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a b s t r a c t

The main objective of this work is to automatically design neural network models with sigmoid basis
units for binary classification tasks. The classifiers that are obtained achieve a double objective: a high
classification level in the dataset and a high classification level for each class. We present MPENSGA2,
a Memetic Pareto Evolutionary approach based on the NSGA2 multiobjective evolutionary algorithm
which has been adapted to design Artificial Neural Network models, where the NSGA2 algorithm is aug-
mented with a local search that uses the improved Resilient Backpropagation with backtracking—IRprop+
eywords:
ccuracy
lassification
emetic algorithms

redictive microbiology
ultiobjective

algorithm. To analyze the robustness of this methodology, it was applied to four complex classification
problems in predictive microbiology to describe the growth/no-growth interface of food-borne microor-
ganisms such as Listeria monocytogenes, Escherichia coli R31, Staphylococcus aureus and Shigella flexneri.
The results obtained in Correct Classification Rate (CCR), Sensitivity (S) as the minimum of sensitivities
for each class, Area Under the receiver operating characteristic Curve (AUC), and Root Mean Squared
Error (RMSE), show that the generalization ability and the classification rate in each class can be more

in a m
eural networks
ensitivity

efficiently improved with

. Introduction

There are many fields of study, such as medicine and predic-
ive microbiology, where it is very important to predict a binary
esponse variable or, equivalently, the probability of occurrence of
n event, in terms of the values of a set of explicative variables
elated to it [1,2].

A classification problem occurs when an object needs to be
ssigned to a predefined group or class based on a number of
bserved attributes related to that object. Many techniques have
een proposed to improve the overall generalization capability
or the classifier design [3], but very few maintain their sensi-
ivity capacity in all classes (which is studied here), an objective
hat is essential in some datasets (such as predictive microbiology,

edicine, remote sensing, economy, etc.) to ensure the benefits of
ne classifier with respect to another.

Artificial Neural Networks (ANNs) [4,5] have become an object
f renewed interest among researchers, both in statistics and com-

uter science, owing to the significant results obtained in a wide
ange of classification and pattern recognition problems [6,7]. In
his work, we discuss learning and the generalization improvement
f classifiers designed using a Multiobjective Evolutionary learning

∗ Corresponding author. Tel.: +34 696550558.
E-mail address: jcfernandez@uco.es (J.C. Fernández).

568-4946/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
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ultiobjective framework than within a single-objective framework.
© 2009 Elsevier B.V. All rights reserved.

Algorithm (MOEA) [8] for the determination of growth limits in
predictive microbiology. Specifically, the study involves the gener-
ation of neural network classifiers that achieve a high classification
level for each class. The methodology is based on two measures: the
Correct Classification Rate, CCR, and Sensitivity, S, as the minimum
of the sensitivities of all classes.

The basic structure of our MOEA has been modified by introduc-
ing an additional step, where some individuals in the population
have been enhanced by a local search method. For this purpose, a
Memetic Pareto Evolutionary NSGA2 (MPENSGA2) algorithm has
been developed.

Recently, several more flexible classification models have been
developed in the field of predictive microbiology to evaluate the
behaviour of microorganisms under a given set of conditions
[9], due to the demand for healthier and more suitable food
products, because scientists recognize that there is an increas-
ing need to model microbial growth limits and microbial growth
as an alternative to the time-consuming traditional microbiologi-
cal enumeration technique [10,11]. Growth/no-growth models or
boundary models quantify the probability of microbial growth and
define combinations of factors that prevent growth. This is because

microbial growth is confined to a limited range of factors, and it
sometimes even drops sharply when the level of each factor is
increased. Growth predictive models have been widely accepted as
informative tools that provide quick and cost-effective assessments
of microbial growth for product development, risk assessment, and

dx.doi.org/10.1016/j.asoc.2009.12.013
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:jcfernandez@uco.es
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ducational purposes. The importance of growth boundary models
or empowering the hurdle concept has been discussed by various
uthors [12,13].

Given an adequate database, the response of many microbes in
ood could be predicted with sufficient knowledge about the for-

ulation of the food, its processing and storage conditions applied
n later food product development and food-safety risk assessment.

Models of the probability of pathogen outgrowth in foods
ppeared in the early 1970s literature when Genigeorgis et al. [14],
otivated by a need to predict combinations of conditions required

o prevent pathogen growth and toxin formation, modelled the dec-
mal reduction of Staphylococcus aureus. A further development was
he ability to predict whether an organism would grow under a
iven set of environmental conditions or not. Ratkowsky and Ross
15] modified a model for bacterial growth rate, incorporating the
ffects of temperature, pH, water activity and nitrite concentration
o such an extent that it could predict the probability of growth
ersus the probability of no-growth.

Our application lies in the demand for healthier and more
uitable food products, as scientists recognize that there is an
ncreasing need to model microbial growth limits. In order to com-
are the results of our algorithm with some baseline methods, we
sed four performance metrics for binary classification problems
16,17], Accuracy or Correct Classification Rate, CCR, Area Under the
urve of receiver operating characteristics, AUC, the Sensitivity, S,
s the minimum of sensitivities of each class and the Root Mean
quared Error, RMSE. The CCR, the AUC, and the RMSE represent the
hree most often used metrics, which represent the threshold met-
ic, the probability metric, and the rank metric, respectively. The
xperiments show that our methodology obtains the best results
n almost all datasets with almost all metrics.

The rest of the paper is organized as follows. Section 2 covers
ackground materials. Section 3 shows an explanation of Accuracy
nd Sensitivity. In Section 4, the base classifier framework and the
tness functions used in this work are explained. The MPENSGA2
lgorithm is described in Section 5, followed by the experimental
esign in Section 6. Section 7 shows the results obtained and finally,
he conclusions are drawn in Section 8.

. Related works

.1. Evolutionary Artificial Neural Networks

ANNs have been a key research area in computer science for
he last two decades [5]. On the one hand, methods and techniques
ave been developed to find better approaches for evolving ANNs,
nd more specifically, multilayer feedforward ANNs. On the other
and, finding a good ANN architecture has also been a debatable

ssue in the field of Artificial Intelligence. Methods for network-
rowing denominated constructive algorithms [18,19], start with
small network (usually a single neuron). This network is trained
ntil it is unable to continue learning. Then, new components are
dded to the network. This process is repeated until a satisfac-
ory solution is found. Destructive methods, also known as pruning
lgorithms [20], start with a big network that is able to learn but
sually ends in over-fitting, and then some processes are applied

n order to remove the connections and nodes that are not useful.
hese methods are based on the classic Backpropagation algorithm,
P, and all these usually suffer from slow convergence and a long
raining time. In addition, they are gradient-based techniques and,
herefore, can easily get stuck at a local minimum.
Evolutionary computation has been widely used in the last few
ears to evolve neural-network architectures and weights. This is
nown as Evolutionary Artificial Neural Networks (EANNs), and
t has been used in many applications [21,22]. EANNs provide a

ore successful platform for optimizing network performance and
mputing 11 (2011) 534–550 535

architecture simultaneously. There have been many applications
for parametric learning [23] and for both parametric and structural
learning [24]. This may indicate that there is an extensive need
for finding better ways to evolve ANNs. A major advantage of the
evolutionary approach over traditional learning algorithms such
as BP is the ability to escape a local optimum. More advantages
include robustness and an ability to adapt to changing environ-
ments. In the literature, research into EANNs has usually taken one
of three approaches: evolving the weights of the network, evolving
the architecture, or evolving both simultaneously [25]. The major
disadvantage of the EANN approach is that it is computationally
expensive, as the evolutionary approach is usually slow. To over-
come this slow convergence of the evolutionary approach, hybrid
techniques were used to speed up convergence by augmenting evo-
lutionary algorithms with a local search technique (i.e. memetic
approach), such as BP [26].

2.2. Artificial Neural Networks in predictive microbiology

In predictive microbiology, some jobs with ANNs have been used
for modelling complex time-dependent bacterial growth [27–29],
or for predicting growth parameters such as lag time and expo-
nential growth rate [30–33] as affected by extrinsic biochemical
and environmental conditions. Basheer and Hajmeer [27] proposed
feedforward neural networks based on Backpropagation minimiza-
tion criterion applied to the area of predictive microbiology, along
with applications for the estimation of bacterial growth parameters
and growth curve modelling. They found that feedforward neural
networks outperform the most traditional statistical classification
approaches. In [28] ANNs are used as efficient approximators for
highly dimensional complex functions because of their high non-
linearity and tolerance to noise data, so that the models obtained
were used to include the effect of time as well as a multitude of
parameters pertaining to experimental conditions for pathogenic
Escherichia coli 0157:H7 and Shigella flexneri. In [29], simple neural
networks were compared with statistical and approximate meth-
ods to find the best descriptive model for a set of 20 Lactobacillus
helveticus growth curves, obtaining good results. In [30] General
Regression Neural Networks, GRNN, are compared to other statisti-
cal models using six statistical indices, obtaining good performance
results in unseen data for the growth curves for three pathogens. In
[31] ANN models are used and compared to other methodologies to
predict thermal inactivation for E. coli bacteria obtaining the best
results in accuracy due to the ANNs ability to compute the com-
bined effects of environmental factors. In [32,33] García-Gimeno
et al. use ANNS models with sigmoidal units for the estimation
of several kinetic parameters of Leuconostoc mesenteroides and E.
coli under aerobic and anaerobic conditions, comparing the results
with the Response Surface Model and obtaining single predictive
models. In [34], Probabilistic Neural Networks, PNNs, are com-
bined with Bayes theorem of conditional probability and Parzen’s
method for estimating the probability density functions of ran-
dom variables in the classification of the growth/no-growth state
of a pathogenic E. coli R31 in response to temperature and water
activity. In [35,36], a support vector machine classifier based on
the Gaussian RBF Kernel and a neuro-fuzzy system classifier with
Gaussian bell shaped membership functions and feedforward neu-
ral networks were used for the classification of the growth limits of
E. coli R31. This same pathogen was studied in [37], where feed-
forward error backpropagation ANNs and PNN based classifiers
were developed and compared with respect to their accuracy in

the classification of bacterial growth/no-growth data from temper-
ature and water activity values. Recently, a new approach has been
proposed to determine the growth probability of Listeria monocy-
togenes applying logistic regression over a combination of linear
functions and non-linear transformations of them, where the linear
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unctions are made up of the input variables, and the transforma-
ions are trained by a Evolutionary Product Unit Neural Network
lgorithm, EPUNN [38].

As can be seen, some work has been done with ANNs to solve
lassification tasks in predictive microbiology, but in no case is sen-
itivity used to improve a classifier in a multiobjective framework
s second objective. This is because the usual objectives to be opti-
ized through the use of ANNs in binary classification tasks are the
aximization of accuracy and the minimization of network com-

lexity. There are classifiers to optimize sensitivity and specificity
n a multiobjective framework, but they can only be used for binary
lassification, while the definition of sensitivity that we propose in
his work can be used for multiclass problems.

.3. Multiobjective Evolutionary Algorithms

A general Multiobjective Optimization Problem (MOP) solu-
ion method ranges from linear objective function aggregation
o Pareto-based techniques. Aggregation methods usually present
isadvantages, for example they only generate one Pareto-solution
t a time [39] and assume convexity of the Pareto-frontier. In an
ttempt to stochastically solve problems of this generic class in an
cceptable timeframe, specific Multiobjective Evolutionary Algo-
ithms (MOEAs) were initially developed in the mid-eighties for
pplication to the MOP domain and were efficient in the evaluation
f the Pareto-optimal set in difficult multiobjective optimization
roblems. Several MOEAs, capable of dealing with a population
f points, have been suggested to define an approximation to
he Pareto set with a single run. There are already a number of
avourable reviews on MOEA methods [8].

The use of ANNs together with Evolutionary Pareto-based Algo-
ithms [40] is known as Multiobjective Evolutionary Artificial
eural Networks (MOEANNs), and this technique is being used to

olve classification tasks with several competitive objectives, and
s able to find multiple solutions in a single execution [41–43].

During the last few years, new methods called Memetic Algo-
ithms (MAs) have been developed in order to improve the EAs
sing local optimization algorithms [44]. Some of the most impor-
ant works in the literature about MOEAs, local optimizers and
NNs used to speed up the convergence are [41,45–47].

. Accuracy and Sensitivity

In this section we present two measures to evaluate a classifier:
he Correct Classification Rate or Accuracy, CCR, and Sensitivity, S.

e will show that these quantities in general do not cooperate on
ertain levels. This fact justifies the use of a MOEA.

To evaluate a classifier, the machine learning community has
raditionally used CCR to measure its default performance. How-
ver, the pitfalls of using accuracy have been pointed out by several
uthors [48]. Actually, we simply have to realize that accuracy
annot capture all the different behavioural aspects found in two
ifferent classifiers. Even in the simplest case, where there are only
wo classes, accuracy states a one-dimensional ordering where two
ifferent types of errors are found. We consider traditionally used
ccuracy, CCR, and the minimum of the sensitivities of all classes,
, that is, the lowest percentage of examples correctly predicted as
elonging to each class, Sj, with respect to the total number of exam-
les in the corresponding class, S = min{Sj}. The sensitivity versus
ccuracy pair (S,CCR) expresses two features associated with a clas-
ifier: global performance (CCR) and the rate of the worst classified

lass (S). The selection of S as a complementary measure of CCR can
e justified upon considering that

CR = f1
N

S1 + f2
N

S2
Fig. 1. Unfeasible region in the two-dimensional (S,CCR) space of a concrete classi-
fication problem.

is the weighted average of the sensitivities of each of the two
classes, and fi is the size of the Ci class. From a statistical point
of view, since CCR is a weighted average, it will be a good and
representative measurement of the set of sensitivities if they are
homogeneous enough.

One point in (S,CCR) space dominates [8] another if it is above
it and to the right, i.e. it has more accuracy and greater sensitivity.
Let CCR and S be respectively the accuracy and the sensitivity asso-
ciated with a classifier g, then S ≤ CCR ≤ 1 − (1 − S)p*, where p* is
the minimum of the estimated prior probabilities. Therefore, each
classifier will be represented as a point in the white region in Fig. 1,
hence the area outside of the triangle is marked as unfeasible.

The area inside the triangle may be feasible (attainable), or may
not be, depending upon the classifier and the difficulty of the prob-
lem. Observe that the optimum classifier is not feasible for all
problems/classifiers, especially for problems with stochastic ele-
ments. For this reason it is better to say that a classifier cannot be
located in the unfeasible region. Furthermore, the points on the
vertical axis correspond to classifiers that are not able to correctly
predict any pattern of a given class. Note that it is possible to find
among them classifiers with a high level of accuracy, particularly
in problems with low p* (unbalanced problems).

A priori, we can think that S and CCR objectives can be positively
correlated, but while this may be true for small values of S and CCR, it
is not for values close to 1 on both S and CCR. In this way competitive
objectives are at the top right corner of the white region.

4. MLP classifiers and fitness functions

4.1. Multilayer Perceptron

We consider standard feedforward Multilayer Perceptron (MLP)
neural networks for binary growth/no-growth classification prob-
lems, with one input layer with K independent variables or features,
one hidden layer with M sigmoidal hidden nodes and one output
node. A scheme of the MLP models considered in this paper is given
in Fig. 2.

Let us take a binary outcome variable y and a vector x = (1, x1,
x2, . . ., xK) of input variables (we assume that the vector of inputs
includes the constant term 1 to accommodate the intercept or bias).

We coded the two class via a 1/0 response variable y, where y = 1 for
the first class (growth) and y = 0 for the second class (no-growth);
and then the output layer is interpreted from a probability point of
view which considers the softmax activation function given by the
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According to this rule, the new temperature is equal to the cur-
ig. 2. Feedforward neural network with sigmoidal basis units for binary classifica-
ion.

ollowing expression:

(x, �) = exp f (x, �)
1 + exp f (x, �)

, (1)

here g(x,�) is the probability a pattern x has of belonging to the
rowth class, and 1 − g(x,�) is the probability a pattern x has of
elonging to the no-growth class, � = (ˇ0, . . ., ˇM, w1, . . ., wM) is
he vector of weights of the output node, wj = {wj

0, . . . , wj
K } is the

ector of inputs weights of the hidden node j, and f(x,�) is the output
f the output node for pattern x given by

(x, �) = ˇ0 +
M∑

j=1

ˇj�

(
wj

0 +
K∑

i=1

wj
i
xi

)

here �(·) is the sigmoidal activation function.
The classification rule C(x) of the MLP model is C(x) =

rg max{g(x,�), 1 − g(x,�)}, this classification rule coinciding with
he optimal Bayes’ rule.

.2. Fitness functions

When there is an available training dataset D = {(xn, yn); n = 1, 2,
. ., N}, where xn = (x1n, . . ., xKn) is the random vector of measure-
ents taking values in ˝ ⊂ RK, and yn is the class level of the nth

ndividual, we define the Correctly Classified Rate (CCR) or accuracy
y:

CR =
(

1
N

) N∑
n=1

(I(C(xn) = yn))

here I(·) is the zero-one loss function, yn is the desired output for
attern n and N is the total number of patterns in the dataset. A good
lassifier tries to achieve the highest possible CCR in a given prob-
em. However, the CCR measure is a discontinuous function, which

akes convergence very difficult in neural network optimization.
Thus, instead of accuracy, we consider the continuous function

iven by cross-entropy, E:
(g, �) = − 1
N

N∑
n=1

[yn log g(xn, �) + (1 − yn)log(1 − g(xn, �))] (2)
mputing 11 (2011) 534–550 537

Then, we propose a strictly decreasing transformation of the
entropy error E(g,�) as the fitness measure to maximize:

A(g) = 1
1 + E(g, �)

The second objective to maximize is the sensitivity of the clas-
sifier, S, defined as the minimum value of the sensitivities for each
class S = min{Si; i = 1, 2}. That is, maximizing the lowest percent-
age of examples correctly predicted as belonging to each class with
respect to the total number of examples in the corresponding class.

5. Memetic Pareto Algorithm

This section introduces a MOEA with a local search algorithm,
called MPENSGA2 (Memetic Pareto Evolutionary NSGA2), that tries
to move the classifier population towards the optimum classifier
located at the (1,1) point in the (S,C) space. The MOEA proposed is
based on the NSGA2 algorithm [49] and the local search algorithm
is the Improved Resilient Backpropagation—IRprop+ [50], which will
be discussed at the next subsection.

The Memetic Multiobjective Evolutionary Neural Network algo-
rithm used in this work evolves architectures and connection
weights simultaneously, each individual being a fully specified
ANN. The ANNs are represented using an object-oriented approach
and the algorithm deals directly with the ANN phenotype. Each
connection is specified by a binary value, which indicates whether
the connection exists and a real value representing its weight. The
crossover operator is not considered due to its potential disadvan-
tages in evolving ANNs [51]. This object-oriented representation
does not assume a fixed order among the different hidden nodes.
With these features, the algorithms fall into the class of evolution-
ary programming.

Mutators used in this work are divided into structural muta-
tors (add/delete neurons, add/delete connections) and a parametric
mutator, in this case a new parametric mutation that involves the
alteration of all weights of the network by adding a Gaussian noise,
where the variance of the Gauss distribution follows a geomet-
ric decline which is configurable (for specific structural mutation
details see [52–54]).

Structural mutation introduces diversity in the population that
leads to different locations in the search space. The number of neu-
rons that can be added or deleted is configurable, and this value
has been established at a minimum of one neuron and a maximum
of two (random value every time a mutation is used). With regard
to adding or deleting link mutations, the number of links to add or
delete are calculated between the input layer and the hidden layer
and between the hidden layer and output layer. Specifically, 30% of
the total number of links in the hidden layer have been added or
deleted and the 5% of the total in the output layer.

Parametric mutation is done on each weight w ∈ � of the neu-
ral network with Gaussian noise w(t + 1) = w(t) + �(t), where
�(t) ∈ N(0,T(t)), represents a one-dimensional normally distributed
random variable with mean 0 and variance T(t), and T(t) represents
a temperature function decreasing throughout evolution, making
abrupt changes at the beginning (exploration) and soft changes at
the end (exploitation), whose expression in the tth generation is:

T(t) =
{

˛T(t − 1), if t is multiple of G
T(t), in any other case

(3)
rent temperature multiplied by a temperature factor ˛. The initial
temperature T(0) and ˛ must be defined in the algorithm, as well as
the number of generations, G, that pass between two consecutive
temperature updates.
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Fig. 3. MPENSGA2

In Fig. 3 we show the pseudocode of the MPENSGA2 algorithm,
here the local search steps are in italics.

The algorithm starts generating a random population P(0) of size
. The population is sorted according to non-domination, assign-

ng to each solution a rank equal to its non-domination level (1 is
he best level, 2 is the next-best level, and so on). Then, the usual
inary tournament selection and mutation operators are used to
reate an offspring population Q(0) of size N. Since elitism is intro-
uced by comparing current population with previously found best
on-dominated solutions, the procedure is different after the ini-
ial generation. Next, we describe any generation of the proposed
lgorithm:

First, a combined population R(t) = P(t) ∪ Q(t) is formed, the size
f R(t) population being equal to 2N. Second, the population R(t)
s sorted according to non-domination criteria. Third, the IRprop+
ocal procedure is applied to the first Pareto front F1 of the R(t) popu-
ation. Fourth, R(t) is sorted again with the fast non-dominated sort

rocedure. Fifth, solutions belonging to the best non-dominated set
1 are the best solutions in the population. If the size of F1 is smaller
han N then all members of the set F1 are definitely chosen for the
ew population P(t + 1). The remaining members of the population
(t + 1) are chosen from subsequent non-dominated fronts in their
ithm pseudocode.

order of ranking. Thus, solutions from the set F2 are chosen next,
followed by solutions from the set F3, and so on. This procedure is
continued until no more sets can be accommodated. Sixth, the new
population P(t + 1) is sorted according to rank and crowding values
and the first N individuals are selected. Seventh, we use binary tour-
nament on P(t + 1) to obtain N individuals. Then these individuals
are mutated using one of the five mutations selected randomly, and
the new offspring population Q(t + 1) is generated. The reader can
see [49] to compare the proposed algorithm to the original NSGA2
proposed by Deb et al.

5.1. Local search algorithm

An improvement in the EAs is the incorporation of local search
procedures throughout evolution. Some studies carried out on the
convergence process of a genetic algorithm in a concrete optimiza-
tion problem show that, although the genetic algorithm quickly

finds good solutions to the problem, it needs many generations
to reach the optimum solution, and it poorly finds the best solu-
tion when it is in a region near a global optimum [55]. Thus is
well-known that certain local procedures are able to find the local
optimum when the search is carried out in a small region of the
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information of the models on it. These are called MPENSGA2E and
Fig. 4. Memetic framework proposed.

pace. Therefore, in the combination of EA and local procedures, EAs
ould carry out a global search inside the space of solutions, locat-

ng ANNs near the global optimum, and the local procedure would
uickly and efficiently find the best solution. This type of algo-
ithm receives the name of Memetic or hybrid Algorithms (MAs)
44,56,57].

MAs can be considered a combination of population-based
lobal search and heuristic-based local search. Gradient descent
echniques are the most widely used class of algorithms for super-
ised learning in ANNs.

There are several studies [58–60] that make use of MOEAs along
ith local optimizers to fine-tune the weights. This is called lifetime

earning and it consists of the updating of each individual regarding
he approximation error. In addition, the weights modified during
ifetime learning are encoded back to the chromosome, which is
nown as the Lamarckian type of inheritance. The main problem
ith this type of algorithms is the computational cost. All these

uthors use the local search on all individuals in the population size
after having made the crossover and mutation operations in each

eneration. This implies a high computational cost, something that
e wanted to avoid. For these reasons we propose the following:

The local search algorithm is applied when combining parent
nd offspring population in NSGA2. Then, only the individuals of
he first Pareto front of this combined population are optimized
y the local gradient-based optimizer, reducing the computational
ost considerably. In addition to that, lifetime learning occurs only
hree times in the evolutionary process, in generations 2/7, 4/7 and
/7 of the total number of generations. In Fig. 4 the reader can see
he framework proposed.

This local search will improve the Pareto front obtained in only
ne objective, specifically that which tries to minimize the classifi-
ation error (Cross-Entropy).

We find that one of the best of these techniques in terms
f convergence speed, accuracy and robustness with respect to
ts parameters is the Rprop (resilient Backpropagation) algorithm
61,62], although classic algorithms like Backpropagation are also

requently used. Rprop is a learning heuristic for supervised learn-
ng in artificial neural networks. Similarly to the Manhattan update
ule, Rprop takes into account only the sign of the partial derivative
hroughout all patterns (not the magnitude), and acts indepen-
mputing 11 (2011) 534–550 539

dently on each weight. For each weight, if there was a sign of change
in the partial derivative of the total error function compared to the
previous iteration, the update value for that weight would be mul-
tiplied by a factor �−. If the last iteration produced the same sign,
the update value is multiplied by a factor �+. The update values are
calculated for each weight in the above manner, and finally each
weight is changed by its own update value, in the opposite direc-
tion of that weight’s partial derivative, so as to minimize the total
error function.

A recent proposal has been the improved Rprop—IRprop+ algo-
rithm, which applies a backtracking strategy (i.e. it decides whether
to take a step back in a weight direction or not, by means of a heuris-
tic, and “+” is the incorporation of backtracking). The improvement
is based on the consideration that a change of sign in the partial
derivative implies that the algorithm has jumped over a local mini-
mum, but does not indicate whether the weight update has caused
an increase or a decrease. The idea of the modification of Rprop+ is
to make the step reversal dependent on the evolution of the error.
These considerations lead to the rule that those weight updates
that have caused changes to the signs of the corresponding partial
derivatives are reverted, but only in case of an error increase. It has
been shown on several benchmark problems [50] that the improved
Rprop with backtracking exhibits consistently better performance
than the original Rprop algorithm, and that is why we use it. We
have carried out the adaptation of the IRprop+ local optimizer to
(1) the softmax activation function, and (2) the cross-entropy error
function, modifying the gradient function for the weights in the
hidden and output layers.

6. Experiments

To analyze the robustness of the proposed methodology in the
experimental design we consider four complex problems in pre-
dictive microbiology to describe the behaviour of pathogen and
spoilage microorganism under a given set of environmental con-
ditions. The objective is to determine the conditions under which
these microorganisms do or do not grow and to create a neural clas-
sifier for this purpose. Specifically, the problems considered have
been the pathogen growth limits of L. monocytogenes, E. coli R31, S.
aureus and S. flexneri.

In all experiments, the population size for MPENSGA2 is
established to Np = 100. The mutation probability for each oper-
ator is equal to 1/5. For IRprop+, the adopted parameters are
�+ = 1.2, �− = 0.5, �0 = 0.0125 (the initial value of the �ij), �min = 0,
�max = 50 and Epochs = 25, see [61,62]. To start processing data,
each of the input variables were scaled in the ranks [−1.0, 1.0] to
avoid the saturation of the signal. The ˛ and T(0) values in (3) were
set to 0.95 and 1, respectively and the #G value, although dependent
on the dataset, is usually assigned values of 50 or 100 generations.

In Table 1 we can see the features for each dataset. We show the
total number of instances in each dataset, the number of instances
in training and testing sets, the number of input variables, the total
number of instances per class and the p* value (the minimum of
the estimated prior probabilities). For each database we had used
the fractional factorial design present in different papers ([63] for
L. monocytogenes, [64] for E. coli R31, [9] for S. aureus and [65] for S.
flexneri) in order to find out the growth limits of each microorgan-
ism.

Once the Pareto front is built, two methodologies are con-
sidered in order to construct a neural network model with the
MPENSGA2S. These methodologies provide us with single models
that can be compared with other classification methods existing
in the literature. The process followed in these methodologies is
the next one: once the first Pareto front is calculated using the
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Table 1
Characteristics of Listeria monocytogenes, Escherichia coli R31, Staphylococcus aureus and Shigella flexneri pathogens. First class (growth) and second class (no-growth).

Listeria monocytogenes Escherichia coli R31 Staphylococcus aureus Shigella flexneri

#Patterns 539 179 287 123
#Training Patterns 404 134 146 76
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#Test Patterns 135 45
#Input Variables 4 2
#Patterns per class 299–240 99–
p* 0.44 0.

atterns of the training set, the best individual belonging to the
areto front on Entropy (EI) is chosen for MPENSGA2E, and the best
ndividual in terms of sensitivity (SI) is selected for MPENSGA2S.
nce this is done, the values of CCR and S are obtained by test-

ng the EI and SI individuals. Therefore we will have an individual
Itesting = (CCRtesting, Stesting) and an individual SItesting = (CCRtesting,
testing). This is repeated 30 times and then the average and stan-
ard deviation obtained from the individuals is estimated, EItesting =
CCRtesting, Stesting), SItesting = (CCRtesting, S̄testing). The first expres-
ion is the average obtained taking entropy into account as the
rimary objective, and the second taking sensitivity into account
s the primary objective. So, the opposite extremes of the Pareto
ront are taken in each of the executions. Hence, the first proce-
ure is called MPENSGA2E (Entropy) and the second MPENSGA2S
Sensitivity). In Fig. 5, the process is shown graphically.

Four metrics are used to test the performance of our methodol-
gy: CCR, S, RMSE and AUC. CCR and S represent threshold metrics,
UC is a probability metric, and RMSE a rank metric. CCR and S have
een previously defined in Section 3.

RMSE or Root Mean Square Error [16] is a metric corresponding
o the expected value of the squared error loss or quadratic loss.
MSE is a frequently used measurement of the differences between
alues predicted by a model or an estimator, and the values actually
bserved in what is being modelled or estimated.

A receiver operating characteristics (ROC) graph [17] is a tech-
ique for visualizing, organizing and selecting classifiers based on

heir performance. Recent years have seen an increase in the use of
OC graphs in the machine learning community, due in part to the
ealization that simple classification accuracy is often a poor way
o measure performance [48]. A ROC curve is a two-dimensional
epiction of classifier performance. To compare classifiers we may

Fig. 5. Achieving statistical re
141 47
3 4

162–125 79–44
0.43 0.32

want to reduce ROC performance to a single scalar value rep-
resenting the performance expected. A common method is to
calculate the area under the ROC curve, abbreviated AUC [66].
Since the AUC is a portion of the area of the unit square, its
value will always be between 0 and 1.0. The AUC has an impor-
tant statistical property: the AUC of a classifier is equivalent to
the probability that the classifier has of ranking a randomly cho-
sen positive instance higher than a randomly chosen negative
instance.

The metrics mentioned are used to compare the performance
of MPENSGA2 along with 11 machine learning. The description
of these algorithms can be found in [67] and they are avail-
able as part of the WEKA machine learning workbench [68]
(http://www.cs.waikato.ac.nz/ml/weka/) and LibSVM is available
as a continuously updated software library for Support Vec-
tor Machines [69] (http://www.csie.ntu.edu.tw/∼cjlin/libsvm). The
parameter values for each algorithm and for each dataset were cho-
sen based on a battery of tests, selecting in each dataset the best
results obtained for each algorithm. The test battery uses a grid of
parameters taking into account extreme and intermediate values.
The optimized values for these parameters can be found in Table 2.
In continuation, a brief description of the parameters for each algo-
rithm is shown. For a better comprehension of the values for each
parameter see the description of the algorithm parameters in Weka
workbench [68]:
• AdaBoost M1 (AB): Base classifier (BC), number of iterations to be
performed (IT), use of resampling (RS) and weight threshold for
weight pruning (WT).

• BayesNet (BN): Estimator algorithm (EA) and algorithm for
searching network structures (SA).

sults from MPENSGA2.

http://www.cs.waikato.ac.nz/ml/weka/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Table 2
Optimized parameters for AdaBoost M1, BayesNet, C4.5 or J48, LMT, MultiLogistic
and SimpleLogistic algorithms. See a complete description of each parameter for a
better understanding of this values in Weka machine learning workbench [67].

AdaBoost M1

Dataset BC IT RS WT

Listeria C4.5 100 False 100
E. coli C4.5 100 False 150
S. aureus C4.5 100 False 50
S. flexneri C4.5 100 False 150

BayesNet

Dataset EA SA

Listeria Simple Estimator Simulated Annealing
E. coli Simple Estimator Simulated Annealing
S. aureus BMA Estimator Tabu Search
S. flexneri Simple Estimator Simulated Annealing

C4.5 or J48

Dataset CF NI AD

Listeria 0.1 2 2
E. coli 0.5 5 5
S. aureus 0.25 3 3
S. flexneri 0.1 2 2

LMT

Dataset MI LB BV

Listeria 15 10 0.1
E. coli 5 −1 0.0
S. aureus 15 10 0.1
S. flexneri 25 20 0.2

MultiLogistic

Dataset IT RL

Listeria 5 10−8

E. coli 5 10−8

S. aureus 5 10−8

S. flexneri 5 10−8

SimpleLogistic

Dataset ER HS MI NI AIC CV BV

Listeria False 100 900 10 False True 0.0
E. coli False 100 900 10 False True 0.0

•

•

•

•

•

rial design in order to reduce experimental time and resources. The
S. aureus False 100 900 10 False True 0.0
S. flexneri False −1 900 −10 False True 0.0

C4.5 or J48: Confidence factor for pruning (CF), minimum number
of instances per leaf (NI) and amount of data for reduced-error
pruning (AD).
KStar (KS): Global blending (GB) is the only parameter for this
algorithm in Weka. All experiments used the value 20, except S.
flexneri which used the value 50.
LibSVM (LSVM): This is a software package for the optimization of
Support Vector Machines (SVM). This library contains a script for
automatically adjusting the hyper-parameters associated to this
kind of models, including the cost parameter and the width of the
Gaussian kernels. The library searches the best hyper-parameter
values using a grid search and choosing the best configuration by
a 10-fold cross-validation process [69].
Logistic Model Tree (LMT): Minimum number of instances at
which a node is considered for splitting (MI), number of iterations
for LogitBoost (LB) and ratio of weight trimming in LogitBoost

(BV).
MultiLogistic or Logistic (ML): Maximum number of iterations
(IT) and ridge value in the log-likelihood (RL).
mputing 11 (2011) 534–550 541

• NaivesBayesUpdateable (NB): Kernel estimator for numeric
attributes rather than a normal distribution (KS). For this algo-
rithm, the kernel estimator was selected in all the experiments.

• NBTree (NBT): Weka only provides a configuration for this algo-
rithm. All experiments used that configuration.

• SimpleLogistic (SL): Error on the probabilities (ER), heuristic stop
(HS), maximum number of iterations for LogitBoost (MI), num-
ber of iterations for LogitBoost (NI), AIC to determine when to
stop LogitBoost iterations (AIC), cross-validation in LogitBoost
(CV) and ratio of weight trimming in LogitBoost (BV).

• RandomForest (RF): Maximum depth of the trees, number of
attributes to be used in random selection and number of trees
to be generated. For this algorithm, all experiments used the val-
ues 0, 0 and 10, respectively (see algorithm’s description in WEKA
for understanding this values).

The next subsections deal with a description of the four prob-
lems selected for predictive microbiology.

6.1. L. monocytogenes

L. monocytogenes have been a serious problem concerning food
industries due to their ubiquity in the natural environment [70] and
the specific growth conditions of the pathogen that lead to its high
prevalence in different kinds of food products. One impetus for this
research has been the problem of listeriosis, and different strategies
have been proposed to limit levels of contamination at the time of
consumption to less than 100 CFU/g (European Commission [71]).

L. monocytogenes data were collected at CA and AA concentra-
tions of 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 and 0.4% (w/v), at 4, 7,
10, 15 and 30 ◦C and pH levels of 4.5, 5, 5.5 and 6.5, as can be seen in
[38]. Thus, 39 different conditions were tested with eight replicates
per condition. This data set was divided so that 404 conditions were
chosen for training, and 135 conditions were selected for testing
the generalization capacity. Among the different conditions, there
were 299 cases of growth and 240 cases with no-growth.

6.2. E. coli

This dataset is given by Salter et al. [64] and it pertaining to
growth/no-growth of an E. coli strain R31 affected by temperature
and water activity.

The data consists of experiments performed with different com-
binations of temperature in the 7.7–37.0 range and water activity
in the 0.943–0.987 range. All samples of E. coli R31 were cultured
in plates and L-tube observed daily. If growth in a sample occurred,
it was scored positive. The growth in the sample was noticed by a
visible increase in turbidity or deposit in the base of the tube. If after
50 days there was neither turbidity nor deposit, a loopful of culture
was streaked onto plate count agar to determine if any growth was
present. A total of 179 samples were observed using different val-
ues of temperature and water activity, with 99 as growth cases and
80 as cases without growth.

6.3. S. aureus

S. aureus has been recognized as an indicator of deficient hygiene
of food and processing and a major cause of food gastroenteritis
worldwide [72]. A fractional factorial design was followed in order
to know the growth limits of S. aureus [9]. It was made by carefully
choosing a subset (fraction) of the experimental runs of a full facto-
selection was based on delimiting the levels of the environmental
factors studied to the growth/no-growth domain of S. aureus. Since
no growth was detected at 7.5 ◦C or below, data were collected at
8, 10, 13, 16 and 19 ◦C, at pH levels from 4.5 to 7.5 (0.5 intervals)
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Table 3
Comparative performance in the testing set of the different methods applied to the predictive microbiology datasets: Mean and Standard Deviation (SD) of the accuracy (CCR(%)), sensitivity (S(%)), error (RMSE) and area under the
ROC curve (AUC) results, mean values of these measures throughout all the datasets (CCR(%), S̄(%), RMSE and AUC) and mean ranking of their performance (R̄). The best results are in bold face and the second best results in italics,
reading by rows. At the end of the table we can see the best model for each pathogen in the MPENSGA2 methodologies in testing.

Dataset AB BN C4.5 KS LSVM LMT ML NB NBT SL RF M-E M-S
Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean ± SD Mean ± SD Mean ± SD

Method (CCR(%))
Listeria 89.62 77.03 85.92 86.66 91.85 89.62 83.70 80.74 87.40 82.22 88.83 ± 1.31 90.37 ± 1.30 89.03 ± 2.23
E. coli R31 93.33 80.00 93.33 88.88 91.11 93.33 80.00 93.33 88.88 80.00 92.44 ± 1.08 94.51 ± 2.90 91.85 ± 3.05
S. aureus 92.30 63.82 86.52 90.07 92.19 90.07 86.52 79.43 80.85 85.10 90.54 ± 1.28 92.52 ± 1.43 92.43 ± 1.43
S. flexneri 80.85 68.08 78.72 75.90 65.95 74.46 72.34 74.46 80.85 76.00 78.72 ± 3.47 76.26 ± 2.66 73.54 ± 3.19

CCR 89.02 72.23 86.12 85.38 85.27 86.87 80.64 81.99 84.49 80.83 87.63 88.41 86.71

R̄ 2.88 12.50 6.13 7.75 6.50 5.50 10.37 9.00 7.25 9.75 5.12 2.25 6.00

Method (S(%))
Listeria 88.00 71.00 80.00 83.00 88.00 88.00 80.00 76.00 83.00 76.00 86.71 ± 2.07 89.33 ± 1.16 88.26 ± 1.79
E. coli R31 85.00 76.00 85.00 80.00 85.00 85.00 65.00 85.00 83.00 65.00 83.16 ± 2.40 89.66 ± 4.72 85.66 ± 5.83
S. aureus 91.00 16.00 83.00 85.00 90.00 90.00 86.00 70.00 69.00 78.00 88.35 ± 1.86 90.11 ± 1.51 90.2 ± 1.43
S. flexneri 73.00 0.00 73.00 38.00 40.00 73.00 66.00 33.00 78.00 43.00 69.25 ± 12.35 72.63 ± 3.15 70.54 ± 3.98

S̄ 84.25 40.75 80.25 71.5 75.75 84.00 74.25 66.00 76.25 65.50 81.87 85.43 83.66

R̄ 3.25 12.25 6.62 8.87 5.87 4.12 9.25 9.87 7.87 10.75 6.75 2.50 3.00

Method (RMSE)
Listeria 0.30 0.39 0.34 0.29 0.25 0.29 0.35 0.38 0.33 0.36 0.29 ± 0.02 0.26 ± 0.01 0.26 ± 0.02
E. coli R31 0.25 0.38 0.26 0.27 0.23 0.27 0.42 0.35 0.32 0.42 0.27 ± 0.01 0.20 ± 0.03 0.23 ± 0.04
S. aureus 0.26 0.47 0.33 0.31 0.24 0.28 0.32 0.41 0.39 0.35 0.27 ± 0.01 0.24 ± 0.01 0.24 ± 0.02
S. flexneri 0.38 0.47 0.41 0.43 0.41 0.40 0.40 0.42 0.38 0.47 0.38 ± 0.02 0.40 ± 0.01 0.43 ± 0.02

RMSE 0.30 0.43 0.33 0.32 0.28 0.31 0.37 0.39 0.35 0.40 0.30 0.27 0.29

R̄ 3.25 11.37 6.62 6.37 2.25 4.75 7.87 9.75 6.50 10.50 3.75 1.62 3.37

Method (AUC)
Listeria 0.96 0.83 0.87 0.95 0.97 0.96 0.91 0.87 0.90 0.90 0.93 ± 0.01 0.98 ± 0.01 0.97 ± 0.01
E. coli R31 0.94 0.86 0.92 0.98 0.99 0.91 0.84 0.99 0.89 0.84 0.92 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
S. aureus 0.96 0.58 0.91 0.96 0.98 0.94 0.92 0.84 0.81 0.92 0.95 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
S. flexneri 0.83 0.50 0.77 0.83 0.80 0.82 0.81 0.77 0.83 0.68 0.85 ± 0.03 0.83 ± 0.02 0.82 ± 0.03

AUC 0.92 0.69 0.87 0.93 0.93 0.91 0.87 0.87 0.86 0.83 0.91 0.94 0.94

R̄ 4.62 12.50 9.87 4.75 4.00 6.75 9.25 8.87 8.75 10.62 5.37 2.25 3.37

Best Classifiers (testing)

Dataset M-E M-S

CCR S RMSE AUC CCR S RMSE AUC

Listeria 91.851 90.000 0.238 0.982 93.333 91.666 0.223 0.986
E. coli R31 97.777 95.000 0.159 0.998 97.777 95.000 0.169 0.998
S. aureus 95.035 91.803 0.215 0.984 95.035 91.803 0.215 0.984
S. flexneri 78.958 75.732 0.396 0.851 78.825 75.682 0.395 0.981
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Table 4
Critical differences in values and differences in rankings in the Nemenyi and Bonferroni–Dunn tests when comparing CCR(%), using the two proposals of this paper as the
control methods for the last test mentioned.

Method(i) Nemenyi test

Method(j)

AB BN C4.5 KS LSVM LMT ML NB NBT SL RF M-E M-S

AB – 9.62� 3.25 4.87 3.62 2.62 7.50 6.12 4.37 6.87 2.25 0.625 3.12
BN – – 6.37 4.75 6.00 7.00 2.12 3.50 5.25 2.75 7.37 10.25+,� 6.50
C4.5 – – – 1.62 0.37 0.62 4.25 2.87 1.12 3.62 1.00 3.87 0.12
KS – – – – 1.25 2.25 2.62 1.25 0.50 2.00 2.62 5.50 1.75
LSVM – – – – – 1.00 3.87 2.50 0.75 3.25 1.37 4.25 0.50
LMT – – – – – – 4.87 3.50 1.75 4.25 0.37 3.25 0.50
ML – – – – – – – 1.37 3.12 0.62 5.25 8.12 4.37
NB – – – – – – – – 1.75 0.75 3.87 6.75 3.00
NBT – – – – – – – – – 2.50 2.12 5.00 1.25
SL – – – – – – – – – – 4.62 7.50 3.75
RF – – – – – – – – – – – 2.87 0.87
M-E – – – – – – – – – – – – 3.75
M-S – – – – – – – – – – – – –

CD(˛=0.05) = 9.11; CD(˛=0.1) = 8.47

Control method Bonferroni–Dunn test

Compared method

AB BN C4.5 KS LSVM LMT ML NB NBT SL RF M-E M-S

M-E 0.62 10.25+,� 3.87 5.50 4.25 3.25 8.12+,� 6.75 5.00 7.50+,© 2.87 – 3.75
M-S 3.12 6.50 0.12 1.75 0.50 0.50 4.37 3.00 1.25 3.75 0.87 3.75 –

CD(˛=

S e is in

a
i
d
o
t

T
C
c
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tatistically significant differences with ˛ = 0.05 (�) and ˛ = 0.1 (©). +, the differenc

nd at 19Aw levels (from 0.856 to 0.999 at regular intervals). The

nitial dataset (287 conditions) was divided in two parts: model
ata (training set, 146 conditions covering the extreme domain
f the model) and validation data (generalization set, 141 condi-
ions within the interpolation region of the model). Among the

able 5
ritical differences in values and differences in rankings between the Nemenyi and Bonfer
ontrol methods for the last test mentioned.

Method(i) Nemenyi test

Method(j)

AB BN C4.5 KS LSVM LMT

AB – 9.00© 3.37 5.62 2.62 0.87
BN – – 5.62 3.37 6.37 8.12
C4.5 – – – 2.25 0.75 2.50
KS – – – – 3.00 4.75
LSVM – – – – – 1.75
LMT – – – – – –
ML – – – – – –
NB – – – – – –
NBT – – – – – –
SL – – – – – –
RF – – – – – –
M-E – – – – – –
M-S – – – – – –

CD(˛=0.0

Control method Bonferroni–Dunn test

Compared method

AB BN C4.5 KS LSVM LMT

M-E 0.75 9.75+,� 4.12 6.37 3.37 1.62
M-S 0.25 9.25+,� 3.62 5.87 2.87 1.12

CD(˛=

tatistically significant differences with ˛ = 0.05 (�) and ˛ = 0.1 (©). +, the difference is in
0.05) = 7.89; CD(˛=0.1) = 7.26

favour of Method(j) (Nemenyi test) or control method (Bonferroni–Dunn test).

different conditions, there were 162 growth cases and 125 no-

growth cases. The purpose of this selection was to define a dataset
for model data focused on the extreme regions of the growth/no-
growth domain that actually represent the boundary zones. In this
study, the number of replicates per condition (n = 30) was increased

roni–Dunn tests when comparing S(%), using the two proposals of this paper as the

ML NB NBT SL RF M-E M-S

6.00 6.62 4.62 7.50 3.50 0.75 0.25
3.00 2.37 4.37 1.50 5.50 9.75+,� 9.25+,�

2.62 3.25 1.25 4.12 0.12 4.12 3.62
0.37 1.00 1.00 1.87 2.12 6.37 5.87
3.37 4.00 2.00 4.87 0.87 3.37 2.87
5.12 5.75 3.75 6.62 2.62 1.62 1.12
– 0.62 1.37 1.50 2.50 6.75 6.25
– – 2.00 0.87 3.12 7.37 6.87
– – – 2.87 1.12 5.37 4.87
– – – – 4.00 8.25 7.75
– – – – – 4.25 3.75
– – – – – – 0.50
– – – – – – –

5) = 9.11; CD(˛=0.1) = 8.47

ML NB NBT SL RF M-E M-S

6.75 7.37+,© 5.37 8.25+,© 4.25 – 0.50
6.25 6.87 4.87 7.75+,© 3.75 0.50 –

0.05) = 8.47; CD(˛=0.1) = 7.26

favour of Method(j) (Nemenyi test) or control method (Bonferroni–Dunn test).
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Table 6
Critical differences in values and differences in rankings between the Nemenyi and Bonferroni–Dunn tests when comparing RMSE, using the two proposals of this paper as
the control methods for the last test mentioned.

Method(i) Nemenyi test

Method(j)

AB BN C4.5 KS LSVM LMT ML NB NBT SL RF M-E M-S

AB – 8.12© 3.37 3.12 1.00 1.50 4.62 6.50 3.25 7.25 0.50 1.62 0.12
BN – – 4.75 5.00 9.12+,� 6.62 3.50 1.62 4.87 0.87 7.62 9.75+,� 8.00
C4.5 – – – 0.25 4.37 1.87 1.25 3.12 0.12 3.87 2.87 5.00 3.25
KS – – – – 4.12 1.62 1.50 3.37 0.12 4.12 2.62 4.75 3.00
LSVM – – – – – 2.50 5.62 7.50 4.25 8.25 1.50 0.62 1.12
LMT – – – – – – 3.12 5.00 1.75 5.75 1.00 3.12 1.37
ML – – – – – – – 1.87 1.37 2.62 4.12 6.25 4.50
NB – – – – – – – – 3.25 0.75 6.00 8.12 6.37
NBT – – – – – – – – – 4.00 2.75 4.87 3.12
SL – – – – – – – – – – 6.75 8.87+,© 7.12
RF – – – – – – – – – – – 2.12 0.37
M-E – – – – – – – – – – – – 1.75
M-S – – – – – – – – – – – – –

CD(˛=0.05) = 9.11; CD(˛=0.1) = 8.47

Control method Bonferroni–Dunn test

Compared method

AB BN C4.5 KS LSVM LMT ML NB NBT SL RF M-E M-S

M-E 1.62 9.75+,� 5.00 4.75 0.62 3.12 6.25 8.12+,� 4.87 8.87+,� 2.12 – 1.75
1.37

CD(˛=

S e is in

i
t

6

n
e

T
C
t

S

M-S 0.12 8.00+,� 3.25 3.00 1.12

tatistically significant differences with ˛ = 0.05 (�) and ˛ = 0.1 (©). +, the differenc

n comparison to other studies to obtain the growth/no-growth
ransition.
.4. S. flexneri

S. flexneri is an important causative agent of gastrointestinal ill-
ess [65]. An incomplete factorial design was used to assess the
ffects of temperature (12, 15, 19, 28, 37 ◦C), initial pH (5.5, 6.0,

able 7
ritical differences in values and differences in rankings between the Nemenyi and Bonf
he control methods for the last test mentioned.

Method(i) Nemenyi test

Method(j)

AB BN C4.5 KS LSVM LMT

AB – 7.87 5.25 0.12 0.62 2.12
BN – – 2.62 7.75 8.50+,© 5.75
C4.5 – – – 5.12 5.87 3.12
KS – – – – 0.75 2.00
LSVM – – – – – 2.75
LMT – – – – – –
ML – – – – – –
NB – – – – – –
NBT – – – – – –
SL – – – – – –
RF – – – – – –
M-E – – – – – –
M-S – – – – – –

CD(˛=0.05) = 9.11; CD(˛=0.1) = 8.47

Control method Bonferroni–Dunn test

Compared method

AB BN C4.5 KS LSVM LMT

M-E 2.37 10.25+,� 7.62+,© 2.50 1.75 4.50
M-S 1.25 9.12+,� 6.50 1.37 0.62 3.37

CD(˛=

tatistically significant differences with ˛ = 0.05 (�) and ˛ = 0.1 (©). +, the difference is in
4.50 6.37 3.12 7.12 0.37 1.75 –

0.05) = 7.89; CD(˛=0.1) = 7.26

favour of Method(j) (Nemenyi test) or control method (Bonferroni–Dunn test).

6.5, 7.0, 7.5), sodium chloride (0.5, 2.5, 4.0%) and sodium nitrite
(0, 50, 100, 200, 1000 ppm). Data is obtained from 375 cultures,
representing 123 variable combinations. The number of replicate

cultures tested for each variable combination is given in Table 2 in
the referenced paper [65]. This data was used to derive the models
to predict the anaerobic growth of S. flexneri as a function of tem-
perature, sodium chloride and sodium nitrite concentrations and
initial pH. The growth kinetics data for each variable combination

erroni–Dunn tests when comparing AUC, using the two proposals of this paper as

ML NB NBT SL RF M-E M-S

4.62 4.25 4.12 6.00 0.75 2.37 1.25
3.25 3.62 3.75 1.87 7.12 10.25+,� 9.12+,�

0.62 1.00 1.12 0.75 4.50 7.62 6.50
4.50 4.12 4.00 5.87 0.62 2.50 1.37
5.25 4.87 4.75 6.62 1.37 1.75 0.62
2.50 2.12 2.00 3.87 1.37 4.50 3.37
– 0.37 0.50 1.37 3.87 7.00 5.87
– – 0.12 1.75 3.50 6.62 5.50
– – – 1.87 3.37 6.50 5.37
– – – – 5.25 8.37 7.25
– – – – – 3.12 2.00
– – – – – – 1.12
– – – – – – –

ML NB NBT SL RF M-E M-S

7.00 6.62 6.50 8.37+,� 3.12 – 1.12
5.87 5.50 5.37 7.25 2.00 1.12 –

0.05) = 7.89; CD(˛=0.1) = 7.26

favour of Method(j) (Nemenyi test) or control method (Bonferroni–Dunn test).



Soft Co

a
n
a
r
t
c

J.C. Fernández et al. / Applied

re summarized in Table 2 referenced. Growth of S. flexneri was
ot observed under the conditions corresponding to 40 of the vari-

ble combinations studied. Additional 15 variable combinations
esulted in environments under which some of the replicate cul-
ures grew, while others did not; these are listed in Table 3 in the
ited paper.

Fig. 6. CCR, S, RMSE and AUC measurements on Box Plots
mputing 11 (2011) 534–550 545

7. Results
In Table 3 we present the values of the average and the standard
deviation for CCR, S, RMSE and AUC in 30 runs of all the experiments
performed, where MPENSGA2E and MPENSGA2S methodologies
are denoted by M-E and M-S, respectively. It can be seen that the

for Listeria monocytogenes and Escherichia coli R31.
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-E methodology produces good results with respect to CCR, S,
MSE and AUC. In fact, from a purely descriptive point of view, M-E
ethodology obtains the best result in CCR in two out of the four
atasets analyzed and the second best result in another. Also it
btains the best result in S in two datasets. The best result in RMSE
n two datasets, and the second best result in the other two remain-
ng. And finally, it obtains the best AUC values in three out of the

Fig. 7. CCR, S, RMSE and AUC measurements on Box Plo
mputing 11 (2011) 534–550

four datasets and the second best results in the remaining dataset.
On the other hand, the mean results obtained throughout the

datasets show that the M-E methodology is the best one for S,

RMSE and AUC measures, and the second best one for CCR. The M-S
methodology is the best one for AUC.

Table 3 also include the mean ranking, (R̄), of each method in
each dataset and for each methodology (R = 1 for the best perform-

ts for Staphylococcus aureus and Shigella flexneri.
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ng method, R = 13 for the worst one and summing 0.5 to the ranked

osition in case of tie). The M-E method obtains the best mean rank-

ng for CCR, S, RMSE and AUC measures (R̄ = 2.25, R̄ = 2.50, R̄ = 1.62,
¯ = 2.25, respectively). Also, the results for the best individual or

odel obtained with the MPENSGA2 methodologies in 30 runs are
hown for each pathogen.

ig. 8. Pareto front in training in (S,E) space and associated values in testing in (S,CCR) spa
exneri in one specific run.
mputing 11 (2011) 534–550 547

To quantify whether a statistical difference exists between any

of these algorithms, a procedure for comparing multiple classifiers
over multiple datasets is employed [73]. This procedure begins with
the Friedman test [74], using the CCR, S, RMSE and AUC rankings of
all the methods as the test variables. This test is a non-parametric
equivalent to the repeated measures ANOVA test, and, in our case,

ce for Listeria monocytogenes, Escherichia coli R31, Staphylococcus aureus and Shigella
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t is applied since a previous evaluation of the CCR, S, RMSE and
UC values results in rejecting the normality and equality of the
ariances’ hypothesis. Applying this test to the average ranks in
able 3, the test shows that the effect of the method used for clas-
ification is statistically significant at a significance level of 5%, as
he confidence interval is C0 = (0, F0.05 = 2.03) and the F-distribution
tatistical values are FCCR = 3.76 /∈ C0, FS = 5.71 /∈ C0, FRMSE = 6.07 /∈ C0
nd FAUCC = 6.01 /∈ C0. Consequently, we reject the null-hypothesis
tating that all algorithms perform equally in mean ranking and a
ost hoc test is warranted for further investigation. On the basis
f this rejection, the Nemenyi post hoc test is used to compare
ll the classifiers among themselves. The differences in rankings
etween the different algorithms for CCR, S, RMSE and AUC mea-
ures and the results of the Nemenyi test for ˛ = 0.1 and ˛ = 0.05
an be seen in Tables 4–7, respectively, using corresponding crit-
cal values. By using this test, it can be seen that the M-E method
ignificantly outperforms the BayesNet method, BN, when using
ll the measures for ˛ = 0.05, and it outperforms SimpleLogistic, SL,
hen using RMSE measure for ˛ = 0.1. The M-S method significantly

utperforms the BayesNet method when using S and AUC measures
or ˛ = 0.05. However, it has been noted that the approach of com-
aring all the classifiers among themselves in a post hoc test is not
s sensitive as the approach of comparing all the classifiers to a
iven classifier (a control method) [73]. One approach of this lat-
er type of comparison is the Bonferroni–Dunn test. The results of
he Bonferroni–Dunn test for ˛ = 0.1 and ˛ = 0.05 can be seen in the
ame tables, using corresponding critical values for the two-tailed
onferroni–Dunn test. From the results of these tests, it can be
een that the M-E method significantly outperforms the BayesNet
ethod for ˛ = 0.05 when using all the measurements, the Multi-

ogistic, ML, when using CCR measure, the Naïve Bayes, NB, when
sing RMSE measure; and the SimpleLogistic when using S, RMSE
nd AUC measures. It outperforms Naïve Bayes, for ˛ = 0.1 when
sing S measure; the Simple Logistic when using CCR measure; and
4.5 when using the AUC measure. The M-S method significantly
utperforms BayesNet for ˛ = 0.05 when using all measures except
CR, and, for ˛ = 0.1, it outperforms SimpleLogistic when using the
measure.

From all these results, it can be concluded that the M-E method
eads to a very competitive performance, obtaining the highest

ean rank when considering all the datasets and all the measures.
he statistical tests confirm that these differences are significant
hen the method is compared to the Bayes Net, MultiLogistic, Naive
ayes, C4.5 and Simple Logistic methods.

Figs. 6 and 7 show the Box Plots [75] for the CCR, S, RMSE and
UC measurements for each pathogen. The boxes show the lines at
he lower quartile, median, and upper quartile values of the met-
ics. The bottom and top bars show the metric values at 1.5-IQR
Interquartile Range) below the lower quartile value and 1.5-IQR
bove the upper quartile value, respectively. Outliers are data with
etric values beyond the ends of the two bars. For determinis-

ic algorithms we only have one result for each dataset, therefore
alues as lower and upper quartile and the smallest and largest
bservation cannot be represented. As we can see in Figs. 6 and 7,
n CCR, the degree of dispersion of M-E and R-F results is lower than
he degree of dispersion of the results generated by M-S. In S, the
egree of dispersion of M-E is, in general, lower than R-F and M-S.

n RMSE the degree of dispersion is low and is very similar for the
hree methodologies. In AUC, the degree of dispersion is also low
nd similar in all methodologies.

In Fig. 8, we can see the graphical results obtained for the

PENSGA2 algorithm for the datasets L. monocytogenes, E. coli R31,

. aureus and S. flexneri in the training (S,E) and the test (S,CCR)
paces. For the (S,E) space we select the Pareto front for one specific
un, out of the 30 realized for each dataset. Concretely the execu-
ion chosen is that which presents the best individual in Entropy
mputing 11 (2011) 534–550

in training, as Entropy and Sensitivity are the objectives that guide
MPENSGA2. On the (S,CCR) testing graphics, we show the S (Sensi-
tivity) and CCR (Accuracy) values throughout the testing set for the
individuals who are reflected in the (S,E) training graphics. Observe
that the (S,CCR) values do not form Pareto fronts in testing, and the
individuals that were in the first Pareto front in the training graph-
ics can now be found within the (S,CCR) space in a worse region. In
general the structure of a Pareto front in training is not maintained
in testing. Sometimes it is very difficult to obtain classifiers with a
high percentage of classification and a high percentage of sensitiv-
ity, and for this reason some fronts have very few individuals.

8. Conclusions

In this paper we study the improvement of the generalization
ability of neural classifiers with two classes aiming at maximizing
the percentage of correctly classified patterns for each class. The
main purpose is to optimize the accuracy, while keeping a balance
of individual performance with respect to each class of the problem.
The inclusion of the two-objective sensitivity and accuracy (S,CCR)
approach reveals a new standpoint to deal with classification prob-
lems. An Evolutionary Algorithm based on Pareto dominance and
hybridized with a modified local search algorithm has been applied
in order to optimize these two objectives.

It should be emphasized that the evolutionary process obtains
models of MLP networks with rising values of E and S at the begin-
ning of the evolution. Then, when high values of E and/or S in the
training set are reached, the MPENSGA2 methodologies obtains
Pareto fronts with high accuracy models without reducing the level
of sensitivity and vice versa.

Moreover, it can be noted that sensitivity values obtained by the
MPENSGA2E methodology are similar to and even better than the
values obtained with other well-known machine learning method-
ologies, and that greater classification accuracy in testing data are
obtained for the two classes of each problem. On the other hand,
the MPENSGA2S methodology also results in very high values of
CCR and S.

These methodologies have been applied to different datasets
from the field of predictive microbiology. The statistical results
obtained and the multiple means comparison tests analyzed make
MPENSGA2E a competitive method to be considered in this field,
where there is a high necessity of obtaining good classification
accuracy for both the growth and no-growth classes. This approach
can help predictive modellers to better define the growth bound-
aries of microorganisms and to model the microbial variability
associated to the conditions. In conclusion, the use of this method
constitutes a valuable alternative for mathematical modelling to
determine microbial growth probability under a certain set of con-
ditions.
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