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Abstract. Evolutionary Adaptive Defuzzification Methods are a kind of defuzzification methods based on using
a  parametrical  defuzzification  expression  tuned with  evolutionary  algorithms.  Their  goal  is  to  increase  the
accuracy of the fuzzy system without loosing its interpretability. They induce a kind of rule cooperation in the
defuzzification interface.
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This  paper  deals  with  Evolutionary  Adaptive  Defuzzification  Methods.  We  study  their  common  general
expression,  the different defuzzification methods that  can be obtained from it,  their  interpretation,  and their
accuracy. We consider  two applications  in order  to analyse their  accuracy in practice.  We get some useful
results for practical fuzzy systems designed by means of this kind of Intelligent Hybrid System.
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1      Introduction

Fuzzy Modeling (FM) designers try to find a trade-off between two edges: higher interpretability with lower accuracy
or lower interpretability with higher accuracy: Mamdani fuzzy systems versus TSK fuzzy systems.  Nowadays, there
is an increasing interest in the study of the trade-off between interpretability and accuracy in FM (Casillas, Cordón,
Herrera and Magdalena 2003a, b).

A way to find a balance between interpretability and accuracy is to employ parametric expressions for the fuzzy
system components in order to tune the behaviour of the system. Most of the parametric fuzzy system components
literature are related to the Defuzzification Interface.  This point is not singular since the interest in defuzzification
methods in  the framework of  fuzzy systems design has  been always significant.  Nowadays,  the interest  is  still
considerable, see (Leekwijck and Kerre 1999, Kandel and Friedman 2000, Wang and Luoh 2000, Roychowdhury and
Pedrycz 2001, Van Van Leekwijck and Kerre 2001, Grzegorzewski 2001, Patel and Mohan 2002, Oussalah 2002, Ma,
Roventa and Spircu 2003). Historically,  there have been many tendencies in the development of defuzzification
methods: initially, most of the methods were based on the fuzzy set geometry (Hellendoorn and Thomas 1993) or
statistical interpretations (Wierman 1997); later, parametric or adaptive defuzzification methods were proposed (Filev
1991, Filev and Yager 1993, Yager and Filev 1993, Bastian 1995, Jiang and Li 1996, Jin and von Seelen 1999, Kiendl
1997,  Kandel and Friedman 1998, Esogbue, Song and Hearnes II 2000). Adaptive methods employ one or more
parameters in their expression in order to modify the behavior of the defuzzifier or, in most cases, to get a higher
accuracy. In the most of the previous contributions, the values of the mentioned parameters were fixed by the authors
in order to get a  well known behavior, empirically determined or tuned with simple algorithms. Recently, some
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contributions consider evolutionary algorithms (Bäck, Fogel, and Michalewicz 1997) to adapt the parameters of the
adaptive defuzzification methods (Hong 1995, Song and Leland 1996, Jin and von Seelen 1999, Kim 2000, Huang,
Gedeon and Wong 2001, Kim, Choi and Lee 2002). We call them as Evolutionary Adaptive Defuzzification (EAD)
Methods.

This work deals with EAD methods, their general expression, the EAD methods derived in the specific literature
as  well  as  other  suitable  ones,  and  presents  an  empirical  study  to  analyse  their  accuracy  with  two  different
applications. We also study the interpretation of the parametric expressions.

In order to do that, this paper is organised as follows: Section 2 introduces the general common expression of
adaptive defuzzification methods, the different defuzzification methods that can be obtained from it and an initial
study of the interpretation of the parameters for the different approaches. Section 3 introduces the EAD methods and
describes the evolutionary algorithms employed. Section 4 is devoted to the experimental study with two different
applications. Finally, Section 5 points out some concluding remarks. Three appendices are also included presenting
the  rule  connectives  selected  for  the  experimental  study (Appendix  A),  the  description of  the  two  considered
applications (Appendix B), and some partial empirical results (Appendix C).

2      Adaptive Defuzzification Methods 

In this section, the general parametric EAD expression is shown as well as the defuzzification methods that could be
considered. Some of these methods have been already introduced in the specialised literature by different authors.
Finally, we present an interpretation of the parametric defuzzification approaches.

2.1    General expression of adaptive defuzzification methods

In this contribution, we consider Mamdani-type IF - THEN rules of the following form:

Ri : If Xi1  is Ai1 and ... and Xin is Ain then Y is Bi

with i=1 to M, and with Xi1 to Xin and Y being the input and output variables respectively, and with Ai1 to Ain and B
being the involved antecedents and consequent labels, respectively, of the rules.

In order to get the crisp output, the most employed technique in practice is to separately defuzzify every rule
inferred fuzzy set and to compute then an average. This way of working is named Mode B – FITA (First Infer, Then
Aggregate) (Cordon, Herrera and Peregrín 2000). The expression is:

y0=
∑

i

N

hi⋅V i

∑
i

N

hi

, (1)

where hi  is the matching degree between the input variables and the rule antecedent fuzzy sets, and Vi represents a
characteristic value of the fuzzy set inferred from rule Ri, the Maximum Value (MVi) or the Gravity Center (GCi).
Their particular expressions are:

• MV of a fuzzy set B’:

y1 = Min{z/ µB’ (z) = Max µB’ (y)}     

y2 = Max{z/ µB’ (z) = Max µB’ (y)}

y 0  = 
y 1 y 2

2
 (2)

• GC of the fuzzy set B’.



y 0  = 
∫
Y

y⋅μB '  y dy

∫
Y

μB '  y dy
 (3)

The general expression that generates some parametric defuzzification methods is:

y0=
∑

i

N

f hi ⋅V i

∑
i

N

f hi 

,  (4)

where f(hi) is a functional of the matching degree. 

The functional term can be defined with a single parameter, α, or with a set of parameters αi, corresponding to one
parameter for each rule Ri,  i=1 to M,  in the knowledge base. Moreover, the functional term could be defined as a
product or as a power among other possible functions. 

In this paper, combining both functional operators and the aforementioned single or several parameters fashion,
the functional term could take any of these four forms:

f hi =hi⋅α ,

f hi =hi
α ,

(5)

f hi =hi⋅αi ,

f hi =hi

αi .

(6)

However, it doesn’t make sense to consider  the form f hi =hi⋅α  as the effect of α is cancelled in the final
expression.

2.2    Derived defuzzification methods 

Combining the three aforementioned possibilities with the two characteristic values, MV or GC, we obtain six cases.
Below, we show the expressions of the defuzzification methods obtained (noted as D3 to D8). We  have added as D1

and D2 the well  known non adaptive defuzzification methods expressions named MV and GC weighted by the
matching respectively which can be taken as the non parametrical version of the adaptive methods considered.

• D1 , MV weighted by hi: • D2 , GC weighted by hi:
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• D5 : • D6 :
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• D7 : • D8 , Accurate GC:
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The functional term f hi =hi⋅αi  has been employed in the specialised literature together with a learning
algorithm based on gradient descent (Pal and Pal 1999). In the same way the Accurate GC (Kim 2000, Kim, Choi and
Lee 2002) (D8) was proposed together with an evolutionary algorithm to learn its parameters.

2.3 Interpretation of the parametric defuzzification methods. Relationship with other
approaches

The role of the individual parameter α is interpreted as a modulation of the matching influence, which can be improved
or attenuated. We should note that this modulation is only linear for the product case.

The interpretation is quite different when we use one parameter for each rule of the Knowledge Base. Instead of a
global modulation of the matching influence, we are changing the local action of each rule defuzzified with a product
or a power functional. We are going to show the difference between each of these functional terms as follows.

The product functional term with a different parameter for each rule has the effect of weighted rules (Cho and
Park 2000, Pal and Pal 1999). The value αi associated to rule Ri gets the meaning of how significant or important is
that rule for the inference process. An improved accuracy is the system modeling goal when using this kind of rule.
The following is an example of a set of weighted rules, where the weights are wi:

If X11  is A11 and ... and X1n is A1n then Y is B1 with w1

If X21  is A21 and ... and X2n is A1n then Y is B2 with w2

...

If Xm1  is Am1 and ... and Xmn is Amn then Y is Bm with wm

The rule weight adaptation process will produce a rule subset with better cooperation among the rules composing
it. This fact could be of special interest when the rule set have been generated employing a quick data-driven fuzzy
rule generation method. These methods usually look for the best individual rule performance, and generate a rule base
with a low cooperation degree. Employing the product functional and a parameter learning process will be equivalent
to look for a subset of rules with the best global cooperation.

As regards the power functional  case, the effect  on defuzzification is  equivalent to  one of  the well known
mechanisms for modifying the linguistic meaning of the rule structure, the use of linguistic modifiers (Cordón, del
Jesus and Herrera 1998,  Liu, Chen and Tsao 2001). The goal of linguistic rule modifiers is also to improve the
accuracy of the model slightly relaxing the rule  structure by changing the meaning of the involved labels.  The
defuzzifier  parameter  plays  the  same role  changing the  shape  of  the  membership  function associated  with  the
linguistic label antecedents of the rule, as shown in Figure 1, where h is the matching for the trapezoidal fuzzy set
when the input value is  e.  We must point out that this effect does not modify the shape of the inferred fuzzy set
because the matching is only modified for defuzzification effects.
 



• When the fuzzy set is  modified by power values greater than one, the membership function is  concentrated
(Zadeh 1973). The modified matching will be h' in Figure 1. Examples of these kind of linguistic modifiers are
absolutely, very, much more, more and plus (Huang, Chen and Liu 1995, Huang, Chen and Liu 1999).

Figure 1. Graphical representation of the  effect produced by the power based linguistic modifier
 on the defuzzification process.

• On the opposite, when the fuzzy set is modified with values below one, the membership function is expanded or
dilated (Zadeh 1973). Observing Figure 1, the modified matching will now be h''. Sometimes, these linguistic
modifiers are named as minus, more or less and slightly (Huang, Chen and Liu 1995, Huang, Chen and Liu 1999).

Consequently, when considering a parameter for each rule, both functional terms taken into account change the
structure of the individual rules of the Knowledge Base, using weights or modifying the linguistic meaning of the
membership functions involved in the rules for defuzzification effects.

3.      Evolutionary Adaptive Defuzzification Methods

As said, we call EAD Methods to adaptive defuzzification methods where evolutionary algorithms are employed tune
the parameters. 

In this contribution, two different evolutionary algorithms are considered to put this task into effect:

• (1+1)-Evolutionary Strategy, (1+1)-ES (Bäck and Schwefel 1995), for the single parameter functional case, and 
• CHC algorithm (Eshelman 1991) with real coding for the functional that uses an individual parameter for each

rule of the rule base.

Important differences between the amount of variables to optimise make us employ the two aforementioned
different evolutionary algorithms. On the one hand, when we deal with the adaptation of  a single parameter (D3 and
D4), a local search with high efficiency is performed by the (1+1)-ES evolutionary model. On the other hand, when
several αi  have to be derived, i.e. the search space is composed of M parameters, one for each rule in the rule base,
(D5,  D6,  D7 and D8),  the CHC algorithm is considered as  an evolutionary model with a  good trade-off between
diversity and convergence in high-dimensional search spaces.

Evolutionary Strategies  (Bäck and Schewefel 1995)  were initially developed by Rechenberg and Schwefel in
1964 as experimental optimisation techniques. The first ES algorithm, the so-called (1+1)-ES, was based on working
with only two individuals per generation, one parent and one descendent. (1+1)-ES is based on encoding the possible
optimisation problem solution into a real-coded string. This parent string is evolved by applying a mutation operator
over each one of its components. The mutation strength is determined by a value σ, a standard deviation of a normally
distributed random variable. This parameter is associated to the parent and it is evolved in each process step as well.
If the evolution has been performed successfully, the offspring obtained by mutation is better adapted than its parent,



then the descendent substitutes it in the next generation. The individual adaptation is measured by using a fitness
function. The process is iterated until a determined finishing condition is satisfied.

On the other hand, during each generation, the CHC algorithm (Eshelman 1991) uses a parent population of size
M to generate an intermediate population of M individuals, which are randomly paired and used to generate M
potential offspring. Then, a survival competition is held where the best M chromosomes from the parent and offspring
populations are selected to form the next generation.

No mutation is applied during the recombination phase. Instead, when the population converges or the search
stops making progress (i.e., the difference threshold has dropped to zero and no new offspring are being generated
which are better than any member of the parent population), the population is reinitialised. The restart population
completely consists of random individuals but one instance of the best individual found so far (Eshelman, Mathias and
Schaffer 1997).

Although CHC was conceived for binary-coded problems, there are real-coded versions, like the one we employ
in this work. In these cases, the BLX-α crossover (α =0.5) is employed in order to recombine the parent's genes. The
Hamming distance is  computed by translating the real-coded genes into strings and taking into account if  each
character is different or not. Only those string pairs which differ from each other by some number of bits (mating
threshold) are mated. The initial threshold is set to L/4 where L is the length of the string. When no offspring is
inserted into the new population, the threshold is reduced by 1.

4      Experimental Study 

In this section, we present the experimental study developed in order to study the accuracy of the EAD methods
considered. We will build several fuzzy models combining the defuzzification methods presented in Section 2.2.2
with a representative set of rule connectives (see Appendix A) to solve the two different applications described in
Appendix B.

4.1 Comparison methodology

We consider a usual FM performance measure, the Mean Square Error (MSE(·)):

MSE   i , j    = 

1
2

  ∑
k=1

M

  yk  - S [ i,j ] xk 
2

N

                                         (15)

where S[i,j] denotes the fuzzy model whose Inference System uses the rule connective Ii, and whose Defuzzification
Interface is based on the defuzzification method Dj. This measure employs a set of system evaluation data formed by
N pairs of numerical data Zk=(xk, yk), k=1,...,N, with xk being the values of the input variables, and with yk  being the
corresponding values of the associated output variables (see Appendix B).

We consider the Improvement Percentage (IP) index whose expression is:

IP  i , j =100×1−
MSE S  i , j 

MSE  S NA i , k 
                                            (16)

that is, the improvement shown by the MSE(·) of a fuzzy model S(·) built with a rule connective Ii and a specific
defuzzification method Dj with respect to the system without tunable parameters, SNA(i,k), where k is 1 for the MV or
2 for the GC expressions according to the characteristic value used by the respective parametric one. 

The fuzzy models considered employ the aforementioned eight defuzzification methods combined with the seven
rule connectives described in the Appendix A. The conjunction operator was always the minimum t-norm, a robust
conjunction operator as showed in (Cordón, Herrera and Peregrín 1997).

The FM applications used for this analysis are the estimation of the low voltage network real length in villages
(called E1) and the estimation of  the electrical  medium voltage network maintenance cost in  towns (called E2)



(Cordón, Herrera and Sánchez 1999). Both applications are briefly described in Appendix B. The fitness function
employed was the aforementioned Mean Square Error. It has been applied over the training data set (see Appendix B).

For the (1+1)-ES, the stopping condition is not to improve the best solution found so far during 200 consecutive
iterations. The CHC has been run during 20000 trials. The population size was 50 (randomly initialized with the
exception of a  single chromosome with all the genes initialised to 1), and a BLX-α crossover with  α = 0,5 was
employed as we mentioned before. The initial threshold was set to L/4, with L being the chromosome length (L=24 in
E1 and L=66 in E2).  

The searching interval for α in both evolutionary algorithms was fixed to [0,5]. This decision is justified by the
following interval study:

• For the functional expression hi
α  (also valid for αi): 

o hi
α , α∈ [1,∞): soft attenuation of the hi value,

o hi
α , α∈ [0,1]: soft enhancement of the hi value.

• For the functional expression α ⋅ hi :
o α ⋅ hi , α∈ [1,∞): strong enhancement of the hi value,
o α ⋅ hi , α∈ [0,1]: strong attenuation of the hi value.

The interval [0,5] allows us to attenuate as well as enhance the matching degree. In the (1+1)-ES, the attenuation
is reasonably limited but the searching interval is also reduced, so the accuracy will be benefited with a lower number
of iterations. The aforementioned interval reduces the searching interval, so the speed of convergence will be better.

The  initial  values  for  the  parameters  are  equal  to  1,  that  is,  equivalent  to  the  original  non  parametric
defuzzification method.

We also achieved five trials for every fuzzy model tuning process, running them with five different seeds for the
random number generator. Thus, the MSE considered was computed as the arithmetic mean of the five results.

4.2    Results and analysis

Tables 9 and 10 in Appendix C show the MSE obtained for applications E1 and E2 respectively, employing the non
parametric defuzzification methods, D1 and D2. The values shown in those tables are the reference in order to measure
the improvements of the EAD methods.

Tables 1 and 2 show the IP obtained for the single parameter defuzzification methods, for the training and test
data sets.

Table 1. IP of the MSE for the FM of E1 with single parameter EAD methods.

Training Test
R.C. D3 D4 D3 D4

I1 0,90123 10,35227 4,66922 7,79387
I2 1,66281 12,69176 6,72546 9,60671
I3 1,69698 1,67122 6,78149 6,78725
I4 1,69698 14,72528 6,78149 11,12842
I5 1,69698 0,66757 6,78149 3,97103
I6 1,66281 0,25658 6,72546 2,51457
I7 1,66281 0,00555 6,72546 -0,26881

Tables 3 and 4 for application E1 and Tables 5 and 6 for application E2 show the IP of the MSE of multiple
parameter EAD methods, while Tables 3 and 5 do so for the MV based methods and Tables 4 and 6 for the GC based
ones.

Table 2. IP of the MSE for the FM of  E2 with single parameter EAD methods.



Training Test
R.C. D3 D4 D3 D4

I1 8,06282 28,76866 9,29941 27,38372
I2 3,88982 34,48842 6,05165 33,07418
I3 7,77523 7,79119 10,15062 10,18228
I4 7,77523 39,43767 10,15062 37,97787
I5 7,77523 19,25580 10,15062 18,31686
I6 3,88982 19,25580 6,05165 18,31686
I7 3,88982 49,70895 6,05165 44,05140

Table 3. IP of the MSE for the FM of  E1 with multiple parameter AED methods based on the MV.

Training Test
R.C. D5 D6 D5 D6

I1 14,18820 18,10597 7,86923 7,79620
I2 14,44577 20,10201 8,80105 5,14748
I3 14,15707 20,07103 2,65990 6,31867
I4 14,15707 20,07103 2,65990 6,31867
I5 14,15707 20,07103 2,65990 6,31867
I6 14,44577 20,10201 8,80105 5,14748
I7 14,44577 20,10201 8,80105 5,14748

Table 4. IP of the MSE for the FM of  E1 with multiple parameter AED methods based on the GC.

Training Test
R.C. D7 D8 D7 D8

I1 2,18176 10,42146 1,92474 7,71026
I2 3,00536 12,87297 2,85673 9,52972
I3 14,17298 20,07499 7,55348 6,22153
I4 3,80224 15,09013 3,79295 11,18154
I5 14,40167 17,45240 8,27327 -1,01876
I6 14,45836 16,95575 8,13563 -1,78539
I7 16,03466 16,57746 6,91716 1,96117

Table 5. IP of the MSE for the FM of E2 with multiple  parameter EAD methods based on the MV.

Training Test
R.C. D5 D6 D5 D6

I1 56,63170 61,39146 61,38098 65,17136
I2 54,66390 58,43074 60,19666 63,73250
I3 55,33593 59,83568 60,54732 64,61813
I4 55,33593 59,83568 60,54732 64,61813
I5 55,33593 59,83568 60,54732 64,61813
I6 54,66390 58,43074 60,19666 63,73250
I7 54,66390 58,43074 60,19666 63,73250

Table 6. IP of the MSE for the FM of E2 with multiple parameter EAD methods based on the GC.

Training Test
R.C. D7 D8 D7 D8



I1 24,06131 28,88662 21,65394 27,44477
I2 29,12648 34,86772 27,00117 33,41484
I3 55,24824 59,93250 60,59673 64,81639
I4 33,72583 40,14250 31,75977 38,71634
I5 61,24516 64,84529 64,39076 67,25277
I6 61,23801 64,85135 64,42411 67,18371
I7 72,04719 77,80156 72,00969 77,23946

Finally,  Table 7  shows the global  arithmetical  means of  the  IP for  the different  functional  terms for  both
applications. 

Table 7. Arithmetical means of the IP for the different functional terms.

Training Test
E1 E2 E1 E2

hi
α 3,66792 17,26889 6,19451 17,65781

hi⋅αi
12,00384 51,66596 5,83614 54,67494

hi

αi 17,71930 56,25130 5,42820 59,02082

Analysing the results, we can point out that:

• First, it is noticeable that the EAD methods improve the two classical well known defuzzification methods taken
as references. Thus, they are a good option in order to get improved accuracy in Linguistic FM keeping an
important interpretability level.

• The functional term with a single parameter for the whole expression presents worse results than the functional
terms with a parameter for each rule. When a single parameter is considered, we are adapting the influence of the
matching in the defuzzification method expression in a non linear way. 

The option with more degrees of freedom, a parameter per rule, allows us obtain more accuracy, but we must take
into account that we are extending the Knowledge Base structure. 

• The use of individual parameters for each rule could be accomplished with two different functional terms: power
and product. Power has presented larger improvements than product. Therefore, in our experimentation with the
two mentioned applications, the fact of modifying the linguistic meaning of the antecedents of each rule  for
defuzzification effects by the power function offers better improvements than the weighted rules associated to
the product function. 

5      Concluding Remarks

Some authors have introduced EAD methods in order to improve the accuracy of Mamdani FM with a low lost of
interpretability.  In this  work, we have studied their  common expression, the interpretability of employing these
parameters in the fuzzy system, and we have presented empirical results of  the performance of several EAD methods.

Depending on the way the modifying parameters are introduced, they can modulate the influence of the matching
degree, or extend the Knowledge Base structure in several ways.

It was empirically shown that the single parameter functional presents lower improvements in the accuracy than
the cases with a parameter for each rule. Nevertheless, the single parameter model keeps a better interpretability. 

The experimentation carried out in this study shows the high improvement of accuracy of the AED methods.
Their  use  may  improve  the  performance  of  any  fuzzy  system  as  the  AED  method  specifically  adapts  the
Defuzzification Interface to the specific problem. 



As regards the two functional approaches, power and product, we got slightly better results with the power
function, but it would be necessary to make a deeper study with more applications to get a sound conclusion. 
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Appendix A: Rule Connectives 

The rule connectives used are shown in this appendix. The different names for these operators are to be found in
(Dubois and Prade 1991, Magrez and Smets 1989).

Implication Functions:

S-Implications :

Kleene-Dienes : I1 (x,y) = Max (1-x, y) (17)

Reichenbach-Mizumoto : I2 (x,y) = 1-x + x·y (18)
R-Implications :

Gödel : I 3 x,y   = {1,      if x≤ y
y,   otherwise

(19)



S and R-Implications :

Lukasiewicz : I4 (x,y) = Min (1, 1-x+y) (20)

T-norms: We use the following t-norms as rule connectives (Cordón, Herrera and Peregrín 1997, Gupta and Qi 1991):

Logical Product (Minimum) : I5 (x,y) = Min (x, y) (21)

Hamacher Product : I 6 x,y   = 
x⋅y

x+y-x⋅y
(22)

Algebraic Product : I7 (x,y) = x·y (23)

Appendix B: Applications

Two electrical distribution problems described in (Cordón, Herrera and Sánchez 1999) have been selected to analyse
the performance of the EAD methods in FM.

• The first application, E1, is the estimation of the low voltage network real length in rural villages. 
• The second application, E2, is the estimation of the electrical medium voltage network maintenance cost in

a town.

E1  Application: The data set has two inputs and a single output from 495 villages. The domains of the input
variables are [1,320] and [60,1673] respectively. The output variable takes values in the interval [80,7675]. The input
and output variable domains have been partitioned with seven labels {ES, VS, S, M, L, VL, EL} as shown in Figure 2,
with the following meaning:.

ES is extremely small, VS is very small,
S is small, M is medium,
L is large, VL is very large, and
EL is extremely large.

Figure 2.  Fuzzy partition considered for the input and output variables of E1

The rule base, composed of 24  linguistic rules shown in Table 8, has been obtained with the Wang and Mendel
method (Wang and Mendel 1992), from a data training set of the 80% of the original available data, that is, 396
villages taken randomly.

Table 8. Rules of application E1

x2

E
S

MS S M L ML EL

E
S

MS M
S

S MS M

MS E
S

MS M
S

L S L

x1 S MS M S S L
M MS S M

L
E
L

M



L M
M
L

EL S

The evaluation of the different fuzzy models composed of the EAD methods have been carried out with the
remainding 20% of the initial data set, that is, with data from 99 villages.

E2  Application: The second electrical distribution problem, E2, has got a data set of 1059 cities with four input
variables  and  a  single  output.  The  input  variable  domains  are  [0.5,11],  [0.15,8.55],  [1.64,142.5]  and  [1,165]
respectively, while the output variable domain is  [0, 8546.030273]. The fuzzy partition employed for inputs and
output has 5 labels {MP, P, M, G, MG} (see Figure 3), where:

MS is very small, L is large,
S is small, VL is very large.
M is middle,

0

2

S M L VLVS

3 7 96 8 105

1

1 4
Figure 3. Fuzzy partition considered for the input and output variables of E2

The rule base comprised by 66 linguistic rules has also been obtained with the Wang and Mendel method (Wang
and Mendel 1992),  from a  training data set  of the 80% of the original available data,  that  is,  847 cities  taken
randomly. The evaluation of the fuzzy models designed have been carried out with the remainding 20% of the initial
data set, that is, with data from 212 cities.



Appendix C: Partial Results

Table 9. MSE for the FM of E1 with the non adaptive defuzzification methods.

Training Test
D1 D2 D1 D2

I1 222191,82 2427093,12 222191,82 2427093,12
I2 221168,97 2217053,76 221168,97 2217053,76
I3 222764,50 222484,08 222764,50 222484,08
I4 222764,50 2037621,07 222764,50 2037621,07
I5 222764,50 223017,45 222764,50 223017,45
I6 221168,97 224996,06 221168,97 224996,06
I7 221168,97 228513,82 221168,97 228513,82

Table 10. MSE for the FM of E2 with the non adaptive defuzzification methods.

Training Test
D1 D2 D1 D2

I1 75413,91 3241108,74 83764,27 3087677,08
I2 72178,38 2942541,29 81879,53 2800832,95
I3 71483,38 71381,04 81322,35 81151,32
I4 71483,38 2691268,11 81322,35 2559428,33
I5 71483,38 81133,58 81322,35 87556,85
I6 72178,38 81133,58 81879,53 87556,85
I7 72178,38 128974,71 81879,53 124407,99


