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Abstract

There is an underlying assumption on most model building processes: given a
learned classifier, it should be usable to explain unseen data from the same given
problem. Despite this seemingly reasonable assumption, when dealing with
biological data it tends to fail; where classifiers built out of data generated using
the same protocols in two different laboratories can lead to two different, non-
interchangeable, classifiers. There are usually too many uncontrollable variables
in the process of generating data in the lab and biological variations, and small
differences can lead to very different data distributions, with a fracture between
data.

This paper presents a genetics-based machine learning approach that per-
forms feature extraction on data from a lab to help increase the classification
performance of an existing classifier that was built using the data from a differ-
ent laboratory which uses the same protocols, while learning about the shape
of the fractures between data that motivated the bad behavior.

The experimental analysis over benchmark problems together with a real-
world problem on prostate cancer diagnosis show the good behavior of the pro-
posed algorithm.
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1. Introduction

The assumption that a properly trained classifier will be able to predict the
behavior of unseen data from the same problem is at the core of any automatic
classification process. However, this hypothesis tends to prove unreliable when
dealing with biological (or other experimental sciences) data, especially when
such data is provided by more than one laboratory, even if they are following
the same protocols to obtain it.

The specific problem this paper attempts to solve is the following: We have
data from one laboratory (dataset A), and derive a classifier from it that can
predict its category accurately. We are then presented with data from a second
laboratory (dataset B). This second dataset is not accurately predicted by the
classifier we had previously built due to a fracture between the data of both
laboratories. We intend to find a transformation of dataset B (dataset S) where
the classifier works.

Evolutionary computing, as introduced by Holland [29]; is based on the idea
of the survival of the fittest, evoked by the natural evolutionary process. In
genetic algorithms (GAs) [22], solutions (genes) are more likely to reproduce
the fitter they are, and random sporadic mutations help maintain population
diversity. Genetic Programming (GP) [35] is a development of those techniques,
and follows a similar pattern to evolve tree-shaped solutions using variable-
length chromosomes.

Feature extraction, as defined by Wyse et al. [58], ‘consists of the extraction
a set of new features from the original features through some functional map-
ping’. Our approach to the problem can be seen as feature extraction, since we
build a new set of features which are functions of the old ones. However, we have
a different goal than that of classical feature extraction, since our intention is
to fit a dataset to an already existing classifier, not to improve the performance
of a future one.

In this work, we intend to demonstrate the use of GP-based feature extrac-
tion to unveil transformations in order to improve the accuracy of a previously
built classifier, by performing feature extraction on a dataset where said classi-
fier should, in principle, work; but where it does not perform accurately enough.
We test our algorithm first on artificially-built problems (where we apply ad-hoc
transformations to datasets from which a classifier has been built, and use the
dataset resulting from those transformations as our problem dataset); and then
on a real-world application where biological data from two different medical
laboratories regarding prostate cancer diagnosis are used as datasets A and B.

Even though the method proposed in this paper does not attempt to reduce
the number of features or instances in the dataset, it can still be regarded as a
form of data reduction because it unifies the data distributions of two datasets;
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which results in the capability of applying the same classifier to both of them,
instead of needing two different classifiers, one for each dataset.

The remainder of this paper is organized as follows: In section 2, some pre-
liminaries about the techniques used and some approaches to similar problems in
the literature are presented. Section 3 details the real-world biological problem
that motivates this paper. Section 4 has a description of the proposed algorithm
GP-RFD; and section 5 includes the experimental setup, along with the results
obtained, and an analysis. Finally, in section 6 some concluding remarks are
made.

2. Preliminaries

This section is divided in the following way: In subsection 2.1 we introduce
the notation that has been used in this paper. Then we include an introduction
to GP in subsection 2.2, a brief summary of what has been done in feature
extraction in subsection 2.3, and a short review of the different approaches we
found in the specialized literature on the use of GP for feature extraction in
subsection 2.4. We conclude mentioning some works related to the finding and
repair of fractures between data in subsection 2.5.

2.1. Notation
A classification problem is considered with:

• A set of input variables X = {xi/i = 1, ..., nv}, where nv is the number of
features (attributes) of the problem.

• A set of values for the target variable (class) C = {Cj/j = {1, ..., nc}},
where nc is the number of different values for the class variable.

• A set of examples E = {eh = (eh1 , ..., e
h
nv
, Ch)/h = 1, ..., ne}, where Ch is

the class label for the sample eh, and ne is the number of examples.

When describing the problem, we mention datasets A, B and S. They cor-
respond to:

• A: The original dataset that was used to build the classifier.

• B: The problem dataset. The classifier is not accurate on this dataset,
and that is what the proposed algorithm attempts to solve.

• S: The solution dataset, result of applying the evolved transformation to
the samples in dataset B. The goal is to have the classifier performance
be as high as possible on this dataset.

When performing experiments and obtaining the evolved expressions, we
use the following notation: When artificially creating a dataset B by means of
a fabricated transformation over dataset A, we have B = {bi/i = 1, ..., nv} be
the attributes in dataset B and A = {ai/i = 1, ..., nv} be the ones from dataset
A. In appendix A, we show the learned transformations for the prostate cancer
problem. The attributes shown are those corresponding to dataset S, and are
represented as S = {si/i = 1, ..., nv}.
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2.2. Genetic Programming
A GA [22] is a stochastic optimization technique inspired by nature’s devel-

opment of useful characters. It is based on the idea of survival of the fittest
[12] in the following way: given a population of possible solutions to a problem
(represented by chromosomes), there is some selection procedure that favors the
fitter ones (ie, the ones that provide a higher-quality solution); and the selected
chromosomes get an opportunity to pass down their genetic material to the next
generation via some crossover operator; which usually builds new individuals
from the combination of old ones. In some variations of the algorithm, random
mutations are sporadically introduced to help maintain biological diversity in
the population.

GP, as proposed by John Koza in 1992 [35], uses a selectorecombinative
schema where the solutions are represented by trees; which are encoded as
variable-length chromosomes. It was originally designed to automatically de-
velop programs, but it has been used for multiple purposes due to its high
expressive power and flexibility. In the words of Poli and Langdon [48], ‘GP is
a systematic, domain-independent method for getting computers to solve prob-
lems automatically starting from a high-level statement of what needs to be
done. Using ideas from natural evolution, GP starts from an ooze of random
computer programs, and progressively refines them through processes of muta-
tion and sexual recombination, until solutions emerge. This is all done without
the user having to know or specify the form or structure of solutions in advance.
GP has generated a plethora of human-competitive results and applications,
including novel scientific discoveries and patentable inventions.’

There are a few details about GP that make it different from standard GAs:

• Crossover: The most commonly used operator is one-point crossover,
which is analogous to the GA classical one, but where subtrees instead
of a specific gene signal where the cut is made.

• Even though mutation was used in the early literature regarding the evo-
lution of programs (see [7, 11, 17]) Koza chose not to use it ([35, 36]),
as he wished to demonstrate that mutation was not necessary. This has
significantly influenced the field, and mutation was often omitted from
GP runs. However, mutation has proved useful since then (see [5, 44],
for example); and its use is widely spread nowadays. Multiple different
mutation operators have been proposed in the literature [46].

• Treatment of constants: The discovery of constants is one of the hardest
issues in GP. Koza proposed a solution called Ephemeral Random Con-
stant (ERC), which uses a fixed terminal (e) to represent a constant. The
first time one of such constants is evaluated, it gets assigned a random
value. From there on, it retains that value throughout the whole run. A
number of alternatives have been proposed in the literature [15, 51], but
ERC remains the most used one.

• Automatically Defined Functions: ADFs were also first proposed by Koza
[36]. The idea is to permit each individual to evolve more than one tree
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simultaneously; having the extra trees work as primitives that can be
called from the main one.

GP has been applied often to classification [14]. Among the latest advances
in the field, we would like to mention those dedicated to high dimensional prob-
lems [37, 6], variations in population size [33, 34], and applications to other
related fields [60, 3].

2.3. Feature Extraction

Feature extraction creates new features as functional mappings of the old
ones. It has been used both as a form of pre-processing, which is the approach
we use in this paper, and also embedded with a learning process in wrapper
techniques. An early proposer of such a term was probably Wyse in 1980,
in a paper about intrinsic dimensionality estimation [58]. There are multiple
techniques that have been applied to feature extraction throughout the years,
ranging from principal component analysis to support vector machines to GAs
(see [30, 47, 45], respectively, for some examples).

Among the foundations papers in the literature, Liu’s book in 1998 [40] is
one of the earlier compilations of the field. As a result of a workshop held in
2003 [25], Guyon & Elisseeff published a book with an important treatment of
the foundations [26].

2.4. Genetic Programming-based Feature Extraction

GP has been used extensively to optimize feature extraction and selection
tasks. One of the first contributions in this line was the one published by Tackett
in 1993 [55], who applied GP to feature discovery and image discrimination
tasks.

We can consider two main branches in the philosophy of GP-based feature
extraction:

On one hand, we have the proposals that focus only on the feature extraction
procedure, of which there are multiple examples: Sherrah et al. [52] presented
in 1997 the evolutionary pre-processor (EPrep), which searches for an optimal
feature extractor by minimizing the misclassification error over three randomly
selected classifiers. Kotani et al.’s work from 1999 [32] determined the optimal
polynomial combinations of raw features to pass to a k-nearest neighbor clas-
sifier. In 2001, Bot [8] evolved transformed features, one-at-a-time, again for a
k-NN classifier, utilizing each new feature only if it improved the overall classi-
fication performance. Zhang & Rockett, in 2006, [63] used multiobjective GP
to learn optimal feature extraction in order to fold the high-dimensional pat-
tern vector to a one-dimensional decision space where the classification would
be trivial. Lastly, also in 2006, Guo & Nandi [24] optimized a modified Fisher
discriminant using GP, and then Zhang et al. extended their work by using a
multiobjective approach to prevent tree bloat [64], and applied a similar method
to spam filtering [62].

On the other hand, some authors have chosen to evolve a full classifier with
an embedded feature extraction step. As an example, Harris [28] proposed

5



in 1997 a co-evolutionary strategy involving the simultaneous evolution of the
feature extraction procedure along with a classifier. More recently, Smith &
Bull [54] developed a hybrid feature construction and selection method using
GP together with a GA. FLGP, by Yin et al. [39] is yet another example, where
‘new features extracted by certain layer are used to be the training set of next
layer’s populations’.

2.5. Finding and repairing fractures between data

Throughout the literature there have been a number proposals to quantify
the amount of dataset shift (in other words, the size of the fracture in the data).
This shift is usually due to time passing (the data comes from the same source
at a latter time), but it can also be due to the data being originated by different
sources, as is the case in this paper. Some of the most relevant works in the field
are: Wang et al. [56], where the authors present the idea of correspondence trac-
ing. They propose an algorithm for the discovering of changes of classification
characteristics, which is based on the comparison between two rule-based classi-
fiers, one built from each dataset. Yang et al. [59] presented in 2008 the idea of
conceptual equivalence as a method for contrast mining, which consists of the
discovery of discrepancies between datasets. Lately, it is important to mention
the work by Cieslak and Chawla [10], which presents a statistical framework to
analyze changes in data distribution resulting in fractures between the data.

A different approach to fixing data fractures relies on the adaptation of
the classifier. Quiñonero-Candela et al. [49] edited a very interesting book on
the topic, including several specific proposals to repair fractures between data
(what they call dataset shift). There are two main differences between the usual
proposals in the literature and this contribution: first, they are most often based
on altering the classifier, while we propose keeping it intact and transforming
the data. Second, most authors focus on covariate shift, a specific kind of data
fracture, but the method we propose here is more general and can tackle any
kind of shift.

3. Case Study: Prostate Cancer Diagnosis

This section begins with an introduction to the importance of the problem
in subsection 3.1. The diagnostic procedure is summarized in subsection 3.2,
and the reason to apply GP-RFD to this problem is shown in 3.3. Finally, the
preprocessing the data went through is presented in subsection 3.4.

3.1. Motivation

Prostate cancer is the most common non-skin malignancy in the western
world. The American Cancer Society estimated 192,280 new cases and 27,360
deaths related to prostate cancer in 2009 [2]. Recognizing the public health
implications of this disease, men are actively screened through digital rectal
examinations and/or serum prostate specific antigen (PSA) level testing. If
these screening tests are suspicious, prostate tissue is extracted, or biopsied,
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from the patient and examined for structural alterations. Due to imperfect
screening technologies and repeated examinations, it is estimated that more
than one million people undergo biopsies in the US alone.

3.2. Diagnostic procedure

Biopsy, followed by manual examination under a microscope is the primary
means to definitively diagnose prostate cancer as well as most internal cancers
in the human body. Pathologists are trained to recognize patterns of disease
in the architecture of tissue, local structural morphology and alterations in cell
size and shape. Specific patterns of specific cell types distinguish cancerous and
non-cancerous tissues. Hence, the primary task of the pathologist examining
tissue for cancer is to locate foci of the cell of interest and examine them for
alterations indicative of disease. A detailed explanation of the procedure is
beyond the scope of this paper and can be found elsewhere [38, 43, 42].

Operator fatigue is well-documented and guidelines limit the workload and
rate of examination of samples by a single operator (examination speed and
throughput). Importantly, inter- and intra-pathologist variation complicates
decision making. For this reason, it would be extremely interesting to have an
accurate automatic classifier to help reduce the load on the pathologists. This
was partially achieved in [43], but some issues remain open.

3.3. The generalization problem

Llorà et al. [43] successfully applied a genetics-based approach to the devel-
opment of a classifier that obtained human-competitive results based on FTIR
data. However, the classifier built from the data obtained from one laboratory
proved remarkably inaccurate when applied to classify data from a different
hospital. Since all the experimental procedure was identical; using the same
machine, measuring and post-processing; and having the exact same lab pro-
tocols, both for tissue extraction and staining; there was no factor that could
explain this discrepancy.

What we attempt to do with this work is develop an algorithm that can
evolve a transformation over the data from the second laboratory, creating a
new dataset where the classifier built from the first lab is as accurate as possible.
This evolved transformation would also provide valuable information, since it
would allow the scientists processing the tissues analyze the differences between
their results and those of other hospitals.

3.4. Pre-processing of the data

The biological data obtained from the laboratories has an enormous size (in
the range of 14GB of storage per sample); and parallel computing was needed
to achieve better-than-human results. For this reason, feature selection was
performed on the dataset obtained by FTIR. It was done by applying an eval-
uation of pairwise error and incremental increase in classification accuracy for
every class, resulting in a subset of 93 attributes. This reduced dataset provided
enough information for classifier performance to be rather satisfactory: a simple
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C4.5 classifier achieved ∼ 95% accuracy on the data from the first lab, but only
∼ 80% on the second one. The dataset consists of 789 samples from one labo-
ratory and 665 from the other one. These samples represent 0.01% of the total
data available for each data set, which were selected applying stratified sam-
pling without replacement. A detailed description of the data pre-processing
procedure can be found in [16].

4. A proposal for GP-based feature extraction for the Repairing of
Fractures between Data (GP-RFD)

This section is presented in the following way: First, a justification for the
choice of GP is included. Subsection 4.1 details how the solutions are rep-
resented, then the fitness evaluation procedure and the genetic operators are
introduced in subsections 4.2 and 4.3 respectively. Then, the parameter choices
are explained in subsection 4.4, while the function set is in subsection 4.5. Fi-
nally, the execution flow of the whole procedure is shown in subsection 4.6.

The problem we are attempting to solve is the design of a method that can
create a transformation from a dataset (dataset B) where a classification model
is not accurate enough into a new one where it is (dataset S). Said classifier is
kept unchanged throughout the process.

We decided to use GP to solve the problem for a number of reasons: First,
it is well suited to evolve arbitrary expressions because its chromosomes are
trees. This is useful in our case because we want to have the maximum possible
flexibility in terms of the functional expressions that can be present in the feature
extraction procedure. Second, GP provides highly-interpretable solutions. This
is an advantage because our goal is not only to have a new dataset where the
classifier works, but also to analyze what was the problem in the first dataset.

The specific decisions to be made once GP was chosen as the technique
to apply are how to represent the solutions, what terminals and operators to
choose, how to calculate the fitness of an individual and which evolutionary
parameters (population size, number of generations, selection and mutation
rates, etc) are appropriate for each specific problem. To clarify some of the
points, let us have a binary 2-dimensional problem as an example, and let us
use a function set composed of {+,−, ∗,÷}.

4.1. Solutions representation: Context-free grammar

The representation issue was solved by extending GP to evolve more than
one tree per solution. Each individual is composed by n trees, where n =
nv, the number of attributes present in the dataset (we are trying to develop
a new dataset with the same number of attributes as the old one). In the
tree structure, the leaves are either constants (we use the Ephemeral Random
Constant approach) or attributes from the original dataset. The intermediate
nodes are functions from the function set, which is specific to each problem.

The attributes on the transformed dataset are represented by algebraic ex-
pressions. These expressions are generated according to the rules of a context-
free grammar which allows the absence of some of the functions or terminals.
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The grammar corresponding to the example problem would look like this:

Start→ Tree Tree

Tree→ Node

Node→ Node Operator Node

Node→ Terminal

Operator → + | − | ∗ | ÷
Terminal→ x0 | x1 | E
E → realNumber(represented by e)

An individual in the example problem would have two trees ; and each of
them would be allowed to have any of the functions in the function set, which for
this example is {+,−, ∗,÷}, in their intermediate nodes; and any of {x0, x1, e}
in the leaves. This, for example, would be a legal individual:

Individual
aaaa

!!!!
s0

∗
ee%%

b0 b0

s1

+
b
bb

"
""

0.23535 −
ee%%

b1 b0

4.2. Fitness evaluation

The fitness evaluation procedure is probably the most treated aspect of de-
sign in the literature when dealing with GP-based feature extraction. As has
been stated before, the idea is to have the provided classifier’s performance drive
the evolution. To achieve that, GP-RFD calculates fitness in the following way:

1 Prerequisite: A previously built classifier (the one built from dataset A)
needs to be provided. It is used as a black box.

2 Given an individual composed of a list of expression trees (one corre-
sponding to each extracted attribute), a new dataset (dataset S) is built
applying the transformations encoded in those expression trees to all the
samples in dataset B.

3 The fitness of the individual is the classifier’s accuracy on dataset S (training-
set accuracy), calculated as the ratio of correctly classified samples over
the total number of samples.

Figure 1 presents a schematic representation of the procedure.

9



Classifier

Dataset A

Dataset B

Fitness

Dataset S

GP-RFD

Individual

Figure 1: Schematic representation of the fitness evaluation procedure

4.3. Genetic operators

This section details the choices made for selection, crossover and mutation
operators. Since the objective of this work is not to squeeze the maximum
possible performance from GP, but rather to show that it is an appropriate
technique for the problem and that it can indeed solve it, we did not pay special
attention to these choices, and picked the most common ones in the specialized
literature.

• Tournament selection without replacement. To perform this selection, k
individuals are first randomly picked from the population (where k is the
tournament size), while avoiding using any member of the population more
than once. The selected individual is then chosen as the one with the best
fitness among those picked in the first stage..

• One-point crossover: For each dimension, a subtree from one of the parents
is substituted by one from the other parent. The procedure is specified in
algorithm 1. An example, for one of the dimensions only, can be seen in
figure 2.

• Swap mutation: This is a conservative mutation operator, that helps di-
versify the search within a close neighborhood of a given solution. It
consists of exchanging the primitive associated to a node by one that has
the same number of arguments.
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Algorithm 1 One-point crossover procedure

FORALL t r e e s on each i n d i v i d u a l
1 . Randomly s e l e c t a non−root non−l e ave node on each o f

the two parents .
2 . The f i r s t c h i l d i s the r e s u l t o f swapping the subt ree

below the s e l e c t e d node in the f a t h e r f o r that o f the
mother .

3 . The second c h i l d i s the r e s u l t o f swapping the subt ree
below the s e l e c t e d node in the mother f o r that o f the
f a t h e r .

  

Parents  Children

+

X1 X0

+

X3

-

X1 X0

0.235

X2

-

*

X0 X1 X0

+

X3

-

+

X1 X0

-

0.235

-0.78 X0 X2

*

-0.78

Figure 2: Crossover example for one of the dimensions only, this is repeated for
all dimensions (trees) on each individual.

• Replacement mutation: This is a more aggressive mutation operator that
leads to diversification in a larger neighborhood. The procedure to perform
this mutation is the following:

1 Randomly select a non-root non-leave node on the tree to mutate.

2 Create a random tree of depth no more than a fixed maximum depth.
This parameter has not been tinkered with, since the goal of this
study was not to squeeze the maximum performance out of the pro-
posed method, but rather to check its viability. Future work could
tackle this issue.

3 Swap the subtree below the selected node for the randomly generated
one.

4.4. Parameters

The evolutionary parameters that were used for the experimental study are
detailed in Table 1. As it was mentioned before, not much attention was payed to
optimizing the parameters. Because of this the crossover and mutation probabil-
ities, along with the number of generations to run, were fixed to the usual values
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in the literature (we could call them ‘default values’) and were not changed in
any of the experiments.

Some of the evolutionary parameters are problem dependent, to select an
appropriate value for them we used the following rules:

• Population size: Since the only measure of difficulty we know about each
of our problems a priori is the number of attributes present in the dataset
(nv), we have to fix the population size as a function of it. In the exper-
iments carried out in this study, we found 400 ∗ nv to be a large enough
population to achieve satisfactory results. This parameter is problem-
dependent, so what we are fixing here is an upper bound for the population
size needed. We found that, by following this rule, GP-RFD consistently
achieved good results; being able to solve the harder transformations, even
though it was excessive for the easier ones and thus resulted in slower exe-
cution times. If harder problems than the ones studied in this paper were
to be tackled, this parameter might need to be revised.

• Tournament size: Since we are increasing the population size as a function
of nv, an increase of the selection pressure is needed too. The formula we
used to calculate tournament size is: log2(nv) + 1. Again, this empirical
estimation produced the best results; while an excessive pressure produced
too fast of a convergence into local optima, and not enough pressure pre-
vents GP-RFD from converging at all.

Table 1: Evolutionary parameters for a nv-dimensional problem

Parameter Value
Number of trees nv

Population size 400 ∗ nv

Duration of the run 50 generations
Selection operator Tournament without replacement
Tournament size log2(nv) + 1
Crossover operator One-point crossover
Crossover probability 0.9
Mutation operator Replacement & Swap mutations
Replacement mutation probability 0.001
Swap mutation probability 0.01
Maximum depth of the swapped in subtree 5
Function set Problem dependent
Terminal set {x0,x1,...,xnv − 1, e}

4.5. Function set

Which functions to include in the function set are usually dependent on
the problem. Since one of our goals is to have an algorithm as universal and
robust as possible, where the user does not need to fine-tune any parameters
to achieve good performance; we decided not to study the effect of different
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function set choices. The used function sets are chosen to be close to the default
ones most authors use in the literature, and were extracted in all cases from
{+,−, ∗,÷, exp, cos}. The benchmark experiments did not use {exp, cos}, since
we intended to test the capability of the method to unveil transformations that
did not include functions in the function set. The specific choices for each of
the experiments can be seen in table 6.

4.6. Execution flow

Algorithm 2 contains a summary of the execution flow of the GP procedure,
which follows a classical evolutionary scheme. It stops after a user-defined num-
ber of generations, providing as a result the best individual (ie, transformation)
it has ever found.

Algorithm 2 Execution flow of the GP procedure

1 . Randomly c r e a t e the i n i t i a l populat ion by apply ing the
context−f r e e grammar presented in subs e c t i on 4 . 1 .

2 . Repeat Ng times ( where Ng i s the number o f g ene ra t i on s )
2 .1 Evaluate the cur rent populat ion , us ing the procedure

shown in subse c t i on 4 . 2 .
2 . 2 Apply s e l e c t i o n and c r o s s o v e r to c r e a t e a new

populat ion that w i l l r e p l a c e the o ld one .
2 . 3 Apply the mutation ope ra to r s to the new populat ion .

3 . Return the bes t i n d i v i d u a l ever seen .

5. Experimental Study

This section is organized in the following way: To begin with, a general de-
scription of the experimental procedure is presented in subsection 5.1, along with
the datasets that we have used for our testing (both the benchmark problems
and the prostate cancer dataset); and also in the benchmarks’ case the transfor-
mations performed on each of them. The parameters used for each experiment
are shown in subsection 5.2; followed by a presentation of the benchmark exper-
imental results in subsection 5.3. Finally, the results obtained on the prostate
cancer problem are presented in subsection 5.4.

5.1. Experimental Framework, Datasets and Transformations

The goal of the experiments was to check how effective GP-RFD was in
finding a transformation over dataset B that would increase the provided clas-
sifier’s accuracy. To validate our results, we employed a 5-fold cross validation
technique [31]. We used the beagle library [18] for our GP implementation.

The experimental study is fractioned in two parts. In the first one, a syn-
thetic set of tests is built from a few well-known benchmark datasets. The
procedure followed in these experiments was (see figure 3 for a schematic rep-
resentation):
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1 Split the original dataset in two halves with equal class distribution.

2 Consider the first half, to be dataset A.

3 From dataset A, build a classifier. We chose C4.5 [50], but any other
classifier would work exactly the same; due to the fact that GP-RFD uses
the learned classifier as a black box.

4 Apply a transformation over the second half of the original dataset, cre-
ating dataset B. The transformations we tested were designed to check
GP-RFD’s performance on different types of problems, including both
linear and non-linear transformations. A description of each of them can
be found in the next subsection.

5 The performance of the classifier built in step 2 is significantly worse on
dataset B than it is on dataset A. This is the starting point on the real
problem we are emulating.

6 Apply GP-RFD to dataset B in order to evolve a transformation that will
create a solution dataset S. Use 5-fold cross validation over dataset S, so
that training and test set accuracy results can be obtained.

7 Check the performance of the step 2 classifier on dataset S. Ideally, it
should be close to the one on dataset A, which would mean GP-RFD has
successfully discovered the hidden transformation and inverted.

  

ClassifierDataset A

Dataset B

Original 
dataset

Ad hoc 
transformation

Split in
half

Figure 3: Schematic representation of the experimental procedure with bench-
mark datasets.

The second part of the study is the application of the proposed algorithm
to the Prostate Cancer problem. The steps followed in this case were:

1 Consider each of the provided datasets to be datasets A and B respectively.

2 From dataset A, build a classifier. Use 5-fold cross validation to obtain
training and test-set performance results.

3 Apply GP-RFD to dataset B in order to evolve a transformation that will
create a solution dataset S. Use 5-fold cross validation over dataset S, so
that training and test set accuracy results can be obtained.
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4 Check the performance of the step 2 classifier on dataset S. Ideally, it
should be close to the one on dataset A, meaning GP-RFD has successfully
discovered the hidden transformation and inverted it.

The selected datasets are summarized in Table 2. A short description and
motivation for each of the datasets follows, and this subsection is concluded
with the specification of the transformations that were fabricated to test the
algorithm on each of the benchmark datasets. For the the two-dimensional
problems, the transformations are also graphically represented.

Note that the transformations in the Prostate Cancer problem are not spec-
ified. This is due to it being a real-world problem and not a fabricated one, so
the implicit transformations in the data were unknown a priori.

Table 2: Datasets used

Dataset Attributes Samples Classes Class Distribution Attr. type
Linear synthetic 2 1000 2 50%− 50% Real
Tao 2 1888 2 50%− 50% Real
Iris 4 150 3 33%− 33%− 33% Real
Phoneme 5 5404 2 70%− 30% Real
Wisconsin 9 683 2 65%− 35% Real
Heart 13 270 2 55%− 45% Real
Wine 13 178 3 33%− 39%− 27% Real
Wdbc 30 569 2 65%− 45% Real
Ionosphere 34 351 2 65%− 45% Real
Sonar 60 208 2 54%− 46% Real
Mux-11 11 2048 2 50%− 50% Nominal
Cancer (A) 93 789 2 60%− 40% Real
Cancer (B) 93 665 2 60%− 40% Real

• Linear synthetic dataset: We have called the first dataset ‘Linear syn-
thetic’. It was created specifically for this work, with the idea of having
an easily representable linearly separable dataset to work with. It was
chosen to check the performance of GP-RFD on some simple transforma-
tions, without the added difficulty of having a complex original dataset.
The dataset can be seen in Figure 4. We applied three transformations
to this dataset A: rotation, translation&extrusion and circle. The trans-
formed datasets (datasets B on the experiments) can be seen in figures 5,
6 and 7 respectively.

• Tao: The next step to check the usefulness of GP-RFD is starting from a
harder dataset. To this end, we chose the Tao dataset, still a 2-dimensional
problem but where classification is much harder. This dataset is also
built artificially [41]. The dataset can be seen, before any transformations
(dataset A), in Figure 8. Mirroring the transformations applied over the
linear synthetic dataset, we chose to transform the original Tao dataset by
rotating it (Figure 9); or by translating and extruding (Figure 10). The
transformations applied to Tao can also be seen in table 3.
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Figure 4: Linear synthetic dataset, dataset A.

Figure 5: Rotation problem, transformed dataset

Table 3: Transformations performed on the Tao dataset

Experiment Rotation Translate & extrude

Transformation applied
b0 = a0 ∗ cos(1) + a1 ∗ sin(1) b0 = a0 ∗ 3 + 2
b1 = a0 ∗ sin(1) + a1 ∗ cos(1)

• UCI and ELENA datasets: Once GP-RFD has been tested in small (with
a low number of attributes) datasets, it is useful to see how it fares in
bigger benchmark problems. We chose a few different datasets from the
UCI database [4], as well as the ELENA project [23]:

– Iris: Classification of iris plants (UCI).

– Phoneme: Distinguish between nasal and oral sounds (ELENA).

– Wisconsin: Diagnosis of breast cancer patients (UCI).

– Heart: Detect the absence or presence of heart disease (UCI).

– Wine: Classification of different types of Italian wines (UCI).
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Figure 6: Translation&Extrusion problem, transformed dataset

Figure 7: Circle problem, transformed dataset

– Wdbc: Determination of whether a found tumor is benign or malig-
nant (UCI).

– Ionosphere: Radar data where the task is to decide is a given radar
return is good or bad (UCI, modified as found in the KEEL database
[1]).

– Sonar: Distinguishing between rocks and metal cylinders from sonar
data (UCI).

We performed two different experiments on each of the datasets. In the
first experiment, the transformation is created using functions that ap-
pear in the function set of the GP procedure (more specifically, one of the
attributes is added to itself). We named this experiment ‘in-set transfor-
mation’. The second one transforms the dataset by using functions that
do not appear in the GP function set. The name for this experiment is
‘out-of-set transformation’. The exact details for these transformations
can be found in Table 4. Any attribute not specified as being part of the
transformation in the tables is assumed to be unchanged.
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Figure 8: Tao dataset. This is
dataset A, over which the different
transformations are applied, and
the transformed datasets have to fit
to the same classifier this dataset
does.

Figure 9: Rotated Tao, transformed dataset

Table 4: Transformations performed on the UCI and ELENA datasets

Dataset In-set transformation Out-of-set transformation
Iris b2 = a2 + a2 b3 = ea3

Phoneme
b0 = a0 − 0.4 b0 = sin(a0)
b3 = a3 ∗ 2.5 b3 = cos(a3)

Wisconsin
b1 = a1 + 2 b1 = cos(a1)
b5 = a5 ∗ 3 b5 = sin(a5)

Heart
b2 = a2 ∗ 2 b2 = sin(a2)
b11 = a11 + 3 b11 = ea11

Wine
b9 = a9 − 1 b9 = sin(a9)
b12 = a12 ∗ 2 b12 = cos(a12)

Wdbc
b26 = a26− 1 b26 = sin(a26)
b27 = a27 ∗ 3 b27 = cos(a27)

Ionosphere
b4 = a4 − 0.5 b4 = ea4

b7 = a7 ∗ 2 b7 = sin(a7)

Sonar
b7 = a7 + 0.3 b7 = sin(a7)
b43 = a43 ∗ 2 b43 = ea43

• Multiplexer-11: Since GP-RFD should be flexible enough to be able to
tackle datasets with nominal attributes, one of these datasets was included
in the testing. In this work, we chose the Multiplexer problem. This is a
binary problem where some of the bits act as address, and the remaining
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Figure 10: Translated & extruded Tao, transformed dataset

bits are data registers. The correct classification for a given input is the
value of the register pointed by the address bits. The specific instance
used here is Multiplexer-11, a dataset with 11 binary attributes (where
the first three act as address, and the remaining eight as registers); and
211 = 2048 samples.

Two different transformations were tested: in the first one, one of the
address bits was flipped; while in the second experiment there was an
attribute swap, in a circular shift. The details can be found in table 5.

Table 5: Transformations performed on the Multiplexer-11 dataset

Experiment Bit Flip Column Swap

Transformation applied
b1 = a2

b1 = not(a1) b2 = a3
b3 = a1

• Prostate Cancer: As was explained in section 3, the solution to this prob-
lem is the main motivation for this work. Since we were provided with
data from two real laboratories, there was no need to fabricate any trans-
formations: we chose one the data from one of the laboratories as dataset
A and the other one as dataset B.

5.2. Parameters

In this section, we detail the parameters used for each of the datasets, in-
cluding both the evolutionary parameters and the GP setup. The parameters
were chosen following the rules detailed in section 4.4.

As can be seen in table 6, the population sizes are large. This is mostly due
to GP being a technique that traditionally requires large population sizes to be
effective, a factor which is aggravated by the fact that GP-RFD evolves multiple
expression trees simultaneously (one for each attribute in the dataset). We ac-
knowledge this issue provokes long execution times for some of the experiments,
but considered it a secondary concern and did not address it in this work.
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Table 6: Experimental Parameters

Dataset Population Size Tournament Size Function Set
Linear synthetic 800 2 {+,−, ∗,÷}
Tao 800 2 {+,−, ∗,÷}
Iris 1600 3 {+,−, ∗,÷}
Phoneme 2000 3 {+,−, ∗,÷}
Wisconsin 3600 4 {+,−, ∗,÷}
Heart 5200 4 {+,−, ∗,÷}
Wine 5200 4 {+,−, ∗,÷}
Wdbc 12000 5 {+,−, ∗,÷}
Ionosphere 13600 6 {+,−, ∗,÷}
Sonar 24000 6 {+,−, ∗,÷}
Mux-11 4400 4 {+,−, ∗,÷}
Cancer 37200 6 {+,−, ∗,÷, exp, cos}

5.3. Experimental Results: Benchmark Problems

This part presents the results obtained in terms of classifier performance for
the benchmark problems, along with a statistical analysis to evaluate whether
GP-RFD is effective.

Table 7 details the performance obtained by the C4.5 classifier on each of
the benchmark problems. It includes the classifier performance, calculated as
shown on subsection 4.2, on:

• Dataset A, which was used to generate the decision tree. A 5-fold cross
validation technique was applied, and both training and test set results
are presented.

• Dataset B, which was created by designing an ad hoc transformation.

• Dataset S, which is the result of applying GP-RFD to dataset B, obtaining
a transformed dataset where classifier performance is increased. A 5-fold
cross validation technique was applied, and both training and test set
results are presented.

The results show that GP-RFD is capable of reversing nearly all of the fab-
ricated transformations, achieving accuracy rates that are very close to the ones
obtained in the original datasets in both training and test performances. GP-
RFD has also proven capable of generalizing well, as can be seen by the small dif-
ference between training and test set classification performances in most cases.
However, some of the datasets (which, coincidentally, tend to also behave badly
in terms of generalization when building classifiers) present some generalization
issues, leading to the inability to fully solve the problem dataset.

5.3.1. Statistical analysis

To complete the experimental study, we have performed a statistical com-
parison between the classifier performance over the following datasets:

20



Table 7: Classifier performance results: Benchmark Problems

Classifier performance on dataset ...
Problem A-training A-test B S-training S-test
Linear synthetic - Rotation 1.00000 1.00000 0.24930 1.00000 1.00000
Linear synthetic - Translation&Extrusion 1.00000 1.00000 0.34160 1.00000 0.99800
Linear synthetic - Circle 1.00000 1.00000 0.49860 0.96050 0.94400
Tao - Rotation 0.98518 0.93750 0.62924 0.94418 0.94255
Tao - Translation&Extrusion 0.98518 0.93750 0.80403 0.95344 0.93192
Iris - In-set Functions 0.97330 0.93333 0.66667 0.99333 0.92000
Iris - Out-of-set Functions 0.97330 0.93333 0.60000 0.99000 0.92000
Phoneme - In-set Functions 0.91895 0.84160 0.75204 0.828978 0.769907
Phoneme - Out-of-set Functions 0.91895 0.84160 0.59141 0.839871 0.804815
Wisconsin - In-set Functions 0.97361 0.93842 0.35380 0.98248 0.93821
Wisconsin - Out-of-set Functions 0.97361 0.93842 0.88889 0.98321 0.94412
Heart - In-set Functions 0.89630 0.72593 0.45296 0.92778 0.79259
Heart - Out-of-set Functions 0.89630 0.72593 0.60000 0.96296 0.72594
Wine - In-set Functions 0.97727 0.89733 0.65556 0.98889 0.90000
Wine - Out-of-set Functions 0.97727 0.89733 0.40000 0.96944 0.91111
Wdbc - In-set Functions 0.98571 0.92143 0.57143 0.98839 0.946428
Wdbc - Out-of-set Functions 0.98571 0.92143 0.82857 0.98214 0.97500
Ionosphere - In-set Functions 0.98286 0.87429 0.70857 0.98571 0.88571
Ionosphere - Out-of-set Functions 0.98286 0.87429 0.77714 0.98571 0.857143
Sonar - In-set Functions 0.93939 0.60601 0.61000 0.95500 0.66000
Sonar - Out-of-set Functions 0.93939 0.60601 0.51000 0.94750 0.72000
Mux11 - Bit Flip 1.00000 0.97070 0.50000 0.96951 0.96667
Mux11 - Column Swap 1.00000 0.97070 0.62500 0.97195 0.96765

• Dataset A, from which the classifier was built.

• Dataset B, artificially built by injecting an ad-hoc transformation.

• Dataset S-test, the result of applying GP-RFD over dataset B (test-set
results).

In [13, 21, 19, 20] a set of simple, safe and robust non-parametric tests for statis-
tical comparisons of classifiers are recommended. One of them is the Wilcoxon
Signed-Ranks Test [57, 53], which is the test that we have selected to do the
comparison.

This is analogous to the paired t-test in non-parametric statistical proce-
dures; therefore it is a pairwise test that aims to detect significant differences
between two sample means, that is, the behavior of two algorithms. It is defined
as follows: Let di be the difference between the performance scores of the two
classifiers on the ith dataset out of Nds datasets. The differences are ranked
according to their absolute values; average ranks are assigned in the case of
ties. Let R+ be the sum of ranks for the data-sets in which the first algorithm
outperformed the second, and R− the sum of ranks for the opposite. Ranks of
di = 0 are split evenly among the sums; if there is an odd number of them, one
is ignored:
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R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di) (1)

Let T be the smaller of the sums, T = min(R+, R−). If T is less than or
equal to the value of the distribution of Wilcoxon for Nds degrees of freedom
[61], the null hypothesis of equality of means is rejected; this will mean that a
given classifier outperforms their opposite, with the p-value associated.

The Wilcoxon signed-ranks test is more sensitive than the t-test. It assumes
commensurability of differences, but only qualitatively: greater differences still
count for more, which is probably desired, but the absolute magnitudes are
ignored. From a statistical point of view, the test is safer since it does not
assume normal distributions. Also, outliers (extremely good/bad performances)
have a smaller effect on the Wilcoxon signed-ranks test than on the t-test.

When the assumptions of the paired t-test are met, the Wilcoxon signed-
ranks test is less powerful than the paired t-test. On the other hand, when
the assumptions are not met, the Wilcoxon test is a better choice than the t-
test. This is because the Wilcoxon test can be applied over the averaged results
obtained by the algorithms in each data set, without any assumptions about
the characteristics of the distribution of the results obtained.

A complete description of the Wilcoxon signed ranks test and other non-
parametric tests for pairwise and multiple comparisons, together with software
for their use, can be found in the website available at http://sci2s.ugr.es/sicidm/.

As it was mentioned above, the test was applied to compare the classifier
performance in datasets A, B and S. The results can be seen in table 8. Note
that we compare the results in dataset A against those in S both in terms of
training and test sets. However, since the classifier was not built from dataset
B, we consider those results test-set related and compare it with S-test.

Table 8: Wilcoxon signed-ranks test results: Benchmark problems

Comparison R+ R− p-value null hypothesis of equality
A-test vs B 275 1 4.77E − 007 rejected (A-test outperforms B)
B vs S-test 0 276 2.38E − 007 rejected (S-test outperforms B)

A-training vs S-training 147.5 128.5 −− accepted
A-test vs S-test 128.5 147.5 −− accepted

So we can conclude GP-RFD is capable of finding transformations resulting
in a new dataset S that

1 Significantly outperforms dataset B in terms of classifier performance.
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2 Obtains statistically equivalent results to dataset A, both in terms of train-
ing and test sets. Since the classifier was built from dataset A, this means
dataset S is a successful repair of the fracture between datasets A and B,
assuming class distribution did not change. We know this is the case in
these experiments due to the way we built datasets A and B, but it has
to be kept in mind when applying the method in other environments.

5.3.2. Graphical results

This section presents graphical representations of some of the obtained re-
sults. Since several of the datasets have a high number of variables that make
them extremely hard to chart in a simple way, only the results corresponding
to the linear synthetic dataset (figs 11, 12 and 13) and the Tao dataset (figs
14 and 15) are shown. To make the visualization easier, each of the solution
datasets (datasets S) is presented side-by-side with the corresponding problem
dataset (datasets B). The original datasets (datasets A) can be seen in Figures
4 for the linear synthetic dataset and 8 for the Tao dataset.

Figure 11: Linear synthetic rotation, Problem(L) and Solution(R) Datasets

Figure 12: Linear synthetic translation&extrusion, Problem(L) and Solution(R)
Datasets
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Figure 13: Circle, Problem(L) and Solution(R) Datasets

Figure 14: Rotation in Tao, Problem(L) and Solution(R) Datasets

5.4. Prostate Cancer experimental results

This section presents the preliminary results for the Prostate Cancer prob-
lem, in terms of classifier accuracy. The results obtained can be seen in table 9.
In that table, dataset A is the one from the first lab; which was used to build
the classifier, dataset B is the one coming from the second lab, and dataset S is
the result of the application of GP-RFD.

To check whether the full dataset B was needed to evolve an effective trans-
formation, we also tested using just half of it to train GP-RFD, and the other
half to test (2-fold cross validation). These results are also included in table 9.

The performance results are excellent for a number of reasons. First and
foremost, GP-RFD was able to find a transformation over the data from the
second laboratory that made the classifier work just as well as it did on the data
from the first lab, effectively finding the hidden perturbations that prevented
the classifier from working accurately.
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Figure 15: Translation&Extrusion in Tao, Problem(L) and Solution(R) Datasets

Table 9: Classifier performance results: the Prostate Cancer problem

Classifier performance in dataset ...
Validation method A-training A-test B S-training S-test
5-fold cross validation 0.95435 0.92015 0.83570 0.95191 0.92866
2-fold cross validation 0.95435 0.92015 0.83570 0.95482 0.93223

The second positive conclusion to be obtained from the results is the gener-
alization power of GP-RFD. As can be observed from the test results, GP-RFD
does not ‘cheat’ by over-learning on the known data, and works well when trans-
forming new, previously unseen, samples.

Third, the results show GP-RFD was capable of obtaining excellent results
using just half of the B dataset to train. This result highlights the power of
the method to unveil the hidden transformation from a relatively low number
of samples.

We also performed a Wilcoxon signed-ranks test to evaluate the performance
of GP-RFD over the case of study problem. In order to do it, we used the
results from each partition in the 5-fold cross validation procedure. We ran the
experiment four times, resulting in 4 ∗ 5 = 20 performance samples to carry out
the statistical test. As we did before, R+ corresponds to the first algorithm in
the comparison winning, and R− to the second one. Table 10 shows the results.

Table 10: Wilcoxon signed-ranks test results: the Prostate Cancer problem

Comparison R+ R− p-value null hypothesis of equality
A-test vs B 210 0 1.91E − 007 rejected (A-test outperforms B)
B vs S-test 0 210 1.91E − 007 rejected (S-test outperforms B)

A-training vs S-training 126 84 −− accepted
A-test vs S-test 84 126 −− accepted
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The results on the case study problem are exactly the same as those achieved
in the benchmark problems. We can then conclude GP-RFD was capable of
repairing the existing fracture between the data from both laboratories. Again,
this conclusion assumes class distribution did not change. It is a given in this
case, since we know the class distribution to be equal in datasets A and B, but
is an issue that has to be kept in mind when applying the method to other
problems.

6. Concluding remarks

We have presented GP-RFD, a new algorithm that approaches a common
problem in real life for which not many solutions have been proposed in evo-
lutionary computing. The problem in question is the repairing of fractures
between data by adjusting the data itself, not the classifiers built from it.

We have developed a solution to the problem by means of a GP-based al-
gorithm that performs feature extraction on the problem dataset driven by the
accuracy of the previously built classifier.

We have tested GP-RFD on a set of artificial benchmark problems, where
a problem dataset is fabricated by applying an ad hoc disruption to an original
dataset, and it has proved capable of solving all the transformations presented
showing good performance both in train and, more importantly, test data.

We have also being able to apply GP-RFD to a real-world problem where
data from two different laboratories regarding prostate cancer diagnosis was
provided, and where the classifier learned from one did not perform well enough
on the other. Our algorithm was capable of learning a transformation over the
second dataset that made the classifier fit just as well as it did on the first one.
The validation results with 5-fold cross validation also support the idea that the
algorithm is obtaining good results; and has a strong generalization power.

Lastly, we have applied a statistical analysis methodology that supports the
claim that the classifier performance obtained on the solution dataset signifi-
cantly outperforms the one obtained on the problem dataset.

There is, however, one point where the proposed method has not been suc-
cessful. The learned transformations have failed to provide any information
about why the fracture appeared between the data from the two laboratories.
We have, however, included a sample of the transformations learned in appendix
A.
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[43] X. Llorà, R. Reddy, B. Matesic, and R. Bhargava. Towards better than
human capability in diagnosing prostate cancer using infrared spectroscopic
imaging. In GECCO ’07: Proceedings of the 9th annual conference on
Genetic and evolutionary computation, pages 2098–2105, New York, NY,
USA, 2007. ACM.

[44] U.-M. O’Reilly. An Analysis of Genetic Programming. PhD thesis, Car-
leton University, Ottawa-Carleton Institute for Computer Science, Ottawa,
Ontario, Canada, 1995.

[45] M. Pei, E. D. Goodman, and W. F. Punch. Pattern discovery from data us-
ing genetic algorithms. In Proceeding of 1st Pacific-Asia Conference Knowl-
edge Discovery & Data Mining(PAKDD-97), 1997.

[46] A. Piszcz and T. Soule. A survey of mutation techniques in genetic program-
ming. In GECCO ’06: Proceedings of the 8th annual conference on Genetic
and evolutionary computation, pages 951–952, New York, NY, USA, 2006.
ACM.

30



[47] I. T. Podolak. Facial component extraction and face recognition with sup-
port vector machines. In FGR ’02: Proceedings of the Fifth IEEE Inter-
national Conference on Automatic Face and Gesture Recognition, page 83,
Washington, DC, USA, 2002. IEEE Computer Society.

[48] R. Poli, W. B. Langdon, and N. F. Mcphee. A Field Guide to Genetic
Programming. Lulu Enterprises, UK Ltd, March 2008.
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Appendix A. Sample solution from the Prostate Cancer problem

In this appendix, we include a sample of the learned transformations for the
Prostate Cancer problem, presenting the transformations corresponding to the
highest fitness individual ever found. Due to space concerns, only the attributes
relevant to the C4.5 classifier are shown.

  

Figure A.16: Tree representation of the expressions contained in a solution to
the Prostate Cancer problem

33


