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Abstract

Cost-sensitive classification is based on a set of weights defining the expected
cost of misclassifying an object. In this paper, a Genetic Fuzzy Classifier, which
is able to extract fuzzy rules from interval or fuzzy valued data, is extended to this
type of classification. This extension consists in enclosing the estimation of the
expected misclassification risk of a classifier, when assessed on low quality data,
in an interval or a fuzzy number. A cooperative-competitive genetic algorithm
searches for the knowledge base whose fitness is primal with respect to a prece-
dence relation between the values of this interval or fuzzy valued risk. In addition
to this, the numerical estimation of this risk depends on the entrywise product of
cost and confusion matrices. These have been, in turn, generalized to vague data.
The flexible assignment of values to the cost function is also tackled, owing to the
fact that the use of linguistic terms in the definition of the misclassification cost is
allowed.

1 Introduction
There are circumstances where the cost associated to a misclassification depends on the
class of the individual [22]. The paradigmatic example of this situation is a prescreen-
ing test for a serious disease, where the cost of a false positive (making a second diag-
nosis) is much lower than the opposite case (not detecting the problem) [37, 43, 51].

Following [62], there are two categories of cost-sensitive algorithms. According to
their assumptions about the cost function, these are:

1. Class-dependent costs, defined by a matrix of expected risks of misclassification
between classes [8, 23, 24, 62, 66, 67].

2. Example-dependent costs [1, 41, 42, 64, 65], where different examples may have
different misclassification costs even though they belong to the same class and
are also misclassified with the same class.

Notwithstanding these well known foundations, the particular problem of learning
fuzzy rule-based classifiers from the perspective of a minimum risk problem has been
seldom addressed, except for the particular case of “imbalanced learning” [10], which
has been thoroughly studied in the context of Genetic Fuzzy Systems (GFSs) [25].
Nonetheless, some authors have dealt with the concept of “false positives” [53, 58] or
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taken into account the confusion matrix in the fitness function [56]. There are also
publications related to fuzzy ordered classifiers [32, 33, 57], where an ordering of the
class labels defines, in a certain sense, a risk function different than the training error.
However, up to our knowledge, the matrix of expected misclassification costs has not
been an integral part of the fitness function of a GFS yet. In this paper we will address
this issue, and propose a new algorithm for obtaining fuzzy rule-based classifiers from
imprecise data with genetic algorithms, extending our own previous works in the sub-
ject [47, 48, 49] to problems with class-dependent costs or, in other words, to those
cases whose statistical formulation matches the “minimum risk” Bayes classification
problem, and the best classifier is defined by the maximum of the conditional risk of
each class, given the input [6].

The cost-based GFS that we introduce in this paper is based on a fitness function
which is computed by combining the confusion matrix with the expected misclassi-
fication cost matrix. It is remarked that we allow that both matrices are interval or
fuzzy-valued, and therefore the proposed algorithm can be applied to fuzzy data, the
misclassification costs can be fuzzy numbers, or both.

The problem of the flexible assignment of values to the cost function will also be
addressed; since the cost matrix can be fuzzy-valued, the use of linguistic terms in the
definition of the misclassification cost is allowed. This is useful for solving problems
akin to that situation where an expert considers, for instance, that the cost of not de-
tecting certain disease is “very high”, while a false positive has a “low” cost. We aim
to produce a rule base without asking first the expert to convert his/her quantification
into numerical values. In this regard, we are aware of previous published results about
the definition of a cost matrix comprising linguistic values, that have been recently
introduced in certain decision problems [40, 63]; however, to the best of our knowl-
edge there are not preceding works related to cost-sensitive classification where the
cost matrix is not numeric.

The structure of this paper is as follows: in Section 2 we introduce a fuzzy extension
of the minimum risk classification problem. In Section 3, we describe a GFS able to
extract fuzzy rules from imprecise data, minimizing this extended risk. In Section 4, we
have evaluated different aspects of the performance of the new algorithm. The paper
finishes with some concluding remarks, in Section 5.

2 A fuzzy extension of the minimum risk classification
problem

This section begins reviewing the basics of statistical decision theory, and then interval
and fuzzy extensions to this definition are proposed.

2.1 Statistical decision theory
In the following, we will use a bold face, lower case character, such as x, to denote a
random variable (or a vector random variable) and lower case roman letters to denote
scalar numbers or real vectors. Calligraphic upper case letters are crisp sets.

Let (x, c) be a random pair taking values in Rd × C, where the continuous random
vector x is the feature or input vector, comprising d real values, and the discrete variable
c ∈ C = {c1, c2, . . . , cC} is the class. Let f(x) be the density function of the random
vector x, and f(x|c) the density function of this vector, conditioned on the class c = c.

2
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P (ci) is the a priori probability of class ci, i = 1, . . . , C. P (ci|x) is the a posteriori
probability of ci, given that x = x.

A classifier Φ is a mapping Φ : Rd → C, where Φ(x) ∈ C denotes the class that an
object is assigned when it is perceived through the feature vector x. A classifier defines
so many decision regions Di as classes,

Di = {x ∈ Rd | Φ(x) = ci}, i = 1, 2, . . . C. (1)

Let us define a matrix B = [bij ] ∈ MC×C , where bij = cost(ci, cj) is the cost of
deciding that an object is of class ci when its actual class is cj . The performance of a
classifier can be measured by the average misclassification risk

R(Φ) =
C∑

i=1

∫

Di

C∑

j=1

bijP (cj |x)f(x)dx. (2)

Let the conditional risk be

R(ci|x) =
C∑

j=1

bijP (cj |x). (3)

The decision rule minimizing the average misclassification risk in Eq. (2) is

ΦB(x) = argmin
c∈C

R(c|x), (4)

so called “minimum risk Bayes rule” [6]. Observe that setting bij = 1 for i $= j and
bii = 0 causes that Eq. (2) is proportional to the expected fraction of misclassifications
of the classifier Φ, and

R(ci|x) =
∑

j∈{1,...,C}
i "=j

P (cj |x) = 1− P (ci|x), (5)

thus the best decision rule is

ΦB(x) = argmin
c∈C

R(c|x) = argmax
c∈C

P (c|x), (6)

the so called “minimum error Bayes rule” [6].
Generally speaking, the conditional probabilities P (cj |x) are unknown and thus

the minimum error and minimum risk Bayes rules cannot be directly applied. Instead,
in this work we will discuss how to make estimates of Eq. (2) from data, and search
for the knowledge base whose estimated risk is minimum. In the first place, we will
suggest how to define this estimator for crisp, interval and fuzzy data.

2.2 Estimation of the expected risk with crisp data and crisp costs
Let us consider a random sample or dataset D comprising N objects, where each object
is perceived through a pair comprising a vector and a number; the features of the k-th
object form the vector xk and the class of the same k-th object is cyk :

D = {(xk, yk)}Nk=1. (7)

3
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Let also Ni be the number of objects of class ci,

C∑

i=1

Ni = N. (8)

We will compute an approximated value of the expected risk of the classifier, on the
basis of the mentioned dataset. Let us assume first that there are not duplicate elements
in the sample; in this case, we can define a (crisp) partition {Vk}Nk=1 of the input space
such that each feature vector xk is in a set Vk. Our approximation consists in admitting
that all densities are simple functions, attaining constant values in the elements of this
partition.

Let I(x) ∈ {1, . . . , N} denote the index of the set in the partition {Vk}Nk=1 that
contains the element x, thus x ∈ VI(x) and I(xk) = k. We will approximate f(x) by

f̂(x) =
1

N ||VI(x)||
(9)

(where the modulus operator means Lebesgue measure, or volume) and

f̂(x|ci) =
δi,yI(x)

Ni||VI(x)||
(10)

where the symbol δ is Dirichlet’s delta. The risk of the classifier reduces to the expres-
sion that follows:

R̂(Φ,D) =
C∑

i=1

∫

Di

C∑

j=1

bij f̂(x|cj)P (cj)dx

=
C∑

i=1

∫

Di

C∑

j=1

bij
δj,yI(x)

Nj ||VI(x)||
Nj

N
dx

=
C∑

i=1

∑

{k|Φ(xk)=ci}

||VI(xk)||
C∑

j=1

bij
δj,yI(xk)

||VI(xk)||
1

N

=
C∑

i=1

∑

{k|Φ(xk)=ci}

C∑

j=1

1

N
bijδj,yk .

(11)

Eq. (11) can be expressed in terms of the confusion matrix of the classifier and the
cost matrix. Let S(Φ,D) = [sij ] be the confusion matrix of the classifier Φ on the
dataset D. sij is the number of elements in the sample for which the output Φ(xk) of
the classifier is ci and the class of the element is cyk . Let us express this as follows:

sij =
N∑

k=1

δci,Φ(xk)δj,yk , (12)

where we have use Kronecker’s delta both for natural numbers and elements of C.
Lastly, let

M(Φ,D) =
1

N
B ◦ S(Φ,D) (13)

where B ◦ S = [bijsij ] = [mij ] is the Hadamard product of the cost matrix and the
confusion matrix. Then

R̂(Φ,D) =
1

N

C∑

i=1

C∑

j=1

mij . (14)

4
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Observe that, in this crisp case, Eq. (14) can also be written as

R̂(Φ,D) =
1

N

N∑

k=1

cost(Φ(xk), cyk). (15)

2.3 Estimation of the expected risk with interval-valued data and/or
interval-valued costs

Suppose that the features and the classes of the objects in the dataset cannot be accu-
rately perceived, but we are given sets (other than singletons, in general) that contain
them:

D = {(Xk,Yk)}Nk=1 (16)

where Xk ⊂ Rd and Yk ⊂ {1, . . . , C}. The most precise output of the classifier Φ for
a set-valued input X is

Φ(X ) = {Φ(x) | x ∈ X}. (17)

In this case, the elements of the confusion matrix S are also sets. Let us define, for
simplicity in the notation, the set-valued function δ : C × P(C) → P({0, 1})

δa,A = {δa,b : b ∈ A} =






{1} {a} = A
{0} a $∈ A
{0, 1} else.

(18)

With the help of this function, the confusion matrix in the preceding subsection is
generalized to an interval-valued matrix S = [sij ], as follows:

sij =
N∑

k=1

δci,Φ(Xk)δj,Yk . (19)

Observe that this last expression makes use of set-valued addition and multiplication,

A+ B = {a+ b | a ∈ A, b ∈ B} (20)

A · B = {ab | a ∈ A, b ∈ B}. (21)

Given an interval-valued cost matrix B, Eq. (13) is transformed into

M = [mij ] =
1

N
B ◦ S (22)

and the set-valued risk is

R(Φ,D) =
1

N

C∑

i=1

C∑

j=1

mij . (23)

2.4 Estimation of the expected risk with fuzzy data and/or fuzzy
costs

In this paper we will use a possibilistic semantic for vague data. This consists in re-
garding the noise in the data as random and assuming that our knowledge about the
probability distribution of this noise is incomplete. In other words, a fuzzy set X̃ is

5
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meta-knowledge about an imprecisely perceived value, and provides information about
the probability distribution of an unknown random variable x,

P (x ∈ [X̃ ]α) ≥ 1− α. (24)

Observe that this definition extends the interval-valued problem mentioned before. In
this context, intervals are a particular case of fuzzy sets because we can regard an
interval X as an incomplete characterization of a random variable x for which our only
knowledge is

P (x ∈ X ) = 1. (25)

From the foregoing it can be inferred that, when both the features and the classes are
fuzzy, the dataset

D̃ = {(X̃k, Ỹk)}Nk=1, (26)

where X̃k ∈ F(Rd) and Ỹk ∈ F({1, . . . , C}) is a generalization of the interval dataset
seen in the preceding section. Regarding fuzzy sets as families of α-cuts, it can be
defined

[R̃(Φ, D̃)]α = R(Φ, [D̃]α). (27)

Nonetheless, from a computational point of view it is convenient to express this result
in a different form. In the first place, let us define the output of the classifier Φ for a
fuzzy input X̃ as the fuzzy set

Φ(X̃ )(c) = sup{α | Φ(x) = c, x ∈ [X̃ ]α}. (28)

Second, let us define the fuzzy function δ̃ : C × F(C) → F({0, 1}) as

δ̃a,Ã(0) = sup{Ã(b) : δa,b = 0} = max{Ã(c) | c ∈ C, c $= a}
δ̃a,Ã(1) = sup{Ã(b) : δa,b = 1} = Ã(a),

(29)

where we have used the extension principle for extending δ from C × C to C × F(C).
With the help of this function, we define the confusion matrix S̃(Φ, D̃) = [s̃ij ] of a
classifier Φ for a fuzzy dataset D̃ as

s̃ij =
N⊕

k=1

δ̃ci,Φ(X̃k)
) δ̃j,Ỹk

, (30)

where
˜(A⊕B )(x) = sup{α | x = a+ b, a ∈ [Ã]α, b ∈ [B̃]α} (31)

˜(A)B )(x) = sup{α | x = ab, a ∈ [Ã]α, b ∈ [B̃]α}. (32)

Given a fuzzy cost matrix B̃, the sum of the elements of the entrywise product of S̃
and B̃ is proportional to the expected risk of the classifier:

M̃ = [m̃ij ] =
1

N
B̃ ◦ S̃ (33)

and

R̃(Φ, D̃) =
1

N

C⊕

i=1

C⊕

j=1

m̃ij . (34)

6
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3 A GFS for imprecise data and linguistic costs
In this section we will detail the computational steps needed for obtaining a classifier
Φ from a dataset D̃. The classifier has to optimize the risk R̃(Φ, D̃), and satisfy the
following properties:

• The classification system is based on a Knowledge Base (KB) comprising de-
scriptive fuzzy rules [16, 17], and the linguistic terms in these rules are associ-
ated to fuzzy partitions of the input features. We will assume that these partitions
do not change during the learning, to preserve their linguistic meaning. The in-
ference mechanism defined in [48] will be used, as it fulfills Eq. (28).

• The expected risk is fuzzy-valued and thus conventional genetic algorithms can-
not be applied without alterations. In this paper we will use a cooperative-
competitive algorithm that searches for the set of rules whose combined fitness
evolves toward the primal elements of certain order, defined by a precedence
relation between interval or fuzzy values [48].

3.1 Fuzzy inference with vague data
Let us recall the extension of fuzzy inference to vague data introduced in [48], and
rewrite it with the notation used in this paper. It is remarked that this inference cannot
be applied to arbitrary fuzzy data. We will assume that we can attribute a possibilitic
meaning to the vague information [18], thus all fuzzy sets are normal.
Let x = (x1, . . . , xd) be a vector of features. Consider a KB comprising M rules

R1 : If x is Ã1 then class is cq1
· · ·

RM : If x is ÃM then class is cqM ,
(35)

where Ãr is a fuzzy subset of Rd. Generally speaking, the expression “x is Ãr” will
be a combination of asserts of the form “xp is Ãrq” by means of different logical
connectives, where the terms Ãrq are fuzzy subsets of R that have been assigned a
linguistic meaning, and the membership function of Ãr models the degree of truth of
this combination.

Given a precise observation x of the features of an object, the classification system
assigns to this object the class given by the consequent of the winner rule Rw, where

w = arg max
r=1...M

Ãr(x) (36)

and the output of the classifier is Φ(x) = cqw . If the input is the imprecise value X̃ ,
there is a fuzzy set of winner rules,

W̃(X̃ )(r) = sup{α | r = arg max
r=1...M

Ãr(x), x ∈ [X̃ ]α} (37)

and the output of the classifier is a normal fuzzy subset of C,

Φ̃(X̃ )(c) = sup{α | c = cq
argmax Ãr(x)

, x ∈ [X̃ ]α}. (38)

7
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3.2 Cooperative-competitive algorithm
The genetic algorithm that we will define in this section is inspired by [34], and gener-
alizes to linguistic costs those Cooperative-Competitive Genetic Algorithms introduced
in [47, 48] for error-based classification with imprecise data. Similar to this reference,
each chromosome encodes the antecedent of a rule, and the individuals in the popula-
tion cooperate to form a KB. Likewise, the consequents of the rules are not subject to
evolution; a deterministic function of the antecedent is used instead. However, in [34],
the distribution of the fitness among the rules consisted in assigning to each individual
the number of instances in the dataset that are well classified by its associated rule: the
one formed by the antecedent encoded in the chromosome and a consequent obtained,
in turn, with the mentioned deterministic procedure. On the contrary, in this work the
fitness of the KB is distributed among the individuals in such a way that the sum of the
fitness of all the chromosomes in the population is a set that contains the expected risk
of the classifier, and the fitness of an individual is an interval or a fuzzy set bounding
the average risk of the corresponding rule. Finally, in both ref. [34] and this work,
the competition is based on the survival of the fittest; those rules that cover a higher
number of instances that are compatible with their consequents have better chances of
being selected for recombination.

3.2.1 Genetic representation and procedure for choosing consequents

As we have mentioned before, chromosomes only contain the antecedents of the rules.
Following [29], a linguistic term is represented with a chain of bits. There are as many
bits in the chain as different terms in the corresponding linguistic partition. If a term
appears in the rule, its bit has the value ‘1’, or ‘0’ otherwise. For example, let {Low,
Med, High} be the linguistic labels of all features in a problem involving three input
variables. The antecedent of the rule

If x1 is High and x2 is Med and x3 is Low
then class is c,

is codified with the chain 001 010 100. This encoding can be used for representing rules
for which not all variables appear in the antecedent, and also for ‘OR’ combinations of
terms in the antecedent. For example, the rule

If x1 is High and x3 is Low then class is c,

is codified with the chain 001 000 100, and the rule

If x1 is (High or Med)
and x3 is Low
then class is c,

will be assigned the chain 011 000 100.
With respect to the definition of the consequent, the alternative with lower risk is

preferred. This generalizes the most common procedure, which is selecting the alter-
native with higher confidence. The expression of the confidence of the fuzzy rule

If x is Ã then class is c,

8
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on a crisp dataset D = {(xk, yk)}Nk=1, is

confidence(Ã, c,D) =

∑
k δcykÃ(xk)∑

k Ã(xk)
, (39)

and thus given an antecedent Ã the class c is chosen that fulfills

c = arg max
i=1,...,C

confidence(Ã, ci,D). (40)

Observe that the denominator of Eq. (39) does not depend on c and it can be removed
without changing the result of Eq. (40). Let us use the word “compat” for denoting the
degree of compatibility between a rule and the dataset D:

compat(Ã, c,D) =
∑

k

δcykÃ(xk), (41)

arg max
i=1,...,C

confidence(Ã, ci,D) = arg max
i=1,...,C

compat(Ã, ci,D). (42)

This simplification is useful for generalizing expression in Eq. (39) to imprecise data.
Given our interpretation of a fuzzy membership, we assume that there exist unknown
values xk, yk and our knowledge about them is given by the fuzzy sets X̃k, Ỹk (see Eq.
(24)), thus eq. (41) becomes

˜compat(Ã, c, D̃)(t) =

max{α | t = compat(Ã, c,D), xk ∈ [X̃k]α, yk ∈ [Ỹk]α}
(43)

where
Ã(X̃ )(t) = sup{α | t = Ã(x), x ∈ [X̃ ]α}. (44)

We propose to similarly define the risk of the same fuzzy rule seen before, given a
cost matrix B = [bij ], as

risk(Ã, c,D, B) =
∑

k

bcykÃ(xk). (45)

thus the preferred consequent is

c = arg min
i=1,...,C

risk(Ã, ci,D, B). (46)

The generalization of this expression to a fuzzy dataset D̃ = {(X̃k, Ỹk)}Nk=1 and a
fuzzy cost matrix B̃ = [̃bij ] is

r̃isk(Ã, c, D̃, B̃)(t)=max{α | risk(Ã, c,D, B) = t,

xk ∈ [X̃k]α, yk ∈ [Ỹk]α, bij ∈ [̃bij ]α for all i, j, k },
(47)

which is a fuzzy set. We want to find the alternative c with the lowest risk, but the
meaning of “lowest risk” admits different interpretations in this context. If the speci-
ficity of the imprecise features is high, we can make the approximation that follows
without incurring large deviations:

approx.risk(Ã, c, D̃, B̃) =
⊕

k

Ã(X̃k))
∨

d∈C
(̃bcd ∧ Ỹk(d)), (48)

where ⊕ and ) are the fuzzy arithmetic extensions of addition and multiplication. In
this work we will sort the results of Eqs. (43) or (48) with the help of a precedence
operator between fuzzy sets (this operator will be defined in this section) and select the
value of ‘c’ associated to the primal element in the order that this operator induces.
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3.2.2 Initial population

A fraction of the initial population is generated at random, with different probabilities
for the symbols ‘1’ and ‘0’. Provided that the higher the percentage of the symbol ‘1’,
the less specific are the rules, a high number of appearances of this symbol produce
initial knowledge bases that are less likely to leave uncovered examples. We do not
allow the presence of ‘OR’ combinations involving all the linguistic terms of a variable,
which are replaced by zeroes, representing “do not care” terms.

The remaining instances are generated to cover randomly chosen elements in the
dataset. Let L be the finite crisp set of all the possible antecedents (recall that we
are using descriptive rules, without membership tuning). If an instance (X̃k, Ỹk) is
selected, then an individual is generated whose antecedent K̃ ∈ L fullfills

K̃(X̃k) , Ã(X̃k) for all Ã ∈L , (49)

and Ã(X̃k) was defined in Eq. (44).

3.2.3 Precedence operators

Many authors have proposed different operators for ranking fuzzy numbers, beginning
with the seminal works in [35, 36]. Often [12, 13, 20, 38, 54, 60] the uncertainty is
removed and the centroids of the membership functions are compared, but there is a
wide range of alternative techniques [11, 14, 15, 61]. Generally speaking, no matter
which of the mentioned rankings would serve for our purpose. Nevertheless, in this
work it is given a possibilistic interpretation to the fuzzy information in the datasets,
thus we will provide a ranking method which is based in a stochastic precedence. We
want to remark that the criterion suggested here is still based on ad-hoc hypothesis
about the distribution of the random variables encoded in the fuzzy memberships, and
thus the order that it induces is not less arbitrary than any of the cited references.
However, with this definition we will be aware of the hypothesis we are introducing,
while many of the mentioned works are based on heuristic or epistemic foundations
whose suitability cannot always be assessed for this application.

Let Ã, B̃ be two fuzzy values (which, in this context, are fuzzy restrictions of the
misclassification risk of a fuzzy rule). We want to determine whether Ã - B̃, B̃ - Ã,
or Ã ‖ B̃. We have mentioned before that our possibilistic semantic for vague data
consists in considering a stochastic behaviour whose characterization is incomplete, i.e.
each fuzzy membership Ã is meta-knowledge about an imprecisely perceived value:
we admit that there exists a random variable a, and the fuzzy set provides information
about the probability distribution of this variable. This knowledge is

P (a ∈ [Ã]α) ≥ 1− α. (50)

Furthermore, we will match the fuzzy precedence between Ã and B̃ with the stochastic
precedence that follows:

Ã - B̃ ⇐⇒ P (a ≤ b) ≥ P (b < a) (51)

or
Ã - B̃ ⇐⇒ P (a− b ≤ 0) ≥ 1/2, (52)

thus in case the vector (a,b) is continuous this criteria is related to the sign of the
median of the difference between the two unknown variables a and b.
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S=0.5

S=3.5

Figure 1: Graphical representation of the calculations needed for determining the
precedence between the interval valued risks [1, 3] and [2, 4] in example 1.

Unless further assumptions are made, if the supports of Ã and B̃ are not disjoint
then Ã ‖ B̃; the criterion that is obtained in this case is similar in concept to the strong
dominance in [39]. In spite of this, there are many other criteria in the literature can
also be regarded as particular cases of this stochastic precedence. For instance, if it is
assumed that a and b are independent, and the joint distribution of the random vector
(a,b) is uniform, we obtain the commonly used uniform precedence [55], which was
originally defined for interval-valued data. This precedence is illustrated in Fig. 1 and
in the examples that follow.

Example 1 Let A = [1, 3] and B = [2, 4]. If we assume that P (a,b) is uniform in
[1, 3]× [2, 4] (see Figure 1) we obtain

P ({(a,b) : a ≤ b})
P ({(a,b) : a > b}) =

3.5/4

0.5/4
> 1 (53)

thus A -B .

Example 2 Let A = [1, 5] and B = [1.9, 4]. The application of the same principle
produces

P ({(a,b) : a ≤ b})
P ({(a,b) : a > b}) =

4.095

4.305
< 1 (54)

therefore B - A.

Depending on the shape of the membership functions of Ã and B̃ the hypothesis
about the uniform distribution of (a,b) still makes sense for fuzzy data. In this paper
we have assumed that

(a,b) → U
([

l(Ã), r(Ã)
]
×

[
l(B̃), r(B̃)

])
(55)

where l(Ã), r(Ã) and the corresponding values for B̃ are the bounds of the expectation
of the fuzzy number, as defined in [21].
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3.2.4 Fitness function

For crisp data, when the k-th instance is presented to the classifier, the fitness of the
winner rule w is penalized with a value that matches the risk of classifying this object,

fit(w, k) = bqryk . (56)

It is remarked that the objective of this learning is to minimize the fitness (minimize
the risk), contrary to the usual practice in this kind of algorithms, where the objective
is maximizing the fitness (the number of well classified instances).

Before extending this expression to interval data, let us rewrite Eq. (56) as follows:

fit(w, k) =
C∑

j=1

δj,ykbqrj . (57)

For interval data, each rule Rr in the winner set is penalized with an interval-valued
risk, because the true class of the k-th object can be perceived as a set of elements of
C. In this case, our knowledge about the fitness value is given by an extension of Eq.
(57):

fit(r, k) = {
C∑

j=1

γjbqrj |γj ∈ δj,Yk and
C∑

j=1

γj = 1} (58)

where δ is a set-valued generalization of Dirichlet’s delta, that was defined in Eq. (18).
Since the computation of the preceding expression is costly, we will enclose it in the
set

fit(r, k) =
C∑

j=1

δj,Ykbqrj . (59)

Let us clarify the meaning of this expression with a numerical example. Let qr =
c2, Yk={c1, c3}, C = {c1, c2, c3}, and let the matrix B=[bij] be

B =

∣∣∣∣∣∣

0 [0.8, 1] [0.7, 0.9]
[0.1, 0.3] [0.1, 0.15] [0.3, 0.6]

1 [0.6, 0.85] 0

∣∣∣∣∣∣

The fitness of the r-th ruke will be:

fit(r, k) = {{0, 1}[0.1, 0.3] + {0}[0.1, 0.15] + {0, 1}[0.3, 0.6]} = {0.1, 0.3, 0.6}.

For fuzzy data, each rule Rr in the support of the winner set W̃ is penalized with the
risk of their classification, which in turn might be a fuzzy set, if the true class of the
k-th object is partially unknown:

fĩt(r, k) =
C⊕

j=1

δ̃j,Ỹk
) b̃qrj , (60)

where δ̃ was defined in Eq. (29).
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3.2.5 Generational scheme and genetic operators

This GFS operates by selecting two parents with the help of a double binary tourna-
ment, where the order between the fuzzy valued fitness function depends on the sign
of the median of the difference of those random variables we have assumed implicit
in the fuzzy memberships, with hypothesis of independence and uniform distribution,
as explained in the Subsection 3.2.3. These two parents are recombined and mutated
with standard two-point crossover [45] and uniform mutation [44], respectively. After
the application of crossover or mutation we search the individuals for the occurrence
of chains where there exist ‘OR’ combinations involving all the linguistic terms of a
variable. As we have mentioned, these chains are replaced by chains of zeroes, repre-
senting “do not care” terms.

The consequent with a lower risk is determined for each element of the offspring,
according to the procedure in Subsection 3.2.1, and inserted into a secondary popula-
tion, whose size is smaller than that of the primary population. The worse individuals
of the primary population (again, according to the same precedence operator) are re-
placed by those in the secondary population at each generation.

Once these individuals have been replaced, the fitness assignment begins. Each rule
keeps a fuzzy counter, which is zeroed first. The second step consists in determining
the set of winner rules defined in Subsection 3.1, for each instance k in the dataset. The
counters of these winner rules are incremented the amount defined in Subsection 3.2.4.
After one pass through the training set, the values stored at these counters are the fitness
values of the rules. Duplicate rules are assigned a high risk. The algorithm ends when
the number of generations reaches a limit or there are not changes in the global risk in
certain number of generations. A detailed pseudocode of the generational scheme has
been included in Appendix A.

4 Numerical Results
The experimental validation comprises nine datasets, originated in two problems re-
lated to linguistic classification systems with imprecise data (diagnosis of dyslexia [49]
and future performance of athletes [47]). We have asked the experts that helped us with
these problems to express their preferences about the classification results either with
intervals or linguistic values. We intend to show that the algorithm proposed in this
paper is able to exploit the subjective costs given by the human experts and produce a
fuzzy rule based classification system according to their preferences.

These datasets contain imprecision in both the input and the output variables. Re-
garding the imprecision in the output, those instances with uncertainties in the class
label can be regarded as multi-label data [9]. Nevertheless, observe that we do not
intend to predict the crisp or fuzzy sets of classes assigned to those instances; we inter-
pret a multi-label instance as an individual whose category was not clear to the expert,
but he/she knows for sure a set of classes that this instance does not belong to. For
instance, when diagnosing dyslexia, there were cases where the psychologist could not
decide whether a child had dyslexia or an attention disorder. This does not mean that
we should label the child as having both problems; on the contrary, the most precise
fact we can attest about this child is that he should not be classified as “not dyslexic”.

We have also observed that, in some cases, the use of a cost matrix produces rule
bases that improve the results obtained with the same algorithm and a zero-one loss.
We attribute this interesting result to the fact that the use of costs modifies the default
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exploratory behavior of the genetic algorithm, making that some regions of the input
space with a low density of examples are able to source rules that are still competitive
in the latter stages of the learning. This effect will be further studied later.

The structure of this section is as follows: in the first place, we will describe an ex-
periment illustrating the differences between numerical, interval-valued and linguistic
(fuzzy) costs from the point of view of the human expert. Second, the datasets are de-
scribed, and the experimental setting introduced, including the cost matrices, the met-
rics used for evaluating the results and those mechanisms we have used for removing
the uncertainty in the data (needed for comparing this algorithm to other classification
systems that cannot use imprecise data). The compared results between the new GFS
and other alternatives are included at the end of this part.

4.1 Illustrative example
We have carried a small experiment for assessing the coherence of a subjective assign-
ment of costs in classification problems. Our experts were asked to provide either a
numerical cost, or a range of numbers or a linguistic term for each type of misclassifi-
cation, according to their own preferences.

Our catalog of linguistic terms comprises eleven labels, described in Table 1, where
their semantics are defined by means of trapezoidal fuzzy intervals, described in turn
by four parameters (lowest element of the support, lowest element of the mode, highest
element of the mode, highest element of the support). The left and rightmost terms
“Absolutely low” and “Unacceptable” are crisp labels, following a requirement of one
of the experts. Apart from this, experts were not explained this semantic; their choice
was guided by the linguistic meaning they attributed to each label by themselves.

Linguistic term Fuzzy membership
Absolutely-low (0,0,0,0)

Insignificant (0,0.052,0.105,0.157)
Very Low (0.105,0.157,0.210,0.263)

Low (0.210,0.263,0.315,0.368)
Fairly-low (0.315,0.368,0.421,0.473)
Medium (0.421,0.473,0.526,0.578)

Medium-high (0.526,0.578,0.631,0.684)
Fairly-high (0.631,0.684,0.736,0.789)

High (0.736,0.789,0.842,0.894)
Very-high (0.842,0.894,0.947,1)

Unacceptable (1,1,1,1)

Table 1: Linguistic terms and parameters defining their membership functions.

The experts we are working with, that is to say both the expert in athletism and
the expert in dyslexia, found natural to use the linguistic terms. When they asked to
use numbers or intervals they made a conversion table and used their prior linguistic
selection to find an equivalent numerical score, to which they assigned an amplitude re-
flecting their uncertainty about the number. Generally speaking, there were large over-
lappings between their intervals. For example, an expert had not conflicts choosing the
linguistic cost of misclassification “Fairly-high” between the eleven alternatives, but
assigned to the same subjective cost the interval [0.55, 0.85]. There was also consen-
sus assigning the highest cost to those cases where the result of a misclassification had
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undesired consequences. Interestingly enough, if the experts are asked to use a scale
different than [0, 1] (between 1 and 1000, for instance) their judgement was different.
As an example, in the Table 2 we have collected the responses of an expert that was
asked, at different times, to assign a cost to certain misclassification:

Scale Interval Number Linguistic term
[0, 1] [0.8, 1] 1 High

[1, 1000] [700, 850] 800 High

Table 2: Answers of an expert when asked to assign a cost to certain misclassification.

In this example, the expert was consistent in the selection of a linguistic value,
not so when selecting a numerical value: the first time he was asked, he chose the
highest numerical cost (1) for a decision he did not associate the highest linguistic
cost to. Furthermore, when the scale was changed, the numerical cost was different
too, and in this last case this cost was similar to the corresponding trapezoidal fuzzy
set in Table 1. Generally speaking, we can conclude that the linguistic assignment
of cost was preferred to the numerical assignment, and that a subjective assignment
of numbers or ranges to costs produces less coherent results than linguistic values.
This result will be illustrated later with numerical experiments: we will show that the
classification systems obtained when the expert builds a linguistic cost matrix have a
confusion matrix that is preferable to that of the rule base arising from the interval-
valued cost matrix.

4.2 Description of the datasets
The datasets “Diagnosis of the Dyslexic” and “Athletics at the Oviedo University”,
have been introduced in [49] and [47], respectively, and are available in the data set
repository of keel-dataset (http://www.keel.es/datasets.php) [3, 4]. Their description is
reproduced here for the convenience of the reader.

Dyslexia can be defined as a learning disability in people with normal intellectual
coefficient, and without further physical or psychological problems that can explain
such disability. The dataset “Diagnosis of the Dyslexic” is based on the early diagnosis
(ages between 6 and 8) of schoolchildren of Asturias (Spain), where this disorder is
not rare. All schoolchildren at Asturias are routinely examined by a psychologist that
can diagnose dyslexia (in Table 3 there is a list of the tests that are applied in Spanish
schools for detecting this problem). It has been estimated that between 4% and 5%
of these schoolchildren have dyslexia. The average number of children in a Spanish
classroom is 25, therefore there are cases at most classrooms [2]. Notwithstanding
the widespread presence of dyslexic children, detecting the problem at this stage is a
complex process, that depends on many different indicators, mainly intended to de-
tect whether reading, writing and calculus skills are being acquired at the proper rate.
Moreover, there are disorders different than dyslexia that share some of their symptoms
and therefore the tests not only have to detect abnormal values of the mentioned indica-
tors; in addition, they must also separate those children which actually suffer dyslexia
from those where the problem can be related to other causes (inattention, hyperactivity,
etc.).

The problem “Athletics at the Oviedo University” comprises eight different datasets,
whose descriptions are as follows:
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Category Test Description
Verbal comprehension BAPAE Vocabulary

BADIG Verbal orders
BOEHM Basic concepts

Logic reasoning RAVEN Color
BADIG Figures
ABC Actions and details

Memory Digit WISC-R Verbal-additive memory
BADIG Visual memory
ABC Auditive memory

Level of maturation ABC Combination of different tests

Sensory-motor skills BENDER visual-motor coordination
BADIG Perception of shapes
BAPAE Spatial relations, Shapes, Orientation
STAMBACK Auditive perception, Rhythm
HARRIS/HPL Laterality, Pronunciation
ABC Pronunciation
GOODENOUGHT Spatial orientation, Body scheme

Attention Toulose Attention and fatigability
ABC Attention and fatigability

Reading-Writing TALE Analysis of reading and writing

Table 3: Categories of the tests currently applied in Spanish schools for detecting
dyslexia when an expert evaluates the children.
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1. Dataset “B200ml-I”: This dataset is used to predict whether an athlete will im-
prove certain threshold in 200 meters. All the indicators or inputs are fuzzy-
valued and the outputs are sets.

2. Dataset “B200mlP”: Same dataset as “B200mlI”, with an extra feature: the sub-
jective grade that the trainer has assigned to each athlete. All the indicator are
fuzzy-valued and the outputs are sets.

3. Dataset “Long”: This dataset is used to predict whether an athlete will improve
certain threshold in the long jump. All the features are interval-valued and the
outputs are sets. The coach has introduced his personal knowledge.

4. Dataset “BLong”: Same dataset as “Long”, but now the measurements or in-
puts are defined by fuzzy-valued data, obtained by reconciling different mea-
surements taken by three different observers.

5. Dataset “100ml”: Used for predicting whether a threshold in the 100 metres
sprint race is being achieved. Each measurement was repeated by three ob-
servers. The input variables are intervals and outputs are sets.

6. Dataset “100mlP”: Same dataset as “100mlI”, but the measurements have been
replaced by the subjective grade the trainer has assigned to each indicator (i.e.“reaction
time is low” instead of “reaction time is 0.1 seg”).

7. Dataset “B100mlI”: Same dataset as “100mlI”, but now the measurements are
defined by fuzzy-valued data.

8. Dataset“B100mlP”: Same dataset as “100mlP”, but now the measurements are
defined by fuzzy-valued data.

A brief summary of the statistics of these problems is provided in Table 4. The name,
the number of examples (Ex.), number of attributes (Atts.), the classes (Classes) and
the fraction of patterns of each class (%Inst classes) of each dataset are displayed.
Observe that these fractions are intervals, because the class labels of some instances
are imprecise, and can be used for computing a range of imbalance ratios.

Dataset Ex. Atts. Classes %Inst classes
B200mlI 19 4 2 ([0.47,0.73],[0.26,0.52])
B200mlP 19 5 2 ([0.47,0.73],[0.26,0.52])

Long 25 4 2 ([36,64],[36,64])
BLong 25 4 2 ([36,64],[36,64])
100mlI 52 4 2 ([0.44,0.63],[0.36,0.55])
100mlP 52 4 2 ([0.44,0.63],[0.36,0.55])
B100mlI 52 4 2 ([0.44,0.63],[0.36,0.55])
B100mlP 52 4 2 ([0.44,0.63],[0.36,0.55])

Dyslexic-12 65 12 4 ([0.32,0.43],[0.07,0.16],
[0.24,0.35],[0.12,0.35])

Table 4: Summary descriptions of the datasets used in this study.
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4.3 Experimental settings
All the experiments have been run with a population size of 100, probabilities of
crossover and mutation of 0.9 and 0.1, respectively, and limited to 100 generations.
The fuzzy partitions of the labels are uniform and their size is 5. All the imprecise
experiments were repeated 100 times with bootstrapped resamples of the training set
and where each partition of test contains 1000 tests.

For those experiments involving preprocessed data, the GFS proposed in [50] is
used, with three nearest neighbors. This algorithm balances all the classes taking into
account the imprecise outputs. This method of preprocessing is also applied to the 100
bootstrapped resamples of the training set.

4.3.1 Matrix of misclassification costs

The cost matrices used in the different datasets of Athletics [47] are shown in Tables
5 and 6. In both tables the expert preferred to discard a potentially good athlete (class
1) over accepting someone who is not scoring good marks (class 0). The actual costs
depend on the event, as shown in Tables 5 (intervals) and 6 (linguistic terms). Observe
that in Table 5 the costs are defined either by interval or crisp values; we commanded
the experts to define the costs by means of numerical values, and to use intervals when
they could not precise the numbers.

Jump 100-200m B100-B200m
Estimated labels Estimated labels Estimated labels

True class 0 1 True class 0 1 True class 0 1
0 0 [0.6,0.9] 0 0 0.8 0 0 [0.8,0.94]
1 0.5 0 1 0.4 0 1 [0.15,0.24] 0

Table 5: Interval cost matrices designed by a human expert in Athletics datasets.

Jump 100-200m and B100-B200m
Estimated labels Estimated labels

True class 0 1 True class 0 1
0 Absolutely-low Fairly-high 0 Absolutely-low High
1 Low Absolutely-low 1 Very low Absolutely-low

Table 6: Linguistic cost matrices designed by a human expert in Athletics datasets.

The Dyslexic’s dataset is more complex and the expert decided by herself that her
numerical assignments were not reliable, recommending us a design based on her lin-
guistic matrix instead. The initial design was intended to separate dyslexic children
(“class 2”) from those in need of “control and review” (“class 1”) and those without
the problem. This is akin to an imbalanced problem, albeit there were some problems
derived from this initial assignment of costs. For instance, in the case that a child
is not dyslexic (“class 0”) and the classifier indicates that he has a learning problem
different than dyslexia (“class 4”), the misclassificacion cost was “Absolutely-low”,
because the expert was understanding that the classifier would indicate that the child is
not dyslexic. However, the expert did not take into account that, in this case, this child
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would be subjected to psychological treatment, which could potentially cause him cer-
tain disorders. The same situation happened when the child has an attention disorder
and the classifier indicates that the child is dyslexic. In this case, the misclassification
cost was “Very-high”, according to the idea that is was more important to mark off the
dyslexic children than leaving a dyslexia case undetected. Again, the consequences can
be negative for the misclassified child, thus a finer distinction is needed. The second
design takes into account this possibilities, and is shown in the Table 7.

Dyslexic-12
Classifier

True class 0 1 2 4
0 Absolutely-low Medium Very-high Unacceptable
1 Fairly-low Absolutely-low Low Very-high
2 Unacceptable Medium Absolutely-low High
4 High High Low Absolutely-low

Table 7: Linguistic cost matrix designed by a human expert in Dyslexic’s dataset.

4.3.2 Metrics for evaluating the results

The classification cost, when a zero-one loss is used, is the fraction of misclassified
instances. For instance, regarding the confusion matrix of a two-classes problem,

Negative Prediction Positive Prediction
Negative class TN FP
Positive class FN TP

this cost is
loss0−1 =

FP + FN
TP + TN + FP + FN

. (61)

For evaluating this error with imprecise data we will use the same expressions intro-
duced in Section 2 for the minimum risk problem (Eqs. 23 and 34) with a cost matrix
B = [1 − δij ]. Using this binary cost matrix we can also generalize the zero-one loss
to multiclass problems either with crisp, interval or imprecise data.

For different cost matrices we will compare algorithms on the basis of the value
lossMR = R̃, as defined in Eqs. 23 and 34. Other commonly used metrics, like the
Area Under the ROC Curve (AUC) [7, 52] have not been used in this work because a
suitable generalization to multi-class imprecise problems has not yet been proposed.

4.3.3 Heuristics for the removal of meta-information

For those comparisons involving statistical or intelligent classifiers unable to accept
imprecise data, a procedure for removing the meta-information in the data is needed.
The rules that will be used in this paper are as follows:

• If the meta-information is in the input, each interval is replaced by its midpoint.
In case the data is fuzzy, the midpoint of its modal interval is chosen instead.

• If the imprecision is in the class label, each sample is replicated for the different
alternatives. For instance, an example (x=2, c=A,B) is converted in two examples
(x=2, c=A) and (x=2, c=B).

19



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Observe that each time an example is replicated the remaining instances have to be
repeated the number of times needed for preserving the statistical significance of each
object. The drawback of this procedure is that problems which seem to be simple
by the standards of crisp classification systems become complex datasets when the
uncertainty is removed. For example, Dyslexic-12, with 65 instances and a high degree
of imprecision, is transformed into a crisp dataset with thousands of instances.

4.4 Compared results
In this section we will compare the performance of the different alternatives in the
design of the new GFS, and the results of this new GFS to those of different classifiers.
The experiments are organized as follows:

1. GFS with linguistic cost matrices vs. GFS with interval-valued costs.

2. GFS with zero-one loss vs. GFS with minimum risk-based loss.

3. A selection of crisp classifiers vs. GFS with minimum risk-based loss.

4. GFS for imbalanced data vs. GFS with risk-based loss.

4.4.1 Interval and fuzzy costs

With this experiment we compare the behaviors of the GFSs depending on numerical
costs (interval-valued costs) to those depending on linguistic costs. We will study the
confusion matrix of the classifiers obtained with interval-valued and fuzzy risks, using
the matrices that the experts provided for each case. For computing a numerical confu-
sion matrix we have applied the procedure described in Section 4.3.3 and extended the
test set by duplicating the imprecise instances.

In the athletics problems, the coach prefers to label an athlete as not relevant (“class
0”) when he/she is relevant (“class 1”) than the opposite, thus the misclassification
(“label a C1 case as if it was C0”) is preferred over (C0 as C1). In Table 8 we show that
the percentage of misclassifications “C1 as C0” achieved with the linguistic cost matrix
is higher (82,52%) than that obtained with interval-valued costs (78,15%). Observe that
we do not claim with this experiment that there is not a numerical or interval-valued
set of costs that produces a classifier improving, in turn, this result: our point is that a
linguistic description of weights models better the subjective preferences of the expert,
and our system was able to exploit this linguistic description for evolving a rule base
that follows the preferences of the user.

As mentioned in Section 4.3.1, the expert in the field of dyslexia decided that her
numerical assigments were not reliable. For comparing the results obtained after her
selection of a numerical cost matrix (comprising intervals and real numbers) with those
obtained with the corresponding linguistic cost matrix we have built Table 9. Each row
“Cp as Cq” shows the number of children for which the output of the classifier was
Cp when the value should have been Cq . Observe that there are improvements for all
the combinations but “C2 as C0”, and the global number of misclassifications is also
reduced.

4.4.2 Comparison between GFSs using Loss0−1 and LossMR

In this section the minimum error-based extended cooperative-competitive algorithm
defined in [48] (labelled “GFS”) will be compared to the minimum risk-based GFS in
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Interval-values Linguistic terms
Dataset C0 as C1 (FP) C1 as C0 (FN) C0 as C1 (FP) C1 as C0(FN)
100mlI 1752 5363 1038 6228
100mlP 1609 4795 970 6078
B100mlI 975 6268 991 6258
B100mlP 1085 5590 1103 5558

Long 1785 3289 1638 3385
BLong 1891 3418 1609 3762

B200mlI 182 2511 182 2479
B200mlP 165 2570 164 2577

% 21.85% 78.15% 17.48% 82.52%

Table 8: Misclassifications in the Athletics datasets from MR GFS with a cost matrix
defined by interval-valued and linguistic costs.

Dyslexic Interval-values Int. N. Linguistic terms Ling. N.
C0 as C4 [0.6,0.9] 195 Unacceptable 124
C2 as C0 1 62 Unacceptable 80
C4 as C1 0.75 87 High 44
C2 as C4 0.6 329 High 272
C1 as C4 0.6 27 Very-high 16
C0 as C2 0.7 5326 Very-high 5314
C2 as C1 [0.3,0.35] 202 Medium 112
C0 as C1 [0.2,0.4] 424 Medium 359
Total N. - 6652 - 6321

Table 9: Misclassifications in the Dyslexic datasets from MR GFS with a cost matrix
defined by interval-valued and linguistic costs.

this paper (labelled “MR GFS”). Each rule base will be evaluated twice on the same
test sets, using both a minimum-risk based criterion (LossMR) and a zero-one loss
(Loss0−1). Observe that the zero-one loss is the fraction of misclassified examples, or
in other words the minimum-error based criterion.

In the first place, let us compare the misclassification rate (Loss0−1) of “GFS” and
“MR GFS”. It was expected that the cost-based classifier obtained the worst results,
since it has not been designed for optimizing the zero-one loss. Rather surprisingly, the
first two columns of Table 10 (GFS Loss0−1 and MR GFS Loss0−1) contain evidence
that the use of the new algorithm has improved the absolute number of misclassifica-
tions with respect to its minimum error-based counterpart in most datasets.

The statistical relevance of these differences has been graphically displayed in Fig-
ures 2 and 3. Each point in these figures represents one of the experiments. The
abscissa is Loss0−1 (i.e. the fraction of errors) of the first approach and the ordinate
is same type of risk for the second procedure. That is to say, points over the diagonal
(circles) are the cases where the minimum error-based classifier produced a better rule
set. Since the risks are interval-valued in this example, the figures are divided in two
parts. The left part contains the comparison between the lower bounds of the risk, and
the right part displays the upper bounds.

In this particular experiment we have selected two representative cases: the datasets
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Dataset GFS sup. std dev MR GFS sup. std dev GFS sup. std dev MR GFS sup. std dev
Loss0−1 Loss0−1 LossMR LossMR

100mlI [0.176,0.378] 0.266 [0.178,0.380] 0.267 [0.075,0.166] 0.141 [0.044,0.104] 0.091
100mlP [0.176,0.355] 0.249 [0.188,0.367] 0.254 [0.081,0.163] 0.144 [0.046,0.099] 0.075
B100mlI [0.172,0.369] 0.267 [0.188,0.385] 0.270 [0.073,0.155] 0.140 [0.048,0.104] 0.091
B100mlP [0.160,0.349] 0.263 [0.161,0.350] 0.263 [0.075,0.162] 0.152 [0.043,0.100] 0.084

Long [0.321,0.590] 0.379 [0.288,0.557] 0.399 [0.168,0.315] 0.236 [0.129,0.236] 0.170
BLong [0.326,0.625] 0.405 [0.286,0.586] 0.397 [0.203,0.394] 0.299 [0.140,0.265] 0.181

B200mlI [0.232,0.473] 0.378 [0.174,0.418] 0.366 [0.098,0.154] 0.163 [0.047,0.094] 0.087
B200mlP [0.262,0.480] 0.363 [0.215,0.433] 0.331 [0.092,0.152] 0.191 [0.049,0.095] 0.078

Partial mean [0.227,0.451] 0.321 [0.210,0.435] 0.318 [0.107,0.207] 0.183 [0.068,0.137] 0.107
Dyslexic-12 [0.447,0.594] 0.240 [0.502,0.613] 0.196 [0.309,0.418] 0.184 [0.277,0.377] 0.162

Global mean [0.252,0.467] 0.280 [0.243,0.455] 0.257 [0.129,0.259] 0.183 [0.091,0.184] 0.134

Table 10: Behaviour of “GFS” and “MR GFS” with respect to Loss0−1 and LossMR.

Figure 2: Behaviour of “GFS” and “MR GFS” respect to Loss0−1 in 100mlI. Left
figure: Lower bounds. Right figure: Upper bounds.
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Figure 3: Behaviour of “GFS” and “MR GFS” respect to Loss0−1 in B200mlI. Left
figure: Lower bounds. Right figure: Upper bounds.

“100mlI” and “B200mlI”. In Figure 2 we have shown the results of “100mlI”, where
there is not a significant difference between either algorithm, thus the points are equally
distributed above and below the diagonal. In Figure 3 we have included the results of
“B200mlI” where there is clear advantage of the new algorithm, in a problem where
one may think that this difference should favor the minimum error-based procedure.
We attribute this result to the fact that the use of costs modifies the default exploratory
behavior of the genetic algorithm, making that some regions of the input space with a
low density of examples are able to source rules that are still competitive in the latter
stages of the learning.

On the contrary, the two last columns of Table 10 show the expected result: since
the new GFS is optimizing the risk function, the risk of the minimum error-based algo-
rithm is higher than the risk of the classifiers obtained with the approach in this paper.
The graphical assessment of the relevance is displayed in Figure 4, for the dataset
“100mlI”.

The improvements of “MR GFS’, in Athletics datasets are also shown in Table 11.
Observe that the percentage of misclassifications “C1 as C0” is higher with “MR GFS”
(82.52%) than it is with “GFS” where the percentages are 56.94% and 43.96%, ap-
proaching 50% each, as expected in a minimum error-based problem.

The linguistic quality of the rules obtained by GFS and MR GFS will be shown
by means of an example. In Table 12 we have included two knowledge bases found
by GFS and MR GFS when the dataset 100mlI is considered. Both bases are mostly
similar, but some rules have different consequent parts. For instance, rule number 5
of the knowledge base produced by the algorithm “GFS” (see Table 12) is “IF ratio is
High and reaction time is High and 20 meters speed is Medium and 40 meters speed
is Medium then class is Relevant”, while the same rule has the opposite consequent if
the algorithm MR GFS is used. This last rule is preferred, as the antecedent does not
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Figure 4: Behaviour of the “GFS” and “MR GFS” with respect to LossMR in 100mlI.
Left figure: Lower bounds. Right figure: Upper bounds.

clearly matches individuals that should be selected for taking part of the competition
and the expert stated with his cost matrix that in case of doubt the decision should be
“Not Relevant”.

Let us also justify the use of graphical methods for assessing the statistical rele-
vance of the differences. We have used these graphs because (up to our knowledge)
a method for computing the p-values of a suitable statistical test for assessing the rel-
evance of the differences between two imprecise samples has not been published yet
(the closest reference –regarding bootstrap tests for imprecise data– is [19], where the
computation of the p-value is shown for a generic case, but the selection of a test match-
ing this application is not addressed). Nevertheless, in our opinion the relevance of the
differences is clearly perceived in the mentioned graphs, that provide more insightful

GFS MR GFS
Dataset C0 as C1 (FP) C1 as C0 (FN) C0 as C1 (FP) C1 as C0(FN)
100mlI 2867 4346 1038 6228
100mlP 2974 3863 970 6078
B100mlI 2693 4298 991 6258
B100mlP 2945 3754 1103 5558

Long 3168 2186 1638 3385
BLong 3720 2005 1609 3762

B200mlI 696 2355 182 2479
B200mlP 686 2368 164 2577

% 43.96% 56.04% 17.48% 82.52%

Table 11: Misclassifications of Athletic’s datasets obtained with “GFS” and
“MR GFS”.
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Id. Antecedentet Rule Consequent GFS Consequent MR GFS

1 IF ratio is Very-high and reaction time is Low and Relevant Relevant20 meters speed is Medium and 40 meters speed is Low

2 IF ratio is Very-low and reaction time is Low and Not Relevant Not Relevant20 meters speed is High and 40 meters speed is Medium

3 IF ratio is Medium and reaction time is Medium and Relevant Not Relevant20 meters speed is High and 40 meters speed is Medium

4 IF ratio is High and reaction time is High and Not Relevant Not Relevant20 meters speed is Very-high and 40 meters speed is Very-high

5 IF ratio is High and reaction time is High and Relevant Not Relevant20 meters speed is Medium and 40 meters speed is Medium

Table 12: Knowledge bases obtained with GFS and MR GFS, dataset 100mlI.

information than the bounds of the p-value.

4.4.3 Comparison with algorithms for imbalanced data

Given the results in Table 11 and the a priori probabilities of the different classes
in the problems being studied (see Table 4), it makes sense to regard some of these
imprecise datasets as imbalanced. Hence, in this section we compare the new cost-
based algorithm with other, different techniques better suited for imbalanced vague
data than the minimum error approach. For instance, the data can be preprocessed and
new instances introduced before the learning phase [5, 25, 26, 27, 28]. Furthermore,
it may be argued that a minimum error-based classifier would produce results similar
to that obtained with the linguistic cost approach we are suggesting in this paper. To
this we can answer that preprocessing for balancing data in two classes problems is
indeed roughly equivalent to use a cost matrix whose diagonal is zero and the remaining
elements are the inverses of the a priori probabilities from the preferences of the expert,
but this implicit cost matrix might or might not reproduce the needs of the expert, while
our linguistic approach is based on his/her preferences. A similar situation occurs in
multi-class imbalanced problems, that again can be regarded as cost-based problems,
albeit a more complex cost matrix would be needed in this case.

The experimental data supporting our preceding discussion is in Table 13, when
we compare the classification error of the minimum risk-based algorithm (column
“MR GFS, Loss0−1”), with the same algorithm over a preprocessed dataset (column
“FS MR GFS, Loss0−1”). The last three columns of this table contain the risks of
the same rule bases and we have also added to them the measured risk of the minimum
error-based algorithm over the preprocessed dataset (column “FS GFS, LossMR”). Ob-
serve that the fraction of errors of “MR GFS” tends to be lower when it is executed over
the preprocessed data, however the risk is better if the data is not altered, therefore there
is no reason for applying this stage, which in addition has an elevated computational
cost. With respect to our initial question, that was comparing the minimum error-based
classifier with preprocessed input data with the minimum risk approach, the latter is
clearly better, as shown in Table 13 and also in Figure 5.
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Dataset MR GFS FS MR GFS MR GFS FS MR GFS FS GFS
Loss0−1 Loss0−1 LossMR LossMR LossMR

100mlI [0.178,0.380] [0.185,0.386] [0.044,0.104] [0.038,0.091] [0.099,0.209]
100mlP [0.188,0.367] [0.201,0.380] [0.046,0.099] [0.043,0.091] [0.084,0.167]
B100mlI [0.188,0.385] [0.201,0.398] [0.048,0.104] [0.040,0.089] [0.095,0.199]
B100mlP [0.161,0.350] [0.169,0.358] [0.043,0.100] [0.039,0.089] [0.087,0.177]

Long [0.288,0.557] [0.300,0.569] [0.129,0.236] [0.124,0.219] [0.133,0.269]
BLong [0.286,0.586] [0.296,0.596] [0.140,0.265] [0.131,0.242] [0.152,0.326]

B200mlI [0.178,0.418] [0.125,0.369] [0.047,0.094] [0.031,0.078] [0.182,0.286]
B200mlP [0.215,0.433] [0.184,0.402] [0.049,0.095] [0.046,0.097] [0.201,0.307]

Partial mean [0.210,0.435] [0.206,0.431] [0.068,0.137] [0.084,0.151] [0.128,0.242]
Dyslexic-12 [0.502,0.613] [0.504,0.615] [0.277,0.377] [0.279,0.379] [0.309,0.418]

Global mean [0.243,0.455] [0.239,0.451] [0.091,0.184] [0.105,0.176] [0.148,0.261]

Table 13: Behaviour of “MR GFS”, “FS MR GFS” and “FS GFS” with respect to
Loss0−1 and LossMR.

5 Concluding remarks
In this work we have defined a GFS that solves the minimum risk classification problem
for imprecise data, where the cost matrix needs not to be precisely described, but it can
be expressed with linguistic terms. We have extended first the concepts of confusion
matrix and expected risk to interval valued and fuzzy data, and a Genetic Cooperative
Competitive algorithm has been defined which can evolve a rule base that minimizes
this extended risk, being understood that this minimization is done with respect to a
certain precedence operator between fuzzy values.

The experimental results have evidenced that the use of linguistic terms is preferred
to numerical costs or intervals, as the experts are able to express their preferences in a
more consistent way. We have also shown that the new rule bases significantly improve
the expected risk of former GFSs, and in certain cases the improvement in the risk is
also accompanied by an enhanced misclassification rate. In the last place, we conclude
that preprocessing the data for balancing the probabilities of the classes is not justified
for this problem, as the implicit costs in a preprocessing stage will be in all likelihood
different than the preferred costs of the expert.

Acknowledgements
This work was supported by the Spanish Ministry of Education and Science, under
grant TIN2008-06681-C06-04, and by Principado de Asturias, PCTI 2006-2009.

26



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure 5: Behaviour of the “MR GFS” and “FS GFS” with respect to LossMR in
B200mlP. Left figure: Lower bounds. Right figure: Upper bounds.
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A Pseudocode of the algorithm
The pseudocode of the genetic algorithm defined in this paper is included in this ap-
pendix. This algorithm depends on three modules. The first one defines the genera-
tional scheme and is as follows:

function GFS
1 Initialize population
2 for iter in {1, . . . , Iterations} and equal generations < 20
3 for sub in {1, . . . , subPop}
4 Select parents
5 Crossover and mutation
6 assignImpreciseConsequentt(offspring)
7 end for sub
8 Replace the worst subPop individuals
9 assignImpreciseFitnessApprox(population,dataset)
10 end for iter or equal generations
11 Purge unused rules
return population

Observe that only the antecedent is represented in the genetic chain. The second mod-
ule is used for determining the consequent that best matches a given antecedent, and is
as follows:

function assignImpreciseConsequent(rule)
1 for c in {1, . . . ,C}
2 grade = 0
3 compExample = 0
4 for k in {1, . . . ,D}
5 m = fuzMembership(Antecedent,k,c)
7 for d in {1, . . . ,C}
8 cost= cost ⊕ (̃bcd ⊗ Ỹk(d))
9 end for d
6 grade = grade ⊕ (m ⊕ cost)
10 end for K
11 weight[c] = grade
12 end for c
13 mostFrequent = {1, . . . ,C}
14 for c in {1, . . . ,C}
15 for c1 in {c+1, . . . ,C}
16 if (weight[c] dominates weight[c1]) then
17 mostFrequent = mostFrequent - { c1}
18 end if
19 end for c1
20 end for c
21 Consequent = select(mostFrequent)
22 CF[rule] = computeConfidenceOfConsequent
return rule

In the last place, the third module is used for assigning the fitness values to the members
of the population:

function assignImpreciseFitnessApprox(population,dataset)
1 for k in {1, . . . ,D}
2 setWinnerRule = ∅
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3 for r in {1, . . . ,M}
4 dominated = FALSE
5 r.m̃ = fuzMembership(Antecedent[r],example)
6 for sRule in setWinnerRule
7 if (sRule dominates r) then
8 dominated = TRUE
9 end if
10 end for sRule
11 if (not dominated and r.m̃ > 0) then
12 for sRule in setWinnerRule
13 if (r.m̃ dominates sRule) then
14 setWinnerRule = setWinnerRule −{ sRule }
15 end if
16 end for sRule
17 setWinnerRule = setWinnerRule ∪{ r }
18 end if
19 end for r
20 if (setWinnerRule == ∅) then
21 setWinnerRule = setWinnerRule ∪{ rule freq class }
23 for r in setWinnerRule
23 for d in C
35 f̃ it[r] = f̃ it[r] ⊕ (δ̃d,Ỹk

⊗ b̃qrd)
25 end for d
25 end for r
36 end for k
return fitness
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