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M.T. Gómez-Caserob, C. Hervás-Martı́neza

a Department of Computing and Numerical Analysis, University of Cordoba, Campus de Rabanales, 14071 Cordoba, Spain
b Institute for Sustainable Agriculture, C.S.I.C., 14080 Cordoba, Spain

a r t i c l e i n f o

Article history:

Received 7 February 2007

Received in revised form

18 July 2007

Accepted 20 July 2007

a b s t r a c t

Recent advances in remote sensing technology have triggered the need for highly flexible

modelling methods to estimate several crop parameters in precision farming. The aim of this

work was to determine the potential of evolutionary product unit neural networks (EPUNNs)

for mapping in-season yield and forecasting systems of sunflower crop in a natural weed-

infested farm. Aerial photographs were taken at the late vegetative (mid-May) growth stage.

Yield, elevation and weed data were combined with multispectral imagery to obtain the

dataset. Statistical and EPUNNs approaches were used to develop different yield prediction
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models. The results obtained using different EPUNN models show that the functional model

and the hybrid algorithms proposed provide very accurate prediction compared to other

statistical methodologies used to solve that regression problem.

© 2007 Elsevier B.V. All rights reserved.

ditions; sowing time is February–March and harvesting time
Sunflower

1. Introduction

One aspect of overcoming the possibility of minimizing the
impact of agriculture on environmental quality is the devel-
opment of more efficient approaches for crop production. The
site-specific application of agricultural inputs (e.g., fertilizer or
herbicide) based on accurate field maps is an essential compo-
nent of the successful implementation of precision farming,
leading to a reduction in the overall quantities applied (Karimi
et al., 2005). Although the benefits obtained through yield
mapping depend largely on the crop and the environmen-
tal conditions (Yang et al., 2000a), harvester-mounted crop

yield monitoring systems are now being extensively used by
farmers to maximize the yields under highly variable field con-
ditions (Uno et al., 2005). As a first step to finding out the field
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variability, yield maps play an important role in the decision
making process in precision agriculture.

One of the main field characteristics causing yield vari-
ability is the field topography or elevation (Kravchenko and
Bullock, 2002a,b). Several authors have reported that the Ele-
vation affects the spatial variability of yield (Kravchenko and
Bullock, 2002a; Pilesjö et al., 2005) and weed intensity (Jurado-
Expósito et al., 2005; Liu et al., 2002).

Sunflower (Helianthus annuus L.) is one of the most abun-
dant crops in Andalusia, Southern Spain, grown on over
320,000 ha annually. It is usually grown under dry land con-
July–August. Ridolfia segetum Moris is an umbelliferous weed,
which is frequent and abundant in clay soils in Andalu-
sia. Once established, the growth rate of R. segetum is very
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apid and its life cycle coincides with that of sunflower
ield, which enhances the competitive ability of weed and
esults in an average yield reduction of about 32% when
nfestation is two R. segetum plants m−2 (Castro-Tendero and
arcı́a-Torres, 1995; Carranza et al., 1995; Peña-Barragán et al.,
006). Although weed control is commonly achieved with pre-
lanting incorporated and pre-emergence herbicides, none of
hese herbicides control R. segetum and consequently post-
mergence tillage or hand-weeding are frequently used to
ontrol this weed. Classical competition models not taking
nto account the spatial component of R. segetum infestations
ere developed by Carranza et al. (1995).

Remote sensing systems can provide a large amount of
ontinuous field information at a reasonable cost, offering
reat advantages to understand the yield maps created by the
arvester-mounted yield-monitoring units (Uno et al., 2005).
he importance of remote sensing in site-specific agriculture
as been widely reviewed for yield mapping of different crops

Plant, 2001; Yang et al., 2001, 2006). Remotely sensed imagery
hows great potential in establishing the impact of seasonally
hangeable factors (e.g., precipitation, temperature and sun-
hine) in crop production (Uno et al., 2005), therefore one of the
ain challenges of remote imagery analysis is to determine

ow variations in the spectral information are related to differ-
nces in the crop state, in order to predict accurate yield maps
ong before the harvest. Peña-Barragán et al. (2007) obtained

aps of R. segetum patches in sunflower using aerial photog-
aphy, taking into account specific timeframes. However, no
nformation has been found about the yield estimation of sun-
ower considering the presence of R. segetum patches and their
ultispectral characteristics on a field scale.
Different statistical, artificial intelligence and machine

earning algorithms have proved to be quite useful in the
nterpretation of remotely sensed data. Kenkel et al. (2002)
eported that multivariate statistical approaches have only
ecently started to be used in agricultural domain. The applica-
ion of discriminant analysis to agricultural remote sensing in
eed discrimination has been reported in many recent studies

Burks et al., 2002; Cho et al., 2002). Furthermore, the stepwise
ultiple linear regression (SMLR) is one of the most commonly

sed multivariate analytical techniques to develop empirical
odels from large data sets, as has been done for a number

f canopy-level crop condition parameters (Shibayama and
kiyama, 1991; Osborne et al., 2002). This model fitting process

s quite stable, resulting in low variance but in a potentially
igh bias. A traditional technique to overcome these diffi-
ulties is augmenting/replacing the input vector with new
ariables, the basis functions, which are transformations of
he input variables and then using linear models in this new
pace of derived input features. Methods like artificial neural
etworks (ANNs) (Bishop, 1995), projection pursuit learning

Friedman and Stuetzle, 1981) and generalized additive mod-
ls (Hastie and Tibshirani, 1990), can be seen as different basis
unction models.

Approaches based on ANNs have been applied in agricul-
ural remote sensing (Goel et al., 2003; Karimi et al., 2005;

hanin et al., 2002; Uno et al., 2005; Yang et al., 2000a,b) to asso-
iate complicated spectral information with target attributes
ithout any constraints for sample distribution (Mather, 2000).
ccording to Kimes et al. (1998) and Lillesand and Kiefer (2000),
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ANNs described the intricate and complex non-linear rela-
tionships which exists between canopy-level spectral imagery
and several crop conditions. Although, they have mainly been
applied in classification problems, this technique has shown
a great potential for continuous variable prediction problems,
such as soil moisture estimation (Chang and Islam, 2000),
water quality assessment (Zhang et al., 2002), biomass esti-
mation (Jin and Liu, 1997) and yield prediction (Drummond
et al., 2003; Liu et al., 2001). However, sigmoidal feed-forward
neural networks or multilayer perceptrons (MLPs), which are
the ANNs most used, have serious difficulties in reflecting
accurately the strong interactions between input variables.

Product unit neural network (PUNN) models are an alter-
native to MLPs and are based on multiplicative nodes instead
of additive ones. They correspond to a special class of feed-
forward neural network introduced by Durbin and Rumelhart
(1989). They aim to overcome the non-linear effects of vari-
ables by means of non-linear basis functions, constructed
with the product of the inputs raised to arbitrary powers.
These basis functions express the possible strong interactions
between the variables, where the exponents may even take on
real values and are suitable for automatic adjustment.

One of the main problems involved in the application of
MLP and PUNN models is the selection of the most appro-
priate net architecture to be used. Classical neural network
training algorithms assume a fixed architecture; however
it is very difficult to establish beforehand the best struc-
ture of the network for a given problem. There have been
many attempts to design the architecture automatically (Reed,
1993; Setiono and Hui, 1995). Evolutionary algorithms (EAs),
which are stochastic search algorithms that execute a global
search in the input space preventing the fall to local optimum
(Angeline et al., 1994; Garcı́a-Pedrajas et al., 2003; Yao, 1999),
have demonstrated great accuracy in designing a near opti-
mal architecture. This fact, together with the complexity of
the error surface associated with a PUNN, justifies the use of
an EA to design the structure and adjust the weights of these
models (Martı́nez-Estudillo et al., 2006a,b).

Many researchers (Houck et al., 1996, 1997; Michalewicz,
1994) have shown that EAs perform well for global search-
ing because they are capable of quickly finding and exploring
promising regions in the search space, but they take a rela-
tively long time to converge to a local optimum. Recently, new
methods have been developed in order to improve the preci-
sion of the EAs by adding local optimization algorithms. These
methods are commonly known as hybrid algorithms (Bersini
and Renders, 1994). Martı́nez-Estudillo et al. (2006b) proposed
the hybrid combination of three methods for the design of
Evolutionary PUNNs (EPUNNs) for regression: an EA, a cluster-
ing process and a local search procedure. Clustering methods
create groups (clusters) of mutually close points that could
correspond to relevant regions of attraction. Then, local search
procedures can be started once in every such region, e.g., from
its centroid. They reported that the application of a clustering
algorithm for selecting individuals representing the different
regions in the search space was more efficient than using

the optimization algorithm for every individual in the pop-
ulation. Their experiments in microbial growth showed that
the proposed hybrid learning approach is able to obtain good
results in hard real-world problems. On the other hand, this
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methodology provides us with a pool of different solutions,
each of them with distinct characteristics. The information
contributed by all models could be combined to obtain a more
effective solution of the problem.

Ensembles are another promising research field, where sev-
eral models are combined to produce an answer (Dietterich,
2000). Often, the combination of individual learners outper-
forms the best individual among them. There are different
approaches for building ANN ensembles. One of them is based
on considering heterogeneous topologies, where a family of
ANNs with distinct structures (and therefore complexities) are
combined (Rocha et al., 2004). Since EAs design the structure
of the neural nets, the models obtained at different moments
in the evolution are suitable for being combined, because each
of them has distinct topological characteristics.

The main objective of this work was to assess the poten-
tial of EPUNNs trained with different hybrid algorithms for
reaching the best approach to the prediction of sunflower
yield at field-scale using digital elevation model (DEM), R. sege-
tum weed map and remote sensed information. Seven models
were applied: one multivariate statistical approach (SMLR);
four EPUNN models such as evolutionary programming (EP),
hybrid EP (HEP), HEP with clustering (HEPC) and dynamic HEPC
(DHEPC); additionally two proposals are presented for the
combination of the obtained models with DHEPC, including
mean DHEPC ensembles (Emean) and median DHEPC ensem-
bles (Emedian).

2. Materials and methods

2.1. Materials and experimental design

Different types of information extracted from previous
research at the study area reaching the best approach were
analyzed, including aerial photography, sunflower yield data,
elevation data and weed patches. The data analyzed cor-
respond to a study conducted in 2003 at the 42 ha farm
Matabueyes, located in Andalusia, Southern Spain (37.8◦N,
4.8◦W, WGS84), naturally infested by R. segetum. With a clay
content of nearly 60%, the soil of Matabueyes was clas-
sified as Typic Chromoxerert (USDA-NRCS, 1998) and it is
representative of the extensive dry-land of Southern Spain.
Sunflower crop cultivar Jalisco was seeded at 4 kg ha−1 in rows
0.7 m apart in mid-March and then harvested in mid-August.
Tillage production methods were applied to manage the field
site. In order to control annual weed seedlings in sunflower,
glyphosate (Roundup, isopropylamine salt, 360 g a.i. l−1, Mon-
santo) was applied at pre-emergence 180 g a.i. l−1, but at this
rate this herbicide had no significant activity on R. segetum
plants.

Conventional-colour (CC) and colour-infrared (CIR) aerial
photographs of the studied field were taken at 15 May 2003.
The photographs were taken by a turboprop twin-engine plane
CESSNA 402, using an automatic pilot for managing both pho-
tographic equipment and GPS. The camera was a RMK TOP

15, with a Zeiss objective, a focal distance of 153.76 mm and
Kodak Aerocolor III 2444 and Kodak Aerochrome S0734 film for
CC and CIR photographs, respectively. All these photographs
were taken on cloudless days between 12 and 14 h standard
r i c u l t u r e 6 0 ( 2 0 0 8 ) 122–132

time and the average flight height was 1525 m to obtain pho-
tographs at a scale 1:10,000. Then, the photographs were
digitalized with an AGFA Horizon A3 scanner, considering a
resolution of 635 dots per inch (dpi). It is important to note that
brightness and contrast were not adjusted on the digitalized
images. The next step was to orthorectify the digitised images,
using the fiducial marks of the aerial calibration certificate, 40
ground control points taken with a differential GPS TRIMBLE
PRO-XRS equipped with a TDC-1 unit (centimetre preci-
sion) and a 10 m resolution raster DEM. Finally, images were
resampled to a pixel size representing 40 cm × 40 cm ground
area.

Blue (B, 400–500 nm), green (G, 500–600 nm) and red
(R, 600–700 nm) bands of the electromagnetic spectrum
are represented by CC photographs and green, red and
near-infrared (NIR, 700–900 nm) are represented by CIR pho-
tographs. The scanner produced a RGB digital image with
eight-bit true colour, so pixels of the image showed digi-
tal counts within the range of 0–255 values. These digital
values are considered as being directly proportional to
the total light reflected from the scene (Flowers et al.,
2001).

Sunflower crop was combine-harvested in August 2003
using a Massey Fergusson® harvester equipped with a cal-
ibrated Fieldstar® yield monitor and a differential global
positioning system (DGPS) receiver (Blackmore and Moore,
1999). Yield data varied from 0.50 to 2.30 tonnes ha−1. The
DPGS also described the elevation data (z coordinate).

R. segetum patches were mapped as described in Peña-
Barragán et al. (2007), applying the Specter angle mapper
(SAM) supervised classification method to the multispectral
imagery, at 94% overall accuracy. SAM method considers the
angle between consecutive n-band values as an n-dimensional
vector, which is representative of the spectral signature of
each cover-class. Smaller angles between training reference
spectra and pixel to be classified represent closer coinci-
dences. A maximum angle threshold (MAT) parameter must
be specified in radians, so any pixels further away than the
MAT are not classified (Kruse et al., 1993).

All spatial data from images and maps were grouping and
saved to an unique multiband file, taking into account two
requirements: (a) the georeference error between images was
less than one pixel, so similar pixels had the same coordinate
and (b) the NIR digital values of CIR photograph were corrected
to digital values of CC photograph, considering the differences
between the G and R bands of both original photographs. Fur-
ther information about the acquisition of the photographs is
described in Peña-Barragán et al. (2007).

The dataset used to train and validate the different pre-
diction methods included all the information extracted from
the different pixels of the images: red, green, blue and near-
infrared digital values, elevation data, R. segetum infestation
and yield data. Due to the very large number of pixels, the
dataset was reduced by obtaining mean values for each 20 × 20
pixels of the image, resulting in a total of 1056 instances.
Therefore, weed density was calculated in every grid assum-

ing the presence of two plants per every infested pixel, which
provides a conservative estimate.

The experimental design was conducted using a hold-
out cross-validation procedure, where the size of training
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et was approximately 3n/4 and n/4 for the generaliza-
ion set, n being the size of the full dataset. Consequently,
he above-mentioned dataset was randomly split in two
atasets. A 739 instances dataset was used for model training
nd the remaining 317 instances formed the generalization
ataset.

.2. Methods

.2.1. Statistical methods: stepwise multiple linear
egression
PSS 13.0 software for Windows (SPSS, 2005) was used for the
MLR model development. Regression equations were calcu-

ated for all input variables of the dataset, using a backward
MLR with the following stepwise criteria: P ≤ 0.05 for entry
nd P > 0.40 for removal.

.2.2. Evolutionary product unit neural networks

.2.2.1. Product unit neural networks. PUNNs are an alterna-
ive to MLPs, and are based on multiplicative nodes instead
f additives ones. A multiplicative node is given by

∏k

i=1xwji
i

,
here k is the number of the inputs. When the exponents wji

re {0,1} a higher-order unit is obtained, namely the sigma-pi
nit. The output of a polynomial or sigma-pi unit is a function
f the linear sum of some monomial. In contrast to sigma-pi
nit, in the product unit the exponents are not fixed and may
ven take real values.

Product unit based neural networks have several advan-
ages, including increased information capacity and the ability
o express strong interactions between input variables. Fur-
hermore, it is possible to obtain upper bounds of the
apnik–Chervonenkis (VC) dimension (Vapnik, 1999) of prod-
ct unit neural networks similar to those obtained for MLP

Schmitt, 2002).
Despite these advantages, PUNNs have a major handi-

ap: they have more local minima and a higher probability
f becoming trapped in them (Ismail and Engelbrecht, 2000).
he main reason for this difficulty is that small changes in the
xponents can cause large changes in the total error surface
nd therefore their training is more difficult than the training
f standard MLPs. Several efforts have been made to carry out

earning methods for product units (Ismail and Engelbrecht,
999, 2000; Janson and Frenzel, 1993). The back propagation
lgorithm, which is the most common algorithm for training
ultilayer neural networks, does not work very well with the

roduct units because of its complex error surface.
The structure of the neural network considered is described

n Fig. 1: an input layer with k nodes, a node for every input
ariable, a hidden layer with m nodes and an output layer with
ne node. There are no connections between the nodes of a

ayer and none between the input and output layers either.
he activation function of the jth node in the hidden layer

s given by
∏k

i=1xwji
i

, where wji is the weight of the connection
etween input node i and hidden node j and wj = (wj1, . . . , wjk)

s the weight vector. The activation function of the output node
s given by:
(x, �) = ˇ0 +
m∑

j=1

ˇj

∏
j
(x, wj) (1)
Fig. 1 – Model of a product unit based neural network.

where ˇj is the weight of the connection between the hidden
node j and the output node. The transfer function of all hidden
and output nodes is the identity function.

2.2.2.2. Evolutionary algorithm. In this section we present the
EA used to estimate the parameters and the structure of the
PUNNs that minimizes the prediction error function. The algo-
rithm, similar to that proposed by Martı́nez-Estudillo et al.
(2006a), begins with the random generation of NP individu-
als. Then the evolution process start and a population-update
algorithm is applied. Since the algorithm falls into the class
of EP paradigm (Fogel, 1995), population is subjected to the
replication and mutation operations, but crossover is not con-
sidered, as this operation is usually regarded as being less
effective for ANNs evolution (Angeline et al., 1994). Although
there are different training methodologies for this purpose,
most researchers agree that EP is the most suitable evolution-
ary computation paradigm for evolving neural nets (Koehn,
1994).

The general structure of the EA is detailed next:
Evolutionary programming (EP):

(1) Generate a random population of size NP.
(2) Repeat until the stopping criterion is fulfilled.

(2a) Apply parametric mutation to the best 10% of indi-
viduals. Apply structural mutation to the remaining
90% of individuals.

(2b) Calculate the fitness of every individual in the popu-
lation.

(2c) Add best fitness individual of the last generation (elitist
algorithm).

(2d) Rank the individuals with respect to their fitness.
(2e) Best 10% of population individuals are replicated and

substitute the worst 10% of individuals.
(3) Select the best individual of the population in the last gen-

eration and return it as the final solution.
First, the initial population is generated: the algorithm
begins with the random generation of a larger number of
networks than the number used during the evolutionary pro-
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cess. Ten NP networks are generated, where NP is the number
of individuals of the population to be trained during the
evolutionary process. Fitness of a neural network of the pop-
ulation that implements a function f(x), is calculated using a
D = {(xl,yl); l = 1, 2, . . ., nT} training dataset, where the number
of samples is nT. Mean squared error (MSE) of f(x) is considered:

MSE(f ) = 1
nT

nT∑

l=1

(yl − f (xl))
2 (2)

where yl are the observed values and f(xl) are the predicted val-
ues. The fitness function A(f) is defined by means of a strictly
decreasing transformation of the MSE:

A(f ) = 1
1 + MSE(f )

, 0 < A(f ) ≤ 1 (3)

The adjustment of both weights and structure of the PUNNs
is performed by the complementary action of two mutation
operators: parametric and structural mutation. Parametric
mutation implies a modification in the coefficients (ˇj) and
the exponents (wji) of the model, using a self-adaptive simu-
lated annealing algorithm (Kirkpatrick et al., 1983). Structural
mutation modifies the topology of the neural nets, helping the
algorithm to avoid local minima and increasing the diversity of
the trained individuals. Five structural mutations are applied
sequentially to each network: node deletion, connection dele-
tion, node addition, connection addition and node fusion.
When node deletion is applied, number of hidden nodes to
be removed is obtained as a uniform value in a previous spec-
ified interval. Apart from this mutation, if connection deletion
is applied, the number of connections to be deleted in the neu-
ral net is also obtained as a uniform value, but in this case, as
the mutation is less disruptive, the selected interval uses to
be a wider one. More details about the EA can be found in
Martı́nez-Estudillo et al. (2006a).

2.2.2.3. Hybrid evolutionary programming algorithms. In this
work, different variants of hybrid EAs have been applied, all
of them proposed by Martı́nez-Estudillo et al. (2006b). The EP
algorithm is the EA exposed in the previous section without
neither a local search nor a clustering process. In the hybrid
EP (HEP), the EP is run without the local optimization algo-
rithm and then it is applied to the best solution obtained by
the EP in the final generation. This allows the precise local opti-
mum around the final solution to be found. Another version
of hybrid EA is the HEP with the clustering algorithm (HEPC),
which applies the clustering process over a large enough sub-
set of the best individuals in the final population. The number
of individuals in this subset and number of clusters to be cre-
ated are critical parameters of the clustering process. Once
clusters have been determined, the best individual in each
cluster is selected and then optimized using the local search
algorithm. Finally, dynamic HEP with clustering (DHEPC) is the
most sophisticated algorithm. It carries out both the cluster-

ing process and local search dynamically during the evolution
every G0, where G0 must be fixed a priori. All optimized indi-
viduals are extracted and stored and the final solution is the
best local optimum among them.
r i c u l t u r e 6 0 ( 2 0 0 8 ) 122–132

The main objective of these methodologies is to reduce the
number of times it is necessary to apply the local optimization
procedure, since local search algorithms commonly involve a
high computational cost. The clustering process selects the
most representative groups of the population, providing a
subset of individuals with different features. The selected
clustering method selected is k-means clustering, using a dis-
tance measure defined for the vectors of the different values
obtained for each individual over the training dataset. Further
information can be found in Martı́nez-Estudillo et al. (2006b).

The local optimization procedure considered is the
Levenberg–Marquardt (L–M) algorithm (Marquardt, 1963), a
gradient-based methodology, designed specifically for mini-
mizing a MSE (Bishop, 1995). The LM method can be trapped
in a local optimum. Moreover, PUNNs have a very complex
error surface with many minimum optima and local plateau.
That is the reason why it is necessary to apply the L–M algo-
rithm at different points of the evolution, so global optimum
can be discovered with a higher probability.

The hybrid algorithms applied are summarized as follows:
Hybrid evolutionary programming (HEP):

(1) Generate a random population of size NP.
(2) Repeat EP algorithm until the stopping criterion is fulfilled.
(3) Apply L–M algorithm to best solution obtained in the EP

algorithm.
(4) Return the optimized individual as the final solution.

Hybrid evolutionary programming with clustering (HEPC):

(1) Generate a random population of size NP.
(2) Repeat EP algorithm until the stopping criterion is fulfilled.
(3) Apply k-means process to best NC individuals of the pop-

ulation in the last generation and assign a cluster to each
individual.

(4) Apply L–M algorithm to best solution obtained in each clus-
ter.

(5) Select the best individual among optimized ones and
return it as the final solution.

Dynamic hybrid evolutionary programming with clustering
(DHEPC):

(1) Generate a random population of size NP.
(2) Repeat EP algorithm until the stopping criterion is fulfilled,

applying the following process every G0 generations:
(2a) Apply k-means process to best NC individuals of the

population in current generation, assigning a cluster
to each individual.

(2b) Apply L–M algorithm to best solution obtained in each
cluster.

(2c) Select the best individual among optimized ones and
add it to B set.

(3) Select best individual in B set and return it as the final
solution.
2.2.2.4. Ensemble approaches. All above-mentioned method-
ologies share the risk of over fitting training dataset. A local
search procedure leads us to the closer local optimum from
the current location in the training set, but sometimes the
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ptimized model loses its generalization capability. In this
aper, ensembles are presented as a way of avoiding this
verfitting, by the combination of all different EPUNN mod-
ls obtained through the evolution process. Considering the
odels obtained in different generations, a pool of individu-

ls with different structures can be constructed and applied
o the data as an ensemble. Models are extracted from the
HEPC algorithm at different moments in the evolution, so

he set of individuals obtained will presumably gather neural
ets with the most efficient and varied topologies for solving
he problem.

For combining outputs of all regression models of the
nsemble, two different proposals are considered: mean
HEPC ensembles (Emean) and median DHEPC ensembles

Emedian). Let B = {fk}, for k = 1, . . ., s, be the set of optimized
olutions obtained throughout the evolution process in a run
f the DHEPC algorithm. The output of Emean ensemble is cal-
ulated as the mean value of all the outputs of the elements of
and Emedian output is obtained as the median of the outputs
f the elements of B:

mean(B, xl) = f (xl), Emedian(B, xl) = fM(xl) (4)

here f (xl) and fM(xl) represents the mean an median values
f fk(xl) values, which are obtained using Eq. (1).

.2.3. Model development and evaluation
o start processing data, each of the input variables was scaled
n the ranks [0.1,1.1]. The lower bound is chosen to avoid inputs
alues near to 0 that can produce very large values of the func-
ion for negative exponents. The upper bound is chosen near

to avoid dramatic changes in the outputs of the network
hen there are weights with large values (especially in the

xponents). The new scaled variables were named Weed*, Z*,
*, G*, B* and NIR*. For example, Z* is calculated as follows:

∗ = Z − Zmin

Zmax − Zmin
+ 0.1 (5)

here Z is the original elevation. Zmin and Zmax are the mini-
um and maximum values in the whole dataset.
As was mentioned before, SPSS 13.0 software for Win-

ows (SPSS, 2005) was used for the SMLR model development.
he different EPUNN experiments were conducted using a
oftware package developed in JAVA by the authors, as an
xtension of JCLEC framework (http://jclec.sourceforge.net/)
Ventura et al., 2007). The software package is available in the
on-commercial JAVA tool named KEEL (http://www.keel.es).
he parameters used in the evolutionary algorithm for learn-

ng the EPUNN models are common for all methodologies: the

j vector and the coefficients ˇj are initialized in the [−5,5]
nterval; the maximum number of hidden nodes is m = 6; the
ize of the population is NP = 1000. The number of nodes that
an be added or removed in a structural mutation is within
he [1,3] interval, whereas the number of connections that
an be added or removed in a structural mutation is within

he [1,7] interval. The only parameter of the L–M algorithm
s the tolerance of the error to stop the algorithm; in our
xperiment, this parameter has the value 0.01. The k-means
lgorithm is applied to NC = 250 best individuals in the pop-
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ulation. The number of clusters is 4 for both the HEPC and
DHEPC algorithms. For this latter algorithm, G0 = 600. Finally, it
is important to note that, as an evolutionary method has been
applied for optimizing weights of the neural nets, a learning
rate parameter is not considered and weight optimization is
achieved through the double effect of parametric mutations
and Levenberg–Marquardt local search algorithm.

Models obtained with the different evolutionary and statis-
tical methodologies are evaluated using their prediction error
over the training and generalization sets. Two error measure-
ments are considered: the root mean squared error (RMSE,
RMSE(f ) =

√
MSE(f ), see Eq. (2)) and the standard error of pre-

diction (SEP). Let D = {(xi,yi); l = 1, . . ., nT} be the dataset. The
SEP of a model that implements a function f(x) represents a
percentage error over the dataset and can be expressed as:

SEP(f ) = 100
|ȳ|

√
MSE(f ) (6)

where ȳ is the average output of all patterns in dataset.

3. Results and discussion

Results obtained with the different modelling approaches
were evaluated by using both RMSE and SEP, and a regression
between observed and simulated yields was performed to ver-
ify that compared models did a comparable job. Table 1 shows
the statistical results of the four EPUNN algorithms (EP, HEP,
HEPC and DHEPC) and the combination of the obtained models
with DHEPC (Emean and Emedian) over 30 runs. Based on these
results, it is can be concluded that DHEPC, Emean and Emedian

clearly outperform the remainder methodologies, so we used
the analysis of variance (ANOVA) technique to ascertain the
statistical significance of observed differences between the
three corresponding means, assuming that the RMSEG values
obtained have a normal distribution; a Kolmogorov–Smirnov
test for normality was reached for DHEPC, Emean and Emedian

with P-values of 0.650, 0.965 and 0.999, respectively. The
ANOVA involves a linear regression model in which, RMSEG

is the dependent variable and the independent variable is the
type of algorithm. The comparisons were made in terms of a
critical level for Snedecor’s F. If the significance level, ˛, was
higher than this critical level, P, we rejected the hypothesis
of identical RMSEG’s means. In our case this hypothesis is
accepted because the P-value is 0.178, higher than a standard
˛ = 0.05. Finally, we used an independent t-test for analyzing
the significant difference between the means of DHEPC and
Emean algorithms. It can be seen, for ˛ = 0.1, that differences
in variance existed from a prior Levene’s test (P-value = 0.061),
and that there were differences in mean (P-value = 0.08). Based
on these results, the Emean methodology should be adopted
for predicting sunflower yield production, since it is signif-
icantly more accurate (lower values) than DHEPC, both in
terms of mean and standard deviation. Comparing Emean and
Emedian algorithms, there are no significant differences neither
in terms of mean nor standard deviation, but the best result

(RMSEG = 0.2119 tonnes ha−1) is obtained by Emean methodol-
ogy.

A performance comparison between proposed EPUNN
models and a SMLR model measured by using the mean RMSE

http://jclec.sourceforge.net/
http://www.keel.es/
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Table 1 – Statistical results over 30 runs of the different evolutionary methodologies

Algorithms RMSE (tonnes ha−1)

Learning Generalization

Mean S.D. Best Worst Mean S.D. Best Worst

EP 0.2356 0.0469 0.2274 0.2427 0.228 0.0566 0.2177 0.2406
HEP 0.2254 0.0374 0.2214 0.2349 0.22 0.04 0.2138 0.23
HEPC 0.2249 0.0374 0.2209a 0.2349 0.22 0.04 0.2131 0.2298
DHEPC 0.2238 0.03 0.2209 0.2280 0.2191 0.0346 0.2152 0.2241
Emean 0.2243 0.0316 0.2211 0.2302 0.2179 0.03 0.2119 0.2214
Emedian 0.2245 0.0332 0.2211 0.2315 0.2184 0.03 0.2131 0.222

RMSE, Root mean squared error; S.D., standard deviation; EP, evolutionary programming; HEP, hybrid evolutionary programming; HEPC, hybrid
voluti
evolutionary programming with clustering; DHEPC, dynamic hybrid e

DHEPC ensembles.
a The values given in bold represent ‘best RMSE’.

value and SEP in the generalization and learning dataset is
shown in Table 2. The best single EPUNN obtained in all runs
of the different algorithms is considered, corresponding to
DHEPC methodology. In both cases, the models developed pro-
duced relatively low values for RMSE (<0.2594 tonnes ha−1),
which means that relatively low sunflower yield prediction
error was achieved. However, the lowest mean RMSE and SEP
for the learning and generalization dataset were obtained with
the EPUNN model, SEP being around 16%. The highest RMSE
was achieved for SMLR (SEP about 19% for learning and gener-
alization). These results support the findings of other authors,
which obtained similar SEP values as reported by Uno et al.
(2005). They compared SMLR and ANN approaches along with
various vegetation indices to develop corn yield prediction
methods. They did not find clear differences between ANNs
and SMLR (about 20% validation MSE in both models), although
greater prediction accuracy was obtained with ANNs than
with empirically derived vegetation indices. Since RMSE val-
ues depend on the magnitude of the data, SEP values provided
better comparisons between different models. In our case, dif-
ference between EPUNN and SMLR models in sunflower yield
prediction was about 0.0403 tonnes ha−1 (3.02%) in generaliza-
tion RMSE (Table 2).

Regression parameters for observed and simulated sun-
flower yields for the worst and best models are shown in Fig. 2.

The EPUNN model, with an approximately two times higher
R2 value, showed a higher goodness of fit with a closer clus-
ter along the best-fit line than SMLR. However, both models
presented high deviations between observed and predicted

Table 2 – Comparative performance of the best EPUNN model a

Models

Learning

RMSE (tonnes ha−1) SEP (%)

SMLR 0.2594 19.37
EPUNN 0.2256a 16.85

Regression equations of the best EPUNN model and the SMLR model. RMS
stepwise multiple linear regression; EPUNN, evolutionary product unit neu
a The values given in bold represent ‘best performance’.
onary programming; Emean, mean DHEPC ensembles; Emedian, median

values, these differences being more noticeable for lowest
yield values. The EPUNN best-fit regression equation slope was
closer to 1 than the SMLR slope and the intercept closer to
0 than that of SMLR. The SMLR model performed the worst
probably due to the higher values of sunflower yield being
overestimated, i.e. they were higher than the best-fit line as
can be seen in Fig. 2a. Nevertheless, higher predicted yields
were at a similar distance from the regression line of EPUNN
model (Fig. 2b).

Regression equations of the best and worst models for yield
prediction are presented in Table 3. SMLR model identified
the elevation (Z) to be the top important factor, meaning that
sunflower yield was lower at higher elevation. This can be
observed in Fig. 3, where a yield map with the predictions of
the EPUNN model and an R. segetum weed map are presented.
The yield reduction at higher elevation was probably due to the
limited water supply in these regions, as has previously been
reported for corn and soybean yield (Kravchenko and Bullock,
2002a,b; Miao et al., 2006). Weed infestation was selected as
being the second most important factor to predict sunflower
yield. Classic R. segetum–sunflower competition models for
predicting sunflower yield without considering any spatial or
spectral components assumed a non-linear hyperbolic rela-
tionship between mean R. segetum densities, obtaining a much
higher RMSE (about 1.1 tonnes ha−1) (Carranza et al., 1995)

than RMSE of methods herein compared. Fig. 3 clearly shows
that lower sunflower yield is located where R. segetum patches
appear. For the SMLR model, regression equations shown in
Table 3 indicate that one of the factors affecting sunflower

nd the SMLR model

Model performance

Generalization

RMSE (tonnes ha−1) SEP (%)

0.2534 19.07
0.2131 16.05

E, Root mean squared error; SEP, standard error of prediction; SMLR,
ral network.
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Table 3 – Regression equations of the best EPUNN model and the SMLR model

Models Regression equation

SMLR Yield (tonnes ha−1) = 3.7031 − 0.0097Weed − 0.0133Z − 0.0033R + 0.0003NIR

EPUNN Yield (tonnes ha−1) = 1.6973 + 0.7396h1 − 0.0709h2 − 13.1973h3 + 33.8768h4 − 22.3513h5

h1 = (G*)6.1364(Z*)−1.1831(Weed*)0.4289

h2 = (NIR*)−0.7263(R*)6.2797(B*)−2.3923(Z*)−2.1374(Weed*)0.5795

h3 = (NIR*)−0.0902(R*)2.8042(G*)−0.3956(B*)1.6049(Z*)0.9406

h4 = (R*)1.5069(B*)2.9757(Z*)0.5926(Weed*)0.0552

h5 = (NIR*)0.0758(G*)0.9941(B*)3.7274(Z*)0.3144(Weed*)0.1106

SMLR, Stepwise multiple linear regression; EPUNN, evolutionary product unit neural network; Weed, R. segetum density (number of plants m−2);
, blue
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Z, elevation (m); R, G, B, NIR, scaled digital values of red (R), green (G)
B* and NIR* ∈ [0.1,1.1].

ield is weed infestation but it is not the only one or the most
nfluential. It is widely accepted that vigorous and healthy
rops usually show high reflectance in near infrared and low
n red (Hatfield and Pinter, 1993); that is represented in the
MLR equation, where R and NIR variables also affect to the
rediction, although they have a more reduced influence.

The EPUNN model produced a regression equation with

igher level of complexity and provided much more infor-
ation about the relationship between spectral factors and

rop yield than the SMLR model. In general, a neural network
roduces equations that are difficult to understand. The struc-

ig. 2 – Scatter-plot of observed and computed sunflower
ield using the developed models on complete set of data:

a) SMLR model and (b) EPUNN model.
(B) and near infrared (NIR) bands. Scaled variables Weed*, Z*, R*, G*,

ture of the interconnected neurons depends on the complexity
of a given problem and the number of neurons in the hid-
den layers is related to the performance of a neural network.
Too few hidden neurons limit the ability of the network to
model the problem, and too many result in overtraining of the
input/output pair patterns presented in the training process.
In our case, EPUNN formulas are not particularly complex,
since they have neither a very high number of neurons nor too
many variables associated in each neuron. As can be observed
in Table 3, the EPUNN model has six elements, the first one
(1.6973 tonnes ha−1) corresponding to the bias value and the
other corresponding to the hidden neurons (h , 1 ≤ i ≤ 5). The
i

influence of the input parameters on the output depends not
only on the value of their exponents but also on the coef-
ficient corresponding to the hidden neurons in which they

Fig. 3 – (a) Sunflower yield map predicted with EPUNN
model (tonnes ha−1) and (b) R. segetum weed map
(plants m−2).
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Fig. 4 – Relative contribution of h5 hidden neuron terms
used by the EPUNN model, h bearing an inverse linear

C05-02 and AGL-2005-06180-CO3-02, projects of the Spanish
5

relationship with sunflower crop yield.

are represented. Consequently, in order to derive agronomi-
cal information by using the EPUNN model, the response of
each PU hidden neuron must be independently studied. As an
example, h5 product unit terms affected by its exponent were
plotted versus the scaled input variables (Weed*, Z*, G*, B* and
NIR*) over the range [0.1,1.1] (see Fig. 4). From the EPUNN equa-
tion shown in Table 3, it follows that the sunflower crop yield
depends mainly on the interaction between the variables R*,
G*, B* and Z*, the contribution of Weed* and NIR* being prac-
tically negligible, as inferred from the low exponential values
of these variables in all hidden neurons. As can be observed
in Fig. 4, h5 value, which bear an inverse relationship with
sunflower crop yield, is larger when Z*, B* and G* increases
and exponents of NIR* and Weed* variables make their contri-
bution in the hidden neuron output non-significant, as their
weighted values are near to 1. From the equation shown in
Table 3, it follows that R* variable only appears in the hid-
den neurons with negative coefficient, and its exponents are
always greater than 0. Therefore, crop yield is inversely related
to R* value. In summary, although NIR* and weed infestation
(Weed*) were also selected in EPUNN model, the wavebands of
visible spectral window (B*, G* and R*) and elevation (Z*) were
identified as the most influent parameters. The parameters
R*, G*, B* and Z* are the key for the determination of sunflower
crop yield when using EPUNN model, being yield larger when
Z*, B*, R* and G* decreases. Results from other authors agree
with these relationships between sunflower crop and visible
domain (Peña-Barragán et al., 2006) and Z values (Ruiz et al.,
2007).

Over the years, the creation of accurate maps using

harvested-mounted crop yield-monitoring systems has been
essential for successful implementation of precision farm-
ing (Blackmore and Moore, 1999; Reitz and Kutzbach, 1996).
Our results demonstrate that models integrating spectral data,
r i c u l t u r e 6 0 ( 2 0 0 8 ) 122–132

R. segetum spatial infestation and elevation, fit good mod-
els for predicting sunflower yield over a large area. It can
be concluded that the SMLR model is capable of achieving
a higher overall performance than previous classic studies,
but does not achieve such high prediction accuracy as EPUNN.
It is important to consider that DHEPC models are obtained
from EP models, the additional computational requirements
being nearly insignificant regarding the achieved improve-
ment in accuracy performance. Once EPUNNs has been shown
to successfully predict sunflower yield maps by using pri-
marily spectral data from airborne multispectral imagery,
the next investigation could address the examination of
QuickBird satellite imagery for mapping sunflower yield
in larger areas (of at least over 64 km2), since QuickBird
provides four channels (B, G, R and NIR) of multispectral
imagery with 2.4 m of spatial resolution and has shown
to be a useful data source for determining sorghum yield
(Yang et al., 2006).

4. Conclusions

This study demonstrated the capability of EPUNN to analyze
multispectral imagery, weed and elevation data for predict-
ing sunflower yield in early growth stage. EPUNN provided
better accuracy than linear SMLR models both in training set
(16.85%) and generalization set (16.05%). Moreover, four dif-
ferent EPUNN algorithms (EP, HEP, HEPC and DHEPC) were
evaluated in training PUNN for the sunflower yield predic-
tion problem and two methods for combining resulting DHEPC
models were proposed and compared to the remaining EPUNN
algorithms. The statistical results of the multiple comparison
tests carried out show that Emean and Emedian yielded better
results than the other algorithms, with lower RMSE mean and
standard deviation.

From an agronomic point of view, our study demonstrated
that sunflower prediction yield in infested R. segetum fields is
affected by weed infestation, but also implies complex rela-
tionship among parameters such as elevation or digital (or
spectral) data. Granted that, computational requirements for
EP were much higher than for SMLR, those necessary for
DHEPC were nearly insignificant. Thus, taking into account
that precision agriculture management requires a great accu-
racy, the criteria for selection SMLR or EPUNNs models should
not be based on decreasing computational requirements and
complexity, but on the accuracy of prediction. Although the
results of this study are promising in considering the multi-
variate agronomic context, more research is needed to work
on a larger field surface using high spatial resolution satellite
imagery.
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Martı́nez-Estudillo, A.C., Mártı́nez-Estudillo, F.J., Hervás-Martı́nez,
C., Garcı́a-Pedrajas, N., 2006a. Evolutionary product unit based
neural networks for regression. Neural Networks 19 (4.),
477–486.

Martı́nez-Estudillo, A.C., Hervás-Martı́nez, C., Martı́nez-Estudillo,
F.J., Garcı́a-Pedrajas, N., 2006b. Hybridization of evolutionary
algorithms and local search by means of a clustering method.
IEEE Trans. Syst. Man Cybernet. 36 (3), 534–545.

Mather, P.M., 2000. Computer Processing of Remotely Sensed

Images: An Introduction. Wiley, Chichester, UK.

Miao, Y., Mulla, D.J., Robert, P.C., 2006. Identifying important
factors influencing corn yield and grain quality variability
using artificial neural networks. Precis. Agric. 7 (2), 117–135.



i n a g
132 c o m p u t e r s a n d e l e c t r o n i c s

Michalewicz, Z., 1994. Genetic Algorithms + Data
Structures = Evolution Programs. Springer Verlag, New York.

Osborne, S.L., Schepers, J.S., Francis, D.D., Schlemmer, M.R., 2002.
Use of spectral radiance to estimate in-season biomass and
grain yield in nitrogen- and water-stressed corn. Crop Sci. 42
(1), 165–171.
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