model. Performance of this model: Correct
Classification Rate (CCR) on the training set considering the synthetic SMOTE data (CCRTS)
and not considering the synthetic SMOTE data (CCRT), CCR on the generalization set
(CCRG), Minimum Sensitivity (MS) on the training set considering the synthetic SMOTE
data (MSTS) and not considering the synthetic SMOTE data (MST) and MS on the
generalization set (MSG). Confusion Matrix (CM) for the training set considering the
synthetic SMOTEdata (CMTS), not considering the synthetic SMOTEdata (CMT) andCMfor
the generalization set (CMG).

Best SMRBF S. aureus multi-classification model
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i = 1e

fi ðx;θÞ ; pGT ðx; θÞ = ef2ðx;θÞ

1 + ∑2
i = 1e

fiðx;θÞ ; pGðx; θÞ = ef3ðx;θÞ

1 + ∑2
i = 1e

fiðx;θÞ

f1(x,θ)=−3.05−31.32RBF1+36.33RBF2−2.42RBF3−7.47RBF4+1.57RBF5
f2(x,θ)=−3.50−6.59RBF1+17.84RBF2−4.30RBF3+2.14RBF5

f3(x,θ)=0

RBF1 = e
−0:5⋅

ðT⋆ + 2:07Þ2 + ða⋆w + 2:27Þ2
� �0:5

2:26

 !2

RBF2 = e
−0:5⋅

ðT⋆−1:04Þ2 + ðpH⋆−0:49Þ2 + ða⋆w−1:77Þ2
� �0:5

1:96

 !2

RBF3 = e
−0:5⋅

ðT⋆ + 2:03Þ2 + ðpH⋆−0:46Þ2 + ða⋆w + 1:04Þ2
� �0:5

1:28

 !2

RBF4 = e
−0:5⋅

ðT⋆−1:34Þ2
� �0:5

0:21

 !2

RBF5 = e
−0:5⋅

ðpH⋆−1:92Þ2
� �

Þ0:5

1:53

 !2

T⋆, pH⋆, aw⋆ [−2,2]
CCRTS=86.28%, CCRT=86.30%, CCRG=82.26%
MSTS=82.75%, MST=79.31%, MSG=78.57%

CMTS =
52 6 2
6 48 4
0 6 51

0
@

1
A; CMT =

52 6 2
3 23 3
0 6 51

0
@

1
A; CMG =

48 8 1
4 22 2
1 9 46

0
@

1
A

Table 3
Observed conditions from the study of (Valero et al., 2009) in which the replicates
tested in training data showed simultaneously growth and no growth and comparison
to the predictions given by the SMRBF model.

T(°C) pH aw pobs_log ppred_log pG pGT pNG pmax Classification

8 7.50 1.00 26/30=0.87a 1.00 0.42 0.47 0.12 0.47 Cb

8 7.50 0.99 7/30=0.23 0.02 0.20 0.59 0.21 0.59 C
8 6.50 0.99 24/30=0.81 0.93 0.59 0.34 0.07 0.59 I
8 5.50 0.99 11/30=0.37 0.38 0.29 0.32 0.38 0.38 I
8 7.00 0.98 11/30=0.37 0.06 0.27 0.58 0.15 0.58 C
8 6.00 0.98 6/30=0.20 0.26 0.35 0.41 0.24 0.41 C
10 5.50 0.96 16/30=0.53 0.96 0.33 0.50 0.18 0.50 C
10 7.00 0.96 23/30=0.77 0.95 0.17 0.74 0.08 0.74 C
10 6.00 0.96 17/30=0.57 0.96 0.30 0.56 0.14 0.56 C
10 7.50 0.95 14/30=0.47 0.02 0.01 0.65 0.34 0.65 C
10 6.50 0.95 16/30=0.53 0.76 0.10 0.68 0.22 0.68 C
13 4.50 0.96 19/30=0.63 0.99 0.27 0.44 0.28 0.44 C
13 7.50 0.94 28/30=0.93 1.00 0.51 0.48 0.01 0.51 I
13 5.50 0.94 29/30=0.97 1.00 0.84 0.15 0.00 0.84 I
13 5.00 0.93 29/30=0.97 0.39 0.06 0.59 0.35 0.59 C
13 7.50 0.92 26/30=0.87 0.99 0.02 0.87 0.11 0.87 C
13 5.50 0.92 26/30=0.87 0.79 0.08 0.70 0.22 0.70 C
13 7.00 0.92 28/30=0.93 0.93 0.01 0.83 0.16 0.83 C
13 6.00 0.92 26/30=0.87 0.73 0.03 0.70 0.27 0.70 C
16 7.50 0.92 28/30=0.93 1.00 0.77 0.23 0.00 0.77 I
16 5.50 0.92 27/30=0.90 1.00 0.94 0.06 0.00 0.94 I
16 5.00 0.92 16/30=0.53 0.84 0.21 0.60 0.19 0.60 C
16 7.50 0.91 16/30=0.53 1.00 0.09 0.86 0.05 0.86 C
16 6.00 0.90 16/30=0.53 0.96 0.12 0.77 0.11 0.77 C
16 6.50 0.89 16/30=0.53 0.50 0.02 0.76 0.23 0.76 C
16 7.00 0.88 14/30=0.47 0.01 0.00 0.51 0.49 0.51 C
19 7.50 0.88 23/30=0.76 0.98 0.13 0.55 0.32 0.55 C
19 6.50 0.88 26/30=0.87 0.95 0.38 0.45 0.17 0.45 C
19 7.00 0.87 7/30=0.23 0.09 0.09 0.51 0.40 0.51 C

pobs_log: Observed Probabilities.
ppred_log: Predicted Probabilities from the logistic model of (Valero et al., 2009).
pG: Probability to pertain to the G class.
pGT: Probability to pertain to the GT class.
pNG: Probability to pertain to the NG class.
pmax: maxpl(x, l), for l=1, 2, 3.

a Observed probabilities expressed as number of grown replicates/total replicates
and the numerical value of probability growth.

b Classification criteria: C (Correct); I (Incorrect).
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described in the confusionmatrices associated (Table2). Theclassification
accuracy of the SMRBF model was high since more than 80% of the cases
matchedwith theobservedclasses. Regarding the trainingdataset, 86.30%
of the cases were correctly classified (CCRT), while in the generalization
dataset, this percentage was slightly lower (82.26%, CCRG). Misclassified
caseswereassignedwhen theestimatedpatternwasnot associated to the
same observed class. As three classes were considered, in this model the
errors accounted from the classes G, GT and NG to the adjacent ones; and
from the class G to NG and vice versa. This approach allows to a better
model accuracy than logistic regression models which consider the two
categorical classes; growth and no growth.

Based on this, the percentage of errors that were misclassified in the
adjacent classwas 12.32% (18/146) for training data and 15.30% (23/141)
for generalization data. It should be remarked that two cases in training
data: (i) T 8 °C; pH5;aw0.995; (ii) 10 °C; pH4.5; aw0.989, andone case in
generalization data (i) T 8 °C; pH 5; aw 0.999, were misclassified as NG
when G was observed; and one case in generalization data (i) T 10 °C;
pH 5; aw 0.977, wasmisclassified as GwhenNGwas observed. These two
cases accounted from the 1.41% and belonged to conditions that
approached growth limits. However the majority of growth/no growth
studies agreed that limiting conditions, in which microbial responses
could bemore variable, are recognized to be difficult to predict accurately
(Gysemans et al., 2007a; Gysemans et al., 2007b).

4.2.3. Model predictions as a function of the environmental factors
studied

Theprobabilityof fallingwithin theclassG(probabilityof growth=1),
GT (probability of growth between 0 and 1) and NG (probability of
growth=0)canbeobtainedby solving thegeneral equationof theSMRBF
model. Note that this is a pure categorical model, against the ordinary
regression logistic models previously published in the field of predictive
microbiology. As an example, at 13C, pH 5.50 and aw 0.93; the outputs of
the SMRBF model would be: pG=0.28; pGT=0.64 and pNG=0.08. This
means that the model gives a probability (certainty) of 0.28 that it is a
growth condition, 0.08 that it is a no growth condition and0.64 that it is in
a range where both growth and no growth results can be obtained.
Therefore, the information originated from thismodel is the probability of
pertaining to one of these three classes, and not a numerical value of
probability of growth.

In Tables 3 and 4, the observed probabilities of growth obtained at
boundary conditions were compared to the predicted probabilities of
the logistic regression model of Valero et al. (2009) and the SMRBF
model. These conditions should theoretically approach to the class GT.
Regarding training data, 23 out the 29 conditions obtained the highest
value of probability for the class GT, while in generalization data, this
response was observed in 17 out the 25 conditions obtained. However,
by considering three different classes, the errors committed in the
misclassified cases are not severe. As it can be seen in Tables 3 and 4, the
misclassified cases by the SMRBF model fell in the adjacent class where
observed probabilities were obtained. For example, in Table 3 (8 °C, pH
6.50 and aw 0.990), the observed probability of growthwas 0.81 (which
is in fact catalogued as “growth”by the logistic regressionmodel). In this
case, the SMRBF predicts that 34% of cases will belong to the GT class.
However, the largest probabilitypredictedby theSMRBFmodelwas59%
of cases that belong to the G class. The observed probability indicated
that growth mostly occurs, thus, the error of the SMRBF model is
deviated to the class that approached the most to the real observation.

It should be highlighted that predictions given by the logistic
regression model of Valero et al. (2009) approached to 0 and/or 1 in
several cases at the boundary conditions represented in Tables 3 and
4, probably due to the convergence of the polynomial model in these
zones of themodel domain. In these cases, the use of the SMRBFmodel



Table 4
Observed conditions from the study of (Valero et al., 2009) in which the replicates
tested in generalization data showed simultaneously growth and no growth and
comparison to the predictions given by the SMRBF model.

T(°C) pH aw pobs_log ppred_log pG pGT pNG pmax Classification

8 7.50 0.99 12/30=0.40a 0.65 0.32 0.53 0.15 0.53 Cb

8 6.00 0.98 16/30=0.53 0.90 0.55 0.32 0.13 0.55 I
8 5.00 0.98 7/30=0.23 0.00 0.06 0.19 0.74 0.74 I
8 6.50 0.98 20/30=0.66 0.34 0.40 0.46 0.14 0.46 C
10 6.00 0.96 23/30=0.77 1.00 0.64 0.33 0.03 0.64 I
10 7.50 0.95 18/30=0.60 0.30 0.04 0.77 0.19 0.77 C
10 6.50 0.95 24/30=0.80 0.99 0.34 0.59 0.07 0.59 C
10 7.00 0.94 17/30=0.57 0.44 0.04 0.75 0.21 0.75 C
10 6.00 0.94 10/30=0.33 0.54 0.07 0.56 0.36 0.56 C
13 4.50 0.96 29/30=0.97 1.00 0.56 0.31 0.12 0.56 I
13 5.00 0.94 29/30=0.97 0.99 0.31 0.56 0.13 0.56 C
13 7.50 0.93 27/30=0.90 1.00 0.15 0.82 0.03 0.82 C
13 5.50 0.93 29/30=0.97 1.00 0.45 0.50 0.04 0.50 C
13 5.00 0.92 7/30=0.23 0.00 0.01 0.36 0.64 0.64 I
13 6.05 0.91 26/30=0.87 0.95 0.04 0.81 0.16 0.81 C
16 5.05 0.93 29/30=0.96 1.00 0.99 0.01 0.00 0.99 I
16 4.50 0.93 19/30=0.63 0.99 0.30 0.46 0.24 0.46 C
16 7.50 0.91 18/30=0.60 1.00 0.36 0.63 0.01 0.63 C
16 5.50 0.91 19/30=0.63 1.00 0.70 0.29 0.01 0.70 I
16 7.50 0.89 12/30=0.40 0.99 0.02 0.82 0.16 0.82 C
16 6.50 0.89 29/30=0.96 1.00 0.14 0.81 0.05 0.81 C
16 7.00 0.88 29/30=0.96 0.63 0.01 0.77 0.22 0.77 C
19 7.50 0.88 28/30=0.93 1.00 0.35 0.52 0.13 0.52 C
19 6.50 0.88 29/30=0.96 1.00 0.74 0.23 0.03 0.74 I
19 7.00 0.87 29/30=0.96 0.99 0.28 0.54 0.18 0.54 C

pobs_log: Observed Probabilities.
ppred_log: Predicted Probabilities from the logistic model of (Valero et al., 2009).
pG: Probability to pertain to the G class.
pGT: Probability to pertain to the GT class.
pNG: Probability to pertain to the NG class.
pmax: maxpl(x, l), forl=1,2,3.

a Observed probabilities expressed as number of grown replicates/total replicates
and the numerical value of probability growth.

b Classification criteria: C (Correct); I (Incorrect).
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can provide more accurate predictions and give also additional
information regarding the variability of microbial responses at limiting
conditions.

This growth transition is illustrated at some combinations of
temperature (10 °C), pH (6.5) and aw (0.949), in Fig. 3 for the SMRBF
model (Fig. 3a, c and e) and for the logistic regression model of Valero
et al. (2009) (Fig. 3a, d and f). The largest predicted probabilities for each
model are marked, being each drawing line representing the classes G,
GT andNG (SMRBFmodel); and the classesG andNG (logistic regression
model). Regarding temperature, the SMRBFmodel predicted a smoother
Fig. 2. Flow diagram of t
transition zone between9.5 and11 °C (Fig. 2). The cut point predicted by
the logistic regressionmodel (approximately 10 °C, Fig. 2) fell inside this
zone. Observed probability at 10 °C, pH 6.5 and aw 0.949 indicated
growth transition (P=0.53). This means that, although the two models
correctly explained themicrobial behaviour, the SMRBFmodel provides
a temperature rangewheremicrobial responses are variable, insteadof a
deterministic value.

In Fig. 3c, the largest probabilities for the SMRBF model
corresponded to GT and NG classes. It can be observed that for pH
values above 5.75, GT is predicted. This fact is corroborated by
observed probabilities obtained at these conditions. However, the
logistic regression model predicted growth between pH 6 and 7
(Fig. 2), and no growth outside this range.

Finally, predictions obtained by the SMRBF model (10 °C pH 6.5) at
different aw values, indicated that a transition zone occurred at aw
between 0.941 and 0.959 (Fig. 3e), while according to the logistic
regression model, at aw 0.946, p=0.5 (Fig. 3f). Again, the SMRBF model
predicted a smoother transition zone, gaining accuracy in the estimations
of the behaviour of S. aureus at conditions approaching the growth limits.

5. Application of the SMRBF model in food microbiology in a
decision-making process

Themain utility of the SMRBFmodel is its inclusion as a novel tool in
a decision-making processwithin a Hazard Analysis and Critical Control
Point (HACCP) system. The information generated allows riskmanagers
to decide the most proper combinations to be followed in order to
prevent microbial growth through giving more information regarding
microbial variability associated to specific environmental conditions
where a binary response (growth and no growth) can be observed. In
Table 5, some combinations of pH and aw levels at 8 and 10 °C are
represented, comparing the estimations of the logistic regressionmodel
fromValero et al. (2009), and the SMRBFmodel (fixing pG=0.1). One of
the main applications of the latter model is that one can decide which
formulation is safer at a fixed probability value. For instance, at 8 °C
there are some formulations that could potentially generate the same
value of pG=0.1 (10% of cases the probability would be equal to 1). It
can be seen that the safest formulationwasobtained at 8 °C, pH5.00 and
aw 0.993. In this case, pNG had the highest value (0.69), while in 21% of
cases, the probability will be neither 0 nor 1, but an intermediate
(unknown) value. For food safety purposes, this value should be as
lowest as possible, what implies that variability associated to the
predictedmicrobial responsewould be reduced. At T 10 °C, pH 5.00 and
aw 0.967, the information given by the SMRBF model states that
pG=0.10, pGT=0.40 and pNG=0.50 (P=1 in 10% of cases; 0bPb1 in
he SMRBF method.

image of Fig.�2


Fig. 3. Evolution of predicted probabilities (p) to pertain at the classes G (Growth), GT (Growth Transition) and NG (No growth), and the maximum of the probabilities (pmax) for the
SMRBFmodel (3a, 3c and 3e) and for the logistic regressionmodel of (Valero et al., 2009) (Figs. 3b, d and f), as a function of temperature (Figs. 3a and b: pH 6.5; aw 0.949), pH (Figs. 3c
and d: T 10 °C; aw 0.949) and aw (Figs. 3e and f: T 10 °C; pH 6.5).
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40% of cases and P=0 in 50% of cases). The estimated variability
associated to this condition is provided since in 40% of cases, the
probability of growth will be between 0 and 1 and in 50% of cases, this
probability will be 0. The estimated probability of the logistic regression
model is 0.41 (P=1 in41% of cases; P=0 in 59%of cases). At T 10 °C and
at higher pHs, as seen in Table 5, pGT is getting higher and pNG is lowered.
For instance, at pH7.00 and aw 0.953, although pG is 0.1, there is a higher
value of probability associated to the class GT (0.77), thus being this
condition less safe. This result is in agreement with the logistic
regression model, since the estimated value is P=0.82. In this latter
condition, the logistic regression model predicted growth but the
SMRBF model estimated that the probability will be placed within the
class GT, being this condition associated to a high variability of the
microorganism.

It should be mentioned that this is an alternative (categorical)
approach to conventional logistic regression models, especially useful
in decision-trees of HACCP systems when formulating new trend and/
or minimally processed products.

The SMRBF model proposed in this study has been proven to be a
very useful tool to model the microbial behaviour by determining the

image of Fig.�3


Table 5
Comparison of the estimations of the logistic regression model from (Valero et al.,
2009), and the SMRBFmodel (fixing pG=0.1) in some combinations of pH and aw levels
at 8 and 10 °C.

T(°C) pH aw Ppred_log pG pGT pNG

8 5.00 0.993 0.05 0.10 0.21 0.69a

8 5.60 0.978 0.00 0.10 0.33 0.57
8 6.40 0.972 0.00 0.10 0.50 0.40
8 6.75 0.973 0.00 0.10 0.58 0.32
8 7.00 0.975 0.00 0.10 0.62 0.28
10 5.00 0.967 0.41 0.10 0.40 0.50a

10 5.60 0.955 0.57 0.10 0.54 0.36
10 6.40 0.949 0.75 0.10 0.66 0.24
10 6.80 0.951 0.81 0.10 0.74 0.16
10 7.00 0.953 0.82 0.10 0.77 0.13

ppred_log: Predicted Probabilities from (Valero et al., 2009).
pG: Probability to pertain to the G class.
pGT: Probability to pertain to the GT class.
pNG: Probability to pertain to the NG class.

a Safest conditions selected.
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probability to pertain at one of the three possible classes that can be
obtained from probability models; growth, no growth and growth
transition.

6. Conclusions

A novel SMRBF model was proposed which consisted of a radial
basis function neural network optimized by using a memetic
algorithm combined with an oversampling procedure for dealing
with the imbalanced nature of the dataset. This new methodology
derived in an interpretable equation that provided accurate predic-
tions in means of the generalization data regarding values of CCR
(81.07%) and MS (75.32%) as previously shown. The existence of a
new class, named GT, has been included in the model mainly due to
the high number of replicates per condition (30) used in our study,
which produced a smoother transition between growth and no
growth zones. This class is clearly justified since in certain zones of the
model domain, microbial responses are more variable and therefore, a
classification into G or NG cannot be established. In these conditions
which approach microbial growth limits, the probability to pertain at
the class GT is higher. This approach can help predictive modellers to
better define the growth boundaries of microorganisms and to model
the microbial variability associated to these conditions.

Acknowledgement

This work has been partially subsidized by the TIN 2008-06681-C06-
03 project of the Spanish Inter-Ministerial Commission of Science and
Technology (MICYT), FEDER funds, by the Excellence Project AGR-01879
(Junta de Andalucía), by the Research Group AGR-170 HIBRO of the “Plan
Andaluz de Investigación, Desarrollo e Innovación” (PAIDI), and the P08-
TIC-3745 project of the “Junta de Andalucía” (Spain). The research of
Francisco Fernández-Navarro has been funded by the “Junta de
Andalucia” Predoctoral Program, grant reference 390015-P08-TIC-3745.

References

Alcala-Fdez, J., Sánchez, L., García, S., del Jesús, M.J., Ventura, S., Garrell, J.M., Otero, J.,
Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F., 2008. KEEL: a software
tool to assess evolutionary algorithms for data mining problems. Soft Computing 13
(3), 307–318.

Allwein, E.L., Schapire, R.E., Singer, Y., 2001. Reducing multiclass to binary: a unifying
approach for margin classifiers. Journal of Machine Learning Research 1 (2), 113–141.

Anand, R., Mehrotra, K., Mohan, C.K., Ranka, S., 1995. Efficient classification for
multiclass problems using modular neural networks. IEEE Transactions on Neural
Networks 6 (1), 117–124.

Baranyi, J., Ross, T., McMeekin, T.A., Roberts, T.A., 1996. Effects of parameterization on
the performance of empirical models used in ‘predictive microbiology’. Food
Microbiology 13 (1), 83–91.
Basheer, I., Hajmeer, M., 2000. Artificial neural networks: fundamentals, computing,
design and application. Journal of Microbiological Methods 43, 3–31.

Bishop, C.M., 1996. Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, UK.

Chang, C., Lin, C., 2001. Libsvm: A Library for Support Vector Machines.
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., 2002. Smote: synthetic minority

over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357.
Chen, H., Tino, P., Yao, X., 2009. Probabilistic classification vector machines. IEEE

Transactions on Neural Networks 20 (6), 901–914.
Freeman, J.A.S., Saad, D., 1995. Learning and generalization in radial basis function

networks. Neural Computation 7 (5), 1000–1020.
Fukunaga, K., 1999. Introduction to Statistical Pattern Recognition, 2nd Edition. Academic

Press.
Garcia-Gimeno, R.M., Hervas-Martinez, C., Rodriguez-Perez, R., Zurera-Cosano, G., 2005.

Modelling the growth of Leuconostoc mesenteroides by artificial neural networks.
International Journal of Food Microbiology 105 (3), 317–332.

Geeraerd, A.H., Herremans, C.H., Cenens, C., Van Impe, J.F., 1998. Application of artificial
neural networks as a non-linear modular modeling technique to describe bacterial
growth in chilled food products. International Journal of FoodMicrobiology 44 (1–2),
49–68.

Gelenbe, E., Hussain, K.F., 2002. Learning in the multiple class random neural network.
IEEE Transactions on Neural Networks 13 (6), 1257–1267.

Gutiérrez, P.A., Hervás-Martínez, C., Carbonero, M., Fernández, J.C., 2009. Combined
projection and kernel basis functions for classification in evolutionary neural
networks. Neurocomputing 72 (13–15), 2731–2742.

Gutiérrez, P.A., Hervás-Martínez, C., Lozano, M., 2010. Designing multilayer perceptrons
using a guided saw-tooth evolutionary programming algorithm. Soft Computing14 (6),
599–613.

Gysemans, K.P.M., Bernaerts, K., Geeraerd, A.H., Vermeulen, A., Debevere, J., Devlie-
ghere, F., Van Impe, J.F., 2007a. Evaluation of growth/no growth modelling
approaches on a non-abrupt growth/no growth interface of Listeria monocytogenes.
Food Australia 59 (9), 427–432.

Gysemans, K.P.M., Bernaerts, K., Vermeulen, A., Geeraerd, A.H., Debevere, J., Devlie-
ghere, F., Van Impe, J.F., 2007b. Exploring the performance of logistic regression
model types on growth/no growth data of Listeria monocytogenes. International
Journal of Food Microbiology 114 (3), 316–331.

Hajmeer, M., Basheer, I., 2002. A probabilistic neural network approach for modelling
and classification of bacterial growth/no-growth data. Journal of Microbiological
Methods 51, 217–226.

Hajmeer, M., Basheer, I., 2003. Comparison of logistic regression and neural network-
based classifiers for bacterial growth. Food Microbiology 20 (1), 43–55.

Hajmeer, M., Basheer, I., Cliver, D.O., 2006. Survival curves of Listeria monocytogenes in
chorizosmodeledwith artificial neural networks. FoodMicrobiology 23 (6), 561–570.

Hajmeer, M.N., Basheer, I.A., Najjar, Y.M., 1997. Computational neural networks for
predictive microbiology ii. application to microbial growth. International Journal of
Food Microbiology 34 (1), 51–66.

Hastie, T., Tibshirani, R., Friedman, J.H., 2001. The Elements of Statistical Learning.
Springer. August.

Hervás-Martínez, C., Garcia-Gimeno, R.M., Martinez-Estudillo, A.C., Martinez-Estudillo,
F.J., Zurera-Cosano, G., 2006. Improving microbial growth prediction by product
unit neural networks. Journal of Food Science 71 (2), 31–38.

Hwang, Y., Bang, S., 1997. An efficient method to construct radial basis function neural
network classifier. Neural Networks 10 (8), 1495–1503.

Igel, C., Hüsken, M., 2003. Empirical evaluation of the improved rprop learning
algorithms. Neurocomputing 50 (6), 105–123.

Koutsoumanis, K., Taoukis, P., Nychas, G., 2005. Development of a safety monitoring and
assurance system for chilled food products. International Journal of Food
Microbiology 100 (1–3), 253–260.

Landwehr, N., Hall, M., Frank, E., 2005. Logistic model trees. Machine Learning 59 (1–2),
161–205.

le Cessie, S., van Houwelingen, J., 1992. Ridge estimators in logistic regression. Applied
Statistics 41 (1), 191–201.

Le Marc, Y., Pin, C., Baranyi, J., 2005. Methods to determine the growth domain in a
multidimensional environmental space. International Journal of Food Microbiology
100 (1–3), 3–12.

Leshno, M., Lin, V., Pinkus, A., Shocken, S., 1993. Multilayer feed-forward networks with
a nonpolynomical activation function can approximate any function. Neural
Networks 6, 861–867.

Martínez-Estudillo, F.J., Hervás-Martínez, C., Gutiérrez, P.A., Martínez-Estudillo, A.C.,
2008. Evolutionary product-unit neural networks classifiers. Neurocomputing 72
(1–2), 548–561.

Miller, R., 1996. Beyond ANOVA, Basics of App. Statistics. Chapman & Hall, London.
Mulgrew, B., 1996. Applying radial basis functions. IEEE Signal ProcessingMagazine 13 (2),

50–65.
Musavi, M.T., Ahmed, W., Chan, K.H., Farms, K.B., Hummels, D.M., 1992. On the training

of radial basis function classifiers. Neural Networks 5, 595–603.
Nabney, I.T., 2004. Efficient training of RBF networks for classification. International

Journal of Neural Systems 14 (3), 201–208.
Natarajan, B., 1991. Machine Learning: A Theoretical Approach. Morgan Kaufmann, Los

Alamitos, CA.
Orr, M.J.L., 1995. Regularisation in the selection of radial basis function centres. Neural

Computation 7 (3), 606–623.
Pitt, R., 1992. A descriptivemodel of mold growth and aflatoxin formation as affected by

environmental conditions. Journal of Food Protection 56, 139–146.
Presser, K., Ross, T., Ratkowsky, D., 1998. Modelling the growth limits (growth/

no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid



212 F. Fernández-Navarro et al. / International Journal of Food Microbiology 141 (2010) 203–212
concentration and water activity. Applied and Environmental Microbiology
1773–1779.

Price, D., Knerr, S., Personnaz, L., Dreyfus, G., 1995. Pairwise neural network classifiers
with probabilistic outputs. In: Tesauro, G., Touretzky, D., Leen, T. (Eds.), Advances in
Neural Information Processing Systems 7 (NIPS-94). MIT Press, pp. 1109–1116.

Ratkowsky, D., Ross, T., 1995. Modelling the bacterial growth/no growth interface.
Letters in Applied Microbiology 20, 29–33.

Richard, D., David, E.R., 1989. Product units: a computationally powerful and
biologically plausible extension to backpropagation networks. Neural Computation
1 (1), 133–142.

Salter,M., Ratkowsky,D., Ross, T.,McMeekin,T., 2001.Modelling the combined temperature
and salt (NaCl) limits for growth of a pathogenic Escherichia coli strain using nonlinear
logistic regression. International Journal of Food Microbiology 61, 159–167.

Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A., 2010. Rusboost: a hybrid
approach to alleviating class imbalance. IEEE Transactions on Systems, Man, and
Cybernetics Part A:Systems and Humans 40 (1), 185–197.

Skandamis, P., Stopforth, J., Kendall, P., Belk, K., Scanga, J., Smith,G., Sofos, J., 2007.Modeling
the effect of inoculum size and acid adaptation on no growth/no growth interface of
Escherichia coli O157:H7. International Journal of Food Microbiology 120, 237–249.

Tamhane, A.C., Dunlop, D.D., 2000. Statistics and Data Analysis. Prentice Hall.
Valero, A., Hervás, C., García-Gimeno, R.M., Zurera, G., 2007a. Product unit neural

network models for predicting the growth limits of listeria monocytogenes. Food
Microbiology 24 (5), 452–464.
Valero, A., Hervás, C., García-Gimeno, R.M., Zurera, G., 2007b. Searching for new
mathematical growth model approaches for listeria monocytogenes. Journal of Food
Science 72 (1), M16–M25.

Valero, A., Pérez-Rodríguez, F., Carrasco, E., Fuentes-Alventosa, J.M., García-Gimeno,
R.M., Zurera, G., 2009. Modelling the growth boundaries of Staphylococcus aureus:
Effect of temperature, pH and water activity. International Journal of Food
Microbiology 133 (1–2), 186–194.

Vapnik, V.N., 1998. Statistical Learning Theory. Wiley.
Whitley, D.L., Gordon, V.S., Mathias, K.E., 1994. Lamarckian evolution, the baldwin effect

and function optimization. In: Davidor, Y., Schwefel, H.P., Männer, R. (Eds.), Parallel
Problem Solving from Nature — PPSN III. Springer, Berlin, pp. 6–15.

Witten, I.H., Frank, E., 2005. Data Mining: Practical Machine Learning Tools and
Techniques. Data Management Systems, 2nd Edition. Morgan Kaufmann (Elsevier).

Yu, C., Davidson, V.J., Yang, S.X., 2006. A neural network approach to predict survival/
death and growth/no-growth interfaces for Escherichia coli O157:H7. Food
Microbiology 23 (6), 552–560.

Zhou, Z.-H., Liu, X.-Y., 2006. Training cost-sensitive neural networks with methods
addressing the class imbalance problem. IEEE Transactions on Knowledge and Data
Engineering 18 (1), 63–77.

Zurera-Cosano, G., García-Gimeno, R.M., Rodríguez-Pérez, M.R., Hervás-Martínez, C.,
2005. Validating an artificial neural network model of leuconostoc mesenteroides
in vacuum packaged sliced cooked meat products for shelf-life estimation.
European Food Research and Technology 221 (5), 717–724.


	Development of a multi-classification neural network model to determine the microbial growth/no growth interface
	Introduction
	Learning methodology
	Base classifier
	Data preprocessing
	Base evolutionary algorithm
	Memetic algorithm: Smote Memetic Radial Basis Function

	Computational experiments
	Database description
	Alternative statistical and artificial intelligence methods used for comparison purposes
	Performance measures and algorithms' parameters

	Results and discussion
	Statistical analysis
	Analysis of the best SMRBF model
	Model implementation
	Classification accuracy of the SMRBF model
	Model predictions as a function of the environmental factors studied


	Application of the SMRBF model in food microbiology in a decision-making process
	Conclusions
	Acknowledgement
	References




