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a b s t r a c t

In this paper, q-Gaussian Radial Basis Functions are presented as an alternative to Gaussian Radial Basis
Function. This model is based on q-Gaussian distribution, which parametrizes the Gaussian distribution
by adding a new parameter q. The q-Gaussian Radial Basis Function allows different Radial Basis Func-
tions to be represented by updating the new parameter q. For example, when the q-Gaussian function
takes a value of q → 1, it represents the standard Gaussian Radial Basis Function. The model parameters
are optimized through a Memetic Algorithm that evolves both its structure and connections. To evaluate
the effectiveness of the model, it is tested with a real problem of predictive microbiology. The problem
consists of determining the growth boundaries of Staphylococcus aureus, a food borne pathogen respon-
echnique (SMOTE)
-Gaussian Radial Basis Function Neural
etwork
redictive Microbiology
emetic Algorithm

sible for several outbreaks. The data from the study of [1] belongs to growth/no growth conditions of S.
aureus whose temperature, pH and water activity (aw) has been divided into three categorical classes:
growth (G), growth transition (GT) and no growth (NG). Due to the imbalanced nature of the problem, it
has been necessary to apply an over-sampling algorithm. The over-sampling procedure selected was the
Synthetic Minority Over-Sampling Technique (SMOTE) algorithm. This algorithm has been applied to the
patterns in the minority class in order for the performance of the classifier in this class to be acceptable
(the minority class in this problem is of vital interest).
. Introduction

The use of Artificial Neural Networks (ANNs) as an alternative
o other techniques in predictive microbiology has been signifi-
ant due to their flexibility and high degree of accuracy in fitting
o experimental data, all of which has been the object of sev-
ral research studies [2,3]. Our study focuses on Radial Basis
unction Neural Networks (RBFNNs), which have been success-
ully employed in a variety of pattern recognition problems such
s the determination of the microbial growth/no growth inter-
ace [4]. Several common types of functions are used as transfer
unctions, for example, the standard Gaussian (SRBF), the Mul-

iquadratic (MRBF), the Inverse Multiquadratic (IMRBF), and the
auchy (CRBF).

This paper evaluates a novel RBF based on q-Gaussian distribu-
ion which parametrizes standard normal distribution by replacing

∗ Corresponding author at: Department of Computer Science and Numerical Anal-
sis, University of Córdoba, 14014 Córdoba, Spain. Tel.: +34 957 21 83 49;
ax: +34 957 21 83 60.
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© 2010 Elsevier B.V. All rights reserved.

the exponential expressions with q-exponential expressions [5],
and maximizing Tsallis entropy [6] under certain constraints [7].
q-Gaussian distributions are applicable to a variety of complex sig-
nals and systems, and have been applied in a broad range of fields
[8] especially including thermodynamics, biology, economics, and
quantum mechanics.

Vignat and Plastino [9] show that if the input data exhibit ellip-
tical symmetry and the input data are normalized, the ensuing
normalized input will always be a q-Gaussian probability law. The
class of elliptically distributed random vectors plays an impor-
tant role in statistics, and recently garnered a lot of attention in
financial mathematics for being especially useful in risk manage-
ment [8,10] because the normalization processing of data induces
a change in its distribution, from a Gaussian to a q-Gaussian
one.

This novel basis function incorporates a real q parameter
(besides the centers and widths of the RBF) which can relax or con-

tract the shape of the kernel. This basis function matches both the
shape of the kernel and the distribution of the distances better,
since the modification of the q parameter allows the representa-
tion of different basis functions, among others, Cauchy RBF (CRBF),
the standard Gaussian RBF (SRBF), and the Inverse Multiquadratic

dx.doi.org/10.1016/j.asoc.2010.11.027
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:i22fenaf@uco.es
dx.doi.org/10.1016/j.asoc.2010.11.027
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BF (IMRBF) functions. A Memetic Evolutionary Algorithm based on
euristics is employed to select the parameters of the q-Gaussian
BF model. Neural Network training using evolutionary algorithms

s justified due to evolutionary algorithms have demonstrated their
apability in designing a near optimum neural network architec-
ure and simultaneously optimizing the corresponding weights
11], with several theoretical proposals [12,13] and practical appli-
ations [14–16].

Multi-classification patterns can often be applied to solve real
roblems when the output response is subjected to high inherent
ariability. In the case of food microbiology, predictive growth/no-
rowth models can estimate microbial behavior when environ-
ental factors are confined to a limited range. Within this zone,

he output result can lead us to an estimation of growth or
o-growth. The general way to solve this problem is by per-

orming two-class classification models; thus, theoretical studies
ave been focused almost entirely on learning binary functions.
owever, the result achieved by dividing the problem into two
lasses (growth and no-growth) does not correspond to reality
iven that, under the same conditions, simultaneous responses
an be obtained. This reasoning supports the idea of creating a
ew class, called growth transition, which encompasses all the
nvironmental conditions where growth and no-growth responses
an occur. A multi-classification model would allow 100% accu-
acy in distinguishing between growth or no-growth conditions,
nd those where growth is observed a certain percentage of times.
he problem for most of these algorithms is that the extension
rom two-class to the multi-class pattern classification problem is
on-trivial, and often leads to unexpected complexity or weaker
erformances [17].

In this paper, the performance of the proposed methodology was
valuated in a real problem based on the study of [1]. This study was
odified by providing a categorical classification of Staphylococcus

ureus growth as a function of temperature, pH and water activity
aw) in three different classes: “growth” (pG), which included condi-
ions in which the probability of growth was equal to 1; “no growth”
hich were conditions where the probability of growth was 0, and
class denominated “growth transition (GT)” that encompassed all
onditions where the probability of growth was other than 0 and
. In our approach, the output of the model was the probability
f pertaining to one class instead of quantifying the probability of
rowth.

The main advantage of this approach in comparison to the
ogistic model published by Valero et al. [1], lies in the conver-
ence of polynomial predictions to 0 and/or 1 in several cases.
his fact was especially evident in the boundary conditions studied
i.e. conditions which led to a binary response of the microor-
anism). In these cases, the use of the methodology proposed
an provide more accurate predictions and also give additional
nformation regarding the variability of microbial responses under
imiting conditions. This approach can help predictive modelers
o better define the growth boundaries of microorganisms and
o model the microbial variability associated with these condi-
ions.

Due to the imbalanced nature of the problem (the GT class is
learly the minority class), it seems natural to increase the number
f replicates per condition tested. Therefore, in the preprocessing
tage, the minority class (the GT class) was doubled in order to
mprove classifier performance in this class [18].

This paper is organized as follows: the q-Gaussian Radial Basis
unction Neural Networks are presented in Section 2; Section 3

escribes the base classifier, the learning algorithm and the over-
ampling procedure; Section 4 explains the experiment carried out;
here is a discussion about the best model obtained by the learn-
ng algorithm and the results in Section 5; and finally, Section 6
ummarizes the conclusions of our work.
Computing 11 (2011) 3012–3020 3013

2. q-Gaussian Radial Basis Function Neural Networks

We focus on RBFNNs which have been successfully employed
in different pattern recognition problems in the last several years
[19,20]. One advantage of RBFNNs when compared with MLPs is
that the linearly weighted structure of RBFNNs, where parame-
ters in the units of the hidden layer can often be pre-fixed, can
be quickly and easily trained without involving nonlinear opti-
mization. Another advantage of RBFNNs, compared to other basis
function networks, is that each basis function in the hidden units is
a nonlinear mapping that maps a multivariable input to a scalar
value, and thus the total number of candidate basis functions
involved in an RBFNN model is not very large and does not increase
as the number of input variables increases.

Let the number of nodes in the input layer, in the hidden layer
and in the output layer be K, M and J, respectively. For any sample
x = [x1, x2, . . ., xK], the output of the RBFNN is f(x) = [f1(x), f2(x), . . .,
fJ(x)]. The model of an RBFNN can be described with the following
equation:

fj(x) = ˇ0j +
M∑

i=1

ˇij · �i(di(x)), j = 1, 2, . . . , J (1)

where �i(di(x)) is a non-linear mapping from the input layer to the
hidden layer, �j = [ˇ1j, ˇ2j, . . ., ˇMj], for j = 1, 2, . . ., J is the connection
weight between the hidden layer and the output layer, and ˇ0j is
the bias value for the class j. The function di(x) can be defined as:

di(x) = ‖x − ci‖2

r2
i

(2)

where ri is the scalar parameter that defines the width for the ith
radial unit, || · || represents the Euclidean norm and ci = [c1, c2, . . .,
cK] are the centers of the RBFs. The standard RBF (SRBF) is the
Gaussian function, which is given by:

�i(di(x)) = e−di(x) (3)

SRBF present a very selective response, with high activation for
patterns close to the centroid and very small activation for distant
patterns. The RBFs �i(di(x)) can take different forms, including the
Cauchy RBF (CRBF) defined by:

�i(di(x)) = 1
1 + di(x)

(4)

and the Inverse Multiquadratic RBF (IMRBF), given by:

�i(di(x)) = 1

(1 + di(x))1/2
(5)

The CRBF and the IMRBF have longer tails than the SRBF, i.e., their
activations for patterns far from the centroid of the RBF is greater
than the activation of the SRBF for those patterns. The CRBF has
been successfully applied to image retrieval [21] and Computerized
Tomography [22], whereas the IMRBF has been used in applications
related to real-time signal-processing [23], among other scientific
and engineering applications. As can be seen in Fig. 1a, for suffi-
ciently large distance norms, the decay of the IMRBF and CRBF is
very slow. In addition, the SRBF, CRBF and IMRBF functions do not
fall asymptotically to zero.

This paper researches the use of the q-Gaussian RBF for multi
classification problems because this family of functions considers,

as already discussed in this section, different types of local func-
tions, where the tail of the different functions plays a crucial role.
The q-Gaussian RBF for the ith RBF can be defined as:

�i(di(x)) = e−di(x)
qi

(6)
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ig. 1. Radial unit activation in one-dimensional space with c = 0 and r = 1 for differ-
nt RBFs: (a) Gaussian, Cauchy and Inverse Multiquadratic and (b) q-Gaussian with
ifferent values of q.

here qi is a real valued parameter and the q-exponential function
f −di(x) is given by:

i(di(x)) =
{

(1 − (1 − q)di(x))1/(1−q) if (1 − (1 − q)di(x)) ≥ 0;
0 Otherwise

(7)

The q-Gaussian RBF can reproduce different RBFs for different
alues of the real q. parameter As an example, when the q param-
ter is close to 2, the q-Gaussian is the CRBF, for q = 3 we have the
ctivation of a radial unit with an IMRBF for di(x) is equal to the acti-
ation of a radial unit with a q-Gaussian RBF for di(x)/2 and, finally,
hen the value of q converges to 1, the q-Gaussian converges to the
aussian function (SRBF). Fig. 1b presents the radial unit activation

or the q-Gaussian RBF for different values of q.

. Classification method

.1. Probabilistic q-Gaussian RBFNN
In a classification problem, measurements xi, i = 1, 2, . . ., K, of a
ingle individual (or object) are taken, and the individuals are to be
lassified into one of the J classes based on these measurements.
training sample D = {(xn, yn);n = 1, 2, . . ., N} is available, where

n = (x1n, . . ., xKn) is the random vector of measurements taking
Computing 11 (2011) 3012–3020

values in ˝ ⊂ RK , and yn is the class level of the n th individual,
where the common technique of representing class levels using a
“1-of-J” encoding vector is adopted, y = (y(1), y(2), . . ., y(J)), and the
Correctly Classified Rate or accuracy of the classifier is defined by
C = (1/N)

∑N
n=1I(C(xn) = yn), where I( · ) is the zero-one lost func-

tion. A good classifier tries to achieve the highest possible C in a
given problem.

In order to tackle this classification problem, the outputs of the
q-Gaussian RBFNN model have been interpreted from the point
of view of probability through the use of the softmax activation
function, which is given by:

gl(x, �l) = exp fl(x, �l)
J∑

j=1

exp fj(x, �j)

, l = 1, 2, . . . , J (8)

where J is the number of classes in the problem, fj(x, �l) is the output
of the jth output neuron for pattern x and gl(x, �l) is the probability
a pattern x has of belonging to class j. The model to estimate the
function fl(x, �l) was defined in Eq. (1).

Using the softmax activation function presented in Eq. (8), the
class predicted by the NN corresponds to the node in the output
layer whose output value is the greatest. In this way, the optimum
classification rule C(x) is the following:

C(x) = l̂, where l̂ = argmaxl gl(x, �l), for l = 1, 2, . . . , J (9)

The function used to evaluate a q-Gaussian RBFNN is the
function of cross-entropy error and it is given by the following
expression:

l(�) = − 1
N

N∑
n=1

J∑
l=1

y(l)
n log gl(x, �l) = 1

N

N∑
n=1

[
−

J∑
l=1

y(l)
n fl(xn, �l)

+ log

J∑
l=1

exp fl(xn, �l)

]
(10)

where � = (�1, . . ., �J). The proposed algorithm returns the best
cross-entropy individuals as feasible solutions. Finally, because of
the normalization condition:

J∑
l=1

gl(x, �l) = 1 (11)

and the probability for one of the classes does not need to be
estimated. For that reason, the q-Gaussian RBFNN models evalu-
ated have J − 1 outputs nodes instead of J output nodes since the
gJ(x, �J) = 1 −

∑J−1
i=0gi(x, �i). This was used to reduce the number

of output nodes in the q-Gaussian RBFNN and, consequently, the
complexity of the model.

The error surface associated with the model is very convolved
with numerous local optima and the Hessian matrix of the error
function l(�) is, in general, indefinite. Moreover, the optimal num-
ber of basis functions in the model (i.e. the number of hidden
nodes in the neural network) is unknown. Thus, we estimate the
parameters � by means of an evolutionary algorithm. This kind of
metaheuristics has been proven to be very effective when optimiz-
ing neural network models [24–26].

3.2. Memetic Algorithm for q-Gaussian Radial Basis Function
(MQRBF)
The basic framework of the Evolutionary Algorithm (EA) is
the following: the search begins with an initial population of
q-Gaussian RBFNNs and, in each of the following iterations, a
population-update algorithm is applied which evolves both its
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Fig. 2. MQRBF train

tructure and weights. The population is subject to the operations
f replication, mutation and recombination.

The Memetic Algorithm for q-Gaussian Radial Basis Function
MQRBF) is detailed in Fig. 2, where pB is the best optimized q-
aussian RBFNN returned by the algorithm. l(�) defined in (Eq. (10))
as considered as the error function of an individual g of the popu-

ation. The fitness measure needed for evaluating the individuals is
strictly decreasing transformation of the error function l(�) given
y:

(g) = 1
1 + l(�)

; 0 < A(g) ≤ 1 (12)

The crossover operators considered are the binary and mul-
ipoint crossover operators. The severity of a mutation in an
ndividual RBFNN model is dictated by the temperature T(g) of

he RBFNN model. T(g) is related to A(g) by means of the expres-
ion T(g) = 1 − A(g), 0 ≤ T(g) < 1 and, for that reason, T(g) is in decline
hroughout the evolutionary process, experiencing abrupt changes
t the beginning (exploration) and slight changes at the end
exploitation). It is supposed that the A(g) of the individuals in the
orithm framework.

population must improve with each iteration of the evolutionary
process.

Parametric mutation consists of a simulated annealing algo-
rithm [27]. Structural mutation implies a modification in the
structure of the RBFNNs and allows the exploration of different
regions in the search space, helping to keep the diversity of the
population. There are four different structural mutations: hidden
node addition, hidden node deletion, connection addition and con-
nection deletion. These four mutations are applied sequentially to
each network. More information about proposed genetic operators
can be seen in [28,29].

With regard to the mutation of the q parameter: if the structural
mutator adds a new node in the q-Gaussian RBFNN, the q param-
eter is assigned to a � value, where � ∈ [0.75, 1.25], because when
q → 1, the q-Gaussian RBF reproduces the SRBF. The q parameter

is updated by adding a uniform ε value, where ε ∈[− 0.25, 0.25],
because the modification of the q-Gaussian RBFNN is very sensitive
to q variation (as can be seen in Fig. 1b).

This Memetic Algorithm (MA) includes an optimization clus-
tering process applied during specific stages of the evolutionary
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rocess. In this clustering process, each RBFNN model or individual
s represented by the set of its accuracies per class. The clustering
lgorithm is able to obtain groups of individuals exhibiting similar
ehavior in different classes.

After that, iRprop + algorithm [30] is applied to the individual
losest to the centroid obtained in each cluster. It is important to
ote that each cluster has been determined by means of the stan-
ard k-means applied to the specific space previously mentioned.
inally, the optimized individuals are returned to the population
ith their fitness and values updated.

Finally, the Smote Memetic Algorithm for the q-Gaussian Radial
asis Function (SMQRBF) applies an over-sampling procedure to
he minority class patterns (GT class) in the preprocessing stage,

hich is shown in detail in Fig. 3.

Synthetic examples were obtained by applying the Synthetic
inority Oversampling Technique (SMOTE) algorithm [31]. To

etermine the number of synthetic patterns that the SMOTE algo-
ithm should generate, an experimental study was carried out by
e SMQRBF method.

multiplying the number of minority class patterns (GT class) by 1.5
and 2. We conclude that by doubling the number of GT patterns, the
accuracy for the GT class is improved without drastically decreasing
overall accuracy in the remaining classes. Therefore, the number of
minority class patterns (GT patterns) was doubled.

The aim was to decrease the problem of an imbalanced rate by
selecting the GT class to apply the re-sampling procedure to, since
this class originally included half the number of patterns of the
other classes (G and NG).

4. Experiments

4.1. Database description
Datasets for growth/no growth models in the predictive micro-
biology field normally follow a fractional factorial design, i.e. the
selection of those conditions where are closed to the microbial
interface. This requires a previous testing for calculating the envi-



d Soft

r
F
a

g
p
r
p
0
i
t
f
(
c
o
1
s
a
m
G

4

r

•

•

a
t

Y

w
b
c
a
t
m

m

F. Fernández-Navarro et al. / Applie

onmental factor range, where growth and no growth can occur.
actors usually selected for these purposes are temperature, pH
nd water activity, since they mostly influence on growth kinetics.

The original dataset was taken from [1] describing the
rowth/no growth boundaries of S. aureus as a function of tem-
erature (T), pH and water activity (aw) by an ordinary logistic
egression model. Data were collected at 8, 10, 13, 16 and 19 ◦ C at
H levels from 4.5 to 7.5 (0.5 intervals) and at 19 levels of aw (from
.856 to 0.999 at regular intervals). In this paper, the conditions

n which S. aureus always grows have been labeled as Growth (G),
hose in which it never grows as No Growth (NG), and finally, those
or which a binary response of the microorganism was observed
it grows between 1 and 29 times of the 30 replicates tested per
ondition), as Growth Transition (GT). For data processing, 146 out
f 287 conditions performed, were selected for model training and
41 were chosen for model generalization. From the 146 conditions
elected to train the model, 60 conditions were classified as G, 29
s GT and 57 as NG. For the conditions used to validate the perfor-
ance of the model (141 conditions), 57 were classified as G, 28 as
T, and 56 as NG. More details can be found in [1].

.2. Algorithms used for comparison purposes

The proposed method was compared to the following algo-
ithms:

The MQRBF method (detailed in Section 3.2). As our SQRBF
approach applies an oversampling procedure in the preprocess-
ing stage, it is necessary to compare its performance to the
original MQRBF method.
Multi-logistic regression methods [32]. Within the context of pre-
dictive microbiology, in most cases, models that describe the
behavior of the pathogen are often logistic regression models
[2,1]. Hence, we select two of the most popular logistic regres-
sion algorithms in order to compare the performance obtained
by logistic regression models and the performance achieved by
our proposed methodology:

– MultiLogistic (MLogistic): It is an algorithm for building a
multinomial logistic regression model with a ridge estimator to
guard against overfitting by penalizing large coefficients, based
on the work by le Cessie and van Houwelingen [33]. In order to
find the coefficient vector, a Quasi-Newton Method is used.
– SimpleLogistic (SLogistic): It is based on applying LogitBoost
algorithm with simple regression functions and determining
the optimum number of iterations by a five fold cross-
validation. The data is equally splitted five times into training
and test, LogitBoost is run on every training setup to a max-
imum number of iterations (500) and the classification error
on the respective test set is logged. Afterwards, LogitBoost is
run again on all data using the number of iterations that gave
the smallest error on the test set averaged over the five folds.
Further details about the algorithm can be found in [34].

We consider the pH, water activity (aw) and temperature (T)
s the initial co-variates (MLogistic(standard model) and SLogis-
ic(standard model)). The model can be expressed as:

= b0 + b1 · T + b2 · pH + b3 · aw (13)

here Y is the dependent variable, b0 the intercept of model, and
1, b2, b3 the partial regression coefficients. In order to allow a fair
omparison between the new developed model and existing classic

pproaches, we applied the SMOTE algorithm in the patterns of
he GT class in combination with the standard logistic regression

odels.
Furthermore, we compare our approach to logistic regression

ethods with square and cross products terms in the model (as
Computing 11 (2011) 3012–3020 3017

suggested in [2])): MLogistic ([2] model) and SLogistic ([2] model).
This model is expressed as:

Y = b0 + b1 · T + b2 · pH + b3 · aw + b4 · T · pH + b5 · T · aw

+ b6 · pH · aw + b7 · T · pH · aw (14)

As we did with the standard logistic regression models, the SMOTE
algorithm was also applied to the pattern of the GT class in combi-
nation with the [2] approach.

• A Gaussian RBF Network (RBFN) [35], deriving the centers and
width of hidden units using k-means and combining the outputs
obtained from the hidden layer using logistic regression. k-means
is applied separately to each class to derive k clusters for each
class.

• The C-SVM algorithm [36] with RBF kernels (SVM). From a struc-
tural point of view, the SVMs are related to RBFNNs and they
have become one of the most popular and developed methods
nowadays. In order to face the multi-class case, a “1-against-1”
approach has been considered, following the recommendations
of Hsu and Lin [37].

We also compared our proposal to specific methods for imbal-
anced data: the OverSampling and SmoteOverSampling methods
proposed in [18]. These methods have been selected due to their
similarities to the model proposed. They use MLP neural networks
as the base classifier, and the model is trained by the RProp algo-
rithm. The main differences with our approach are the following:
our model is trained by a MA and we used q-Gaussian RBFNN as the
base classifier.

4.3. Experimental design

The parameter values used in the hybrid techniques proposed
were the following: a simple linear rescaling of the input variables
was performed in the interval [ − 2, 2], X∗

i
being the transformed

variables. The connection between the hidden and output layer
began in the [ − 5, 5] interval. The initial value of the radii rj was
obtained in the interval (0, dmax], where dmax is the maximum
distance between two training input examples.

The size of the population was N = 500. For the structural muta-
tion, the number of nodes that can be added or removed was within
the [1, 2] interval, and the number of connections to add or delete
in the hidden and the output layer during structural mutations was
within the [1, 7] interval. The number of clusters was k = 6 for the
k-means algorithm. The iRprop + local improvement procedure was
performed every 50 generations, 8 times during the evolution. In
this way, the algorithm stopped when 400 generations were com-
pleted. For the iRprop + algorithm, a maximum of 75 cycles were
considered.

For the selection of the SVM hyperparameters (regularization
parameter, C, and width of the Gaussian functions, �), a grid search
algorithm was applied with a ten-fold cross-validation, using the
following ranges: C ∈ {2−5, 2−3, . . ., 215} and � ∈ {2−15, 2−13, . . ., 23}.

Classifiers were evaluated by two measures derived from the
confusion matrix: the Correct Classification Rate (CCR) and Mini-
mum Sensitivity (MS) over the generalization dataset, as proposed
by Fernández et al. [38], since this problem is of vital importance

to know the overall accuracy of the best model and the accuracy of
the most difficult class to classify (which in theory would be the GT
class).

The contingency or confusion matrix M(g) for a classification
problem with J classes, N training or generalization patterns and g
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Table 1
Comparison with other statistical and artificial intelligence methods: Correct Classi-
fication Rate and Minimum Sensitivity in the generalization set (CCRG(%) and MSG(%),
respectively).

Method CCRG(%) MSG(%)

MLogistic (standard model) 76.60 39.29
SLogistic (standard model) 76.60 32.14
SMOTE + MLogistic (standard model) 71.63 50.00
SMOTE + SLogistic (standard model) 70.92 50.00

MLogistic ([2] model) 80.56 50.00
SLogistic ([2] model) 75.88 32.14

SMOTE + MLogistic ([2] model) 75.17 53.57
SMOTE + SLogistic ([2] model) 74.46 46.42

RBFN 75.18 39.29
SVM 80.98 42.86

OverSampling 78.58 ± 2.24 52.14 ± 8.11
SmoteOverSampling 75.60 ± 4.03 60.21±13.29
018 F. Fernández-Navarro et al. / Applie

s classifier is given by the following expression:

=

⎧⎨
⎩nij;

J∑
i,j=1

nij = N

⎫⎬
⎭ (15)

here nij represents the number of times the patterns are predicted
y classifier g to be in class j when they really belong to class i.
he diagonal corresponds to correctly classified patterns and the
ff-diagonal to mistakes in the classification task.

The CCR measure or accuracy is defined as:

CR = 1
N

J∑
j=1

njj (16)

hat is, the rate of all the correct predictions in the training set
CCRT) or in the generalization set (CCRG).

Let us denote the number of patterns associated with class i by

i =
∑J

j=1nij , i = 1, . . ., J. Let Si = nii/fi be the number of patterns cor-
ectly predicted to be in class i with respect to the total number of
atterns in class i (sensitivity for class i). The MS measure is defined
s:

S = min
{

Si; i = 1, . . . , J
}

(17)

hat is, the accuracy for the class that is the worst classified in the
raining set (MST) or in the generalization set (MSG).

For the MQRBF, SMQRBF and the specific methods for imbal-
nced data, the procedures were run 30 times because they are
tochastic methods and do not return the same result for each exe-
ution. For the other methods, the results were obtained by running
hem only once because all of them are deterministic methods.

The MQRBF algorithm was implemented in JAVA. For the
MQRBF method, the MQRBF algorithm was slightly modified,
pplying the oversampling procedure in the preprocessing stage.
e also used “libsvm” [39] to obtain the results of the SVM method,
EKA [32] to obtain the results of the RBFN, MLogistic and SLogis-

ic and the CSNN1 software package to obtain the results of the
verSampling and SmoteOverSampling methods.

. Results and discussion

.1. Statistical analysis

A comparison of the SMQRBF method has been carried out
ith the well known classification techniques given in Section 4.2.

able 1 shows the results obtained with the different techniques
ested. The SMQRBF method obtained the best result in terms of
SG and CCRG out of all the techniques compared.

To ascertain the statistical significance of the differences
etween the means (in CCRG and MSG for each stochastic
ethodology: OverSampling, Smote, MQRBF and SMQRBF), the

olmogorov–Smirnov test (K–S test) was used with the significa-
ion level ˛, equal to 0.05 to evaluate if the CCRG and MSG values
ollowed a normal distribution. As can be seen from the results in
able 2, a normal distribution can be assumed because the critical
evels, p-values, were over 0.05 in all cases.

In order to determine the best methodology (in the sense of its
nfluence on accuracy and on the Minimum Sensitivity in the gen-
ralization set, CCRG and MSG), an ANOVA statistical method test

as carried out. The results of the ANOVA analysis for the CCRG

nd MSG values show that the effect of the methodology was sta-
istically significant at a level of signification of 5% (see first row of
able 2).

1 http://lamda.nju.edu.cn/datacode/CSNN.htm.
MQRBF 80.31 ± 3.34 54.51 ± 6.59
SMQRBF 82.77 ± 1.90 78.52 ± 1.98

The best result is in bold face and the second best result in italics.

Once this test guaranteed that there were significant differences
between the results of the different methods, a multiple compar-
ison test was performed on the CCRG and MSG values in order to
rank the different methods. First, a Levene test [40] was carried
out to evaluate the equality of variances. Then, a Tamhane test [41]
was performed because the variances are not equal (either for CCRG
or MSG) in order to rank the different methods. Our aim was to
find the methodology whose performance (in CCRG and MSG) was
significantly better than that of the rest of the methodologies.

Table 2 shows the results obtained by the Tamhane test. On
analyzing the average results for accuracy CCRG, we can observe
that the SMQRBF methodology obtained better results than those
obtained with other methodologies. On the other hand, the results
of the average MSG show that the SMQRBF methodology obtained a
significantly better performance giving a level of signification of 5%,
more than the other methodologies. Therefore, SMQRBF is the clas-
sification methodology recommended in this paper for the problem
analyzed.

Table 1 shows that the application of the SMOTE algorithm
in combination with logistic regression techniques is not suitable
because the final model was less accurate in correctly classify-
ing generalization data. The application of the SMOTE algorithm
in combination with logistic regression models improved the
Minimum Sensitivity (MSG) results but lowered accuracy results
(CCRG).

In general, these results show that the proposed approaches
based on q-Gaussian RBFNNs are robust enough to tackle the multi-
classification of the growth boundaries of S. aureus, and obtain
better results than the majority of existing alternative methods.

5.2. Analysis of the best SMQRBF model

Table 3 shows the performance of the best SMQRBF model: Cor-
rect Classification Rate (CCR) on the training set considering the
synthetic SMOTE data (CCRTS) and not considering the synthetic
SMOTE data (CCRT), CCR on the generalization set (CCRG), Mini-
mum Sensitivity (MS) on the training set considering the synthetic
SMOTE data (MSTS) and not considering the synthetic SMOTE data
(MST) and MS on the generalization set (MSG), Confusion Matrix

(CM) for the training set considering the synthetic SMOTE data
(CMTS), not considering the synthetic SMOTE data (CMT) and CM
for the generalization set (CMG).

The outputs of this model are the values of probability that a
pattern falls within each class: G(pG), GT(pGT) and NG(pNG). The

http://lamda.nju.edu.cn/datacode/CSNN.htm
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Table 2
Statistical analysis: p-values of the Kolmogorov–Smirnov test for CCRG and MSG , p-values of the Snedecor’s F ANOVA I test and ordered mean for the statistical multiple
comparison Tamhane test.

Test variable Kolmogorov–Smirnov test

OverSampling SmoteOverSampling MQRBF SMQRBF

CCRG 0.539 0.058 0.455 0.470
MSG 0.679 0.448 0.671 0.359

Snedecor’s F ANOVA I and Tamhane test

CCRG MSG

F (p-values) 0.000 * 0.000 *

Ranking of averages �SMQRBF ≥ �MQRBF ≥ �OS > �SOS �SMQRBF > �SOS > �MQRBF ≥ �OS

O r results than methodology B, but the difference is not significant; �A > �B: methodology
A relation ≥ is not transitive.
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S: OverSampling; SOS: SmoteOverSampling; �A ≥ �B: methodology A yields bette
yields better results than methodology B with significant differences. The binary
* Significant differences were found for ˛ = 0.05.

oftmax activation function is considered in such a way that each
attern is associated to the class with the highest probability.

It should be highlighted that the robustness of the SMQRBF
odel is given by the number of replicates tested per condi-

ion (n = 30) which provided a more reliable classification in three
lasses. These results are described in the confusion matrices asso-
iated (Table 3). The classification accuracy of the SMQRBF model
as high since more than 80% of the cases matched those in the

lasses observed. Regarding the training dataset, 86.30% of the cases
ere correctly classified (CCRT), while in the generalization dataset,

his percentage was slightly lower (84.39%, CCRG). Misclassified
ases were assigned when the estimated pattern was not associated
ith the class under observation. As three classes were considered,

n this model the errors accounted from the classes G, GT and NG
o the adjacent ones; and from the class G to NG and vice versa.

The best model provided by the Memetic Algorithm (Table 3)
s composed of six basis functions. The first, q-Gaussian RBF, mod-
ls an interaction between the three input variables (pH, a and
w

). The second, third and fifth q-Gaussian RBFs represent interac-
ions between T and aw . The fourth basis function models relations
etween the pH and aw . Finally, the sixth basis function is only
ssociated with the pH.

able 3
robability expression of the best SMQRBF model.

Best SMQRBF S. aureus multi-classification model

pNG(x, �) = ef1(x,�)

1+
∑2

i=1
efi (x,�)

; pGT(x, �) = ef2(x,�)

1+
∑2

i=1
efi (x,�)

; pG(x, �) = ef3(x,�)

1+
∑2

i=1
efi (x,�)

f1(x, �) = − 2.73 + 28.65RBF1 − 24.44RBF2 − 18.83RBF3 + 7.38RBF4 + 4.74RBF6

f2(x, �) = − 0.37 + 15.67RBF1 − 10.37RBF2 − 3.51RBF3 − 569.43RBF5 − 2.42RBF6

f3(x, �) = 0
RBF1 = (1 − (1 − 0.19)d1)1/(1−0.19); RBF2 = (1 − (1 − 0.78)d2)1/(1−0.78)

RBF3 = (1 − (1 − 0.89)d3)1/(1−0.89); RBF4 = (1 − (1 − 1.1)d4)1/(1−1.1)

RBF5 = (1 − (1 − 1.1)d5)1/(1−1.1); RBF6 = (1 − (1 − 2.23)d6)1/(1−2.23)

d1 =
(√

(T∗−0.93)2+(pH∗−0.77)2+(a∗
w−1.78)2

3.57

)2

; d2 =
(√

(T∗+2.53)2+(a∗
w+0.19)2

1.79

)2

d3 =
(√

(T∗+0.07)2+(a∗
w+1.28)2

1.98

)2

; d4 =
(√

(pH∗−0.96)2+(a∗
w+0.45)2

1.18

)2

d5 =
(√

(T∗+0.16)2+(a∗
w+1.09)2

0.24

)2

; d6 =
(√

(pH∗+1.69)2

0.67

)2

T∗, pH∗, a∗
w ∈ [−2, 2]; (1 − (1 − qi)di) ≥ 0

CCRTS = 86.28%, CCRT = 86.30%, CCRG = 84.39%
MSTS = 82.75%, MST = 79.31%, MSG = 78.57%

CMTS =
(

52 6 2
6 48 4
0 6 51

)
; CMT =

(
52 6 2
3 23 3
0 6 51

)
; CMG =

(
47 9 1
3 22 3
1 5 50

)

pH*
Fig. 4. Radial unit activation for the sixth q-Gaussian RBF of the best SMQRBF model
with c = − 1.69 and r = 0.67: X-axis represents the values of pH∗ .

As discussed in previous sections, when the value of the q
parameter of a q-Gaussian RBF tends to 1, it represents the stan-
dard Gaussian RBF. In the best SMQRBF model, four of the six basis
functions have values of q very close to one (the basis functions 2,
3, 4 and 5). However, the first and the last basis function have q val-
ues other than one. In the case of the first basis function, its q value
is close to 0, which means that the response of this basis function
is very selective (even greater than the response that a standard
Gaussian RBF provides) with high activation for patterns near the
center (0.93, 0.74, 1.78) but too small for distant patterns. In con-
trast, the sixth basis function (Fig. 4), has a q value greater than one
and close to two, which means that this basis function represents
a Cauchy RBF, where the highest activation value is in extremely
small values of pH.

Analyzed from a structural point of view, it could be said that
the model generated is an ANN model with a hybrid hidden layer,
since it has radial basis nodes of different types. First, four of the
six hidden nodes correspond to the standard Gaussian RBF. The last
hidden node represents the Cauchy RBF and the first hidden node
corresponds to a RBF with a highly selective response because it
has a tail even lower than the standard Gaussian RBF.
6. Conclusions

In this paper, we have proposed a new approach to determine
optimized parameters for the q-Gaussian RBFNN. The use of q-
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aussian RBFs made it possible to modify the shape of the RBF by
hanging the real q parameter and to have radial units with different
BF shapes in the same RBFNN. The q-Gaussian RBFNN proposed
sed the softmax function and the cross-entropy error function to

nterpret the output of the q-Gaussian RBFNN from the point of view
f probability. The coefficients that minimized the cross-entropy
rror function were estimated by means of a Memetic Algorithm.
he Memetic Algorithm was constructed specifically to take into
ccount the characteristics of this kernel model.

The evaluation of the model and the algorithm for the real prob-
em considered showed that the q-Gaussian RBFNN was the most
ccurate compared to the rest of the methods. The problem con-
ists of determining the microbial growth/no-growth interface of S.
ureus. A new class, named growth transition (GT) was included in
rder to encompass all conditions where the probability of growth
as other than 0 and 1. Due to the imbalanced nature of the prob-

em, the Memetic Algorithm was combined with an over-sampling
rocedure.

This new methodology provided accurate predictions by means
f the generalization data regarding values of CCR (82.77%) and MS
78.52%) as previously shown. The existence of a new class, called
T, has been included in the model mainly due to the high number
f replicates per condition (30) used in our study, which produced
smoother transition between growth and no-growth zones. This

lass is clearly justified since microbial responses are more variable
n certain zones of the model domain and, therefore, a classification
nto G or NG cannot be accurate.
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