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This paper presents an Efficient Distributed Genetic Algorithm for classification Rule extraction in data
mining (EDGAR), which promotes a new method of data distribution in computer networks. This is done
by spatial partitioning of the population into several semi-isolated nodes, each evolving in parallel and
possibly exploring different regions of the search space. The presented algorithm shows some advantages
when compared with other distributed algorithms proposed in the specific literature. In this way, some
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results are presented showing significant learning rate speedup without compromising the accuracy.
© 2010 Elsevier B.V. All rights reserved.
oarse-grained implementation
arallel genetic algorithms

. Introduction

Nowadays the size of datasets is growing quickly due to the
idespread use of automatic processes in commercial and pub-

ic domains and the lower cost of massive storage. Mining large
atasets to obtain classification models with prediction accuracy
an be a very difficult task because the size of the dataset can make
ata mining algorithms inefficacy and inefficient.

There are three main approaches to tackling the scaling prob-
em:

Use as much as possible a priori knowledge to search in subspaces
small enough to be explored.
Perform data reduction.
Algorithm scalability.

The third approach, algorithm scalability, promotes the use
f computation capacity in order to handle the full dataset. The
se of computer grids to achieve a greater amount of computa-
ional resources has become more popular over the past few years
ecause they are much more cost-effective than single computers

f comparable speed. The main challenge when using distributed
omputing is the need for new algorithms that take the architec-
ure into account. Genetic algorithms are especially well suited for
his task because of their implicit parallelism. As a typical popula-
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568-4946/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2009.12.035
tion algorithm, there is a direct way of distributing the algorithm
by the use of several smaller populations that interchange individ-
uals occasionally. This kind of distributed GA achieves a significant
speedup when used on a network of computers and prevents an
early convergence by keeping diversity in several populations.

There have been several efforts to make use of models based
on distributed genetic algorithms (GA) in data mining emphasis-
ing aspects like scalability and efficiency. REGAL [10] and NOW
G-Net [1] are well known references of this approach. Both of them
increase the computational resources via the use of data distribu-
tion on a network of loosely coupled workstations.

In this paper we present an Efficient Distributed Genetic Algo-
rithm for classification Rule extraction (EDGAR) with dynamic data
partitioning that shows advantages in scalability for exploring high
complexity search spaces with comparable classification accuracy.

The outline of the contribution is as follows: in Section 2 we
review the distributed genetic models in rule induction. Section 3
is devoted to analysing the proposed algorithm and the strategies
followed to keep the algorithm scalable. The experimental study
developed is shown in Section 4 and finally, we reach some con-
clusions in Section 5. Appendix A is included containing a detailed
table of results obtained in our study.

2. Machine learning and parallel genetic algorithms
This section reviews the main streams found in literature about
parallel genetic algorithms in rule induction. The first subsec-
tion describes the approaches commonly used in the area to
achieve machine learning. The second subsection is focused on the

dx.doi.org/10.1016/j.asoc.2009.12.035
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
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This subsection explains the main properties of the distributed
framework. First, in Section 3.1.1 we describe the use of the coarse-
grained implementation with data partition.
34 M. Rodríguez et al. / Applied S

ain strategies for parallelising genetic algorithms in data mining
elated tasks.

.1. Genetic algorithms in data mining

Genetic algorithms are search algorithms based on natural
enetics that provide robust search capabilities in complex spaces,
nd thereby offer a valid approach to problems requiring an effec-
ive search process [15].

GA has achieved a reputation for robustness in rule induction,
n common problems associated with real world mining (noise,
utliers, incomplete data, etc.). GA can be dedicated to machine
earning algorithms [3]. For example, the search space can be seen
s the entire possible hypothesis rule base that covers the data
nd the goodness can be formulated as a coverage function over
number of learning examples.

A key point in GA implementation is the selected representation;
he proposals in the specialist literature follow two approaches in
rder to encode rules within a population of individuals:

The “Chromosome = Set of rules”, also called the Pittsburgh
pproach, in which each individual represents a rule set [23]. The
hromosome evolves a complete rule set and they compete among
hemselves throughout the evolutionary process. GABIL [6] and
A-MINER [9] are proposals that follow this approach.

The “Chromosome = Rule” approach, in which each individual
odifies a single rule, and the whole rule set is provided by com-
ining several individuals in a population (rule cooperation) or via
ifferent evolutionary runs (rule competition).

In turn, within the “Chromosome = Rule” approach, there are
hree generic proposals:

The Michigan approach, in which each individual encodes a single
rule. These kinds of systems, usually called learning classifier sys-
tems [14], are rule-based, message-passing systems that employ
reinforcement learning and a GA to learn rules that guide their
performance in a given environment. The GA is used to detect
new rules that replace the bad ones via the competition between
the chromosomes in the evolutionary process.
The IRL (Iterative Rule Learning) approach uses several GA exe-
cutions to obtain the rule set. Chromosomes compete in every GA
run, choosing the best rule per run. The global solution is formed
by the best rules obtained when the algorithm is run multiple
times. SIA [26] is a proposal that follows this approach.
The GCCL (genetic cooperative–competitive learning) approach
encodes the rule set as the complete population or a subset of it.
The chromosomes compete and cooperate simultaneously. This
strategy requires the conservation of species in the same pop-
ulation to avoid a final solution consisting of clones of the best
individual. COGIN [13], REGAL [10] and NOW G-Net [1] are exam-
ples using this representation.

.2. Parallel genetic algorithms in data mining

The definition of scalable in computing could be something like
able to support the required quality of service as the system load
ncreases”. Applied to data mining and more precisely to supervised
lassification, the system load is provided by the complexity and
he size of the dataset (in attributes or training examples), and the
uality of service is relative to the processing time for producing a
imilar classifier mainly in terms of accuracy and interpretability.
As complexity of the dataset increases, GAs exhibit high compu-
ational cost and degradation of the quality of the solutions. Efforts
owards solving these shortcomings have been made in several
irections, and parallel GAs is one of the most significant. We stress
our approaches that represent the main parallelisation strategies:
mputing 11 (2011) 733–743

• Global parallelisation [8]. Only the evaluation of individuals’ fit-
ness values is parallelised by assigning a fraction of the population
to each processor to be evaluated. This is an equivalent algorithm
that will produce the same results as the sequential one.

• Coarse-grained [8] and fine-grained parallelisation [20]. In the
former, the entire population is partitioned into subpopulations
(demes). A GA is run on each subpopulation, and exchange
of information between demes (migration) takes place occa-
sionally [8] in analogy with the natural evolution of spatially
distributed populations such as the island model (Fig. 1). Fine-
grained course has just one individual per processor and rules
to perform crossover in the closest neighbourhood defined by a
topology.

• Supervised data distribution [11]. A master process uses a group
of processors (slaves) by sending them partial tasks and a smaller
data partition. Each node has a complete GA or a part of it. The
master process uses the partial results to reassign data and tasks
[10,1] to the processors until some condition is met.

• Not supervised data distribution [18]. The full dataset is shared
out in several processors and moved to the next processor in
the topology after a pre-specified number of generations with-
out removing the existing population. The individuals will try to
cover the newly arrived training data.

The proposal presented in this work follows a GCCL approach
and as a parallelisation strategy uses a coarse-grained implemen-
tation and a master process to build up the final classifier on the
basis of partial results.

3. Genetic Learning Proposal: EDGAR algorithm

This section describes the characteristics of an Efficient Dis-
tributed Genetic Algorithm for classification Rules extraction, from
now on designated EDGAR. The proposed algorithm distributes
population (rules in a GCCL approach) and training data in a coarse-
grained model to achieve scalability.

We start by explaining the distributed model in Section 3.1. Sec-
tions 3.2–3.5 describe the components of the genetic algorithm:
representation, genetic operators, genetic search and data reduc-
tion. Finally, Section 3.6 is devoted to the strategy used to determine
the best set of rules that will make up the classifier from the redun-
dant population of rules generated by the GCCL algorithm.

3.1. Distributed model
Fig. 1. Island model.
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• Copy the learning examples not covered or covered by low fitness
rules to the next node in the ring.

• Perform data training set reduction if the best individual does not
change (see Section 3.6).
Fig. 2. Effect of training size on disjunct error rate.

.1.1. Parallelisation strategy
The coarse-grained parallelisation [8] model is a simple way to

mprove the search capability of a GA. Nevertheless, it has some
isadvantages when dealing with large datasets because each node
ill deal with a complete copy of the dataset, making it less effi-

ient.
To achieve a better speedup on this model, we propose to assign

ifferent partitions of the learning data to each node. The GA in each
ode will try to cover the local data proposing a concept descrip-
ion, but the main characteristics of the coarse-grained model will
emain. On one hand, the migration of the best individuals between
ubpopulations will enforce those individuals (rules) that perform
roperly in more than one node and, on the other hand, we propose
ring topology that will prevent an early convergence (see Fig. 3).

.1.2. Data Learning Flow technique
The data partition in a coarse-grained implementation is able

o produce similar quality classifiers to a single GA [20] if the data
oes not have small disjuncts [12]. In these cases, a few data exam-
les representing a concept description (one rule) may be split into
everal nodes in the initial partition, preventing the local GA from
nducing the rule.

Fig. 2 [27], shows the relation between error rates and training
et size. This result further suggests that the presence of small dis-
uncts in a small training dataset decreases the accuracy and should
ake training set size into account.

In our proposal the training data assigned to a local GA will be
smaller percentage in size relative to the original dataset. For

nstance, a dataset using 50% partition for training and testing and
0 nodes as configuration for data distribution will handle in each
ode just 5% of training data compared with the full dataset.

We propose a novel technique called Data Learning Flow (DLF) to
oin the examples of small disjuncts together. It is based on the idea
hat a training example not properly covered in one node may be
etter covered in another data partition. Training examples covered
y low fitness rules are copied to the next node in the neighbour-
ood. The maximum migration rate of learning examples was set to
% of the local dataset to keep the size of local dataset small enough.

.1.3. Elite pool
The standard coarse-grained model will converge with the same

opulation in all nodes, but our algorithm may produce a different
lassifier in each node due to the data partition. Moreover, a rule
ith a high accuracy in a local data partition may have a poor cov-

rage when applied against the entire dataset. For this reason, the

ocal node cannot decide whether it has a good set of rules. We
ropose an elite pool that holds the full dataset, to:

Validate whether a rule is good enough to have been kept.
Stop the algorithm when a stall criterion is reached.
mputing 11 (2011) 733–743 735

• Extract the final solution.

The process is as follows: the nodes send their best rules to the
elite pool. Then, the pool selects the rules with better coverage (see
Section 3.7) and fitness. The process ends when the classification
ratio in the pool does not improve after a number of iteration of
this process (Central Stall Parameter or CSP).

The number of rules accumulated can become a bottleneck. In
order to keep it as small as possible, we have the following policies:

• Only the rules in the last proposed classifier are kept in the pool.
• Only new discovered rules are included; the nodes keep track of

the sent rules and the pool checks against the received rules, pre-
venting evaluating them again. This check is run in a reasonable
time frame by the use of native Java hash table implementation
based on the chromosome string representation to detect the
duplicated rules.

3.2. Genetic algorithm

EDGAR uses a GA in each node in a ring communications topol-
ogy with the neighbourhood as in the aforementioned island model
and some training data for examples poorly covered by the local
classifier.

Each node will work on a partition of the full dataset generated
by random samples. The initial population is created constructing
rules that cover some of the examples in the local dataset (seed-
ing). Universal Suffrage (US) operator selects a set of individuals (g)
for crossover and mutation in each generation. Each offspring will
replace a randomly selected individual in the current population.

After a number of generations (Local Number of Generations
LNG), some operations are performed (see Fig. 4):

• Using a greedy algorithm (see Section 3.7) to extract the set of
rules that better classifies the local data and copy them to the
next node in the ring and the pool.

• Randomly replace selected individuals in the current population
with the individuals received from the previous node in the ring.
Fig. 3. Distributed model.
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Fig. 4. Genetic algorithm.

The node will stop searching when there is no data in the local
ataset or because the pool node orders it.

.3. Representation

EDGAR uses a fixed length bit string representation to code a dis-
unctive rule. The use of fixed length chromosomes allows simpler
enetic operators.

Each different possible value of an attribute in a rule is repre-
ented as a single bit. A bit set to 1 signifies the presence of the value
n the rule and a bit set to 0 means the absence of this value in the
ule. One advantage of this representation is that mutation on a bit
f the genotype only leads to a small change on the phenotype.

A rule is composed of characteristics C = c1, c2, . . ., cj, where each
ne can take only one value in each instance of the data mined but
he rule may have more than one value for this characteristic.

For example, Fig. 5 shows a rule with three antecedents
1(v1, v2, v3), c2(v4, v5), c3(v6, v7, v8) and the consequent
lass(v9, v10). As seen in this figure, when all the bits corresponding
o the same attribute are set to 0, it means that it does not affect
he rule.

.4. Fitness function

The fitness function is based on the following measurements:

Complexity: considered as the number of conditions in a rule. In
a bit string representation, the more zeros that are present in the

formula, the fewer conditions in the rule.
Accuracy: is inversely the number of misclassifications. This
means examples covered with a different assigned class.

Fig. 5. Rule representation example.
mputing 11 (2011) 733–743

The fitness function is:

f (r) =
(

1 + zeros(r)
length(r)

)−1∗FP

where FP means the number of covered examples predicted has
false positives (different consequent as the rule). Zeros(r) is the
number of zeroes in the bit string representation of the rule r and
length is the chromosome length in bits. This function will give
very low values to rules covering just a few numbers of false pos-
itives. As soon as the rule improves, the length will take on more
relevance.

3.5. Genetic operators

The species formation is of great importance in a GCCL algo-
rithm. For this purpose, EDGAR uses the US selection operator first
used in [10]. This mechanism creates coverage niches that do not
compete with each other (co-evolution) through a voting process:
each generation a set of learning examples is selected. The process
searches the set of rules in the population that better covers each
example (fitness) and perform a weighted roulette based on the
fitness and the number of positive cases. In the event that no rule
covers an example, a new rule is created generalising the learning
example.

Crossover and mutation operators are based on standard bit
string representation and are applied on the selected parents based
on a given probability. The crossover operator used is the two-
point crossover where the offspring are evaluated to cover at least
one example before being inserted in the population. The mutation
operator changes one random bit in the chromosome depending
on the individual fitness. The mutation operator behaves in a dif-
ferent manner depending on the fitness of the selected individual.
In the early stage of the process, some of the rules cover only a few
examples. In this case, the mutation is driven to generalise the rule,
increasing the possibilities of covering new examples (i.e. gener-
alises the rule). If the offspring has a higher fitness than its parents,
it will be inserted in the population; otherwise the parent will be
used instead.

3.6. Data training set reduction under evolution and covering

US depends on a proper population–dataset ratio for a good
coverage. When training examples representing a concept are in
a smaller amount than other concepts, the rules for the some con-
cepts may disappear under the attraction of the rules with more
voters. For instance, in a local dataset of 1000 instances of train-
ing data examples and 10 individuals in the population, US will use
10 examples randomly each time to select the 10 best rules that
represent them. The probability of a particular instance of being
selected will be less than 1%. Once selected, there will be at least
one rule representing it, but this one will disappear in the next 100
generations with a probability of 99%.

EDGAR deletes the examples already learned to focus on those
less represented examples. The process is as follows: when the
algorithm detects that the proposed rule set does not change in
a number of consecutive times (Local Stall Parameter LSP), the best
rule and its covered data are removed from the node. Therefore,
the rest of the examples will receive more computational effort,
making it possible to induct rules on them.
This strategy makes the algorithm less dependent on the ratio
between learning examples and population because it guarantees
that all the examples will be selected either in the standard phase
with the initial dataset, or later, once all the examples covered by
the already learned rules have been removed from the local dataset.
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Table 1
Compared percentage accuracy.

C4.5 EDGAR REGAL

Monk-1 100 100.0 100.0
Monk-2 67.0 96.0 95.0
Monk-3 100.0 99.6 100.0
Tic-tac-toe 92.9 98.9 98.7
Fig. 6. Communication architecture.

.7. Generation of a classifier from a redundant rule set

The population in any node is a redundant set of rules that
oes not specify how they perform the classification. Our aim is
o generate the shortest and fastest classifier that covers the train-
ng examples. The proposed classifier is an ordered set of rules in

hich the first applicable rule will return the assigned class. Never-
heless, as the complete set of rules covering the data may be high,
he rule position in the classifier is relative to its correct classified
xamples (True Positive cases or TP). This organisation has some
dvantages; on one hand, the first rules express a rough idea of the
ain concept descriptions and on the other hand it gives a better

esponse time for classification in the event of a high number of
ules.

The order criteria (˘) ensures that length is taken into account
hen more than one rule competes for a similar coverage and

lassification ratio by using accuracy and complexity in a derived
xpression of the fitness rule:

:
(

1 + zeros(r)
length(r)

)−1∗FP−

∗ TP

nce the rule is selected, all its positive cases are removed and the
emaining candidate rules are newly ordered. The process finalises
hen all examples are covered or there are no more rules in the

ule set.

.8. Architecture scalability

Scalability in parallel implementations is described in the lit-
rature [17] as the relation between number of processors and
xecution time. The following paragraphs describe the policy for
eeping execution time scalable considering the network speed and
ynchronisation in distributed processes.

The components of execution time in distributed systems are
16]: time of each processor (Tpi), number of communications (c),
verage time for communication (Tc), idle time waiting for synchro-
isation (Ti) and probability of idle status for a node (p).

=
n∑
1

Tpi + c ∗ (Tc + Ti ∗ p)

If the term c*(Tc + Ti*p) is lower than the computational time
xpended by each local genetic algorithm, the algorithm will
resent a speedup independent of network speed and synchronisa-
ion issues. To minimise these terms, the following directives were
ollowed:
Avoid synchronous calls to other processes and process syn-
chronisation. The communication of proposed rules and flow of
learning data is performed through buffers (see Fig. 6) avoid-
ing the producer–consumer synchronisation. Idle time waiting for
Credit 86.0 85.0 84.0
Breast 94.1 94.0 94.1
Vote 96.4 97.1 96.2

synchronisation (Ti) and probability of idle status (p) for a node and
the pool becomes then close to zero.

• Communication time (c*Tc) depends on size and frequency of
communication of the best individuals and training data (DLF
technique) to the neighbourhood and to the pool. A system
parameter (Local Number of Generations LNG) allows adjusting
the communication frequency (number of generations between
communications) to the convergence of the local model and the
network speed. If this parameter is too low, the local model will
over learn the assigned dataset. If the parameter is too high, the
newly arrived individuals will slow down or even prevent the
convergence with the local data [8] and the time expended in
communication handling will increase. When this time is less
than the time used in sending learning data and rule through the
network (Tc), the algorithm execution time will be independent
of the network speed.

4. Experimental study

In this section, we describe the experimental study carried out
on a variety of datasets, ranging from standard benchmark to test
the accuracy against standard algorithms in rule induction to spe-
cific comparison with more complex problems. The experimental
study was carried out in a cluster of 8 workstations with 2 CPU Intel
Xeon 3 GHz each. In order to run more than 16 nodes at a time, each
node was implemented as a thread in a Java VM and communica-
tions time was simulated, adding a time equivalent to an Ethernet
100 mbs in a configuration of 8 processors. As an example, usually
the communication unit in Ethernet is 512 bytes per package; if
a rule is 30 bytes in length, the pack will have 25 records, which
means a delay of 0.0512/25 = 0.00015 s per rule.

Section 4.1 compares EDGAR with standard benchmarks. Sec-
tion 4.2 analyses the effect of data distribution on accuracy and
speedup in a study case. Section 4.3 develops a statistical analysis
over a set of commonly used datasets.

4.1. Comparison with standard benchmarks

This section is devoted to testing in a first run whether EDGAR is
able to obtain similar accuracy to distributed and non-distributed
learners in a variety of datasets chosen from University of California
at Irvine repository [25]. The selected problems are well known in
the literature so we will simply describe the main characteristics
of each. Monk-1, Monk-2 and Monk-3 are artificial classification
problems whose aim is to test specific abilities of learning systems.
Tic-tac-toe consists in classifying the states of the homonymous
strategy game as “winning” or “losing”. Credit, Breast and Vote
are prediction problems related to the reliability of applicants for
credit cards, the prognosis of breast cancer, and the prediction of the
vote given by congressmen on the basis of their political previous

choices. All dataset testing was performed with 10-fold cross.

Table 1 reports results on this first group of problems. The sys-
tems used for the comparison are C4.5 and REGAL. C4.5 [19] is a
classical propositional learner, whose results are used as a baseline.
Performance of C4.5 is reported in [2]. REGAL was executed in the
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Table 2
Execution parameters.

REGAL EDGAR

Stopping criteria 500 gen. CSP = 5, LNG = 20
Mutation percentage 0.01% 1%
Crossover percentage 60% 90%
Selection percentage g 10% 10%
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Table 3
Results of Mushroom – REGAL.

Nodes Comm. Time Rules %Test. %Tra.

4 318,092 0.79 16 99.93 99.98
8 558,501 0.68 14 99.95 99.99

16 681,782 0.57 15 99.95 99.99
32 1,085,929 0.54 15 99.94 99.99
64 1,267,774 0.43 16 99.95 99.99

Table 4
Results of Mushroom – EDGAR.

Nodes Comm. Time Rules %Test %Tra.

4 2129 1.20 14 99.92 99.94
8 3907 0.55 13 99.94 99.96

16 8232 0.35 15 99.96 99.99
32 17,60 0.23 16 99.95 99.90
64 20,11 0.18 16 99.93 99.95

Table 5
Results of Nursery – REGAL.

Nodes Comm. Time Rules %Test %Tra.

4 784,870 1.78 290 98.6 98.9
8 2,319,559 1.97 251 99.0 99.3

16 6,304,130 2.32 250 98.9 99.2
32 18,595,490 2.81 268 98.5 98.7
64 50,664,658 3.08 316 97.9 98.0

examples. DLF will reorganise the learning data in order to have a
local dataset large enough to generalise better rules.

Classification accuracy is similar in both algorithms and does not
follow any tendency in terms of the number of processors. EDGAR

Table 6
Results of Nursery – EDGAR.

Nodes Comm. Time Rules %Test %Tra.
Communication ratio 10% 10% max
Training dataset reduction – LSP = 5
Training dataset communication ratio – 1% max

ame hardware as EDGAR with the parameter shown in Table 2:
6 nodes and a global population of 400 individuals. For a more
etailed execution over a different number of node configurations
n different datasets, see Section 4.3.

Monk-1 and Monk-3 are easily handled by most of the algo-
ithms with accuracies of nearly 100%. Monk-2 and Tic-tac-toe are
andled with better accuracy in the tree distributed algorithms
han in C4.5. Credit is a little bit better in EDGAR than in REGAL, but
n this case does not behave better than C4.5. Finally, EDGAR gets
etter results than the other learners in Vote. Note that algorithm
arameters in all runs were not modified and the results show aver-
ge on 100 runs with a regular behaviour, being able to find good
olutions if the population in the nodes is large enough to cover the
ssigned data.

.2. Data distribution, speedup and accuracy

This section analyses the effect of data distribution on the accu-
acy and speedup. For this study, we run REGAL [10] and EDGAR
sing parameters shown in Table 2. As mentioned previously,
EGAL is a distributed genetic algorithm that also uses US.

For these experimental studies, two well known problems were
hosen from UCI [25]: Nursery and Mushroom. Mushroom is simple
just two classes) and large enough for testing accuracy. Nursery is
lso a medium size dataset with six characteristics and five non-
alanced classes, three of them representing more than 97% of the
ataset.

We evaluated both algorithms using Dietterich [4] 5x2 cross-
alidation with 50% training and testing and 5 different seeds.

The comparison will measure the accuracy of the classifier and
peedup achieved relative to the number of processors. The for-
er is given by the number of rules and classification ratio. The

peedup is measured through the total execution time having the
ame parameters in each execution.

The comparison was carried out with 1600 individuals as the
um of the whole local node population. This population proved
o be large enough for both algorithms to obtain the maximum
ccuracy and lowest number of rules for the datasets.

The experiments were executed with configurations from 4
o 64 nodes to study the impact of the distribution on the ref-
renced variables. All parameters in REGAL execution are from
heir original paper [10] except for the stopping criteria, calculated
xperimentally using the same conditions as with the population.
he differences in parameter configuration in both algorithms are
he reason for the different learning approach. EDGAR needs a
igher mutation ratio, as most of the offspring mutated are not
sed because they are worse than their parents.

Tables 3–6 show averages on 150 executions (5 for each par-
ition, 6 different seeds and 5 node configurations). First column
s the number of nodes. Second is the number of communications

rom a node (either one rule or one learning example). Third col-
mn shows execution time in minutes. Finally, the fourth, fifth and
ixth columns show the classification results for test and training
atasets.
Fig. 7. Compared time Nursery execution.

Analysing Tables 2–4, we can point out some conclusions in each
measured property. Regarding the execution time (see Fig. 7), we
observe a considerable speedup and a better behaviour than the
compared algorithm when the number of processors increases.

Nevertheless, the configuration with four nodes gives better
time results in REGAL than in EDGAR. This effect is a consequence
of the recalculation in central pool concept every few iterations. On
the other hand, the experimentation shows that there is an equilib-
rium point that depends on each dataset regarding the number of
possible partition. Having a large number of partitions may increase
the processing time. The local learning examples are not properly
covered, because of small disjuncts split into more than one par-
tition or due a local dataset that does not have enough learning
4 6818 2.89 173 99.4 99.7
8 3356 1.59 209 98.5 98.8

16 4836 1.20 206 98.9 99.2
32 8309 1.11 231 98.3 98.8
64 77,859 1.21 199 98.5 98.6
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Table 7
EDGAR, covered positives and negative cases for Mushroom execution.

Rule order Positive cases Negative cases

1 1985 0
2 1943 0
3 1786 0
4 1532 0
5 1098 0
6 11 0
7 9 0
8 5 0
9 5 0

10 2 0
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Table 8
Dataset characteristics.

Dataset Instances Features Classes

Car 1727 6 4
Cleveland 297 13 5
Credit 1000 20 2
Ecoli 336 7 2
Glass 214 9 7
Haberman 305 3 2
House Votes 432 16 2
H Hypothyroid 1920 29 4
Iris 150 4 3
Krvskp 3198 37 2
Monks 432 6 2
Mushrooms 8124 22 2
New-Thyroid 215 5 3
Nursery 12,960 6 2
Pima 768 8 2
Segment 2308 19 7
Soybean 307 35 19
Splice 3190 60 3
Tic-tac-toe 958 9 2
Vehicle 846 18 4
Waveform 5000 41 3
Wine 178 13 3
Wisconsin 683 9 2
11 25 22
12 1855 1833
13 1909 1513

s able to find a good solution if the ratio between population and
ata is enough to generalise a rule. As the ratio of individual and
ata remains the same in all experiments (1600 individuals as a
um of all local populations) in the different node configuration,
he accuracy does not decrease with the number of nodes.

Regarding complexity, the greedy algorithm is able to generate
etween 60% and 80% less rules in Nursery than REGAL. Mushroom
oes not show this behaviour, having a similar number of rules.

Table 7 shows the covered cases generated by EDGAR for Mush-
oom. The rules in the classifier are ordered by number of positive
ases*fitness. This order guarantees that the rules with less false
ositives will be applicable first. This classifier is able to have an
ccuracy of 99% with only the first five rules. This represents the
verage behaviour on the classifiers generated by EDGAR. We stress
he meaning of the rules with less than 11 examples. All of them
epresent small disjuncts in the problem. For instance, in a dataset
f 4062 instances, these rules represent less than 0.2% of the learn-
ng examples. The probability of having these 11 examples in one
artition on a 64 node distribution is lower than 0.01%. Thanks to
LF, the algorithm brings together the examples belonging to small
isjuncts in some of the nodes, otherwise it will generate one rule
er example, increasing the number of rules to two or three times
he size of the current classifier.

.3. Statistical analysis

The aim of this section is to test the behaviour of the proposed
lgorithm statistically in a representative number of datasets (see
able 8) chosen from the UCI database [25]. The splice dataset
rovided by Towell et al. [24] was chosen since it was originally
sed by REGAL [10] as an example case. The number of datasets is
etermined by the chosen non-parametric test, Wilcoxon signed-
anks test [5]. This test has maximum confidence when the number
f paired data (results on dataset) is at least 25. The continuous
ttributes in the datasets were discretised using 10 equal frequency
alues because both algorithms work only with nominal attributes.
he accuracy of the classifier produced using a discretised dataset
ay be lower than in an originally discrete dataset, but we think the

omparison between two nominal algorithms is still valid because
oth of them will be affected in a similar way, and allows having a
umber of standard datasets instead of synthetic datasets or not so
ommon nominal ones. The datasets were chosen taking size cri-
eria into account, with datasets ranging from hundreds to some
housand instances and from two to some ten features. The com-
arison was carried out with 1000 individuals as the sum of the

hole local node population, stopping when no improvement was

chieved, and the remaining parameters were the same as in the
revious subsection. This configuration will not achieve the best
esults for a specific dataset, but allows evaluation of the algorithm
exibility in a variety of input conditions.
Vote 435 16 2
Thyroid 7200 21 3
Zoo 100 16 7

To compare the obtained results non-parametric tests were
used, following the recommendations made in [7,21,22]. They are
safer than parametric tests since they do not assume normal distri-
bution or homogeneity of variance. As such, these non-parametric
tests can be applied to classification accuracies, error ratios or any
other measure for evaluation of classifiers, even including model
sizes and computation times. Empirical results suggest that they are
also stronger than the parametric test. Demšar recommends a set
of simple, safe and robust non-parametric tests for statistical com-
parisons of classifiers. Given that the evaluation of only the mean
classification accuracy over all the datasets would hide important
information and that each dataset represents a different classifica-
tion problem with different degrees of difficulty, we have included
a second table that shows the average and standard deviation. As
mentioned, [7,21,22] recommend a set of simple, safe and robust
non-parametric tests for statistical comparisons of classifiers, one
of which is the Wilcoxon signed-ranks test.

This is analogous to the paired t-test in non-parametrical statis-
tical procedures; therefore, it is a pairwise test that aims to detect
significant differences in the behaviour of two algorithms. In our
study, we show the level of significance (p) at which the rejection
of null Hypothesis (H0) can be rejected. A p-value of 0.05 means
that H0 can be rejected with a confidence level of 95%.

The Wilcoxon signed-ranks test works as follows. Let di be the
difference between the performance scores of the two classifiers in
ith out of Nds datasets. The differences are ranked according to their
absolute values; average ranks are assigned in case of ties. Let R+

be the sum of ranks for the datasets in which the second algorithm
outperformed the first, and R− the sum of ranks for the opposite.
Ranks of di = 10 are split evenly among the sums; if there is an odd
number of them, one is ignored:

R+ =
∑
di>0

rank(di) + 1
2

∑
di=0

rank(di)
R− =
∑
di<0

rank(di) + 1
2

∑
di=0

rank(di)
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Table 9
Average results.

EDGAR REGAL

Rules Test Time Rules Test Time

Car
Mean 61 97% 0.10 66 98% 63.4
sd 6.06 0.006 0.07 8.13 0.006 71.6

Cleveland
Mean 73 91% 0.07 62 96% 100.5
sd 14.30 0.070 0.07 8.33 0.016 91.6

Credit
Mean 69 90% 0.05 75 94% 69.4
sd 10.62 0.015 0.03 6.31 0.028 63.3

Ecoli
Mean 61 90% 0.04 47 96% 95.5
sd 9.89 0.036 0.03 7.84 0.022 86.7

Glass
Mean 61 92% 0.07 45 96% 106.2
sd 14.24 0.105 0.03 9.57 0.025 98.1

Haberman
Mean 29 82% 0.04 52 92% 125.4
sd 4.84 0.038 0.03 4.83 0.018 115.5

House Votes
Mean 26 98% 0.02 26 97% 0.7
sd 5.79 0.026 0.01 5.79 0.025 9.5

Hypothyroid
Mean 200 95% 1.00 178 95% 35.6
sd 28.08 0.038 0.94 20.42 0.029 27.1

Iris
Mean 14 96% 0.01 11 99% 36.2
sd 5.55 0.038 0.01 2.55 0.017 9.6

Krvskp
Mean 62 98% 0.10 54 86% 22.5
sd 8.78 0.014 0.06 10.40 0.092 11.1

Monk
Mean 46 99% 0.03 58 77% 61.7
sd 7.25 0.043 0.03 6.51 0.055 41.3

Mushroom
Mean 13 100% 0.14 16 100% 4.9
sd 3.23 0.012 0.08 4.19 0.013 5.0

New-Thyroid
Mean 14 99% 0.81 14 99% 51.9
sd 2.97 0.027 0.42 2.97 0.027 49.7

Nursery
Mean 270 99% 1.63 309 98% 91.0
sd 28.41 0.027 1.50 22.41 0.013 77.2

Pima
Mean 128 94% 0.19 127 94% 65.5
sd 9.34 0.017 0.22 9.49 0.017 68.5

Segment
Mean 132 99% 0.47 137 99% 30.5
sd 13.51 0.012 0.35 22.00 0.013 29.5

Soybean
Mean 72 98% 0.41 81 97% 21.8
sd 6.97 0.026 0.36 11.94 0.031 17.6

Splice
Mean 77 100% 9.71 72 95% 29.1
sd 10.91 0.027 4.53 12.41 0.026 4.5

Tic-tac-toe
Mean 87 99% 0.06 50 91% 61.4
sd 14.45 0.028 0.04 13.12 0.055 51.8

Vehicle
Mean 181 95% 0.64 161 95% 39.5
sd 14.11 0.019 1.42 18.32 0.028 46.2

Vote
Mean 24 97% 0.02 8 96% 11.8
sd 7.13 0.021 0.01 9.36 0.442

Table 9 (Continued )

EDGAR REGAL

Rules Test Time Rules Test Time

11.7

Waveform
Mean 1026 95% 15.15 1070 93% 15.1
sd 77.79 0.044 8.81 77.79 0.044 8.8

Wine
Mean 57 97% 0.03 60 97% 1.2
sd 13.51 0.031 0.01 14.52 0.031 0.3

Wisconsin
Mean 25 98% 0.02 25 100% 14.7
sd 4.10 0.056 0.01 3.63 0.026 5.4
Zoo
Mean 9 69% 0.02 6 65% 9.1
sd 5.035 0.314 0.01 4.097 0.311 14.5

Let T be the smaller of the sums, T = min(R+;R−). If T is less than or
equal to the value of the distribution of Wilcoxon for Nds degrees of
freedom [28], the null hypothesis of equality of means is rejected.

The Wilcoxon signed-ranks test is more sensitive than the t-test.
It assumes commensurability of differences, but only qualitatively:
greater differences count still more, which is probably to be desired,
but absolute magnitudes are ignored.

From the statistical point of view, the test is safer since
it does not assume normal distribution. Moreover, outliers
(exceptionally good/bad performances on a few datasets) have
less effect on Wilcoxon than on the t-test. Wilcoxon’s test
assumes continuous differences di, which therefore should not
be rounded to, say, one or two decimals, since this would
decrease the power of the test due to a high number of
ties.

Table 9 shows average results and standard deviation on the
compared execution over the selected datasets. The first col-
umn has the dataset name. The second, the number of rules. The
third, four and fifth columns are training, test and processing
time respectively for EDGAR. Columns 6–10 are rules, training,
test and processing time respectively for REGAL. Table 10 sum-
marises Wilcoxon test results as follows: first column has the
number of nodes. Second column express the condition mea-

sured in the test. Third, four and fifth columns are the number
of wins, loss and ties for the condition. The last column is the p-
value.

Table 10
Wilcoxon signed-ranks test.

Nodes REGAL/EDGAR R+ R− Ties p-Value

4
Rules < Rules 16 6 3 0.13
Acc. < Acc. 17 8 0 0.11
Time < Time 0 24 1 0.00

8
Rules < Rules 12 9 4 0.49
Acc. < Acc. 17 8 0 0.31
Time < Time 1 24 0 0.00

16
Rules < Rules 12 10 3 0.40
Acc. < Acc. 18 7 0 0.09
Time < Time 0 25 0 0.00

32
Rules < Rules 10 12 3 0.21
Acc. < Acc. 17 8 0 0.32
Time < Time 0 25 0 0.00

All
Rules < Rules 12 10 3 0.73
Acc. < Acc. 20 4 1 0.01
Time < Time 0 24 1 0.00
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Table 11
Detailed results.

Edgar Regal

Rules Test Time Rules Test Time

Car
Mean 4 57 96% 0.09 58 96% 15.8
sd 4.34 0.005 0.01 3.52 0.007 7.4
Mean 8 61 95% 0.05 61 95% 28.6
sd 6.85 0.005 0.00 5.99 0.006 20.4
Mean 16 61 94% 0.08 67 94% 75.8
sd 6.57 0.003 0.01 4.17 0.005 45.5
Mean 32 56 94% 0.22 73 94% 148.6
sd 4.72 0.004 0.08 7.03 0.006 87.6
Mean All 61 97% 0.10 66 98% 63.4
sd 6.06 0.006 0.07 8.13 0.006 71.6

Cleveland
Mean 4 69 93% 0.09 54 96% 16.6
sd 7.90 0.054 0.10 4.04 0.053 2.6
Mean 8 65 84% 0.06 55 92% 42.6
sd 22.06 0.116 0.09 4.66 0.007 7.5
Mean 16 70 87% 0.05 62 91% 89.6
sd 7.24 0.029 0.02 4.24 0.010 17.6
Mean 32 78 89% 0.05 68 90% 234.9
sd 7.48 0.026 0.01 6.41 0.013 35.0
Mean All 73 91% 0.07 62 96% 100.5
sd 14.30 0.070 0.07 8.33 0.016 91.6

Credit
Mean 4 62 91% 0.08 73 94% 15.2
sd 6.39 0.027 0.03 5.56 0.059 2.7
Mean 8 63 88% 0.04 71 89% 32.5
sd 7.36 0.010 0.01 5.88 0.022 11.5
Mean 16 68 87% 0.03 73 90% 62.3
sd 7.51 0.014 0.01 7.53 0.025 27.8
Mean 32 79 88% 0.04 73 89% 147.4
sd 9.62 0.013 0.03 6.75 0.028 56.3
Mean All 69 90% 0.05 75 94% 69.4
sd 10.62 0.015 0.03 6.31 0.028 63.3

Ecoli
Mean 4 52 92% 0.04 41 95% 21.2
sd 4.88 0.053 0.03 5.23 0.056 5.4
Mean 8 57 84% 0.04 41 91% 48.2
sd 6.19 0.035 0.04 4.01 0.016 16.2
Mean 16 55 89% 0.03 43 91% 89.3
sd 7.15 0.016 0.01 4.94 0.019 53.9
Mean 32 70 84% 0.06 53 94% 158.0
sd 6.87 0.029 0.03 6.52 0.019 97.8
Mean All 61 90% 0.04 47 96% 95.5
sd 9.89 0.036 0.03 7.84 0.022 86.7

Glass
Mean 4 55 96% 0.11 35 97% 18.1
sd 10.22 0.115 0.09 3.68 0.042 3.4
Mean 8 53 85% 0.04 40 93% 42.0
sd 6.21 0.019 0.02 3.64 0.024 5.9
Mean 16 51 77% 0.04 45 93% 100.8
sd 23.40 0.216 0.02 4.14 0.020 16.2
Mean 32 65 85% 0.05 56 93% 250.9
sd 9.63 0.013 0.03 7.96 0.024 53.0
Mean All 61 92% 0.07 45 96% 106.2
sd 14.24 0.105 0.03 9.57 0.025 98.1

Haberman
Mean 4 31 83% 0.04 53 91% 15.6
sd 5.73 0.110 0.01 4.50 0.036 8.7
Mean 8 25 74% 0.03 50 88% 37.3
sd 5.33 0.030 0.01 4.91 0.014 21.6
Mean 16 24 73% 0.03 51 89% 122.9
sd 5.14 0.023 0.04 4.22 0.016 52.4
Mean 32 21 54% 0.05 49 91% 228.6
sd 3.61 0.009 0.09 5.14 0.015 106.9
Mean All 29 82% 0.04 52 92% 125.4
sd 4.84 0.038 0.03 4.83 0.018 115.5
M. Rodríguez et al. / Applied S

Observing Tables 9–11 (see Appendix A), we can make the fol-
owing analysis:

The number of nodes in EDGAR does not follow any trend regard-
ing the accuracy. Even in some of the datasets the results are
better with 32 nodes than with 16 or less.
Processing time decreases in EDGAR with the number of nodes,
but it does not achieve a linear speedup.
Table 10, shows that in average (nodes = All), EDGAR wins in 20
out of 25 of the datasets in accuracy with a confidence of 99%.
The other configuration shows a variety of results that does not
allow rejection of the null hypothesis. Processing time is better
in EDGAR with any configuration in 100% of the cases.
The number of rules cannot reject the null hypothesis because
the confidence is only 27% for the average case and less than 90%
in the rest of the node configurations.

. Conclusions

This work presents a distributed genetic algorithm for classifi-
ation rules extraction based on the island model and enhanced
or scalability with data training partitioning. To be able to gener-
te an accurate classifier with data partition, two techniques were
roposed: an elitist pool for rule selection and a novel technique of
ata distribution (DLF) that uses heuristics based on the local data
o dynamically redistribute the training data in the node neigh-
ourhood.

In this study, EDGAR shows a considerable speedup and, more-
ver, this improvement does not compromise the accuracy and
omplexity of the classifier.

The complementarities of the proposed techniques allow hav-
ng low dependency on parameter setting. Proportion of individuals
er learning example is compensated by the data training set
eduction that will handle the removal of the already learned
ules, redirecting computations efforts to the more difficult cases.
eeding operator reintroduces rules preventing loss of diversity.
he elite pool also ensures that already discovered rules will be
ept in the final classifier even if they are removed from the
odes.

Finally, we would like to point out the absence of a master
rocess to guide the search. This architecture suggests a better
calability by avoiding idle time due to synchronisation issues or
etwork bottlenecks typically associated with master–slave syn-
hronous relation.
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ppendix A. Detailed results

This section shows the obtained results for the different node
onfiguration as extension of Section 4.3. First column has the
ataset name. Second the number of rules. Third and fourth and
fth are training, test and processing time respectively for EDGAR.

olumns 5–6 have number of rules, test accuracy and processing
ime respectively for REGAL. Each dataset was executed following
our node configuration: 4, 8, 16 and 32 nodes. For each configura-
ion, the compared algorithms were executed using Dietterich 5x2
v [4] and 5 different seeds (Table 11).

House Votes
Mean 4 24 98% 0.04 24 96% 12.5
sd 4.21 0.115 0.01 4.21 0.112 0.6
Mean 8 21 89% 0.02 21 86% 8.0
sd 3.11 0.006 0.00 3.11 0.006 0.3
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Table 11 (Continued )

Edgar Regal

Rules Test Time Rules Test Time

Mean 16 23 89% 0.01 23 87% 9.6
sd 3.92 0.006 0.00 3.92 0.006 0.4
Mean 32 30 89% 0.01 30 87% 9.3
sd 4.83 0.005 0.00 4.83 0.005 0.7
Mean All 26 98% 0.02 26 97% 0.7
sd 5.79 0.026 0.01 5.79 0.025 9.5

Hypothyroid
Mean 4 170 95% 0.52 158 95% 9.6
sd 28.72 0.146 0.08 26.63 0.147 4.0
Mean 8 173 85% 0.40 147 85% 13.6
sd 11.98 0.002 0.07 17.50 0.005 2.8
Mean 16 197 85% 0.99 150 71% 21.9
sd 13.67 0.003 0.06 14.11 0.001 6.4
Mean 32 180 92% 2.57 180 90% 56.5
sd 6.40 0.001 0.36 10.71 0.004 20.5
Mean All 200 95% 1.00 178 95% 35.6
sd 28.08 0.038 0.94 20.42 0.029 27.1

Iris
Mean 4 13 97% 0.02 10 98% 11.8
sd 4.06 0.117 0.00 2.32 0.035 5.2
Mean 8 14 88% 0.01 10 95% 30.2
sd 2.77 0.024 0.00 2.34 0.013 11.4
Mean 16 12 90% 0.01 12 96% 66.1
sd 4.87 0.030 0.01 2.74 0.008 29.0
Mean 32 15 99% 0.01 14 97% 28.8
sd 3.47 0.030 0.01 3.23 0.064 12.5
Mean All 14 96% 0.01 11 99% 36.2
sd 5.55 0.038 0.01 2.55 0.017 9.6

Krvskp
Mean 4 56 98% 0.15 56 90% 13.3
sd 8.14 0.035 0.07 8.99 0.004 4.8
Mean 8 60 93% 0.07 58 90% 33.9
sd 8.42 0.005 0.05 6.68 0.003 11.3
Mean 16 63 93% 0.08 47 66% 23.0
sd 6.59 0.006 0.03 1.41 0.004 1.6
Mean 32 61 88% 0.07 59 65% 29.0
sd 7.99 0.005 0.03 1.41 0.004 2.7
Mean All 62 98% 0.10 54 86% 22.5
sd 8.78 0.014 0.06 10.40 0.092 11.1

Monk
Mean 4 52 99% 0.05 51 82% 5.6
sd 6.40 0.000 0.02 0.00 0.068 0.0
Mean 8 43 88% 0.02 48 70% 39.6
sd 3.90 0.007 0.01 2.73 0.024 27.1
Mean 16 32 88% 0.03 51 61% 43.1
sd 6.42 0.005 0.05 6.59 0.018 19.4
Mean 32 36 88% 0.02 56 64% 88.2
sd 3.12 0.009 0.01 5.93 0.021 48.7
Mean All 46 99% 0.03 58 77% 61.7
sd 7.25 0.043 0.03 6.51 0.055 41.3

Mushroom
Mean 4 14 100% 0.24 13 100% 3.2
sd 3.39 0.035 0.07 2.80 0.054 2.4
Mean 8 14 98% 0.07 15 95% 4.1
sd 3.36 0.000 0.01 4.54 0.000 2.2
Mean 16 11 95% 0.07 16 95% 4.1
sd 1.78 0.000 0.02 2.97 0.000 1.0
Mean 32 11 95% 0.08 16 95% 7.4
sd 3.05 0.000 0.03 5.25 0.000 8.8
Mean All 13 100% 0.14 16 100% 4.9
sd 3.23 0.012 0.08 4.19 0.013 5.0

New-Thyroid
Mean 4 12 98% 0.72 12 99% 12.3
sd 2.50 0.128 0.12 2.50 0.117 6.7
Mean 8 12 90% 0.66 12 90% 25.0
sd 2.13 0.008 0.56 2.13 0.008 13.8
Mean 16 14 90% 0.80 14 90% 49.5
sd 2.56 0.009 0.62 2.56 0.008 23.4
Mean 32 15 90% 0.58 15 90% 103.3
sd 2.52 0.007 0.73 2.52 0.007 55.9

Table 11 (Continued )

Edgar Regal

Rules Test Time Rules Test Time

Mean All 14 99% 0.81 14 99% 51.9
sd 2.97 0.027 0.42 2.97 0.027 49.7

Nursery
Mean 4 259 97% 0.80 290 98% 13.7
sd 26.59 0.116 0.54 25.11 0.053 8.0
Mean 8 261 88% 0.75 292 94% 40.8
sd 14.27 0.006 1.23 23.64 0.003 20.9
Mean 16 262 92% 0.98 297 94% 105.3
sd 24.03 0.002 0.09 11.86 0.003 30.9
Mean 32 224 91% 3.56 311 94% 187.5
sd 34.43 0.001 0.34 15.18 0.004 49.3
Mean All 270 99% 1.63 309 98% 91.0
sd 28.41 0.027 1.50 22.41 0.013 77.2

Pima
Mean 4 125 94% 0.23 120 90% 12.5
sd 11.27 0.051 0.31 10.49 0.052 6.2
Mean 8 126 90% 0.15 125 83% 27.1
sd 9.27 0.011 0.27 8.74 0.022 12.6
Mean 16 132 90% 0.14 122 82% 51.7
sd 8.06 0.013 0.21 8.43 0.014 23.0
Mean 32 132 90% 0.18 124 89% 159.0
sd 11.53 0.013 0.26 8.22 0.028 57.8
Mean All 128 94% 0.19 127 94% 65.5
sd 9.34 0.017 0.22 9.49 0.017 68.5

Segment
Mean 4 132 98% 0.26 124 99% 8.0
sd 13.86 0.034 0.20 12.46 0.054 4.2
Mean 8 130 93% 0.17 117 94% 15.6
sd 13.55 0.006 0.02 11.91 0.004 6.9
Mean 16 131 95% 0.37 128 94% 27.9
sd 11.89 0.003 0.02 13.99 0.005 12.0
Mean 32 119 96% 0.95 160 94% 65.2
sd 11.54 0.003 0.16 12.84 0.005 33.6
Mean All 132 99% 0.47 137 99% 30.5
sd 13.51 0.012 0.35 22.00 0.013 29.5

Soybean
Mean 4 66 98% 0.17 72 98% 5.2
sd 7.32 0.116 0.02 8.73 0.118 1.3
Mean 8 65 89% 0.12 66 89% 9.6
sd 7.62 0.003 0.01 3.89 0.015 1.0
Mean 16 67 89% 0.33 78 89% 19.4
sd 4.08 0.003 0.04 7.10 0.017 2.7
Mean 32 71 90% 0.90 87 88% 45.3
sd 6.93 0.003 0.14 9.03 0.022 3.8
Mean All 72 98% 0.41 81 97% 21.8
sd 6.97 0.026 0.36 11.94 0.031 17.6

Splice
Mean 4 84 100% 11.90 83 100% 24.4
sd 10.26 0.095 5.81 9.37 0.088 5.5
Mean 8 73 91% 6.52 86 83% 36.5
sd 7.97 0.001 2.74 8.24 0.001 2.5
Mean 16 66 91% 10.22 68 86% 39.7
sd 6.91 0.001 4.28 6.42 0.001 4.0
Mean 32 53 86% 5.99 65 84% 25.6
sd 8.59 0.000 1.19 8.77 0.000 1.2
Mean All 77 100% 9.71 72 95% 29.1
sd 10.91 0.027 4.53 12.41 0.026 4.5

Tic-tac-toe
Mean 4 70 99% 0.12 63 97% 5.2
sd 10.38 0.119 0.03 11.28 0.113 2.8
Mean 8 74 90% 0.03 39 85% 42.2
sd 6.83 0.006 0.00 13.25 0.014 17.8
Mean 16 83 90% 0.04 44 82% 69.4
sd 4.68 0.007 0.01 11.31 0.011 56.9
Mean 32 95 91% 0.03 40 77% 106.8
sd 7.97 0.002 0.01 7.09 0.021 24.1
Mean All 87 99% 0.06 50 91% 61.4
sd 14.45 0.028 0.04 13.12 0.055 51.8
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Table 11 (Continued )

Edgar Regal

Rules Test Time Rules Test Time

Vehicle
Mean 4 190 92% 1.23 143 95% 6.9
sd 13.06 0.049 2.40 17.44 0.115 1.5
Mean 8 171 89% 0.46 139 86% 13.3
sd 10.66 0.010 0.92 8.89 0.013 3.2
Mean 16 162 90% 0.23 150 86% 23.1
sd 7.32 0.012 0.19 10.96 0.014 5.2
Mean 32 147 63% 0.13 168 86% 101.0
sd 5.00 0.018 0.02 10.98 0.011 36.1
Mean All 181 95% 0.64 161 95% 39.5
sd 14.11 0.019 1.42 18.32 0.028 46.2

Vote
Mean 4 18 97% 0.03 13 66% 12.8
sd 3.54 0.115 0.00 1.00 0.000 14.9
Mean 8 17 88% 0.01 13 66% 16.6
sd 4.53 0.006 0.00 2.83 0.007 0.4
Mean 16 19 89% 0.01 13 66% 12.6
sd 3.48 0.006 0.00 1.00 0.003 13.9
Mean 32 29 93% 0.02 14 67% 17.1
sd 5.56 0.008 0.01 1.41 0.004 0.1
Mean All 24 97% 0.02 8 53% 11.8
sd 7.13 0.021 0.01 9.36 0.442 11.7

Waveform
Mean 4 1064 93% 9.74 1032 92% 9.7
sd 96.97 0.075 4.58 96.97 0.074 4.6
Mean 8 530 47% 19.93 1040 93% 9.8
sd 54.27 0.075 4.77 97.84 0.073 4.6
Mean 16 880 88% 18.41 843 46% 19.9
sd 45.21 0.005 6.03 121.09 0.059 4.7
Mean 32 894 85% 17.52 1069 86% 18.4
sd 35.87 0.004 5.98 45.21 0.005 6.0
Mean All 1026 95% 15.15 1070 93% 15.1
sd 77.79 0.044 8.81 77.79 0.044 8.8

Wine
Mean 4 51 97% 0.04 60 94% 1.1
sd 9.97 0.055 0.02 11.30 0.054 0.5
Mean 8 52 88% 0.02 53 86% 0.7
sd 5.99 0.013 0.00 5.99 0.013 0.1
Mean 16 65 89% 0.02 63 88% 1.1
sd 15.12 0.016 0.01 14.14 0.016 0.3
Mean 32 68 89% 0.03 64 88% 1.2
sd 14.55 0.017 0.01 17.20 0.019 0.3
Mean All 57 97% 0.03 60 97% 1.2
sd 13.51 0.031 0.01 14.52 0.031 0.3

Wisconsin
Mean 4 24 98% 0.03 23 99% 4.9
sd 4.74 0.115 0.00 4.40 0.117 2.8
Mean 8 22 87% 0.01 22 90% 7.0
sd 3.93 0.007 0.00 2.56 0.004 4.4
Mean 16 15 48% 0.05 24 91% 16.0
sd 3.93 0.027 0.03 4.37 0.004 10.1
Mean 32 18 87% 0.01 25 91% 25.8
sd 4.29 0.047 0.00 2.65 0.004 8.2
Mean All 25 98% 0.02 25 100% 14.7
sd 4.10 0.056 0.01 3.63 0.026 5.4

Zoo
Mean 4 10 99% 0.04 9 98% 10.2
sd 2.21 0.125 0.01 1.50 0.120 3.3
Mean 8 9 90% 0.02 8 89% 15.6
sd 2.52 0.017 0.01 1.49 0.015 3.8
Mean 16 8 90% 0.01 9 82% 28.8
sd 4.80 0.016 0.00 1.70 0.034 3.7
Mean 32 12 66% 0.01 13 90% 32.9
sd 3.63 0.314 0.00 4.59 0.024 4.6
Mean All 9 69% 0.02 6 65% 9.1
sd 5.04 0.314 0.01 4.10 0.311 14.5
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