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a b s t r a c t

Remote sensing (RS), geographic information systems (GIS), and global positioning systems

(GPS) may provide the technologies needed for farmers to maximize the economic and envi-

ronmental benefits of precision farming. Site-specific weed management (SSWM) is able to

minimize the impact of herbicide on environmental quality and arises the necessity of more

precise approaches for weed patches determination. Ridolfia segetum is one of the most dom-

inant, competitive and persistent weed in sunflower crops in southern Spain. In this paper,

we used aerial imagery taken in mid-May, mid-June and mid-July according to different

phenological stages of R. segetum and sunflower to evaluate the potential of evolutionary

product-unit neural networks (EPUNNs), logistic regression (LR) and two different combi-

nations of both (logistic regression using product units (LRPU) and logistic regression using

initial covariates and product units (LRIPU)) for discriminating R. segetum patches and map-

ping R. segetum probabilities in sunflower crops on two naturally infested fields. Afterwards,

we compared the performance of these methods in every date to two recent classification

models (support vector machines (SVM) and logistic model trees (LMT)). The results obtained

present the models proposed as powerful tools for weed discrimination, the best perform-

ing model (LRIPU) obtaining generalization accuracies of 99.2% and 98.7% in mid-June. Our

results suggest that a strategy to implement SSWM is feasible with minima omission and
commission errors, and therefore, with a very low probability of not detecting R. segetum

patches. The paper proposes the application of a new methodology that, to the best of our

knowledge, has not been previously applied in RS, and which obtains better accuracy than

more traditional RS classification techniques, such as vegetation indices or spectral angle

gies needed for farmers to maximize the economic and
mapper.

. Introduction
emote sensing, geographic information systems (GIS), and
lobal positioning systems (GPS) may provide the technolo-
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environmental benefits of precision farming (Seelan et al.,
2003). Patchy distribution of grass (monocotyledonous) and
broadleaf (dicotyledonous) weeds in fields is well documented

mailto:i02gupep@uco.es
dx.doi.org/10.1016/j.compag.2008.06.001


i n a g
294 c o m p u t e r s a n d e l e c t r o n i c s

(Barroso et al., 2004a; Jurado-Expósito et al., 2003, 2005a).
However, herbicides are not applied to the infested zones,
but they are usually broadcast over entire fields. The poten-
tial for over application and the corresponding economical
and environmental problems is evident. One aspect of over-
coming the possibility of minimizing the impact of herbicide
on environmental quality is the development of more effi-
cient approaches for crop production determination and for
site-specific weed management (SSWM). Srinivasan (2006)
reported an overall overview of the current status of site-
specific weed, nutrient, crop diseases and water management.
Timmermann et al. (2003) evaluated the economical and eco-
logical benefits of SSWM in annual crops in a 4 years study,
concluding that costs savings were 90% and 60% for broadleaf
and grass weeds herbicides, respectively.

A key component of SSWM is that accurate and appro-
priate weed maps are required to take full advantage of
site-specific herbicide applications. Mapping weed patches
based on ground surveys techniques on field scale is time
consuming, expensive and unapproachable in field areas with
difficult access. The importance of remote sensing in site-
specific agriculture has been widely reviewed (Plant, 2001).
Remote sensing of weed canopies may be more efficient and
suitable than field surveys, and the majority of studies on
discriminating weeds in cultivated systems have involved
discrete broadband remote sensing (multispectral sensors)
(Brown and Noble, 2005; Thorp and Tian, 2004). In this sense,
the analysis of the accuracy of weed maps is essential to
make possible the implementation of models with a high
performance, leading to a reduction of the overall herbicide
application. Detection of late-season weed infestation has
demonstrated to have tremendous possibilities when spec-
tral differences between crops and weeds prevail (Koger et al.,
2003; López-Granados et al., 2006).

Sunflower (Helianthus annuus L.) is one of the most abun-
dant crops in Andalusia, Southern Spain, with more than
320,000 ha sown annually (MAPA, 2007). Sunflower sowing and
harvesting times are February–March and July–August, respec-
tively, being mainly grown under dry land conditions. Ridolfia
segetum Moris (corn caraway) is an annual, umbelliferous weed
very frequently found and abundant in clay soils in Andalu-
sia. Its life cycle coincides with that of the sunflower, which
enhances the competitive ability and results in an average
crop yield reduction of about 32% when infestation is two R.
segetum plants per m2 (Carranza-Cañadas et al., 1995). This
weed is not controlled by pre-emergence and pre-plant incor-
porated herbicides, as it is in sunflower, and consequently
post-emergence strategies such as tillage or hand weeding
are commonly used. Otherwise weed obstructs the harvester
since it still has partly green stem during the sunflower har-
vesting. This is a serious inconvenience if the harvester is
equipped with a yield monitor, as it is frequent in precision
agriculture management.

Logistic regression (LR) has become a widely used and
accepted method of analysis of binary or multiclass outcome
variables as it is more flexible and it can predict the probability

for the state of a dichotomous variable (e.g., red-attack/non-
attack for mountain pine beetle red-attack damage (Wulder
et al., 2006)) based on the predictor variables (e.g., vegeta-
tion indices, slope, solar radiation, etc.) and has been widely
r i c u l t u r e 6 4 ( 2 0 0 8 ) 293–306

applied in forestry to estimate tree and stand survival under
competition (Monserud and Sterba, 1999; Vanclay, 1995). In
the field of remote sensing, LR has been used with different
aims, for example, for land-cover change detection (Fraser et
al., 2005), and for mapping insect tree defoliation (Magnussen
et al., 2004). LR and multiple linear regression techniques have
also been used for identifying spectrally sensitive regions in
order to detect nitrogen deficiency in corn (Cetin et al., 2005).

Approaches based on artificial neural networks (ANNs)
have been considered in agricultural remote sensing (Goel et
al., 2003; Gutiérrez et al., 2008; Uno et al., 2005; Yang et al.,
2000a) to associate complicated spectral information with tar-
get attributes without any constraints for sample distribution
(Mather, 2000). ANNs have long been applied for the land-
cover classification in remotely sensed images (Atkinson and
Tatnall, 1997; Kanellopoulos and Wilkinson, 1997; Zhai et al.,
2006). In ANNs, the hidden neurons are the functional units
and can be considered as generators of function spaces. Most
existing neuron models are based on the summing operation
of the inputs, and, more particularly, on sigmoidal unit func-
tions, resulting in what is known as the multilayer perceptron
(MLP).

Product-unit neural network (PUNN) models are an alterna-
tive to MLPs and are based on multiplicative neurons instead
of additive ones. They correspond to a special class of feed-
forward neural network introduced by Durbin and Rumelhart
(1989). While MLP network models have been very successful,
networks that make use of product units (PUs) have the added
advantage of increased information capacity (Durbin and
Rumelhart, 1989). That is, smaller PUNNs architectures can
be used than those used with MLPs (Ismail and Engelbrecht,
2002). They aim to overcome the nonlinear effects of variables
by means of nonlinear basis functions, constructed with the
product of the inputs raised to arbitrary powers. These basis
functions express the possible strong interactions between the
variables, where the exponents may even take on real values
and are suitable for automatic adjustment.

Classical neural networks training algorithms assume a
fixed architecture difficult to establish beforehand. Evolution-
ary algorithms (EAs), which are stochastic search algorithms
that execute a global search in the input space prevent-
ing the fall to local optimum (Angeline et al., 1994), have
demonstrated great accuracy in designing a near optimal
architecture. This fact, together with the complexity of the
error surface associated with a PUNN, justifies the use of
an EA to design the structure and to adjust the weights
of these models (Martínez-Estudillo et al., 2006). More-
over, genetic algorithms (GAs) (the most widely applied
EAs) have been independently used in several remote
sensing applications (Mertens et al., 2003; Zhan et al.,
2003).

Evolutionary artificial neural networks (EANNs) (Yao, 1999)
are the combination of ANNs and EAs. Combining these two
methods, each technique complements the disadvantages of
the other (Yao, 1999). For example, a contribution by ANNs
is the flexibility of nonlinear function approximation, which

cannot be easily implemented with prototype EAs. Further-
more, neural networks play a significant role in remote sensing
since they can handle massive, complex and incomplete data
sets efficiently. As such, they are candidates to produce bet-
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er results than some of the traditional classifiers, requiring in
ome cases less training data (Moody et al., 1996).

On the other hand, EAs have freed ANNs from simple
radient descent approaches of optimization. In fact, tradi-
ional ANNs based on backpropagation algorithms have some
imitations. At first, the architecture of the artificial neural
etworks is fixed and a designer needs much knowledge to
etermine it. Besides, the error function of the learning algo-
ithm must have a derivative. Finally, the algorithm frequently
ets stuck in local optima because it is based on gradient-
ased search without stochastic property. The combination of
As and ANNs can overcome these shortcomings and is par-
icularly useful when the activation function of the neurons
s non-differentiable and traditional gradient-based training
lgorithms cannot be used. Because an EA can treat no-
ifferentiable and multimodal spaces, which are the typical
ase in the classification of remotely sensed imagery, there
ust be a great motivation to apply EANN to classification of

emotely sensed imagery.
A very recent approach (Hervás-Martínez and Martínez-

studillo, 2007) is based on the hybridization of the LR model
nd evolutionary PUNNs (EPUNNs), in order to obtain binary
lassifiers. In a first step, an EA is used to determine the basic
tructure of the product-unit model. That step can be seen as a
lobal search in the space of the model coefficients. Once the
asis functions have been determined by the EA, a transfor-
ation of the input space is considered. This transformation

s performed by adding the nonlinear transformations of the
nput variables given by the PU basis functions obtained by the
A. The final model is linear in these new variables together
ith the initial covariates. This hybrid model outperforms the

inear part and the nonlinear part obtaining a good compro-
ise between them and performing well compared to several

ther learning classification techniques. This methodology
as been extended to multiclass problems (Hervás-Martínez
t al., 2008).

The WEKA machine learning workbench provides a
eneral-purpose environment for automatic classification,
egression, clustering and feature selection. It contains an
xtensive collection of machine learning algorithms and data
re-processing methods complemented by graphical user

nterfaces for data exploration and the experimental compar-
son of different machine learning techniques on the same
roblem. For comparison purposes, we consider in this work
wo of most widely accepted WEKA methods in machine
earning community: the support vector machines (SVMs) and
he logistic model trees (LMTs). SVMs are a recent classifica-
ion method based on the statistical learning theory of Vapnik
1995) and they have been successfully applied to very large
ighly nonlinear problems such as character recognition. LMT

s an algorithm that combines a decision tree structure with
R models, using LR at the leaves of the tree and resulting in
single tree. LMTs have been shown to be very accurate and

ompact classifiers (Landwehr et al., 2005).
One of the objectives of this work was to generate a weed

robability map by using logistic models approaches, obtain-

ng in this way probability maps, capable of indicating a range
f weed presence likelihood, rather than a binary indication of
eed or weed-free. On the other hand, we aimed to assess the
otential of different classification models based on PUNNs
i c u l t u r e 6 4 ( 2 0 0 8 ) 293–306 295

and LR for reaching the best approach to map R. segetum
patches in sunflower crop at a field scale, using remote sensed
information and assessing the best date for discriminating
this weed. Four were the models tested: (a) the LR statistical
model, (b) the EPUNN model, and two combinations of both,
(c) LR using product units (LRPU), i.e., LR with PU basis func-
tions obtained from EPUNNs, and (d) LR using initial covariates
and product units (LRIPU), i.e., LRPU extending the model with
the initial covariates of the problem. Moreover these models
are compared with the previously described machine learning
classifiers: (e) SVM, and (f) LMT.

2. Materials and methods

2.1. Study sites, materials and experimental design

The study was conducted at two fields in Andalusia, south-
ern Spain: at Matabueyes, 42 ha (coordinates 37◦8′N, 4◦8′W,
WGS84), and at Santa Cruz, 28 ha (coordinates 37◦8′N, 4◦6′W,
WGS84) in 2003 and 2004, respectively. Both fields were nat-
urally infested by R. segetum. Soil at both locations was
classified as Typic Chromoxerert (USDA-NRCS, 1998), with
approximately 60% clay. Sunflower cv. Jalisco was seeded in
mid-March at 4 kg ha−1 in rows 0.7 m apart and harvested
in mid-August using the farm’s MF34 combine equipped
with a calibrated Fieldstar® yield monitor and a differentially
corrected global positioning system (DGPS) receiver (Massey
Fergusson®, AGCO Corporation, Duluth, GA, USA). The field
sites were managed using shallow tillage production meth-
ods. Glyphosate (Roundup, isopropylamine salt, 360 g a.i. L−1,
Montsanto) was applied pre-emergence at 180 g a.i. L−1 for the
control of annual weed seedlings in sunflower. At this rate,
this herbicide has no effect on R. segetum emergence or devel-
opment.

The sunflower phenological stages considered were
adapted to the study conditions from Peña-Barragán et al.
(2006), the vegetative phase (from the emergence stage to
the early reproductive stage) in mid-May, the flowering phase
(from the head flowering stage to the initial desiccation stage
of lower leaves) in mid-June, and the senescent phase (from
the stage in which the reproductive head is partly desic-
cated and browning to the stage in which the plant becomes
completely desiccated and darkish/black) in mid-July. The R.
segetum phenological stages were also based on previous stud-
ies as follows: in mid-May, the vegetative phase (weed growth
from seedling to the vegetative stage without the floral stem
and the inflorescences (or umbellas) still closed), in mid-June,
the flowering phase (inflorescences are yellowing and the
plant is at its largest size), and in mid-July, the senescent phase
(weed desiccates and turns brown).

Conventional-colour (CC) and colour-infrared (CIR) aerial
imagery of the studied field were taken in mid-May, mid-June
and mid-July (except CIR images in mid-June at Matabueyes,
due to technical problems).

The photographs were taken by a turboprop twin-engine

plane CESSNA 402. The photographs were taken on cloud-
less days between 12 and 14 h standard time and the average
flight height was 1525 m to obtain photographs at a scale
1:10,000. An automatic pilot was used for managing both pho-
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tographic equipment and GPS and the camera was a RMK TOP
15, with a Zeiss objective, and a focal distance of 153.76 mm.
Kodak Aerocolor III 2444 and Kodak Aerochrome S0734 film
was used for CC and CIR photographs, respectively. Then,
the photographs were digitalized with an AGFA Horizon A3
scanner, considering a resolution of 635 dots per inch (dpi),
brightness and contrast not being adjusted on the digital-
ized images. The next step was to orthorectify the digitised
images, using the fiducial marks of the aerial calibration cer-
tificate, 40 ground control points taken with a differential GPS
TRIMBLE PRO-XRS equipped with a TDC-1 unit (centimetre
precision) and a 10-m resolution raster DEM. Finally, images
were resampled to a pixel size representing 40 cm × 40 cm
ground area.

Input variables included the digital values of all bands in
each available image, that is: CC images responded to blue (B,
400–500 nm), green (G, 500–600 nm), and red (R, 600–700 nm)
broad bands of the electromagnetic spectrum, and CIR images
to G, R and near-infrared (NIR, 700–900 nm) bands. The scan-
ner produced a RGB digital image with 8-bit true colour, so
pixels of the image showed digital counts within the range
of 0–255 values. These digital values are considered as being
directly proportional to the total light reflected from the scene
(Flowers et al., 2001). All spatial and spectral data from images
were grouped and saved to a unique multiband file taking
into account two previous requirements: (1) the georeference
error between images was less than one pixel, so similar pixels
had the same coordinate, and (2) the NIR digital values of CIR
images were corrected to the digital values of CC images, using
the differences between the G and R bands of both original
images.

To train and validate the classification models, a random
ground sampling procedure was carried out at the time when
aerial images were taken, ensuring that all parts of the field
area had an equal chance of being sampled with no operator
bias (McCoy, 2005). We georeferenced a total of 1600 pixels in
each phenological stage, where 800 pixels corresponded to R.
segetum class, 400 pixels corresponded to bare soil class and
400 corresponded to sunflower. In this way, the number of
weed-free pixels was the same to the number of R. segetum pix-
els. The objective is the differentiation between R. segetum and
all other pixels, as distinguishing between soil and sunflower is
not needed for site-specific herbicide application.

The experimental design was conducted using a strati-
fied holdout cross-validation procedure, where the size of the
training set was approximately 3n/4 and n/4 for the general-
ization set, n being the size of the full dataset. Consequently,
each dataset mentioned above was randomly split in two
datasets. A 1120 instances dataset was used for model train-
ing and the remaining 480 instances formed the generalization
dataset. The supervised classification process is composed of
three steps: one is the classifier training which aims at cre-
ating a reliable input–output relationship between remotely
sensed data and land-cover class membership; then the
models obtained are evaluated through the classification of
previously unseen data whose land-cover class membership

is known, in order to assess their generalization capability;
the final step is image classification which applies the rela-
tionship established in the training process to the whole
image.
r i c u l t u r e 6 4 ( 2 0 0 8 ) 293–306

2.2. Methods

Different methods have been applied for training the clas-
sifiers. These include from classical statistical approaches
to the hybrid approaches proposed by Hervás-Martínez and
Martínez-Estudillo (2007).

2.2.1. Statistical methods: binary logistic regression
Typically, in supervised image classification, a set of nT train-
ing samples or pixels (x1, y1), . . . , (xnT , ynT

) is given. The inputs
xi (i.e., spectral bands) form a feature space X, and the out-
put yi (i.e., the target class) has a class label c, which belongs
to a finite set C. A classification rule is designed based on
the training data, so that, given a new input xi of a pixel, a
class c from C with the smallest probability of error is assigned
to it.

In this paper the situation considered is the following: a
binary outcome variable y (weed presence or weed-free) is
observed together with a vector xi = (1, xi1, xi2, . . ., xik,) of covari-
ates for each of the nT pixels (assuming that the vector of
inputs includes the constant term 1 to accommodate the inter-
cept). The two-class is coded via a 0/1 response yi, where yi = 1
for weed presence and yi = 0 for weed-free pixels. Let p be the
conditional probability associated with the first class. Logistic
regression (Hosmer and Lemeshow, 1989) is a widely used sta-
tistical modeling technique in which the probability p of the
dichotomous outcome event is related to a set of explanatory
variables x in the form:

log it(p) = ln
(

p

1 − p

)
= fLR(x, �) = �Tx (1)

where � = (ˇ0, ˇ1, . . ., ˇk) is the vector of the coefficients of
the model and �T the transpose vector and fLR(x, �) is the LR
model. We refer to p/(1 − p) as odds-ratio and to the expression
(1) as the log-odds or logit transformation. A simple calcula-
tion in Eq. (1) shows that the probability of occurrence of an
event as a function of the covariates is nonlinear and is given
by

p(x; �) = e�Tx

1 + e�Tx
(2)

The complementary event probability can therefore be
obtained as (1 − p(x;�)). Once the conditional probability func-
tion defined in (2) is known, the Bayesian (optimal) decision
rule can be constructed:

r(x) = sign

{
ln

(
p(x; �)

1 − p(x; �)

)}
(3)

Given any test pixel x, the probability p that the pixel
belongs to the first class can be determined from (2). Similar
to the maximum-likelihood classification, these class proba-
bilities for each pixel may be outputted to reflect the actual
proportion of classes within a pixel, thereby producing a
soft, fuzzy or subpixel classification. The results from this

paper advocate the utility of the LR as a potential approach
for the soft classification similar to other recent approaches
such as the MLP neural networks (Foody and Arora, 1996)
or the decision tree regression (Xu et al., 2005). A hard clas-
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ification can be produced by assigning the class having a
aximum probability (in our case, as a binary outcome vari-

ble is considered, we can simply check if the probability p
s greater or lower than the value 0.5). Observe that LR not
nly constructs a decision rule but it also finds a function
hat for any input vector defines the probability p that the
ector x belongs to the first class, in our case R. segetum pres-
nce.

Let D = {(xl, yl); 1 ≤ l ≤ nT} be the training data set, where the
umber of samples is nT. Here it is assumed that the training
ample is a realization of a set of independent and identi-
ally distributed random variables. The unknown regression
oefficients ˇi, which have to be estimated from the data, are
irectly interpretable as log-odds ratios or, in term of exp(ˇi),
s odds ratios. That log-likelihood used as the error function
s

(�) =
nT∑
l=1

yl log p(xl; �) + (1 − yl) log(1 − p(xl; �))

=
nT∑
l=1

yl�
Tx − log(1 + e�Tx) (4)

The estimation of the coefficient � is usually carried out
y means of an iterative procedure like the Newton–Raphson
lgorithm or the iteratively reweighted least squares (IRLS)
Hastie et al., 2001). Typically the algorithm converges, since
he log-likelihood is concave, but overshooting can occur. In
he rare cases where log-likelihood decreases, step size halv-
ng will guarantee convergence. The conditions under which a
lobal maximum exists and the maximum likelihood estima-
ors which do not diverge are discussed by McLachlan (1992)
nd references therein.

.2.2. Statistical methods: support vector machines and
ogistic model trees
VM is now a very popular tool in machine learning,
hich explores the kernel techniques. Reasons for this
opularity include geometric exploration and an accurate
erformance in many classification applications. SVM is
asically a binary classifier, which finds the maximal mar-
in (hyperplane) between two classes. SVM can classify
onlinearly separable data sets by plotting the data into
high-dimensional feature space using kernels. For fur-

her details and recent development of the SVMs, we refer
eaders to Cristianini and Shawe-Taylor (2000) and Vapnik
1995).

Tree induction methods and linear models are popu-
ar techniques for the prediction of nominal classes and
umeric values in supervised learning tasks. For predict-

ng numeric quantities, some work has been carried out
n combining these two schemes into ‘model trees’, i.e.,
rees that contain linear regression functions at the leaves.
odel trees, like ordinary regression trees, predict a numeric

alue for an instance that is defined over a fixed set of

umeric or nominal attributes. Unlike ordinary regression
rees, model trees construct a piecewise linear (instead of

piecewise constant) approximation to the target func-
ion. The final model tree consists of a tree with linear
i c u l t u r e 6 4 ( 2 0 0 8 ) 293–306 297

regression functions at the leaves, and the prediction for
an instance is obtained by sorting it down to a leaf and
using the prediction of the linear model associated with that
leaf.

LMT is an algorithm that adapts this idea for classifi-
cation problems, using LR instead of linear regression. In
fact, LMT can be regarded as a new scheme for selecting
the attributes to be included in the logistic regression mod-
els, and introduces a way of building the logistic models at
the leaves by refining logistic models that have been trained
at higher levels in the tree, i.e. on larger subsets of the
training data. This algorithm has been showed as produc-
ing very accurate and compact classifiers (Landwehr et al.,
2005).

2.2.3. Logistic regression using covariates obtained by
product-unit neural network models
The models we are testing are LR models based on the
hybridization of the standard linear model and nonlinear
terms constructed with basis functions obtained from evolu-
tionary product-unit neural networks.

2.2.3.1. Product-unit neural networks. PUNNs are an alterna-
tive to MLPs, and are based on multiplicative neurons instead
of additive ones. A multiplicative neuron is given by

∏k

i=1xwji
i

,
where k is the number of the inputs. When the exponents are
{0,1} a higher order unit is obtained, namely the sigma–pi unit
(Lenze, 1994). In contrast to the sigma–pi unit, in the product-
unit the exponents are not fixed and may even take real
values.

Product-unit based neural networks have several advan-
tages, including increased information capacity and the
ability to express strong interactions between input vari-
ables. Furthermore, it is possible to obtain upper bounds of
the Vapnik–Chervonenkis (VC) dimension (Vapnik, 1995) of
product-unit neural networks similar to those obtained for
MLP (Schmitt, 2002).

Despite these advantages, PUNNs have a major handi-
cap: they have more local minima and more probability of
becoming trapped in them (Ismail and Engelbrecht, 2002). The
main reason for this difficulty is that small changes in the
exponents can cause large changes in the total error sur-
face and therefore their training is more difficult than the
training of standard MLPs. Several efforts have been made
to carry out learning methods for product-units (Ismail and
Engelbrecht, 2002; Janson and Frenzel, 1993). The back prop-
agation algorithm, which is the most common algorithm
for training multilayer neural networks, does not work very
well with the product-units because of its complex error
surface.

The structure of the neural network considered is described
in Fig. 1: an input layer with k neurons, a neuron for every input
variable, a hidden layer with m neurons and an output layer
with one neuron.

There are no connections between the neurons of a layer
and none between the input and output layers either. The

activation function of the j-th neuron in the hidden layer is
given by

∏
j
(x, wj) =

∏k

i=1xwji
i

, where wji is the weight of the
connection between input neuron i and hidden neuron j and
wj = (wj1, ..., wjk) is the weight vector. The activation function
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an EPUNN structure and hidden neuron weights accurate
Fig. 1 – Model of a product-unit neural network.

of the output neuron is given by

fPUNN(x, �) = ˇ0 +
m∑

j=1

ˇj

∏
j
(x, wj) (5)

where ˇj is the weight of the connection between the hidden
neuron j and the output neuron. The transfer function of all
hidden and output neurons is the identity function.

We consider the softmax activation function (Bishop, 1995)
given by

gPUNN(x, �) = exp (fPUNN(x, �))
1 + exp(fPUNN(x, �))

(6)

where fPUNN(x, �) is the output of the output neuron for
pattern x and gPUNN(x, �) is the probability that a pat-
tern x has of belonging to the “weed presence” class. With
this model, the cross-entropy error function is defined by
the same expression than in (4), substituting �Tx with
fPUNN(x, �).

2.2.3.2. Evolutionary product-unit neural networks. In order
to estimate the parameters and the structure of the PUNNs
that minimizes the classification error function, an Evolu-
tionary algorithm has been considered. The algorithm is
similar to the one proposed by Martínez-Estudillo et al. (in
press). The population-based evolutionary algorithm for archi-
tectural design and the estimation of real-coefficients have
points in common with other evolutionary algorithms in
the bibliography (Angeline et al., 1994; García-Pedrajas et
al., 2002; Yao and Liu, 1997). The search begins with an
initial population. This population is updated in each gen-
eration using a population-update algorithm, and is subject
to the evolutionary operations of replication and mutation.
Crossover is not used due to its potential disadvantages in
evolving artificial networks (Angeline et al., 1994). For this

reason, this EA belongs to the evolutionary programming
(EP) paradigm. The general structure of the EA is detailed
next:
r i c u l t u r e 6 4 ( 2 0 0 8 ) 293–306

Evolutionary programming algorithm

(1) Generate a random population of size NP

(2) Repeat until the maximum number of generations

(2a) Apply parametric mutation to the best 10% of
individuals. Apply structural mutation to the
remaining 90% of individuals

(2b) Calculate the fitness of every individual in the
population

(2c) Add best fitness individual of the last
generation (elitist algorithm)

(2d) Rank the individuals with respect to their
fitness

(2e) Best 10% of population individuals are
replicated and substitute the worst 10% of
individuals

(3) Select the best individual of the population in the
last generation and return it as the final solution

First, the initial population is generated: the algorithm begins
with the random generation of a larger number of networks
than the number of neurons used during the evolutionary pro-
cess. 10NP networks are generated, where NP is the number of
individuals of the population to be trained during the evolu-
tionary process. We consider l(�) as the error function of an
individual fPUNN(x, �) of the population, g being a PUNN; and
then, the fitness measure is a decreasing strictly transforma-
tion of the error function l(�) given by A(g) = 1/(1 + l(�)), where
0 < A(g) ≤ 1.

The adjustment of both weights and structure of the PUNNs
is performed by the complementary action of two mutation
operators: parametric and structural mutation. Parametric
mutation implies a modification in the coefficients (ˇj) and
the exponents (wji) of the model, using a self-adaptive simu-
lated annealing algorithm (Kirkpatrick et al., 1983). Structural
mutation modifies the topology of the neural nets, helping
the algorithm to avoid local minima and increasing the diver-
sity of the trained individuals. Five structural mutations are
applied sequentially to each network: neuron deletion, con-
nection deletion, neuron addition, connection addition and
neuron fusion. In order to define the topology of the neural
networks generated in the evolution process, three parame-
ters are considered: m, ME and MI. They correspond to the
minimum and the maximum number of hidden neurons in
the whole evolutionary process and the maximum number of
hidden neurons in the initialization process respectively. In
order to obtain an initial population formed by models sim-
pler than the most complex models possible, parameters must
fulfil the condition m ≤ MI ≤ ME.

More details about the EA can be found in Martínez-
Estudillo et al. (2006, in press).

2.2.3.3. Logistic regression using product units. Logistic regres-
sion using product units is a hybrid method that considers
the EA presented in the previous section in order to obtain
enough. When these are obtained, it applies the IRLS mech-
anism over the product unit basis functions of the EPUNN
selected. So the LRPU composed only of PU basis function is
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iven by

LRPU(x, �) = ˛0 +
m∑

j=1

ˇj

k∏
i=1

xwji
i (7)

here � = (�, W), � = (˛0, ˇ1, . . ., ˇm) and W = (w1, w2, . . . , wm),
ith wj = (wj1, wj2, . . . , wjk), wji ∈ R. The coefficients W are

iven by the EA, they not being adjusted by the IRLS method.
he IRLS method only optimizes the linear part of the model,

.e., the � coefficients.

.2.3.4. Logistic regression using initial covariates and product
nits. The LRIPU model used is a hybridization of the LR model
nd the EPUNNs previously presented. The model extends
RPU, considering the initial covariates x of the problem. Its
xpression is given by

LRIPU(x, �) = ˛0 +
k∑

i=1

˛ixi +
m∑

j=1

ˇj

k∏
i=1

xwji
i (8)

here � = (�, W), � = (˛0, ˛1, . . ., ˛k, ˇ1, . . ., ˇm) and W =
w1, w2, . . . , wm), with wj = (wj1, wj2, . . . , wjk), wji ∈ R. The val-
es adjusted with IRLS correspond to the � vector, the
oefficients W being given by the EA.

Finally, in order to reduce the high amount of variables of
hese LRIPU models, a backward stepwise procedure is used.
he method starts with the full model with all the covariates,

nitial and PU, pruning variables to the model sequentially and
uccessively, until no further pruning can be made to improve
he fit. At each step, the least significant covariate is selected
n the discriminant function, i.e., the one which shows the
reatest critical value (p-value) in the hypothesis test, where
he associated coefficient equal to zero is the hypothesis to be
ontrasted. The selected covariate is deleted if this does not
educe the fit. If none of the covariates is deleted, the second
east significant covariate is considered following the proce-
ure previously described. The procedure ends when all the
ests for each covariate provide p-values smaller than the fixed
ignificance level, or when none of the two chosen covariates
s deleted.

.2.4. Model development and evaluation
o start processing data, each of the input variables was scaled
n the rank [0.1, 0.9]. These bounds in the PUNN models were
hosen to avoid inputs values close to 0 that can result in
ery large values of the function for negative exponents and to
void dramatic changes in the outputs of the network when
here are weights with large values (especially in the expo-
ents). The new scaled variables were named R*, G*, B* and
IR*. For example, R* is calculated as follows:

∗ = R − Rmin

Rmax − Rmin
+ 0.1 (9)

here R is the red digital value and R and R are the mini-
min max

um and maximum values in the whole dataset, respectively.
All the models were evaluated using their prediction error,

efined by the correctly classified rate (CCR), over the training
CCRT) and the generalization (CCRG) datasets, which are given
i c u l t u r e 6 4 ( 2 0 0 8 ) 293–306 299

by the following expression:

CCRD = 1
N

nT∑
n=1

I(C(xn) = yn) (10)

where I(·) is the zero-one loss function, nT the number of pat-
tern of the evaluated dataset D, y the binary outcome variable
(weed presence or weed-free) and xi is the vector of covariates
for each i-th pixel. A good classifier tries to achieve the highest
possible CCR in a given problem.

Furthermore, in order to obtain a more complete evaluation
of the classification task performed by the different models,
the confusion matrix associated with each dataset and model
was derived. A confusion matrix is a visualization tool typi-
cally used in supervised learning (Provost and Kohavi, 1998).
The output is compared to the observed outcome (event or
non-event, i.e., weed or weed-free pixel), and assigned one
of the four possible situations: (i) true negative (TN) when
negative cases are correctly identified by the classifier; (ii)
false positive (FP) when the classifier incorrectly identifies a
non-event case as an event; (iii) false negative (FN) when the
classifier incorrectly identifies an event case as a non-event;
and (iv) true positive (TP) when the positives cases are cor-
rectly identified. For a given number of cases (nT) in a dataset
D, these indexes are inserted into a 2 × 2 confusion or contin-
gency matrix (M(g)) as

M(g) =
(

nTN nFP

nFN nTP

)
(11)

where nT = nTN + nFP + nFN + nTP. The diagonal corresponds to
the correctly classified patterns and the off-diagonal to the
mistakes in the classification task. In this way, the CCRD can
also be expressed as CCRD = (nTP + nTN)/nT. Two other addi-
tional measures are commonly derived from a confusion
matrix for evaluating the classifier: the FP rate (or Type I error)
and the FN rate (or Type II error). The FP rate is the propor-
tion of negative instances that were erroneously reported as
being positive and the false negative rate is the proportion of
positive instances that were erroneously reported as negative.
Their expressions are the following:

FP = nFP

nTN + nFP
, FN = nFN

nFN + nTP
(12)

In this way, the FP and FN rates can also be expressed as
FP = 1 − CCRN and FN = 1 − CCRP, where CCRN and CCRP are the
CCR values obtained when considering only negative and pos-
itive cases of dataset D, respectively, that is:

CCRN = nTN

nTN + nFP
, CCRP = nTP

nFN + nTP
(13)

SPSS 13.0 software for Windows (SPSS 13.0, SPSS Inc.
Chicago, IL) was used for applying the IRLS algorithm in LR,
LRPU and LRIPU methodologies. The different EPUNN exper-

iments were conducted using a software package developed
in JAVA by the authors, as an extension of the JCLEC frame-
work (http://jclec.sourceforge.net/) (Ventura et al., 2008). This
software package is available in the non-commercial JAVA tool

http://jclec.sourceforge.net/
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Table 1 – Non-common parameters values of the
evolutionary product-unit neural network (EPUNN)
algorithm for each dataset, including number of
generations, and topology defining parameters

Location Date #Gen. m MI ME

Matabueyes
(mid-May) 450 2 3 4
(mid-June) 600 2 2 3
(mid-July) 550 3 3 4

Santa
Cruz

(mid-May) 400 2 2 3
(mid-June) 300 2 2 3
(mid-July) 400 2 2 3

#Gen., maximum number of generations; m, minimum number of

hidden neurons; MI, maximum number of hidden neurons during
the initialization process; ME, maximum number of hidden neu-
rons.

named KEEL (http://www.keel.es) (Alcala-Fdez et al., in press).
Weights are assigned using a uniform distribution defined
throughout two intervals, [−5, 5] for connections between the
input layer and hidden layer and, for all kinds of neurons,
[−10, 10] for connections between the hidden layer and the
output layer. The values of non-common parameters adjusted
through a trial-and-error process are shown in Table 1.

The sequential minimal optimization (SMO) algorithm is a
java implementation of the SVM methodology which was used
in our experiments. This algorithm, together with an imple-
mentation of LMT, are available as part of the WEKA machine
learning workbench (Witten and Frank, 2005). We considered
WEKA release 3.4.0 and both methods were applied to the
datasets evaluated in this paper, using their default parameter
values.

3. Results

The models obtained with the different evolutionary and sta-
tistical methodologies were evaluated using their prediction
error over the training and generalization sets. First of all, the
EPUNN methodology was run and the corresponding statisti-
cal results are shown in Table 2. As EPUNN is an evolutionary

methodology, it is based on randomly generated numbers
and this makes it a non-deterministic method. For this rea-
son, the method was run 30 times and the best individual of
the final population in each execution was extracted. Table 2

Table 2 – Accuracy and number of connection statistical results
network (EPUNN) methodology

Location Date CCRT (%)

Mean S.D. Best Worst

Matabueyes
(mid-May) 70.81 0.91 72.41 69.20
(mid-June) 97.67 0.36 98.21 96.96
(mid-July) 77.96 1.71 80.18 74.46

Santa
Cruz

(mid-May) 73.96 1.86 77.48 70.74
(mid-June) 99.15 0.11 99.33 98.94
(mid-July) 83.96 0.47 84.79 83.06

CCRT, correctly classified rate in the training set; CCRG, correctly classified
models; S.D., standard deviation.
r i c u l t u r e 6 4 ( 2 0 0 8 ) 293–306

includes the average, the standard deviation, the best and
the worst values of the CCR over the training (CCRT) and
the generalization (CCRG) sets of these 30 models, together
with their number of connections. From the analysis of these
results, we can conclude that the EPUNN methodology was
quite stable in training and generalization accuracy terms,
the standard deviation not being very high in any date or
location (S.D.T < 1.86% and S.D.G < 2.43%). The most stable gen-
eralization results were obtained in mid-June at Matabueyes
(S.D.G = 0.57%) and Santa Cruz (S.D.G = 0.18%), together with the
highest accuracy (meanG = 97.85% and meanG = 98.37%). The
number of connections of the models obtained was quite low
(mean#Conn. = 14.5) compared to the number of connections
obtained using other ANNs multi-spectral imagery analysis
approaches. For example, Gutiérrez et al. (2008) obtained a
PUNN model with 28 connections when predicting sunflower
crop from multi-spectral imagery. This fact assures not only
more interpretable models but also a better generalization
capability.

Once the evolution process was applied, we selected the
best training individual of the 30 runs in each location/date
and we constructed the corresponding LRPU and LRIPU mod-
els, using SPSS statistical software. For comparison purposes,
we also applied standard LR, and the confusion matrixes
for training and generalization sets corresponding to each of
the four models are shown in Table 3. The number of pix-
els of each target response that are predicted as belonging
to a specified response are represented in each location/date,
and the CCR is calculated independently for each class (CCRN

and CCRP), in order to better evaluate the performance of
the classifiers. An example of interpretation of the different
confusion matrixes is the following: if we consider the general-
ization set in mid-June at Matabueyes, the LR model correctly
classifies 226 ground-truth R. segetum-absence (Y = 0) pixels
and misclassifies the remaining 14 ground-truth R. segetum-
absence pixels assigning to them the R. segetum-presence
label (Y = 1), and obtaining an independent CCRN = 94.2%
accuracy in the R. segetum-absence class. At the same loca-
tion/date, the LR model correctly classifies 228 ground-truth
R. segetum-presence pixels (Y = 1) and misclassifies 12 ground-

truth R. segetum-presence pixels assigning to them the R.
segetum-absence label (Y = 0), and obtaining an independent
CCRP = 95.0% accuracy in the R. segetum-presence class. The
LR model finally results in a global CCRG = 94.6%.

over 30 runs of the evolutionary product-unit neural

CCRG (%) #Conn.

Mean S.D. Best Worst Mean S.D.

69.86 0.70 71.67 68.33 13.77 1.50
97.85 0.57 98.75 96.67 9.23 0.97
77.28 2.43 80.83 70.83 14.50 1.36

75.51 1.37 78.43 72.81 10.63 1.30
98.37 0.18 98.88 97.98 11.33 0.96
83.18 0.54 84.04 82.02 9.67 1.03

rate in the generalization set; #Conn., number of connections of the

http://www.keel.es/


c
o

m
p

u
t

e
r

s
a

n
d

e
l

e
c

t
r

o
n

ic
s

in
a

g
r

ic
u

l
t

u
r

e
6

4
(2

0
0

8
)

293–306
301

Table 3 – Confussion matrix obtained by the different models at each location/date, global accuracy and independent accuracy for each class (Y = 0, R. segetum absence,
and Y = 1, R. segetum presence)

Location Phen. stage (date) Target response Training Generalization

Predicted response CCR (%) Predicted response CCR (%)

Y = 0 Y = 1 Y = 0 Y = 1

Matabueyes

Vegetative
(mid-
May)

Y = 0 384 352 176 208 68.5 62.9 164 148 76 92 68.3 61.7
(383)[394] (177)[166] (68.4)[70.4] (164)[168] (76) [72] (68.3) [70.0]

Y = 1 133 171 427 389 76.2 69.5 65 69 175 171 72.9 71.3
(136)[141] (424)[419] (75.7)[74.8] (67) [69] (173)[171] (72.1)[71.3]

CCR (%) 72.4 66.2 70.6 66.5
(72.1)[72.6] (70.2)[70.6]

Flowering
(mid-
June)

Y = 0 547 529 13 31 97.7 94.5 236 226 4 14 98.3 94.2
(547)[552] (13) [8] (97.7)[98.6] (237)[238] (3)[2] (98.8)[99.2]

Y = 1 7 30 553 530 98.8 94.6 2 12 238 228 99.2 95.0
(9) [11] (551)[549] (98.4) [98.0] (2) [2] (238)[238] (99.2)[99.2]

CCR (%) 98.2 94.6 98.7 94.6
(98.0)[98.3] (99.0)[99.2]

Senescence
(mid-
July)

Y = 0 443 296 117 264 79.1 52.9 195 138 45 102 81.2 57.5
(443)[447] (117)[113] (79.1)[79.8] (425)[189] (55)[51] (88.5)[78.8]

Y = 1 105 131 455 429 81.2 76.6 52 60 188 180 78.3 75.0
(111)[117] (449)[443] (80.2)[79.l] (53)[50] (187)[190] (77.9)[79.2]

CCR (%) 80.1 64.7 79.8 66.3
(79.6)[79.5] (79.6) [79.0]

Santa
Cruz

Vegetative
(mid-
May)

Y = 0 362 353 158 167 69.6 67.9 159 143 63 79 71.6 64.4
(362)[361] (158)[159] (69.6)[69.4] (159)[157] (63)[65] (71.6)[70.7]

Y = 1 76 186 443 333 85.4 64.2 33 80 190 143 85.2 64.1
(73)[77] (446)[442] (85.9)[85.2] (33)[35] (190)[188] (85.2)[84.3]

CCR (%) 77.5 66.0 78.4 64.3
(77.8)[77.3] (78.4)[77.5]

Flowering
(mid-
June)

Y = 0 515 514 5 6 99.0 98.8 219 219 3 3 98.6 98.6
(515)[514] (5)[6] (99.0) [98.8] (219)[219] (3)[3] (98.6)[98.6]

Y = 1 2 4 517 515 99.6 99.2 4 4 219 219 98.2 98.2
(1)[2] (518)[517] (99.8)[99.6] (4)[3] (219)[220] (98.2)[98.7]

CCR (%) 99.3 99.0 98.4 98.4
(99.4)[99.2] (98.4)[98.7]

Senescence
(mid-
July)

Y = 0 390 368 130 152 75.0 70.8 163 150 59 72 73.4 67.6
(392)[391] (128)[129] (75.4)[75.2] (165)[166] (57)[56] (74.3)[74.8]

Y = 1 28 87 491 432 94.6 83.2 16 37 207 186 92.8 83.4
(29)[30] (490)[489] (94.4)[94.2] (16)[14] (207)[209] (92.8)[93.7]

CCR (%) 84.8 77.0 83.1 75.5
(84.9)[84.7] (83.6)[84.3]

EPUNN results are presented in regular font, LR results in italic font, LRPU between parentheses and LRIPU between square brackets. The best methodology is presented in bold face.
Phen., phenological; EPUNN, evolutionary product-unit neural networks; LR, logistic regression; LRPU, logistic regression using product units; LRIPU, logistic regression using initial covariates and
product units.
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Table 4 – Expression of the probability equation associated to the different models

Location Method #Param. Best models

Matabueyes

EPUNN 8 P = 1/(1 + exp(−(−0.424 + 75.419(G4.633) + 0.322(R−1.888) + 14.990(B3.496 G−3.415))))
LR 4 P = 1/(1 + exp(−(−0.694 + 8.282(B) − 63.342(G) − 11.402(R))))
LRPU 8 P = 1/(1 + exp(−(−17.227 + 143.012(G4.633) + 0.636(R−1.888) + 23.021(B3.496 G−3.415))))
LRIPU 9 P = 1/(1 + exp(−(18.027 + 130.674(B) − 133.662(G) − 29.346(R) + 353.147(G4.633) − 3.396(B3.496 G−3.415))))

Santa
Cruz

EPUNN 9 P = 1/(1 + exp(−(6.114 − 1.505(R−1.246) − 25(G3.722 R1.867) − 0.311(B2.665 N−3.875))))
LR 4 P = 1/(1 + exp(−(−3.240 − 5.1(B) + 8.623(R) + 3.429(N))))
LRPU 9 P = 1/(1 + exp(−(6.803 − 1.682(R−1.246) − 30.537(G3.722 R1.867) − 0.317(B2.665 N−3.875))))
LRIPU 11 P = 1/(1 + exp(−(1.436 + 5.427(G) + 3.169(N) − 1.268(R−1.246) − 41.646(G3.722 R1.867) − 0.239(B2.665N−3.875))))

ssion
param
d (NIR
EPUNN, evolutionary product-unit neural networks; LR, logistic regre
sion using initial covariates and product units; #Param., number of
and NIR*: digital values of red (R), green (G), blue (B) and near infrare

As shown in Table 3, LRIPU and EPUNN models were the
better performing ones, achieving a very high accuracy in
the generalization set in mid-June with 99.2% and 98.7% for
the LRIPU model in Matabueyes and Santa Cruz, respectively.
Moreover, LRIPU Types I and II errors are very low with val-
ues of FP = (1 − CCRN) = 0.08% and FN = (1 − CCRP) = 0.08%
for Matabueyes and FP = (1 − CCRN) = 0.14% and
FN = (1 − CCRP) = 0.13% for Santa Cruz. The LR model is
not able to reflect the nonlinear relationships between input
variables, necessary for performing a realistic classification
task. The mathematical expressions of the different models
are presented in Table 4, all of them being relatively simple,
especially if we compare these expressions with the expres-
sions that could be obtained using more traditional MLP
Sigmoidal Units.

In Table 5, we show the performance obtained by the mod-
els developed in this work as compared to the performance
obtained by SVM and LMT methodologies, two of the more
recent and accurate classifier proposals in the machine learn-
ing community. As we can see in these results, SVM did not
achieve a good performance in the different datasets resulting
in very low generalization ability, and LMT obtains an accuracy
very close to that obtained by the methodologies presented
in this paper. However, EPUNN and LRIPU outperformed both

SVM and LMT in five out of the six databases considered. More-
over, it is important to note that SVM produces a dichotomous
classifier, which only gives a binary prediction in each pixel.
The rest of models (including LMT) predict a probability, dif-

Table 5 – Comparative performance of the probability equations
recent state-of-the-art methodologies: logistic model trees and

Location Date CCRT (%)

EPUNN LR LRPU LRIPU SVM

Matabueyes (mid-May) 72.4 66.2 72.1 72.6 67.2
(mid-June) 98.2 94.6 98.0 98.3 93.6
(mid-July) 80.1 64.7 79.6 79.5 59.8

Santa
Cruz

(mid-May) 77.5 66.0 77.8 77.3 67.0
(mid-June) 99.3 99.0 99.4 99.2 97.6
(mid-July) 84.8 77.0 84.9 84.7 78.4

CCRT, correctly classified rate in the training set; CCRG, correctly classifie
neural networks; LR, logistic regression; LRPU, logistic regression using p
product units; SVM, support vector machines; LMT, logistic model trees.
; LRPU, logistic regression using product units; LRIPU, logistic regres-
eters of the models; P: probability of R. segetum presence; R*, G*, B*

) bands. Scaled variables R*, G*, B* and NIR* ∈ [0.1, 0.9].

ferentiating in this way pixels with a similar prediction (R.
segetum presence or absence).

Finally, the classification task was generalized to the com-
plete fields of study and the weed probabilities predicted by
the best performing model (LRIPU) and the worst perform-
ing model (LR) were assigned to the corresponding pixels of
a new map using ENVI (ENVI 4.0 software, Research Systems
Inc.). We selected mid-June at Matabueyes because the best
R. segetum discrimination results were obtained using LRIPU
in this date. In order to visualize the differences in accu-
racy on R. segetum discrimination at Santa Cruz, we selected
mid-July because the performances of both LR and LRIPU
methods in mid-June were very similar to each other (98.4%
and 98.7%, respectively, Table 5). In Figs. 2 and 3, the corre-
sponding maps are represented. We can conclude from the
analysis of the maps that LRIPU model was more precise in
the prediction of the probability of R. segetum presence, dis-
criminating more clearly the different patches zones of the
study fields.

4. Discussion

Classification accuracy of R. segetum patches in the sun-

flower crop was consistently affected by the dates when aerial
images were taken, LRIPU being the most accurate method
in both locations. All the algorithms for classification stud-
ied provided higher accuracies in images taken in this order:

for the different approaches proposed and for two other
support vector machines

CCRG (%)

LMT EPUNN LR LRPU LRIPU SVM LMT

76.4 70.6 66.5 70.2 70.6 65.6 70.1
98.8 98.7 94.6 99.0 99.2 93.7 98.7
91.3 79.8 66.3 79.6 79.0 59.0 82.0

89.4 78.4 64.3 78.4 77.5 65.2 77.3
99.2 98.4 98.4 98.4 98.7 97.0 98.2
86.2 83.1 75.5 83.6 84.3 77.5 83.8

d rate in the generalization set; EPUNN, evolutionary product-unit
roduct units; LRIPU, logistic regression using initial covariates and
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Fig. 2 – R. segetum probability maps for Matabueyes in
mid-June. The probability ranges from p = 0 (R. segetum free
pixels), represented in white colour, to p = 1 (R. segetum
presence pixels), represented in dark green. (a) LR: R.
segetum probability map. (b) LRIPU: R. segetum probability
m

m
(
s
m
y
b

Fig. 3 – R. segetum probability maps for Santa Cruz in mid-
July. The probability ranges from p = 0 (R. segetum free pixels,
ap.

id-June (corresponding to the flowering phase) > mid-July
corresponding to the senescent phase) > mid-May (corre-

ponding to the vegetative phase). None of the classification
ethodologies used over the mid-May and mid-July imagery

ielded accuracies higher than 84.3%, and, therefore it should
e recommended not taking any images in the corresponding

represented in white colour) to p = 1 (R. segetum presence
pixels, represented in dark green). (a) LR: R. segetum
probability map. (b) LRIPU: R. segetum probability map.
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phenological stages to discriminate R. segetum patches in sun-
flower. By contrast, all the classification algorithms studied
in mid-June discriminated the weed with accuracies higher
than 98%, except for LR with 94.5% of accuracy, being LRIPU
the most accurate. This differential accuracy is in agreement
with previous results of Peña-Barragán et al. (2007), where they
already discussed the influence of R. segetum and sunflower
phenological stages in these results.

One of the most interesting results from this study is that
our methods minimized the false detection of presence (Type
I error) or absence (Type II error) of weed in both locations,
finding that the LRIPU method selected as optimal provided
classification accuracies that were very high and similar in
both locations. By contrast, pixel-based image classification
using traditional vegetation indices approaches, previously
reported by Peña-Barragán et al. (2007), produced maximum
accuracies of 85% and 99% with R/B index at Matabueyes
and Santa Cruz, respectively. The low classification accu-
racy obtained at Matabueyes by using conventional vegetation
indices approaches, or those herein obtained in mid-May and
in mid-July for image classification, may both underestimate
the presence of R. segetum (Y = 1) patches and thus misclassify
the total surface of weed infestation (omission error or Type II
error), or overestimate the presence of R. segetum and therefore
provide a conservative estimation of weed infestation (com-
mission error or Type I error). From an agronomic point of view,
this has important implications because any control strategy
should not assume the risk of applying an unnecessary herbi-
cide on soil or crop or of allowing R. segetum to go untreated.
In this last case, two R. segetum uncontrolled plants per m2

would result in an average sunflower yield reduction of about
32% as previously reported by Carranza-Cañadas et al. (1995).

Every algorithm, excepting SVM, estimates the probabil-
ity of occurrence of R. segetum. This is beneficial for control
strategies since the models not only predict a dichotomous
outcome, i.e. presence or absence of weed, but also the proba-
bility associated with the occurrence of this event. In our case,
we simply checked when this probability was greater or lower
than a probability of 0.5. We applied this general assumption
so that pixels ranging from 0.5 to 1 were classified as pres-
ence of R. segetum, and the remaining ones as absence of weed.
However, when considering a wider probability threshold for
presence of R. segetum, e.g. from 0.3 to 1, a higher amount of
pixels would be classified as presence of weed and a more
conservative weed map would be achieved. So, if the prob-
ability range associated to the binary outcome is changed
or adjusted according to spatial distribution of R. segetum, a
harder classification could be obtained in dates with worst
classification results. For example, spatial pattern of R. segetum
patches have shown positive correlation with field elevation,
which means that this weed is dominant in areas with high
elevation values (Jurado-Expósito et al., 2005b). Taking into
account this information, the probability threshold associated
to the first class (i.e., R. segetum presence) could be adjusted by
decreasing it (<0.5) in higher parts of the fields and increasing
it (>0.5) in the lower ones. Consequently, this more adjusted

probability interval than the one selected in our study could
improve our results in mid-May and mid-July and possibly,
these dates could also be recommended for generating weed
maps.
r i c u l t u r e 6 4 ( 2 0 0 8 ) 293–306

A key component of population dynamics of weeds is that
grass and broadleaf weed infestations are often persistent and
relatively stable in location year to year (Barroso et al., 2004b;
Jurado-Expósito et al., 2004). Thus, late-season weed detection
maps can be used to design site-specific control in subsequent
years. However, to take full advantage of our results, next
investigations could explore the potential of high resolution
satellite imagery such as QuickBird and the coming images
of WorldView II for mapping R. segetum patches in sunflower
in larger areas (of at least over 64 km2). Jurado-Expósito et al.
(2005b), applying geostatistical techniques, demonstrated that
the extension of R. segetum patches in sunflower was at least
9 m. According to these results, the classification accuracy
herein presented, and taking into consideration the QuickBird
imagery provides four channels (B, G, R and NIR) of multi-
spectral wavebands with 2.4 m or 2.8 m of spatial resolution,
it would be possible to successfully map this weed on a large
surface, provided that QuickBird has been proved to be a use-
ful data source for mapping invasive plant species (Tsai and
Chou, 2006).

5. Conclusions

This study demonstrated the capability of LR and PUNN
combination models to analyze multispectral imagery for
predicting R. segetum presence probability and mapping R.
segetum patches in the different fields of study. LRIPU and
EPUNN models provided better accuracy than linear LR mod-
els both in training sets and generalization sets. Excellent
generalization accuracies were obtained through the appli-
cation of the best performing model (LRIPU) in mid-June at
both locations. Our study corroborated that the phenologi-
cal stages/dates when aerial images were taken significantly
affect the accuracy in discriminating R. segetum patches in
sunflower crop, decreasing in efficiency in the two fields con-
sidered in the following order: mid-June (corresponding to the
flowering phase) > mid-July (corresponding to the senescent
phase) > mid-May (corresponding to the vegetative phase).
Therefore, reliable mapping of R. segetum in sunflower should
be generated using images around mid-June, in order to apply
a more efficient site-specific control in subsequent years.
The maps generated using LRIPU models were more precise
than those generated by the linear LR model. Moreover, two
advanced methodologies (SVM and LMT) were compared to
the methodologies herein presented, resulting in lower accu-
racy for SVM and LMT, in the six locations/dates evaluated
and in five datasets, respectively. Granted that, computational
requirements for EPUNN were much higher than for LR, SVM,
LTM or traditional vegetation indices approaches, those nec-
essary for LRIPU were nearly insignificant. Thus, considering
that precision agriculture management requires a great accu-
racy, we suggest that the criteria for selecting our algorithms
or vegetation indices classification should not be based on
decreasing computational requirements or complexity, but on
the accuracy of discrimination.
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