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Abstract: Logistic Regression (LR) has become a widely used and accepted
method to analyze binary or multiclass outcome variables, since it is a flexible
tool that can predict the probability for the state of a dichotomous variable. A
recently proposed LR method is based on the hybridization of a linear model and
Evolutionary Product-Unit Neural Network (EPUNN) models for binary classifi-
cation. This produces a high number of coefficients, so two different methods for
simplifying the structure of the final model by reducing the number of initial or PU
covariates are presented in this paper, both being based on the Wald test. The first
method is a Backtracking Backward Search (BBS) method and the second is sim-
ilar but based on the standard Simulated Annealing process for the decision steps
(SABBS). In this study, we used aerial imagery taken in mid-May to evaluate the
potential of two different combinations of LR and EPUNN (LR using PUs (LRPU),
as well as LR using Initial covariates and PUs (LRIPU)) and the two presented
methods for structural simplification of the final models (BBS and SABBS) for
discriminating Ridolfia segetum patches (one of the most dominant, competitive
and persistent weed in sunflower crops) in one naturally infested field of southern
Spain. Then, we compared the performance of these methods to six commonly
used classification algorithms, our proposals obtaining a competitive performance
and a lower number of coefficients.
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1. Introduction

Classification problems attempt to solve the task of deciding the class membership
y of an unknown data item x based on a data set D = {(xi, yi)} i = 1, ..., n of
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data items xi with known class membership. The xi are usually k-dimensional
feature vectors, whose components are called covariates or independent variables.
In most problem domains, there is no functional relationship between y and x.
In this case the relationship has to be described more generally by a probability
distribution P (x; y); one then assumes that the data set D contains independent
samples from P . From statistical decision theory, it is well known that the optimal
class membership decision is to choose the class label y that maximizes posteriori
distribution P (y/x). Therefore there are different approaches to data classification:
one which considers only one distinction between the classes previously defined
and assigns a class label to an unknown data item, and another which attempts to
model P (y/x). This latter attempt yields not only a class label for a data item,
but also a probability of class membership. Logistic Regression (LR), artificial
neural networks (ANNs), and decision trees are all members of the second class,
although they vary considerably in building an approximation to P (y/x) from data.
However, in spite of the great number of techniques developed to solve classification
problems, there is no optimum methodology or technique to solve specific problems.
This point has encouraged the comparison and combination of different types of
classification [1, 2].

A recently proposed LR method is based on the hybridization of a linear model
and Evolutionary Product-Unit Neural Network (EPUNN) models for binary [3]
and multi-class [4] classification problems. The estimation of the model coeffi-
cients is carried out in two phases. First, the number of PU basis functions and
the exponents’ vector are determined by means of an evolutionary neural network
algorithm. Secondly, a standard maximum likelihood optimization method deter-
mines the rest of the coefficients in the new space given by the initial variables and
the PU basis functions previously estimated. This model allows the generation of
non-linear classification surfaces and the identification of possible strong interac-
tions that may exist between the covariates that define the classification problem.
These models are less complex (number of new covariates or number of exponents
in these covariates) than the alternative higher order polynomial models. How-
ever, the models result in a high number of coefficients, so two different methods
for simplifying the structure of the final model by reducing the number of initial
or PU covariates are presented in this paper, both being based on the Wald test.
The first method is a Backtracking Backward Search (BBS) method, that starts
with the full model with all the covariates, initial and PUs, pruning variables to
the model sequentially and successively, until no further pruning can be made to
improve the fit. At each step, the least significant covariate is selected in the dis-
criminant function. The selected covariate is deleted if this does not reduce the fit.
If it does, the second least significant covariate is considered. The second method
is similar but based on the standard Simulated Annealing process for the decision
steps (SABBS).

In order to analyze the performance and robustness of the proposed methodol-
ogy, it is applied in this to a real agronomical problem that involves the discrimi-
nation of Ridolfia segetum patches in sunflower fields, using multispectral imagery.
Sunflower (Helianthus annuus L.) is one of the most abundant crops in Andalusia,
Southern Spain, with more than 320,000 ha sown annually [5]. Sunflower sowing
and harvesting times are February-March and July-August, respectively, mainly
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grown under dry land conditions. R. segetum Moris (corn caraway) is a very fre-
quent annual, umbelliferous weed that is abundant in clay soils in Andalusia. Its
life cycle coincides with that of the sunflower, which enhances its competitive abil-
ity and results in an average crop yield reduction of about 32% when infestation
is two R. segetum plants m−2 [6]. This weed is hard to control because it is not
controlled by the pre-emergence and pre-plant incorporated herbicides used in sun-
flower. Consequently, post-emergence strategies such as tillage or hand weeding are
commonly used, otherwise weed obstructs the harvester due to the fact that it still
has partly green steam during the sunflower harvesting. This is a serious drawback
if the harvester is equipped with yield monitor as habitually happens in preci-
sion agriculture management. Patchy distribution of broadleaf weeds in sunflower
fields is well documented [7]. However, herbicides or other control strategies are
not addressed to the infested zones, but are instead applied over the entire fields.
The potential for overuse or application and the corresponding eco-environmental
problems are evident. To overcome the possibility of minimizing the impact of in-
appropriate control strategy, the idea of Site-Specific Weed Management (SSWM)
has been developed in the context of precision agriculture [8]. A key component of
SSWM is that accurate and appropriate weed maps are required to take full advan-
tage of site-specific herbicide applications. Mapping weed patches based on ground
survey techniques on field scale is time consuming, expensive and unapproachable
in field areas with difficult access. Remote sensing of weed canopies may be more
efficient and suitable than field surveys and the majority of studies on discriminat-
ing weeds in cultivated systems have involved discrete broadband remote sensing
(multispectral sensors) [9]. Approaches based on EPUNNs have been previously
applied to remotely sensed images for agronomical objectives [10, 11].

Thus, the goal of this work is to assess the potential of two different combina-
tions of LR and EPUNNs (LR using PUs, LRPU, and LR using Initial covariates
and PUs, LRIPU) and the two presented methods for simplifying the structure of
the final models (BBS and SABBS) for discriminating R. segetum patches in two
different naturally infested fields. The results indicate that, with fewer restrictive
assumptions, the models proposed are able to reduce the number of coefficients
substantially without any significant decrease in classification accuracy.

The rest of the paper is organized as follows. Section 2 is devoted to the
description of the standard binary LR model. Section 3 describes PUNNs and their
evolution. Sections 4 includes the details of the LRPU and LRIPU models and
Section 5 presents the different algorithms for structural simplification proposed
in this work. Finally, the experiments and the comparison test carried out are
included in Section 6 and Section 7 summarizes the conclusions of our work.

2. Binary Logistic Regression

The binary Logistic Regression (LR) technique considers a binary outcome variable
y that is observed together with a vector xi = (1, xi1, xi2, ..., xik) of covariates for
each of the nT training samples (assuming that the vector of inputs includes the
constant term 1 to accommodate the intercept). The two-class is coded via a 1/0
response yi, associated with the first class. LR [12] is a widely used statistical mod-
eling technique in which the conditional probability p of the dichotomous outcome
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event is related to a set of explanatory variables x in the form:

logit(p) = log
(

p

1− p

)
= βTx (1)

where β = (β0, β1, ..., βk) is the vector of coefficients of the model, βT is the
transposed vector and the odd of the event is p/(1−p). A simple calculation in (1)
shows that the probability of occurrence of an event as a function of the covariates
is nonlinear and is given by:

p(x,β) =
eβTx

1 + eβTx
=

efLR(x,β)

1 + efLR(x,β)

The most commonly used method for obtaining the vector of coefficients β is the
Iteratively Re-weighted Least Squares (IRLS), which is a nonlinear optimization
algorithm that uses a series of weighted least squares subproblems to find LR model
maximum-likelihood coefficient estimation. The implementation of IRLS applied
in this work is based on that provided in [13], using the conjugate gradient method
for solving the associated matricial equation.

3. Evolutionary Product Unit Neural Networks
(EPUNNs)

The models we are testing are LR models based on the hybridization of the standard
linear model and nonlinear terms constructed with basis functions obtained from
EPUNNs. In this way, this section describes the specific details of the PUNN
models and the Evolutionary Algorithm used for obtaining the PU coefficients.

3.1 Product Unit Neural Networks

PUNNs are an alternative to Multilayer Perceptrons (MLPs) and are based on
multiplicative nodes instead of additive ones [14]. A multiplicative node is given
by:

Bj(x,wj) =
k∏

i=1

x
wji

i

where k is the number of inputs and wj = (wj1, wj2, ..., wjk). PUNNs have several
advantages, including increased information capacity and the ability to express
strong interactions between input variables. Furthermore, it is possible to obtain
upper bounds of the Vapnik-Chervonenkis (VC) dimension of PUNNs similar to
those obtained for MLPs [15]. Despite these advantages, PUNNs have a major
handicap: they have more local minima and more probability of becoming trapped
in them [16]. The activation function of the PUNN considered in this work is given
by:

fPUNN(x,θ) = β0 +
m∑

j=1

βjBj(x,wj)
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1: Evolutionary Algorithm:
2: Generate a random population of size 1, 000
3: repeat
4: Calculate the fitness of every individual in the population
5: Rank the individuals with respect to their fitness
6: The best individual is copied into the new population
7: The best 10% of population individuals are replicated and they substitute

the worst 10% of individuals
8: Apply parametric mutation to the best 10% of individuals
9: Apply structural mutation to the remaining 90% of individuals

10: until the stopping criterion is fulfilled

Fig. 1 Evolutionary Algorithm (EA) framework

with θ = (β,w1, ...,wm). The outputs of the PUNNs are interpreted from the
probability point of view, so the softmax transformation is used. The softmax
activation function is given by:

g(x, θ) =
efPUNN(x,β)

1 + efPUNN(x,β)

3.2 Evolutionary Algorithm

In the past decade, Evolutionary Algorithms (EAs) and ANNs have been com-
bined as a key research area, providing an interesting platform for simultaneously
optimizing both the weights and architecture of connectionist models [17, 18, 19]
while avoiding the shortcomings of traditional BackPropagation [20]. In this way,
an Evolutionary Algorithm (EA) has been selected to estimate the coefficients and
the structure of the PUNNs that minimize the classification error function. The
complexity of the error surface of the proposed model justifies the use of an EA
as part of the process of estimation of the model coefficients. Among the differ-
ent metaheuristics, the EA selected in this work has proved excellent results when
evolving PUNNs [21].

The basic framework of the evolutionary algorithm is the following: the search
begins with an initial population of neural networks and, in each iteration, the
population is updated using a population-update algorithm which evolves both its
structure and weights. The population is subject to the operations of replication
and mutation. Crossover is not used due to its potential disadvantages in evolving
ANNs [22, 23].

The algorithm evolves architectures and connection weights simultaneously,
each individual being a fully specified PUNN. The PUNNs are represented using
an object-oriented approach and the algorithm deals directly with the PUNN phe-
notype. Each connection is specified by a binary value indicating if the connection
exists and a real value representing its weight. As the crossover is not considered,
this object-oriented representation does not assume a fixed order between the dif-
ferent hidden nodes. The general structure of the EA has been included in Fig.
1.
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The fitness function A(θ) is a strictly decreasing transformation of the cross-
entropy error function E(θ) [24] given by A(θ) = 1/(1 + E(θ)) where θ are the
parameters of the individual and E(θ) is:

E(θ) = − 1
n

n∑

i=1

[yi log g(xi, θ) + (1− yi) log(1− g(xi, θ))]

where g(x,θ) is the softmax activation function.
The severity of both structural and parametric mutations depends on the tem-

perature T (θ) of the PUNN model, defined by:

T (θ) = 1−A(θ), 0 ≤ T (θ) ≤ 1

where A(θ) is the fitness of the individual with parameters θ. Parametric mutation
(Fig. 1, step 8) is accomplished for each weight of the model βj or wji adding
Gaussian noise:

wji(t + 1) = wji(t) + ξ1(t)
βj(t + 1) = βj(t) + ξ2(t)

where ξi(t) represents a one dimensional normally distributed random variable,
N(0, αi(t) ·T (g)). The αi(t) value is updated throughout the evolutionary process,
applying the simplest heuristic 1/5 success rule of Rechenberg [25]. This allows an
initial coarse-grained search, and a progressively finer-grained search, as a model
approaches a solution to the problem. The modifications on the coefficients βj

should be higher than the modifications on the exponents wji, what is achieved
using a higher initial α2(t) value, i.e. α2(0) >> α1(0). The weights are sequentially
mutated, hidden node after hidden node, and a standard Simulated Annealing
process is applied to accept or reject the modifications in each node.

On the other hand, there are five different structural mutations (Fig. 1, step
9): node deletion, connection deletion, node addition, connection addition and
node fusion. These five mutations are applied sequentially to each network. The
first four are identical to the mutations in the generalized acquisition of recurrent
links (GNARL) model [20]. The node fusion mutation operates randomly selecting
two hidden nodes of the neural net and substituting them by a new node that
is a combination of both. All the mutations are made sequentially in the given
order, with probability T (θ), in the same generation on the same network. If the
probability does not select any mutation, one of the mutations is chosen at random
and applied to the network.

For further details about parametric and structural mutations and other char-
acteristics of the algorithm see [3, 21, 26].

4. Hybrid Neuro-Logistic models

As previously stated, the Neuro-Logistic Regression models used in this paper
include Logistic Regression using Product Units (LRPU) and Logistic Regression
using Initial covariates and Product Units (LRIPU).
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Fig. 2 Scheme of the LRIPU coefficient optimization process

4.1 Logistic Regression using Product Units (LRPU)

LRPU is a hybrid method that considers the EA presented in the previous section in
order to obtain an EPUNN structure and hidden neuron weights that are accurate
enough. When these are obtained, it applies the IRLS mechanism over the PU
basis functions of the EPUNN selected. So the LRPU model composed only of PU
basis function is given by:

fLRPU(x, θ) = α0 +
m∑

j=1

αjBj(x,wj)

where θ = (α,W), α = (α0, α1, ..., αm) and W = (w1, w2, ...,wm), with wj =
(wj1, wj2, ..., wjk). The coefficients W are given by the EA, and are not adjusted by
the IRLS method. The IRLS method only optimizes the linear part of the model,
i.e., the α coefficients.

4.2 Logistic Regression using Initial covariates and Product
Units (LRIPU)

The LRIPU model used is a hybridization of the LR model and the EPUNNs
previously presented. The model extends LRPU, considering the initial covariates
x of the problem. Its expression is given by:

fLRIPU(x, θ) = α0 +
m∑

j=1

αjBj(x,w) +
k∑

j=1

α(m+j)xj

where θ = (α,W), α = (α0, α1, ..., αm, αm+1, ..., αm+k) and W = (w1,w2, ...,
wm). The values adjusted with IRLS correspond to the α vector, the coefficients
W again being given by the EA.

An scheme of the different steps necessary for obtaining the model coefficients
is given in Fig. 2. In the first stage, the EA is applied and, in the second stage,
the PUs from the hidden layer of the best PUNN are extracted and appended to
the original covariates input space. Then, the third stage consists of applying the
IRLS method in order to obtain the coefficients of the LR model. The fourth stage
consists of simplifying the structure of the final model and it will be presented in
the next section.
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1: Backtracking Backward Search Algorithm:
2: Apply IRLS over V , obtaining the α coefficients and the associated CCRT

3: exit← false
4: repeat
5: for all vi in V do
6: Obtain Wald statistic of the variable vi

7: pi ← p-value of the Wald test with H0 ≡ αi = 0
8: end for
9: v1st ← variable with maximum pi

10: V
′ ← V − v1st

11: Apply IRLS over V
′
, obtaining the α

′
coefficients and the associated CCR

′
T

12: if CCRT > CCR
′
T then

13: v2nd ← variable with second maximum pi

14: V
′ ← V − v2nd

15: Apply IRLS over V
′
, obtaining the α

′
coefficients and the associated

CCR
′
T

16: if CCRT > CCR
′
T then

17: exit← true
18: else
19: V ← V

′

20: end if
21: else
22: V ← V

′

23: end if
24: until exit=true

Fig. 3 BBS structural simplification algorithm

5. Structural Simplification of the LRPU and
LRIPU models

In order to reduce the size of LRPU and LRIPU models, we propose a forth stage
of structural simplification (see Fig. 2). Two different algorithms are presented:
a Backtracking Backward Search (BBS) and a Simulated Annealing Backtracking
Backward Search (SABBS). Both methods make use of the Wald statistic, which
is a score function commonly considered in LR. The Wald test is a statistical test,
used to check whether the effect of a covariate exists or not in the odd of an
event. In other words, it tests whether an independent covariate has a statistically
significant effect over the dependent variable. As a result, a critical value (p-value)
is obtained for each variable, where the associated coefficient equal to zero is the
null hypothesis (H0) to be contrasted. We consider both initial and PU covariates
of the LRPU and LRIPU models and apply this test in order to simplify their
structure.
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5.1 Structural Simplification by a Backtracking Backward
Search (BBS)

The first method presented starts with the full model with all the covariates, initial
and PUs, pruning variables to the model sequentially and successively, until no
further pruning can be made to improve the fit. It uses the Wald statistic for sorting
the covariates (PU transformations or initial variables) and tries the elimination
of a covariate in each step by a backtracking procedure. First the least significant
covariate is selected in the discriminant function. The selected covariate is deleted
if this does not reduce the fit. If it does, the second least significant covariate is
considered. In this way, the algorithm is a Backtracking Backward method.

The procedure ends when none of the two chosen covariates is deleted. The
pseudo-code associated with this algorithm is presented in Fig. 3, where V is the
current set of covariates (initial or PUs) and CCRT is the Correct Classification
Rate or accuracy in the training set, which is defined by:

CCR =
1
N

n∑

i=1

I(C(xn) = yi), (2)

where I(•) is the zero-one loss function, C(xn) is the class predicted by the model,
yi is the expected class value and n is the number of observations.

A scheme of the BBS algorithm is given in Fig. 4.

BEGIN ENDV contains

Apply IRLS

NONO

(PUs) or

(PUs + ICs) Did accuracy

improve by

eliminating

over V and

obtain CCRT

Apply IRLS 

V’’ dCCRCCR’’ �CCR
V’’ Å V without

d i
V Å V’ YESYES

second variable?

over V’’ and

obtain CCR’’T

CCR TCCR’’T�CCRT second maximum

p-value variable
CCRTÅCCR’T

For all variables in V
YESYES

Obt i l
V’ Å V without Apply IRLS 

NONO

Did accuracy

improve by

eliminating

first variable?

Obtain p-value

of the variable
first maximum

p-value variable

pp y

over V’ and

obtain CCR’T

CCR TCCR’T�CCRT

Fig. 4 Scheme of the Backtracking Backward Search (BBS) algorithm

5.2 Structural Simplification by a Simulated Annealing Back-
tracking Backward Search (SABBS)

The second method is based on the standard SA heuristic [27]. The algorithm is
very similar to that presented in the previous subsection but, when the elimina-
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1: Simulated Annealing Backtracking Backward Search:
2: Apply IRLS over V , obtaining the α coefficients and the associated CCRT

3: exit← false; T ← 0.01· Number variables
4: repeat
5: for all vi in V do
6: Obtain Wald statistic of the variable vi

7: pi ← p-value of the Wald test with H0 ≡ αi = 0
8: end for
9: v1st ← variable with maximum pi

10: V
′ ← V − v1st

11: Apply IRLS over V
′
, obtaining the α

′
coefficients and the associated CCR

′
T

12: dif ← (CCR
′
T − CCRT)

13: if dif < 0 and U(0, 1) > edif/T then
14: v2nd ← variable with second maximum pi

15: V
′ ← V − v2nd

16: Apply IRLS over V
′
, obtaining the α

′
coefficients and the associated

CCR
′
T

17: dif ← (CCR
′
T − CCRT)

18: if dif < 0 and U(0, 1) > edif/T then
19: exit← true
20: else
21: V ← V

′

22: end if
23: else
24: V ← V

′

25: end if
26: T ← 0.2T
27: until exit=true

Fig. 5 SABBS structural simplification algorithm

tion of a variable results in a lower training CCR (CCRT), it is accepted with a
probability edif/T , where dif is the CCRT difference between the model obtained
using the variable and not using it, dif = (CCR

′
T − CCRT), and T is the current

temperature. The initial value for the temperature is T = 0.01N , where N is the
number of initial covariates and PUs of the model. In each iteration, the temper-
ature is updated with a r = 0.2 freezing factor. The pseudo-code associated with
this algorithm is presented in Fig. 5, where U(0, 1) is a random uniform variable
in the interval [0, 1]. Finally, a scheme of the SABBS algorithm is given in Fig. 6.
Those steps different from the BBS algorithm are marked in dark grey.

6. Experiments

We have tested the described methodology in a real agronomical problem of pre-
cision farming, consisting of mapping weed patches in crop fields, through remote
sensed data.
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BEGIN V contains
(PU )

SA( ’ , , ) ((( ’ ) 0)C C T C C← − ≥ ∨

END

(PUs) or
(PUs+ ICs)

TÅ 0.01·|V|

( ’ ) /                     ((( ’ ) 0) ( (0,1) ))C C TC C U e −
∨ − < ∧ ≤

Apply IRLS
overV and

obtainCCR

END

NONOobtainCCRT

Apply IRLS 
overV’’ and

obtainCCR’’ T

V’’ Å V without
second maximum
p-valuevariable

V Å V’
CCRTÅCCR’T

TÅ 0.02· T

NONO

YESYES
SA( T)SA(CCR’’ T,CCRT,T)

TÅ 0 02 T obtainCCR T p valuevariableTÅ 0.02 TTÅ 0.02· T

Forall variables in V

YESYES

Obtainp-value
of thevariable

V’ Å V without
first maximum
p-valuevariable

Apply IRLS 
overV’ and

obtainCCR’T

SA( T)SA(CCR’T,CCRT,T)
NONO

Fig. 6 Simulated Annealing Backtracking Backward Search (SABBS) algorithm

6.1 Study sites, materials and experimental design

The study was conducted at two fields in Andalusia, southern Spain: at Mata-
bueyes, 42 ha (coordinates 37o8’N, 4o8’W, WGS84), and at Santa Cruz, 28 ha
(coordinates 37o8’N, 4o6’W, WGS84), in 2003 and 2004, respectively. Both fields
were naturally infested by R. segetum. Conventional-Colour (CC, 400-700 nm) and
Colour-near InfraRed (CIR, 500-900 nm) aerial photographs of the field were taken
in mid-May. The four input variables included the digital values of all bands in
each available image, that is: CC images responded to Blue (B, 400-500 nm), Green
(G, 500-600 nm), and Red (R, 600-700 nm) broad bands of the electromagnetic
spectrum, and CIR images to G, R and Near-InfraRed (NIR, 700-900 nm) bands.
Further information about acquisition of aerial photographs, digitization and orto-
rectification is given in [10] and [28].

To train and validate the classification models, a random ground sampling pro-
cedure was carried out, ensuring that all parts of the field area had an equal chance
of being sampled with no operator bias [29]. For each image, we obtained 2,400
pixels as ground-truth pixels and georeferenced a total of 1,600 pixels in each
phenological stage, where 800 pixels corresponded to R. segetum class, 400 pixels
corresponded to the bare soil class and 400 corresponded to that of sunflower. The
objective is the differentiation between R. segetum and weed-free (bare soil and
sunflower) pixels. The experimental design was conducted using a stratified 10-
fold cross-validation procedure with ten runs for each fold. This paper extends the
results presented in [10] (where the combination of LR and EPUNNs was applied
to the same problem) by studying the influence of the structural simplification
methods herein proposed (BBS and SABBS) in the final results. Furthermore, the
experimental design followed in [10] consisted of a holdout cross-validation and only
one execution, the results not being comparable to those presented in this paper.
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The models compared in the different experiments are the following: firstly,
the application of the IRLS algorithm only over the PU basis functions extracted
from EPUNN model of the EA (LRPU) and over the same basic functions together
with initial covariates (LRIPU). Secondly, the two different structural simplification
algorithms (BBS and SABBS) are applied over both LRPU and LRIPU models
(LRPUBBS, LRPUSABBS, LRIPUBBS and LRIPUSABBS).

Afterwards, all these models are compared to six machine learning classifiers:
LR with attribute selection (SimpleLogistic), LR with a full logistic model (Mul-
tiLogistic), Logistic Model Trees (LMT), the C4.5 classification tree inducer, the
naive Bayes tree learning algorithm (NBTree) and the AdaBoost.M1 algorithm
with 100 maximum number of iterations (AdaBoost100) and using C4.5 as the
base classifier. The description of these algorithms can be found in [30].

The EA was implemented using the Evolutionary Computation framework
JCLEC [31] (http://jclec.sourceforge.net) and it is available in the non com-
mercial JAVA tool named KEEL [32] (http://www.keel.es). The parameters
used in the EA are common for both datasets. The PUNN models have the fol-
lowing structure: one input layer with four input nodes (corresponding to R, G,
B and NIR digital values), one hidden layer with at least one hidden node and a
maximum of six nodes (the number of hidden nodes is modified by the structural
mutation) and one output layer with one output node, corresponding to the proba-
bility of R. segetum presence. The number of nodes that can be added or removed
in a structural mutation is within the [1, 2] interval. The number of connections
that can be added or removed in a structural mutation is within the [1, c] interval,
where c is the integer part of a third of the number of connections in the model.
The stop criterion is reached when the following condition is fulfilled: for 20 gener-
ations there is improvement neither in the average performance of the best 10% of
the population nor in the fitness of the best individual. Regarding the parameters
of BBS and SABBS methods (i.e. the number of covariates analyzed in each step,
2, the value for the initial temperature, 0.01 ·N and the freezing factor, r = 0.2),
they have been obtained as the best result of a preliminary experimental design.

The other algorithms are available as part of the WEKA machine learning
workbench [33] and we applied them to the Matabueyes and Santa Cruz datasets,
selecting their default parameter values.

6.2 Evaluation of the Structural Simplification methods

Performance of each model has been evaluated using the CCR in the generaliza-
tion set (CCRG). In Table I, we show the mean and the standard deviation of this
CCRG for a total of 100 executions, and the mean and the standard deviation of
the number of coefficients of the corresponding models (including αj or wji coeffi-
cients). From the analysis of the LRPU model results, it can be concluded that the
structural simplification methods considerably reduce the number of coefficients,
this difference being higher for the LRPUSABBS method. The generalization accu-
racy of the LRPU models is similar or better after simplifying their structure. A
very similar behaviour is observed with respect to the LRIPU model: the accuracy
is similar or better when using structural simplification (especially when using the
LRIPUBBS method) and the number of coefficients is significantly reduced (espe-
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Matabueyes Santa Cruz
CCRG #Coef. CCRG #Coef.

Method Mean ± SD Mean ± SD Mean ± SD Mean ± SD
LRPU 69.53± 3.58 19.66± 2.19 75.88± 2.79 25.99± 3.52

LRPUBBS 70.07± 3.47 17.21± 3.14 76.22± 2.77 23.96± 3.14
LRPUSABBS 69.49± 3.45 13.69± 2.04 75.45± 3.03 21.70± 2.83

LRIPU 69.84± 3.57 23.08± 2.46 76.10± 2.67 27.53± 3.53
LRIPUBBS 70.32± 3.58 20.20± 3.45 76.26± 2.73 25.68± 3.19

LRIPUSABBS 70.10± 3.58 15.56± 2.91 75.85± 2.78 22.80± 3.08

Tab. I Statistical results (Mean and Standard Deviation, SD) of the CCRG and
the number of coefficients (#Coef.) obtained using the different methods proposed

cially when using the LRIPUSABBS method). When analyzing both LRPU and
LRIPU models and their structural simplification variants, the best CCRG results
are obtained by the LRIPUBBS method and a similar accuracy is obtained by the
LRIPUSABBS methodology but with a lower number of connections.

In order to ascertain the statistical significance of the observed differences be-
tween the mean CCRG and the mean #Coef. of the best models obtained for
each methodology, we have applied the ANalysis Of VAriance (ANOVA) technique
[34, 35, 36]. First of all, a non-parametric Kolmogorov-Smirnov test (KS-test) with
a signification level α = 0.05 was used to evaluate if the CCRG and #Coef. values
follow a normal distribution. As a result, a normal distribution can be assumed
because all the p-values were higher than 0.05.

Matabueyes
CCRG #Coef.

F -Test 0.487 0.000(∗)
Ranking µLRIPUB ≥ µLRIPUS ≥ µLRPUB ≥ µLRPUS < µLRIPUS < µLRPUB <

of means ≥ µLRIPU ≥ µLRPU ≥ µLRPUS < µLRPU ≤ µLRIPUB < µLRIPU

Santa Cruz
CCRG #Coef.

F -Test 0.332 0.000(∗)
Ranking µLRIPUB ≥ µLRPUB ≥ µLRIPU ≥ µLRPUS ≤ µLRIPUS ≤ µLRPUB ;

of means ≥ µLRPU ≥ µLRIPUS ≥ µLRPUS µLRPUS < µLRPUB ;

µLRPUB < µLRIPUB ≤ µLRPU <

< µLRIPU

(∗): Statistical significant different with p−value < 0.05
B: Backtracking Backward Search (BBS)
S: Simulated Annealing Backtracking Backward Search (SABBS)

Tab. II p−values of the Snedecor’s F ANOVA I test and ranking of means of the
Tukey statistical multiple comparison tests for the CCRG and #Coef. using the six
different methodologies

The ANOVA test involves a linear regression model in which CCRG or #Coef.
are the dependent variables and the independent variable is the type of method-

13



Neural Network World ?/08, ??

ology or model used for classification. The comparison was made in terms of a
critical level of the Snedecor’s F value. If the significance level, p, was higher than
this critical value, α, we rejected the hypothesis of identical mean CCRG or #Coef.
In our case, this hypothesis is accepted for mean CCRG values in both locations,
because the p−values were 0.487 and 0.332 (see Table II), they being higher than
a standard significance coefficient α = 0.05. Consequently, we can conclude that
there are not significant differences in mean CCRG. The same hypothesis is not
accepted for #Coef., because the p−values are equal to 0.000, lower than α = 0.05.

Based on these last results and accepting the hypothesis that the variances
for the different levels of the #Coef. are equal, we perform a Tukey test [35] for
ranking the averages of each level of the factor. Our aim is to find the level of the
factor whose mean #Coef. was significantly lower than the average of the rest of
the levels of the factor. Table II shows the results obtained following a post-hoc
Tukey’s multiple comparison test, and the ranking of the different methodologies
based on these results. In these rankings, µa ≥ µb is used to express that, although
the mean CCRG or #Coef. of the “a” methodology is higher than that of “b”, the
differences are not significant and µa > µb is used to express that the mean results
from “a” methodology are significantly higher that those from “b”.

From the analysis of the statistical test results, we propose LRPUSABBS method-
ology for both locations, because it results in very similar CCRG levels but with a
significantly lower number of coefficients.

6.3 Comparison to other machine learning algorithms

In Table III, the most accurate results (LRIPUBBS and LRIPUSABBS) and the most
interpretable results (LRPUSABBS) have been included, together with the results
obtained by using the different WEKA algorithms. As the algorithms considered
are all deterministic, we performed ten runs of a ten-fold stratified cross-validation
(using the same splits into training/test set for every method), which also gives a
hundred data points. In order to obtain the number of coefficients used in each
WEKA model, we had to modify the source code of the algorithms for including
these values into their outputs, taking into account the special characteristics of
each model. These values have also been included in Table III.

Following the same methodology than in the previous subsection, statistical
tests have been applied in order to ascertain the statistical significance of the
observed differences between the mean CCRG and the results are included in Table
IV. For the mean #Coef., the differences are very high and obvious and, in our
opinion, a statistical is not needed.

In Matabueyes, the accuracy of the models proposed in this paper is signif-
icantly higher than that obtained by NBTree, MultiLogistic and SimpleLogistic
and similar to that obtained by the rest of algorithms. In Santa Cruz, a signifi-
cantly higher accuracy is obtained using LMT, C4.5 and AdaBoost methods. In
any case, the number of coefficients of the proposed models (specially that of the
LRPUSABBS model) is lower than that of those models which obtain a similar or
better accuracy (LMT, C4.5 and AdaBoost100), resulting in more interpretable
and efficient models.
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Matabueyes Santa Cruz
CCRG #Links CCRG #Links

Method Mean ± SD Mean ± SD Mean ± SD Mean ± SD
SLogistic 65.86± 3.30 4.46± 0.50 65.22± 3.89 3.54± 0.63
MLogistic 66.14± 3.27 5.00 65.23± 4.20 5.00

LMT 71.68± 3.61 181.04± 91.23 80.36± 3.05 263.51± 76.59
C4.5 70.74± 3.54 33.63± 8.39 79.44± 3.29 44.68± 6.90

NBTree 66.78± 4.01 20.72± 9.08 75.96± 4.30 43.06± 16.56
Ada100 70.89± 3.56 108.42± 29.96 80.03± 2.96 277.66± 122.22

LRIPUBBS 70.32± 3.58 20.20± 3.45 76.26± 2.73 25.68± 3.19
LRIPUSABBS 70.10± 3.58 15.56± 2.91 75.85± 2.78 22.80± 3.08
LRPUSABBS 69.49± 3.45 13.69± 2.04 75.45± 3.03 21.70± 2.83

Tab. III Statistical results obtained with the proposed methodologies compared to
other machine learning algorithms

Matabueyes
CCRG

F -Test 0.000(∗)
Ranking µLMT ≥ µAda100 ≥ µC4.5 ≥ µLRIPUB ≥ µLRIPUS ≥ µLRPUS ;

of means µLMT > µLRIPUS ;

µLRPUS > µNBTree ≥ µMLogistic ≥ µSLogistic

Santa Cruz
CCRG

F -Test 0.000(∗)
Ranking µLMT ≥ µAda100 ≥ µC4.5 > µLRIPUB ≥ µNBTree ≥ µLRIPUS ≥ µLRPUS ;

of means µLRPUS > µMLogistic ≥ µSLogistic

(∗): Statistical significant different with p−value < 0.05
B: Backtracking Backward Search (BBS)
S: Simulated Annealing Backtracking Backward Search (SABBS)

Tab. IV p−values of the Snedecor’s F ANOVA I test and ranking of means of
the Tukey statistical multiple comparison tests for the CCRG using the different
methodologies proposed and the different machine learning algorithms

7. Conclusions

The structural simplification methods (BBS and SABBS) presented in this paper
have demonstrated an important coefficient reduction for both the hybrid neuro-
logistic models proposed in [3] (LRPU and LRIPU), yielding to a better or sim-
ilar accuracy. In this way, more interpretable models that can lead to a better
understanding of the classification problem tackled have been obtained. These
models can provide information to program the suitable wavelengths of further
Compact Airborne Spectral Imager (CASI) images for Site-Specific Weed Man-
agement (SSWM). The next investigation could address the acquisition of specific
satellite imagery for mapping R. Segetum in larger areas, using only the more rel-
evant channels and reducing the cost of the images. Moreover, the comparison of
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these models to six different commonly used machine learning methods has shown
the LRIPUBBS and LRIPUSABBS methods as very competitive models with a lower
number of coefficients and has demonstrated their capability to analyze multispec-
tral imagery for predicting R. segetum presence probability in the field of study,
providing a useful tool for early SSWM.
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[10] P. A. Gutiérrez, F. López-Granados, J. M. Peña-Barragán, M. Jurado-Expósito, and
C. Hervás-Mart́ınez, “Logistic regression product-unit neural networks for mapping Ridolfia
segetum infestations in sunflower crop using multitemporal remote sensed data,” Computers
and Electronics in Agriculture, vol. 62, no. 2, pp. 293–306, 2008.
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