
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

A dynamic over-sampling procedure based on sensitivity for
multi-class problems

Francisco Fernández-Navarro �, César Hervás-Martı́nez, Pedro Antonio Gutiérrez

Department of Computer Science and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, 3rd Floor, 14071 Córdoba, Spain

a r t i c l e i n f o

Article history:

Received 30 December 2009

Received in revised form

16 February 2011

Accepted 18 February 2011
Available online 24 February 2011

Keywords:

Classification

Multi-class

Sensitivity

Accuracy

Memetic algorithm

Imbalanced datasets

Over-sampling method

SMOTE

a b s t r a c t

Classification with imbalanced datasets supposes a new challenge for researches in the framework of

machine learning. This problem appears when the number of patterns that represents one of the classes

of the dataset (usually the concept of interest) is much lower than in the remaining classes. Thus, the

learning model must be adapted to this situation, which is very common in real applications. In this

paper, a dynamic over-sampling procedure is proposed for improving the classification of imbalanced

datasets with more than two classes. This procedure is incorporated into a memetic algorithm (MA)

that optimizes radial basis functions neural networks (RBFNNs). To handle class imbalance, the training

data are resampled in two stages. In the first stage, an over-sampling procedure is applied to the

minority class to balance in part the size of the classes. Then, the MA is run and the data are over-

sampled in different generations of the evolution, generating new patterns of the minimum sensitivity

class (the class with the worst accuracy for the best RBFNN of the population). The methodology

proposed is tested using 13 imbalanced benchmark classification datasets from well-known machine

learning problems and one complex problem of microbial growth. It is compared to other neural

network methods specifically designed for handling imbalanced data. These methods include different

over-sampling procedures in the preprocessing stage, a threshold-moving method where the output

threshold is moved toward inexpensive classes and ensembles approaches combining the models

obtained with these techniques. The results show that our proposal is able to improve the sensitivity in

the generalization set and obtains both a high accuracy level and a good classification level for

each class.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The class imbalance problem occurs when, in a classification
problem, there are many more instances of some classes than
others. The class imbalance problem is pervasive and ubiquitous,
causing trouble to the machine learning community [1,2]. The
problem of supervised classification with imbalanced training
datasets is addressed in several studies [3,4].

A number of solutions to the class imbalance problem were
previously proposed both at the data [5] and algorithmic levels [6].
The data level approach is usually based on resampling methods,
including over-sampling the minority groups (groups of interest-
ing rare examples), or under-sampling the majority groups
(groups with large example sizes). The algorithmic level intro-
duces unequal weights for the minority and majority classes in
the training strategy to force the classifier to pay more attention
to the minority classes. While sampling methods (data level

approaches) attempt to balance distributions by considering the
representative proportions of class patterns in the distribution,
algorithmic level methods consider the costs associated with
misclassifying patterns. Instead of creating balanced data distri-
butions through different sampling strategies, algorithmic level
methods targets the imbalanced learning problem by using
different cost matrices that describe the costs for misclassifying
any particular pattern.

In this paper, a dynamic over-sampling procedure is proposed
for improving the classification of imbalanced datasets with more
than two classes. The base over-sampling procedure is the
synthetic minority over-sampling technique (SMOTE) [7]. SMOTE
is an over-sampling method, where the minority class is over-
sampled by taking each minority class sample and introducing
synthetic examples throughout the line segments joining any/all
of the k minority class nearest neighbours. Depending upon the
amount of over-sampling required, neighbours from the k nearest
neighbours are randomly chosen.

This procedure is incorporated into a memetic algorithm
(MA) [8] that optimizes radial basis functions neural networks
(RBFNNs). The MA combines an evolutionary algorithm (EA) [9],

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.patcog.2011.02.019

� Corresponding author. Tel.: +34 957 21 83 49; fax: +34 957 21 83 60.

E-mail address: i22fenaf@uco.es (F. Fernández-Navarro).

Pattern Recognition 44 (2011) 1821–1833

Author's personal copy

a clustering process, and a local search (LS) procedure. For this
reason, this approach is called memetic radial basis function
(MRBF).

We propose two different methodologies which add an over-
sampling procedure in the learning algorithm for dealing with
imbalanced multi-class datasets: the static smote radial basis
function (SSRBF) method and the dynamic smote radial basis
function (DSRBF) method. The SSRBF method performs the over-
sampling procedure in the preprocessing stage and the DSRBF
runs the over-sampling procedure both in the preprocessing stage
and in different generations of the MA. The over-sampling
procedure duplicates the number of patterns of the minority class
in the SSRBF method and the class with the worst accuracy
(minimum sensitivity) in the DSRBF method in order to improve
sensitivity values of the RBFNNs.

Our proposal contrasts with the previous studies as follows:

� Most previous research uses decision trees as the base classi-
fier (see [10–14]). In the present study, we work with RBFNNs
as the classification model.
� Resampling techniques are applied only in the preprocessing

stage in most research papers (see [5,15]). In this study, the
over-sampling procedure is also performed within the learning
process. Therefore, the proposed procedure modifies the
structure of the training set (data level) and the classification
algorithm (algorithm level).
� Multi-class problems are not reduced to two-class problems

(‘‘one-vs-all’’ or ‘‘one-vs-one’’), which is a very common
heuristic when dealing with multi-class problems [16,17]. By
adopting a genuinely multi-class formulation, the complexity
of the final model is reduced and, in many cases, better results
are obtained [18].

The present paper is organized as follows: a brief analysis of
the class imbalance problem is given in Section 2; Section 3
describes the base classifier, the learning algorithm and the over-
sampling approaches; Section 4 explains the experiments carried
out; and finally, Section 5 summarizes the conclusions of
our work.

2. Imbalanced datasets in multi-classification

In this section, we will first introduce the class imbalance
problem. Then, we will present the evaluation metrics for this
kind of classification problem, and finally we will describe the
most popular solutions for the class imbalance problem.

2.1. The class imbalance problem

A dataset is considered to be imbalanced if at least one of the
classes (later called a minority class) contains a much smaller
number of patterns than the other classes (majority classes). The
minority class is usually of primary interest in a given application.

The class imbalance problem has been centre of much atten-
tion in research in recent years in the context of data mining (as
we can see in the experimental studies of [19] and [20]) because
the class imbalance problem is pervasive in a large number of
domains of great importance in the data mining community.
Some real applications within the scope of the class imbalance
problem are: detection of oil spills in satellite radar images [21],
detection of fraudulent calls [22], risk management [23], modern
manufacturing plants [24], predictive microbiology [25] and text
classification [26].

Moreover, the most popular classification modelling systems
are reported to be inadequate when faced with the class

imbalance problem. These classification systems involve, among
others, decision trees [27–29], support vector machines [28,30,31],
neural networks [28], Bayesian networks [23], nearest neighbour
classifiers [27] and the newly reported associative classification
approaches [32]. In our study, as we noted earlier, we will focus
the class imbalance problem using RBFNNs models as classifica-
tion system.

2.2. Evaluation in multi-class imbalanced domains

The imbalanced distribution of classes constitutes a difficulty
for standard learning algorithms because they are, in general,
biased toward majority classes. As a result, patterns from the
majority classes are classified correctly by created classifiers,
whereas patterns from the minority class tend to be misclassified.

Classification accuracy may lead to erroneous conclusions
since the minority class has very little impact on accuracy as
compared to the majority classes [29]. Therefore, accuracy is not
an appropriate performance measure with imbalanced datasets.

When there are two classes, an alternative to accuracy to
overcome these difficulties is the receiver operating characteristic
(ROC) curve [33–35]. The area under the ROC curve (AUC)
measures the misclassification rate of one class and the accuracy
of the other. The ROC curve and the AUC have been used to
enhance the quality of binary classifiers [36–38]. Extension of the
standard two class ROC to multi-class problems (J-classes) is
attractive, since it would confer the benefits of ROC analysis to
more problems in pattern recognition. Recently, different
approaches have been proposed to extend ROC analysis for
multi-class classification, e.g. [39–41]. These proposals are based
on simplifying the multi-class classification problem by using
multiple binary classifiers, with the one-vs-one and one-vs-all
methods. As an example, Hand and Till [39] proposed an AUC for
multi-classification (MAUC) problems for one-vs-one methods,
defined as

MAUC ¼
J

JðJ�1Þ

X
lok

AUClk ð1Þ

where J is the number of classes. In the most general case, the
volume under the ROC surface (VUS) has to be maximized in
multi-class classification. The ROC surface can be seen as a Pareto
front, where each objective corresponds to one dimension. In
those cases where there are more than two classes, then the
number of objectives depends on the multi-class method (one-vs-
one or one-vs-all method). However, in our approach, a direct
multi-class formulation (based on the softmax transformation)
has been implemented. Therefore, these metrics are not appro-
priate to evaluate our classifiers.

In general, a direct multi-class formulation is better for
modelling pattern classes than other types of approaches such
as one-vs-one or one-vs-all methodologies. Ou and Murphey [18]
proved that a direct multi-class formulation provides an optimal
decision boundary since the model is trained with the presence of
the knowledge of all pattern classes.

In addition to the ROC curve measurement, sensitivity and
specificity measures are considered in two-class imbalanced
problems (see [16,21]). In [16], the selected metric is the geo-
metric mean of the true rates, which measures the balanced
performance of a learning algorithm between these two classes
more properly than the accuracy.

In this paper, we will focus on multi-classification problems,
where the concepts of true/false positive/negative are not valid.
For this reason, the minimum sensitivity (MS) and the correct
classification rate or accuracy (C) measures associated with a
given classifier g are considered in this work.

F. Fernández-Navarro et al. / Pattern Recognition 44 (2011) 1821–18331822

Author's personal copy

First, we have to define the MS and C measurements which are
derived from the contingency or confusion matrix M.

M¼ nij;
XJ

i,j ¼ 1

nij ¼N

8<
:

9=
; ð2Þ

where J is the number of classes, N is the number of training or
testing patterns and nij represents the number of times the
patterns are predicted by classifier g to be in class j when they
really belong to class i. The diagonal corresponds to correctly
classified patterns and the off-diagonal to mistakes in the classi-
fication task, as shown in Table 1.

Let us denote the number of patterns associated with class i by
fi ¼

PJ
j ¼ 1 nij, i¼1,y,J. Let Si ¼ nii=fi be the number of patterns

correctly predicted to be in class i with respect to the total
number of patterns in class i (sensitivity for class i). Therefore,
the sensitivity for class i estimates the probability of correctly
predicting a class i example.

From the above quantities the minimum sensitivity (MS) of a
classifier g is the minimum value of the sensitivities for each
class:

MS¼minfSi; i¼ 1, . . . ,Jg ð3Þ

The correct classification rate or accuracy (C) is defined as

C ¼ ð1=NÞ
XJ

j ¼ 1

njj ð4Þ

that is, the rate of all the correct predictions.
The minimum sensitivity and accuracy measures express two

features associated with a classifier: global performance C and the
accuracy for the worst classified class S. These measures have
been simultaneously taken into account in previous stu-
dies [42–44], achieving a good performance for the classification
of imbalanced data. In this paper, the application of the dynamic
over-sampling techniques improves the sensitivity of the classi-
fier population, without drastically decreasing their global
accuracy.

2.3. Possible solutions for the class imbalance problem

Several methods have been proposed to improve classifiers
learnt from imbalanced data, for a review see [19,20]. Published
solutions to the class imbalance problem can be categorized as
data level and algorithm level approaches.

At the algorithm level, solutions try to adapt existing classifier
learning algorithms to bias towards the minority class, such as
cost-sensitive learning [6] and recognition-based learning [45].
Solutions at the algorithm level being either classifier learning
algorithm-dependent or application-dependent are shown to be
effective if applied in a certain context. These factors indicate the
need for additional research efforts to advance the classification
of imbalanced data.

At the data level, the objective is to rebalance the distribution
per class by resampling the data space, including over-sampling
patterns of the minority class and under-sampling patterns of the
majority classes. Sometimes this can involve a combination of the

two techniques [5,7]. Obvious shortcomings of the resampling
(data level) approaches are: (1) the optimal distribution per class
of a training dataset is usually unknown; (2) an ineffective
resampling strategy may risk losing information about the major-
ity classes when being under-sampled and over-fitting the min-
ority class when being over-sampled; and (3) extra learning cost
for analysing and processing data is unavoidable in most cases.

The SSRBF method is a data level approach. Nevertheless, the
DSRBF method could be considered a hybrid solution between
data level and algorithm level approaches, since in the stage of
preprocessing, the over-sampled class is the minority class (data
level), while in the dynamic one, the over-sampled class will be
the class with minimum sensitivity (algorithm level).

3. Classification method

3.1. Base classifier

We consider radial basis functions neural networks
(RBFNNs) [46–50] with softmax outputs and the standard struc-
ture as the base classification model. A scheme of these models is
given in Fig. 1, where J is the number of classes and m is the
number of hidden nodes or RBFs of the neural net. The inputs of
the neural net are represented by the vector x, flðx,hlÞ is the
output of the neural net for the l-th class, and, after applying the
softmax transformation, these outputs are transformed into
probabilities that the pattern x belong to the corresponding class,
glðx,hlÞ. Finally, h¼ ðh1, . . . ,hJ�1Þ is the vector including all the
parameters of the neural net.

The activation function of the j-th node in the hidden layer is
given by

Bjðx,wjÞ ¼ exp �
x�cj

�� ��2

r2
j

 !
ð5Þ

where wj ¼ ðcj,rjÞ is the vector of parameters of the j-th hidden
node, cj ¼ ðcj1, . . . ,cjkÞ is the centre of this node, rj is the

Table 1
Confusion matrix of a classifier.

Class 1 2 y Q Priors

1 n11 n12 y n1Q f1

2 n21 n22 y n2Q f2

y y y y y y

Q nQ1 nQ2 y nQQ fQ

Fig. 1. Structure of radial basis function neural networks: an input layer with k

input variables, a hidden layer with m RBFs and an output layer with J�1 nodes.

F. Fernández-Navarro et al. / Pattern Recognition 44 (2011) 1821–1833 1823

Author's personal copy

corresponding radium and cji is the weight of the connection
between the i-th input node and the j-th RBF. The activation
function of the l-th output node is given by

flðx,hlÞ ¼ bl
0þ

Xm

j ¼ 1

bl
jBjðx,wjÞ ð6Þ

where hl ¼ ðb
l
0,bl

1, . . . ,bl
m,w1, . . . ,wmÞ, bl

j is the weight of the
connection between the j-th RBF and the l-th output node and
bl

0 is the bias of the l-th output node. The transfer function of all
output nodes is the identity function.

The best RBFNN is determined by means of a memetic
algorithm (MA) (detailed in Section 3.2) that optimizes the error
function given by the negative log-likelihood for N observations
associated with the RBFNN model:

L�ðhÞ ¼
1

N

XN

n ¼ 1

�
XJ�1

l ¼ 1

yðlÞn flðxn,hlÞ

"
þ log

XJ�1

l ¼ 1

expflðxn,hlÞ

#
ð7Þ

where yðlÞn is equal to 1 if the pattern xn belongs to the l-th class
and equal to 0 otherwise.

3.2. Memetic algorithm

The basic framework of the evolutionary algorithm is the
following: the search begins with an initial population of RBFNNs
and, in each iteration, the population is updated using a

population-update algorithm which evolves both its structure
and weights. The population is subject to the operations of
replication, mutation and recombination.

In order to overcome the lack of efficiency in the neighbour-
hood of the global optimum of the EAs, we propose incorporating
an optimization method in the evolutionary process. This method
is applied at specific stages of the EA.

The MRBF algorithm is detailed in Fig. 2, where pB is the best
optimized RBFNN returned by the algorithm.

The main characteristics of the algorithm are the following:

1. Representation of the individuals. The algorithm evolves archi-
tectures and connection weights simultaneously, each indivi-
dual being a fully specified RBFNN. RBFNNs are represented
using an object-oriented approach and the algorithm deals
directly with the RBFNN phenotype. Each connection is
specified by a binary value indicating if the connection exists
and a real value representing its weights.

2. Error and fitness functions. We consider L� ðhÞ defined in Eq. (7)
as the error function of an individual f of the population.

The fitness measure needed for evaluating the individuals
(Fig. 2, steps 2, 7 and 24) is a strictly decreasing transfor-
mation of the error function L�ðhÞ given by Aðf Þ ¼ 1=
ð1þL�ðhÞÞ, where 0oAðf Þr1.

3. Initialization of the population. The initial population is gener-
ated trying to obtain RBFNNs with the maximum possible

Fig. 2. MRBF training algorithm framework.

F. Fernández-Navarro et al. / Pattern Recognition 44 (2011) 1821–18331824

Author's personal copy

fitness. First, 5000 random RBFNNs are generated (Fig. 2, step 1),
where the number of RBFs m is a random value in the interval
[Mmin, Mmax]. The number of connections between all RBFs of an
individual and the input layer is a random value in the interval [1,
k] and all of them are connected with the same randomly chosen
input variables. In this way, all the RBFs of each individual are
initialized in the same random subspace of the input variables. A
random value in the [� I, I] interval is assigned for the weights
between the input layer and the hidden layer and in the [�O, O]
interval for those between the hidden layer and the output layer.
The individuals obtained are evaluated using the fitness function
and the initial population is finally obtained by selecting the best
500 RBFNNs (Fig. 2, steps 2–4).

In order to improve the randomly generated centres, the
standard k-means clustering algorithm [51] is applied
using these random centres as the initial centroids for the
algorithm and a maximum number of iterations of 100
(Fig. 2, step 5).

4. Parametric mutation. Parametric mutation (Fig. 2, step 10)
alters the value of the coefficients of the model. Different
weight mutations are applied:
� Centre and radii mutation. These parameters are modified in

the following way:
3 Centre creep. The value of each centre is modified by

adding a Gaussian noise, cjiðtþ1Þ ¼ cjiðtÞþxðtÞ, where
xðtÞANðcji,riÞ and Nðcji,riÞ represents a one-dimensional
normally distributed random variable with mean cji and
with variance the radius of the RBF hidden node.

3 Radius creep. The value of each radii is modified by
adding another Gaussian noise, riðtþ1Þ ¼ riðtÞþxðtÞ,
where xðtÞANðri,dÞ and Nðri,dÞ represents a one-dimen-
sional normally distributed random variable with mean
ri and with variance the width of the range of each
dimension (d).

3 Randomize centres. Changes the values of the centres of
the hidden neurons to random values x where xAUð0,dÞ
and U (0, d) represents a one-dimensional uniform
distributed random variable, where d is the width of
the range allowed for each dimension of the input space.

3 Randomize radii. This operator changes radius values
randomly, always with values in the corresponding
range of each input space dimension.

� Hidden-to-output node connections mutation. These connec-
tions are modified by adding a Gaussian noise,
wðtþ1Þ ¼wðtÞþxðtÞ, where xðtÞANð0,TðgÞÞ and Nð0,TðgÞÞ
represents a one-dimensional normally distributed random
variable with mean 0 and with variance the network
temperature (TðgÞ ¼ 1�A ðgÞ) [52].

5. Structural mutation. Structural mutation (Fig. 2, step 11) implies a
modification in the structure of the RBFNNs and allows the
exploration of different regions in the search space, helping to
maintain the diversity of the population. There are four different
structural mutations: hidden node addition, hidden node deletion,
connection addition and connection deletion. These four muta-
tions are applied sequentially to each network. The number of
nodes added or deleted in hidden node addition and hidden node
deletion is calculated as DminþuTðgÞ½Dmax�Dmin�, u being a
random uniform variable in the interval [0,1], TðgÞ ¼ 1�AðgÞ the
temperature of the neural net, and Dmin and Dmax a minimum and
maximum number of nodes specified as parameters.
The connection structural mutations are performed as follows:
� Connection addition. Connection addition mutations are

first performed in the hidden layer and then in the output
layer. When adding a connection from the input layer to
the hidden layer, a node from each layer is selected
randomly, and then the connection is added with a random

weight. A similar procedure is performed from the hidden
layer to the output layer.
� Connection deletion. In the same way, connection deletion

mutation is first performed in the hidden layer and then in
the output layer, choosing randomly the origin node from
the previous layer and the target node from the
mutated layer.

We apply connection mutations sequentially for each mutated
neural net, first, adding (or deleting) 1þu½Dono� connections from
the hidden layer to the output layer and then, adding (or deleting)
1þu½Dhnh� connections from the input layer to the hidden layer,
u being a random uniform variable in the interval [0,1], Do and Dh

previously defined ratios of number of connections in the hidden
and the output layer, and no and nh the current number of
connections in the output and the hidden layers.
Parsimony is also encouraged in evolved networks by attempting
the four structural mutations sequentially, where node or con-
nection deletion is always attempted before addition. Moreover,
the deletion operations are made with higher probability. If a
deletion operation is successful, no other mutation will be made.
If the probability does not select any mutation, one of the
mutations is chosen at random and applied.

6. Recombination. Recombination (Fig. 2, step 12) is used to vary
the structure of a chromosome or chromosomes from one
generation to the next. Different crossover operators are
applied :
� Binary crossover operator. This binary operator needs two

RBFNNs to be applied. The operator takes an uniformly
randomly chosen number of consecutive hidden neurons
from the first network, and another random sequence from
the second. Then it replaces the first of these sequences by
the second one, so that the second individual remains
unchanged.
� Multipoint crossover operator. This operator is similar to the

previous one, but it replaces with probability 0.2 every
hidden neuron of the first RBFNN by a randomly chosen
neuron coming from the second net. The second individual
remains unchanged again.

7. Local optimization method. This method is applied each 50
generations of the evolutionary process and is based on a
clustering method that applies the k-means algorithm over a
specific space where each individual is mapped to a different
point depending on his performance (Fig. 2, step 18). This
combination of a clustering process and a local optimization
method for EAs was previously proposed [53], reporting good
results for regression problems. In this paper, the method has
been adapted to classification problems by mapping each
individual to the following space: each classifier is repre-
sented by the set of the sensitivities of the classifier for each
class of the problem. This clustering process is able to obtain
groups of individuals that perform similarly for the different
classes. After that, we apply iRprop+ algorithm [54] to the
individual closest to the centroid obtained in each cluster
(Fig. 2, step 20) and the optimized individuals are returned to
the population with their fitness and values updated because
our MA is based on the Lamarckian model [55]. The iRprop+
local improvement procedure is performed considering a
maximum of 75 cycles.

3.3. Static over-sampling approach

In this section, the static smote radial basis function (SSRBF)
algorithm is described. In this methodology, the dataset is
modified only before the MA is performed. The SSRBF algorithm

F. Fernández-Navarro et al. / Pattern Recognition 44 (2011) 1821–1833 1825

Author's personal copy

is detailed in Fig. 3, where pB is the best optimized RBFNN
returned by the algorithm.

In the preprocessing stage, the resampling procedure is
applied for J steps, where J is the number of classes of the
problem (Fig. 3, step 1). In each iteration, the resampling proce-
dure selects the minimum size class, and adds the same number
of patterns that it had in the original dataset. Synthetic examples
are obtained by applying the SMOTE algorithm over the patterns
of the minority class (Fig. 3, step 2).

To determine how many patterns we have to generate and to
generate these patterns, there are two possibilities: (1) synthetic
patterns previously generated are considered to generate new
patterns, (2) only the patterns belonging to the original dataset
are taken into account when duplicating the minority class by
SMOTE. Experimentally, we observed that the second approach
got the best performance, therefore, the over-sampling method
selects the class with minimum size and adds the number of
patterns that the class had in the original dataset not considering
synthetic patterns to generate new samples (Fig. 3, step 3).

Once the resampling procedure has been applied J times, the
MRBF algorithm is performed, using as the training set, the
dataset generated in the preprocessing stage (Fig. 3, step 5).

Table 2 shows an example for the ‘‘zoo’’ dataset, and it can be
seen how the dataset is modified before the MA goes into action.

3.4. Dynamic over-sampling approach

In this section, the dynamic smote radial basis function
(DSRBF) algorithm is described. In this approach, the dataset is
modified into two stages. First, the dataset is changed before the
algorithm performs (taking into account the number of patterns
per class) and second, the dataset is increased by adding the
number of patterns in the minimum sensitivity class in different
generations of the algorithm.

The DSRBF algorithm is detailed in Fig. 4, where pB is the best
optimized RBFNN returned by the algorithm.

The DSRBF method includes a preprocessing stage (Fig. 4, steps
1–4) where the number of minority class patterns is added. The
aim will be to decrease the problem imbalance rate by selecting
the minority class as the one to which the resampling procedure
is applied. Synthetic examples are obtained by the SMOTE algo-
rithm over the patterns of the minority class. This initial pre-
processing stage will be applied if the following condition is
fulfilled:

p�r
1

2 � J
ð8Þ

where J is the number of classes and pn is the minimum of the
estimated prior probabilities (i.e. p� ¼minfðfi=NÞ,1r ir Jg, where

fi is the number of patterns of the i-th class and N is the total
number of patterns). This condition was established since the
preprocessing SMOTE should be applied only for the most
imbalanced datasets (the size of the minority class is less than a
half of the size that this class should have in the ideal
balanced case).

After that, the MA runs and every Gq generations from the
initial generation G0, the MA is stopped and the over-sampling
procedure proposed is applied. The number of times that the
over-sampling procedure is applied is the number of classes of the
problem. To test the proposal, the initial over-sampling procedure
is conducted in the generation 25 (i.e. G0¼25), and then it is
repeated every 50 generations (Gq¼50).

The over-sampling procedure is defined as follows: first, the
DSRBF method selects the best RBFNN of the population and
determines which class has the minimum sensitivity (Fig. 4, step
9). If two or more classes are classified with the same (minimum)
sensitivity, the minority class is selected. The selected class is
over-sampled by taking each pattern of the class and introducing
synthetic examples along the line segments joining any/all of the
k minority class nearest neighbours. Our implementation cur-
rently uses five nearest neighbours as the maximum value of the k

parameter in the SMOTE algorithm (Fig. 4, steps 10–14). The over-
sampling method adds the number of patterns that the class had
in the original dataset not considering synthetic patterns to
generate new samples. Once synthetic patterns have been gener-
ated, these are inserted into the training set, resulting in the need
to re-evaluate and sort the population according to fitness (Fig. 4,
steps 15–18).

The preprocessing stage was included in the DSRBF algorithm
to improve the convergence of the MA. We observed experimen-
tally that the selected class was the minority one in the first
iteration of the dynamic over-sampling procedure, when dealing
with very imbalanced datasets. Therefore, we decided to include a
preprocessing stage to increase the minority class size in extre-
mely imbalanced datasets, reducing in this way the number of
generations of the MA.

Fig. 3. SSRBF training algorithm framework.

Table 2
An example of the static over-sampling approach for the ‘‘zoo’’ dataset.

Iteration Number of patterns per class Selected class

Initial (70, 76, 17, 13, 9, 29) 5

1 (70, 76, 17, 13, 18, 29) 4

2 (70, 76, 17, 26, 18, 29) 3

3 (70, 76, 34, 26, 18, 29) 5

4 (70, 76, 34, 26, 27, 29) 4

5 (70, 76, 34, 39, 27, 29) 5

6 (70, 76, 34, 39, 36, 29) –

F. Fernández-Navarro et al. / Pattern Recognition 44 (2011) 1821–18331826

Author's personal copy

4. Experiments

The experiments carried out in this section have a double
purpose. First of all, the goal is to analyse how the over-sampling
techniques affect to the classifier performance. Second, the aim is
the justification of the dynamic over-sampling process.

In the first subsection, a description of the datasets and the
experimental configuration is given. Then, the main experiments
are presented in the subsequent subsections.

4.1. Description of the datasets and the experimental design

The proposed methodologies are applied to 12 datasets taken
from the UCI repository [56], to test their overall performance
when compared among themselves. One additional dataset
described in Section 4.2 has been included, which corresponds
to a real predictive microbiology problem of discriminating the
growth/no growth of Staphylococcus aureus. All the datasets and
the corresponding partitions have been included in a public
website.1 Since our method is aimed to improve the accuracy
for the worst classified class when dealing with imbalanced
datasets, the datasets selected have a considerable imbalance
rate.

The selected datasets include five binary problems and eight
multi-class problems and present different numbers of instances,

features and classes (see Table 3). The CYTvsPOX dataset is the
Yeast dataset considering only patterns from CYT and POX classes,
and the ME2vsOther is the Yeast dataset considering ME2
patterns vs the remaining patterns. The minimum and maximum
number of hidden nodes have been obtained as the best result of a
preliminary experimental design ANOVA I, considering a small,
medium and high value: ½Mmin,Mmax�Af½1,3�,½4,9�,½10,12�g. This
value is also included in Table 3.

The experimental design was conducted using a 10-fold cross-
validation, with 10 repetitions per each fold except for the
‘‘Saureus4’’ dataset. The experimental design followed for the
Saureus4 dataset is described in Section 4.2. The performance of
each method has been evaluated using the correct classification
rate (C) and the minimum sensitivity (MS) value for the general-
ization set, i.e. the accuracy for the worst classified class.

All the parameters used in the evolutionary algorithm, except
the maximum and minimum number of RBFs in the hidden layer,
have the same values for all problems considered. We have
carried out a simple linear rescaling of the input variables in the
interval [�2, 2], X�i being the transformed variables. The connec-
tions between hidden and output layer are initialized in the [�5, 5]
interval. The initial value of the radii rj is obtained in the interval
(0, dmax], where dmax is the maximum distance between two
training input examples.

The size of the population is N¼500. For the structural
mutation, the number of nodes that can be added or removed is
within the [1, 2] interval, and the number of connections to add or
delete in the hidden and the output layers during structural

Fig. 4. DSRBF training algorithm framework.

1 http://www.uco.es/grupos/ayrna/index.php?lang=en (‘‘Datasets’’ section).

F. Fernández-Navarro et al. / Pattern Recognition 44 (2011) 1821–1833 1827

Author's personal copy

mutations is within the [1, 7] interval. The number of clusters is
k¼6 for the k-mean algorithm of the initialization process. The
algorithm stops when 400 generations are completed.

The DSRBF method is compared to different algorithms:

� The MRBF method (detailed in 3.2).
� The SSRBF method (detailed in 3.3).
� Specific neural network methods for imbalanced data

proposed in [15]:
3 The over-sampling (OS) algorithm. This method dupli-

cates higher-cost training examples until the appear-
ances of different training examples are proportional to
their costs.

3 The SmoteOver-Sampling (SmoteOS) algorithm. Imple-
mentation of the SMOTE algorithm in the preprocessing
stage to balance in part the datasets. Then, the neural
network is trained with the modified dataset.

3 The ThresholdMovNN (TMNN) algorithm. This method
moves the output threshold toward inexpensive classes
such that examples with higher costs become harder to
be misclassified.

3 Hard-ensemble (HE) and soft-ensemble (SE) algorithms.
The combination of TMNN, SmoteOS and OS techniques
via hard or soft voting schemes.
These methods have been selected due to their simila-
rities to our model proposed. The first two techniques
modify the distribution of the training data such that the
costs of the examples are conveyed explicitly by the
appearances of the examples. These methods use multi-
layer perceptron neural networks as the base classifier,
and the model is trained by the RProp algorithm.

The MRBF algorithm was implemented in JAVA. For the SSRBF
and DSRBF methods, the MRBF algorithm was modified slightly,
applying the over-sampling procedures. We also used the cost
sensitive neural network (CSNN) Matlab package2 [15] to obtain
the results of the OS, SmoteOS, TMNN, HE and SE methods.

Table 4
Justification of the over-sampling approaches: mean and standard deviation (SD) of the accuracy (CG (%)) and minimum sensitivity (MSG (%)) results, mean accuracy

(C G ð%Þ), mean minimum sensitivity (MSG ð%Þ) and mean ranking (R).

MRBF SSRBF DSRBF

CG (%) MSG (%) CG (%) MSG (%) CG (%) MSG (%)

MeanSD MeanSD MeanSD MeanSD MeanSD MeanSD

Hepatitis 81.828.06 51.0018.85 82.846.58 56.3120.44 83.307.44 60.5021.35

BreastC 74.328.20 47.6017.51 62.146.61 53.2310.49 67.537.74 51.7513.72

Haberman 73.295.81 27.1211.60 64.778.10 51.8711.42 69.486.90 44.8311.32

CYTvsPOX 97.261.96 47.4625.90 97.331.95 56.7827.21 96.493.30 55.1128.63

ME2vsOther 97.210.77 44.4315.81 96.440.34 54.864.73 95.540.59 66.633.70

Newthyroid 96.542.71 86.7314.42 97.022.63 90.4012.69 97.602.75 91.4712.47

Balance 95.702.37 73.5821.14 91.754.51 74.2720.01 93.853.12 79.3917.60

Saureus4 78.221.56 8.0010.32 72.684.18 14.009.66 72.933.24 20.329.41

Anneal 98.702.12 60.5242.89 98.553.50 70.4237.89 98.822.57 77.6020.22

Glass 68.408.92 6.9717.53 67.638.65 8.6318.22 65.609.28 16.6121.99

Zoo 95.336.56 62.5048.40 95.136.41 59.0049.43 95.816.53 67.0047.26

E. coli 84.948.59 26.5831.11 84.678.26 30.0231.26 85.918.53 34.1033.75

Yeast 58.094.68 0.000.00 52.675.98 0.000.00 55.424.48 5.8011.12

C G ð%Þ or MSG ð%Þ 84.60 41.73 81.81 47.67 82.94 51.62

R 1.65 2.88 2.53 1.88 1.84 1.23

The best result is in bold face and the second best result in italics.

Table 3
Characteristics of the 13 datasets used for the experiments: number of instances (Size), number of Real (R), binary (B) and nominal (N) input variables, total number of

inputs (#In), number of classes (# Out), number of patterns per class (NPPC), minimum and maximum number of hidden nodes used for each dataset ([Mmin, Mmax]) and

minimum of the estimated prior probabilities (pn).

Dataset Size R B N In Out NPPC [Mmin, Mmax] pn

Hepatitis 155 6 13 – 19 2 (32, 123) [1, 3] 0.206

BreastC 286 4 3 2 15 2 (201, 85) [1, 3] 0.297

Haberman 306 3 – – 3 2 (225, 81) [1, 3] 0.264

CYTvsPOX 482 8 – – 8 2 (463, 19) [4, 9] 0.039

ME2vsOther 1484 8 – – 8 2 (1433, 51) [1, 3] 0.034

Newthyroid 215 5 – – 5 3 (150, 35, 30) [4, 9] 0.139

Balance 625 4 – – 4 3 (288, 49, 288) [4, 9] 0.078

Saureus4 287 3 – – 3 4 (117, 45, 12, 113) [4, 9] 0.042

Anneal 898 6 14 18 59 5 (8, 99, 684, 67, 40) [4, 9] 0.009

Glass 214 9 – – 9 6 (70, 76, 17, 13, 9, 29) [9, 12] 0.042

Zoo 101 1 15 – 16 7 (41, 20, 5, 13, 4, 8, 10) [4, 9] 0.049

E. coli 336 7 – – 7 8 (143, 77, 52, 35, 20, 5, 2, 2) [4, 9] 0.006

Yeast 1484 8 – – 8 10 (463, 429, 30, 163, 51, 44, 35, 244, 20, 5) [9,12] 0.003

All nominal variables are transformed to binary variables.

BreastC: breast-cancer.

2 http://lamda.nju.edu.cn/datacode/CSNN.htm

F. Fernández-Navarro et al. / Pattern Recognition 44 (2011) 1821–18331828

Author's personal copy

4.2. Description and experimental design of the ‘‘Saureus4’’ dataset

The original dataset was taken from [57,58] describing the
growth/no growth boundaries of a five strain cocktail of Staphy-

lococcus aureus as a function of temperature, pH and aw by an
ordinary logistic regression model. The same experimental design
was followed by carefully choosing a subset (fraction) of the
experimental runs of a full factorial design. Data were collected at
8, 10, 13, 16 and 19 1C at pH levels from 4.5 to 7.5 (0.5 intervals)
and at 19 levels of aw (from 0.856 to 0.999 at regular intervals).
Four observed microbial responses are obtained based on the
probability of microorganism growth [p¼0 (no growth);
0opr0:5 (probably no growth); 0:5opo1 (probably growth);
p¼1 (growth)].

The initial dataset (287 conditions) was divided into two parts:
training data (146 conditions covering the extreme domain) and
generalization data (141 conditions within the interpolation region of
the model). The tested algorithms are performed 30 times with the
‘‘Saureus4’’ dataset, since they are stochastic algorithms.

4.3. Justification of the over-sampling approaches

In this subsection, the MRBF method is compared to over-
sampling approaches, i.e. the SSRBF and DSRBF methods. The
purpose of this section is to show that incorporating the over-
sampling procedure in the learning algorithm can improve the
performance of classifiers, especially in the class which is more
difficult to classify. Table 4 shows the mean and the standard
deviation of the correct classification rate (CG) and minimum
sensitivity (MSG) in the generalization set for each dataset and the
MRBF, SSRBF and DSRBF methods. Based on the mean CG and MSG,
the ranking of each method in each dataset (R¼1 for the best
performing method and R¼3 for the worst one) is obtained and
the mean accuracy and minimum sensitivity (C G and MSG) and
the mean ranking (RCG

and RMSG
) are also included in Table 4.

From the analysis of the results, it can be concluded, from a purely
descriptive point of view, that the MRBF method obtained the
best results for seven datasets in CG but the over-sampling
techniques achieve the best results for all dataset in MSG.
Furthermore, the MRBF method yields the best mean
(C G ¼ 84:60%) and ranking (RCG

¼ 1:65) in CG, however, taking
MSG into account, the DSRBF got the best performance both
measures (MSG ¼ 51:62,RMSG

¼ 1:23). In general the DSRBF
approach substantially improves sensitivity levels (between

5 and 15 points in average) with a slight reduction in accuracy
levels for some datasets.

To determine the statistical significance of the rank differences
observed for each method in the different datasets, we have carried
out a non-parametric Friedman test [59] with the ranking of CG and
MSG of the best models as the test variables (since a previous
evaluation of the CG and MSG values results in rejecting the normality
and the equality of variances’ hypothesis). The test shows that the
effect of the method used for classification is statistically significant at
a significance level of 5%, as the confidence interval is
C0 ¼ ð0,F0:05 ¼ 3:40Þ and the F-distribution statistical values are
F� ¼ 3:59=2C0 for CG and F� ¼ 27:18=2C0 for MSG. Consequently, we
reject the null-hypothesis stating that all algorithms perform equally
in mean ranking.

Based on this rejection, the Nemenyi post-hoc test is used to
compare all classifier to each other. This test considers that the
performance of any two classifier is deemed significantly different
if their mean ranks differ by at least the critical difference (CD):

CD¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðKþ1Þ

6D

r
ð9Þ

3 2 1

CD

MRBF
DSRBF
SSRBF

3 2 1

CD

DSRBF
SSRBF
MRBF

3 2 1

CD

MRBF
DSRBF
SSRBF

3 2 1

CD

DSRBF
SSRBF
MRBF

Fig. 5. Justification of the over-sampling approaches: Nemenyi and Bonferroni critical difference diagrams (a¼ 0:05). (a) Nemenyi (CG), (b) nemenyi (MSG), (c) bonferroni

(CG) and (d) bonferroni (MSG).

Table 5
Justification of the over-sampling approaches: critical difference (CD) values and

differences of rankings of the Bonferroni–Dunn and Nemenyi tests, using DSRBF as

the control method.

Method(i) CG MSG

Method(j) Method(j)

MRBF SSRBF DSRBF MRBF SSRBF DSRBF

Nemenyi test

MRBF – 0:92� 0.23 – 1:00þ� 1:66þ�
SSRBF – – 0.69 – – 0.65

Control method CG MSG

Compared method Compared method

MRBF SSRBF DSRBF MRBF SSRBF DSRBF

Bonferroni–Dunn test

DSRBF 0.23 0.69 – 1:65þ� 0.65 –

Nemenyi test: CDða ¼ 0:1Þ ¼ 0:80, CDða ¼ 0:05Þ ¼ 0:91.

Bonferroni–Dunn test: CDða ¼ 0:1Þ ¼ 0:76, CDða ¼ 0:05Þ ¼ 0:87.

�, 3: Statistically difference with a¼ 0:05 ð�Þ and a¼ 0:1 ð3Þ.

+: The difference is in favour of control method or method(j).

F. Fernández-Navarro et al. / Pattern Recognition 44 (2011) 1821–1833 1829

Author's personal copy

where K and D is the number of classifiers and datasets, and the q

value is derived from the studentized range statistic divided byffiffiffi
2
p

[60,61]. However, it has been noted that the approach of
comparing all classifiers to each other in a post-hoc test is not as
sensitive as the approach of comparing all classifiers to a given
classifier (a control method). One approach to this latter type of
comparison is the Bonferroni–Dunn test. This test can be com-
puted using Eq. (9) with appropriate adjusted values of q [61].

The results of the Bonferroni–Dunn and Nemenyi tests for
a¼ 0:10 and a¼ 0:05 can be seen in Table 5 (and also in the
Bonferroni and Nemenyi critical difference diagrams of Fig. 5),
using the corresponding critical values. From the results of this
test, it can be concluded that DSRBF obtains a significantly better
MSG ranking than the MRBF method. Using CG as the test variable,
the MRBF method does not achieve significantly better results
than the DSRBF method. For this reason, the DSRBF methodology

is recommended to improve the minimum sensitivity value
without a significant loss of accuracy.

4.4. Comparison of the DSRBF method with other recent approaches

In this last subsection, the dynamic over-sampling approach
(DSRBF) is compared to other methodologies with a static
over-sampling procedure (OS and SmoteOS), to a methodology
that uses the original training set to train a neural network, and
the cost-sensitivity is introduced in the test phase (TMNN) and to
ensembles approaches (SE and HE). The purpose of this section is
to show that the DSRBF method is a competitive approach when
compared to other state-of-the-art neural network methods
specifically designed for dealing with imbalanced datasets.

Table 6
Comparison of the DSRBF method with other recent approaches: mean and standard deviation (SD) of the accuracy (CG (%)) and minimum sensitivity (MSG (%)) results,

mean accuracy (C G ð%Þ), mean minimum sensitivity (MSG ð%Þ) and mean ranking (R).

OS SmoteOS TMNN SE HE DSRBF

CG (%) MSG (%) CG (%) MSG (%) CG (%) MSG(%) CG (%) MSG(%) CG (%) MSG (%) CG(%) MSG (%)

MeanSD MeanSD MeanSD MeanSD MeanSD MeanSD MeanSD MeanSD MeanSD MeanSD MeanSD MeanSD

Hepatitis 80.678.61 47.6924.18 80.058.39 51.0824.20 79.48.87 46.7223.32 80.617.22 48.6823.54 80.367.09 49.0923.29 83.307.44 60.5021.35

BreastC 61.789.16 38.0916.60 63.268.78 40.5015.88 63.758.79 34.2417.96 64.848.70 34.9620.11 65.028.22 34.5119.54 67.537.74 51.7513.72

Haberman 61.0516.09 28.9315.53 61.5614.08 31.1114.94 68.949.23 27.8126.62 64.2512.17 30.5919.32 63.5713.18 31.2819.11 69.486.90 44.8311.32

CYTvsPOX 83.2215.72 49.8525.37 84.4114.57 52.8024.32 97.532.05 50.0031.78 90.588.65 53.3927.44 84.8313.21 52.9325,33 96.493.30 55.1128.63

ME2vsOther 81.2810.30 65.9512.02 83.839.36 69.2512.28 96.311.12 24.5323.91 89.288.04 61.1618.96 86.249.62 65.9312.56 95.540.59 66.633.70

Newthyroid 97.012.60 87.9014.26 97.442.90 91.4511.53 96.923.11 88.1015.14 97.522.68 90.6013.44 97.512.60 90.5313.41 97.602.75 91.4712.47

Balance 90.984.01 78.5816.72 88.285.22 75.0915.85 91.802.68 25.3124.94 92.293.65 79.1616.23 92.273.47 77.8317.23 93.863.12 79.3917.60

Saureus4 63.486.19 19.9116.27 62.036.58 21.578.97 75.772.17 2.496.17 72.703.47 15.138.61 69.833.45 14.3810.74 72.933.24 20.329.41

Anneal 92.205.75 56.0731.51 91.4811.17 66.9636.80 95.373.25 37.5044.02 97.781.41 76.8222.50 96.481.42 73.5525.30 98.822.57 77.6020.22

Glass 55.589.73 9.2515.63 55.9610.26 14.1818.92 65.498.67 0.000.00 63.959.18 7.5715.58 61.528.99 8.9816.78 65.609.28 16.6122.00

Zoo 92.459.10 47.0048.63 90.1211.42 46.2549.03 89.7411.15 39.2547.44 93.307.66 50.0049.75 93.407.68 52.0049.20 95.816.53 67.0047.26

E. coli 83.9810.47 36.1635.74 85.0210.40 35.7237.15 86.937.75 35.1835.01 85.609.39 38.4134.50 85.349.57 37.4236.18 85.918.53 34.1033.75

Yeast 50.725.38 5.2710.27 49.564.87 5.759.83 58.644.29 0.000.00 57.994.31 0.674.96 54.164.90 4.6810.66 55.424.48 5.8011.12

C G ð%Þ or MSG ð%Þ 76.49 43.89 76.38 46.28 82.04 31.62 80.82 45.16 79.27 45.62 82.94 51.62

R 5.15 4.00 5.23 2.84 3.00 5.76 2.73 3.38 3.42 3.46 1.46 1.53

The best result is in bold face and the second best result in italics.

Table 7
Comparison of the DSRBF method with other recent approaches: critical difference (CD) values and differences of rankings of the Nemenyi and Bonferroni–Dunn tests,

using DSRBF as the control method and CG or MSG as the test variable.

Method(i) CG MSG

Method(j) Method(j)

OS SmoteOS TMNN SE HE DSRBF OS SmoteOS TMNN SE HE DSRBF

Nemenyi test

OS – 0.07 2:15þ� 2:42þ� 1.73 3:69þ� – 1.15 1.76 0.65 0.53 2:46þ�
SmoteOS – – 2:23þ� 2:50þ� 1.80 3:76þ� – – 2.93 0.53 0.61 1.30

TMNN – – – 0.26 0.42 1.53 – – – 2:38þ� 2:30þ� 4:23þ�
SE – – – – 0.69 1.26 – – – – 0.07 1.84

HE – – – – – 1.96 – – – – – 1:92þ
3

Control method CG MSG

Compared method Compared method

OS SmoteOS TMNN SE HE DSRBF OS SmoteOS TMNN SE HE DSRBF

Bonferroni–Dunn test

DSRBF 3:69þ� 3:76þ� 1.53 1.26 1:96þ� – 2:46þ� 1.30 4:23þ� 1:84þ
3

1:92þ� –

Nemenyi test: CDa ¼ 0:1 ¼ 1:89, CDa ¼ 0:05 ¼ 2:09.

Bonferroni–Dunn test: CDa ¼ 0:1 ¼ 1:70, CDa ¼ 0:05 ¼ 1:89.

�, 3: Statistically difference with a¼ 0:05 ð�Þ and a¼ 0:1 ð3Þ.

+: The difference is in favour of Method(j) (Nemenyi test) or control method (Bonferroni–Dunn test).

F. Fernández-Navarro et al. / Pattern Recognition 44 (2011) 1821–18331830

Author's personal copy

In Table 6, the mean and standard deviation of the correct
classification rate and the minimum sensitivity in the general-
ization set (CG and MSG) are shown for each dataset. The mean
accuracy and minimum sensitivity (C G and MSG) and the mean
ranking (RCG

and RMSG
) are also included in Table 6.

From the analysis of the results, it can be concluded (taking CG

into account), from a purely descriptive point of view, that the
DSRBF method obtains the best result for eight datasets and the
TMNN method yields the highest performance for five datasets.
Furthermore, the DSRBF method obtains the best mean ranking
(RCG
¼ 1:46), followed by the SE method (RCG

¼ 2:73), and reports

the highest mean accuracy (C G ¼ 82:94%), followed by the TMNN
method (C G ¼ 82:04%).

Using MSG as the variable test, a descriptive analysis of the
results leads to the following remarks: the DSRBF method obtains
the best result for 10 out of 13 datasets, the second best results
for two other datasets, and the best mean minimum sensitivity
and mean ranking (C G ¼ 51:62% and RMSG

¼ 1:53).
It is necessary again to ascertain if there are differences in the

mean ranking of CG and MSG, so a procedure similar to that used
in the previous subsection has been applied. The non-parametric
Friedman test shows that the effect of the method used for

6 5 4 3 2 1

CD

DSRBF
SE

TMNNHE
OS
SmoteOS

6 5 4 3 2 1

CD

DSRBF
SmoteOS

SEHE
OS
TMNN

6 5 4 3 2 1

CD

DSRBF
SE

TMNNHE
OS
SmoteOS

6 5 4 3 2 1

CD

DSRBF
SmoteOS

SEHE
OS
TMNN

Fig. 6. Comparison of the DSRBF method with other recent approaches: Nemenyi and Bonferroni critical difference diagrams (a¼ 0:05). (a) Nemenyi (CG), (b) nemenyi

(MSG), (c) bonferroni (CG) and (d) bonferroni (MSG).

Table 8
Probability expression of the best DSRBF model. Performance of this model: accuracy on the training set (CT), accuracy on the generalization set (CG), minimum sensitivity

(MS) on the training set (MST), MS on the generalization set (MSG), confusion matrix (CM) for the training set (CMT) and CM for the generalization set (CMG).

Best DSRBF S.aureus probability model

f0ðx,hÞ ¼ �14:85RBF1�15:00RBF2�43:88RBF3þ7:85RBF4�1:45RBF5þ10:75RBF6þ2:22

f1ðx,hÞ ¼ �5:86RBF1�9:17RBF2�3:18RBF3þ9:76RBF4�6:17RBF5�0:92

f2ðx,hÞ ¼ 0:46�RBF1�0:40RBF2�39:25RBF3þ4:70RBF4þ29:95RBF5�3:11

f3ðx,hÞ ¼ 0

RBF0 ¼ e

�0:5�
ðða%

wþ2:16Þ2Þ0:5

1:02

 !
2

RBF1 ¼ e

�0:5�
ððT%þ2:68Þ2þða%

wþ0:48Þ2Þ0:5

1:67

 !
2

RBF2 ¼ e

�0:5�
ððT%�0:05Þ2þðpH%

þ1:83Þ2þða%

wþ1:76Þ2Þ0:5

1:22

 !
2

RBF3 ¼ e

�0:5�
ððT%�0:83Þ2þðpH%

�1:15Þ2þða%

w�0:68Þ2Þ0:5

2:40

 !
2

RBF4 ¼ e

�0:5�
ððpH%

�0:10Þ2Þ0:5

0:04

 !
2

RBF5 ¼ e

�0:5�
ððT%�1:55Þ2þðpH%

þ0:98Þ2Þ0:5

1:58

 !
2

T% ,pH%,a%

w A ½�2,2�

CT¼78.84%, CG¼81.56%

MST¼57.14%, MSG¼20.00%

CMT ¼

50 9 1 0

6 32 1 5

0 1 16 11

0 4 2 51

0
BBB@

1
CCCA; CMG ¼

51 5 0 1

4 15 2 2

1 1 1 2

2 3 3 48

0
BBB@

1
CCCA

F. Fernández-Navarro et al. / Pattern Recognition 44 (2011) 1821–1833 1831

Author's personal copy

classification is statistically significant at a significance level of
5%, as the confidence interval is C0 ¼ ð0,F0:05 ¼ 2:36Þ and the
F-distribution statistical values are F� ¼ 19:03=2C0 for CG and
F� ¼ 14:88=2C0 for MSG. Consequently, we reject the null-hypoth-
esis stating that all algorithms perform equally in mean ranking.

On the basis of this rejection, the Nemenyi post-hoc test is
used to compare all classifier to each other. The differences in
rankings between the different algorithms and the results of the
Nemenyi test for a¼ 0:1 and 0.05 can be seen in Table 7, using the
corresponding critical values. By using this test, it can be seen that
the DSRBF method significantly outperforms for a¼ 0:05, the OS
and SmoteOS methods using CG as the test variable and outper-
forms OS and TMNN methods using MSG as the test variable for
a¼ 0:05, and HE for a¼ 0:10.

The results of the Bonferroni–Dunn test for a¼ 0:1 and 0.05
can be seen in Table 7 (and also in the Bonferroni and Nemenyi
critical difference diagrams of Fig. 6) using the corresponding
critical values for the two-tailed Bonferroni–Dunn test. From the
results of these tests, it can be concluded that the DSRBF method
obtains a significantly higher ranking of MSG when compared to
all methods except SmoteOS for a¼ 0:10, which justifies the
proposal.

4.5. Analysis of the best DSRBF model obtained for the real microbial

growth problem

One of the major advantages of the DSRBF model is the
reduced number of features and RBFs included in the final
expression, since the MA reduces its complexity by pruning
mutations. This can result in a better interpretability of the model,
which is especially important when dealing with real problems. In
this way, Table 8 includes the best predictor functions of the
DSRBF model obtained for the Saureus4 problem. As discussed
in Section 4.2, the dataset includes temperature, pH and water
activity as input variables and the observations are to be classified
in four classes (growth / probably growth / probably no growth /
no growth). From these predictor functions, the probability that
each pattern x has of belonging to each class can be easily derived
by using the softmax functions.

5. Conclusions

This paper addressed the multi-class imbalance problem,
combining sampling methods into radial basis function neural
networks (RBFNNs) optimized by a memetic algorithm (MA). Two
kinds of over-sampling methods were proposed. The first is the
static smote radial basis function (SSRBF) method, and the second
is the dynamic smote radial basis function (DSRBF) method. The
SSRBF method performs the over-sampling procedure in the
preprocessing stage and the DSRBF runs the over-sampling
procedure both in the preprocessing stage and in different
generations of the MA. The proposed methodologies were applied
to 12 benchmark classification problems and one real classifica-
tion problem of microbial growth. It is important to note that all
the classification problem considered were chosen within the
scope of the imbalanced multi-classification problems.

The results obtained confirm that the dynamic over-sampling
approach obtains promising results, achieving excellent mean
sensitivity values in almost all datasets analysed, with accuracy
values similar to those obtained when the MA is used without
over-sampling procedures. However, the improvement in sensi-
tivity implies a loss in accuracy for some imbalanced datasets and
the expert has to decide where to apply the methodology or not.
The approach has been compared with other neural network
learning algorithms specifically designed for dealing with

imbalanced datasets, and the results obtained show the competi-
tiveness of the proposal.

Acknowledgements

The authors would like to thank the anonymous reviewers and
the editor for comments that helped them to improve this paper.
This work has been partially subsidized by the TIN 2008-06681-C06-
03 project of the Spanish Inter-Ministerial Commission of Science
and Technology (MICYT), FEDER funds, and the P08-TIC-3745 project
of the ‘‘Junta de Andalucı́a’’ (Spain). The research of Francisco
Fernández-Navarro has been funded by the ‘‘Junta de Andalucia’’
Predoctoral Programme, Grant reference 390015-P08-TIC-3745.

References

[1] N.V. Chawla, N. Japlowicz, A. Kotcz, Editorial: special issue on learning from
imbalanced data sets, Aigkdd Explorations 6 (1) (2006) 1–6.

[2] J.H. Zhao, X. Li, Z.Y. Dong, Online rare events detection, in: PAKDD’07,
Springer-Verlag, Berlin, Heidelberg, 2007.

[3] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Transactions on
Knowledge and Data Engineering 21 (9) (2009) 1263–1284.

[4] Y. Sun, A.K.C. Wong, M.S. Kamel, Classification of imbalanced data: a review,
International Journal of Pattern Recognition and Artificial Intelligence 23 (4)
(2009) 687–719.

[5] M. Kubat, S. Matwin, Addressing the curse of imbalanced training sets: one-
sided selection, in: Proceedings of the 14th International Conference on
Machine Learning, 1997, pp. 179–186.

[6] M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, C. Brunk, Reducing
misclassification costs: knowledge intensive approaches to learning from
noisy data, in: Proceedings of the 11th International Conference on Machine
Learning (ICML-1994), 1994, pp. 100–109.

[7] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, Smote: synthetic
minority over-sampling technique, Journal of Artificial Intelligence Research
16 (2002) 321–357.

[8] P. Moscato, C. Cotta, A gentle introduction to memetic algorithms, Handbook
of Metaheuristics, International Series in Operations Research and Manage-
ment Science, vol. 57, Springer, New York, 2003, pp. 105–144.

[9] T. Back, Evolutionary Algorithms in Theory and Practice, Oxford, 1996.
[10] S. Garcı́a, F. Herrera, Evolutionary training set selection to optimize c4.5 in

imbalanced problems, in: International Conference on Hybrid Intelligent
Systems, IEEE Computer Society, 2008, pp. 567–572.

[11] A. Folleco, T.M. Khoshgoftaar, A. Napolitano, Comparison of four performance
metrics for evaluating sampling techniques for low quality class-imbalanced
data, in: Seventh International Conference on Machine Learning and Applica-
tions, ICMLA ’08, 2008, pp. 153–158.

[12] L.M. Taft, R.S. Evans, C.R. Shyu, M.J. Egger, N. Chawla, J.A. Mitchell,
S.N. Thornton, B. Bray, M. Varner, Countering imbalanced datasets to improve
adverse drug event predictive models in labor and delivery, Journal of
Biomedical Informatics 42 (2) (2009) 356–364.

[13] A. Orriols-Puig, E. Bernadó-Mansilla, Evolutionary rule-based systems for
imbalanced data sets, Soft Computing 13 (3) (2009) 213–225.

[14] J. Stefanowski, S. Wilk, Extending rule-based classifiers to improve recogni-
tion of imbalanced classes, in: Studies in Computational Intelligence, vol.
223, 2009.

[15] Z.-H. Zhou, X.-Y. Liu, Training cost-sensitive neural networks with methods
addressing the class imbalance problem, IEEE Transactions on Knowledge
and Data Engineering 18 (1) (2006) 63–77.

[16] A. Fernández, M.J. Del Jesus, F. Herrera, On the influence of an adaptative
inference system in fuzzy rule based classification systems for imbalanced
data-sets, Expert Systems with Applications 36 (2009) 9805–9812.

[17] J. Xue, D.M. Titterington, Do unbalanced data have a negative effect on lda?,
Pattern Recognition 41 (5) (2008) 1575–1588.

[18] G.B. Ou, Y.L. Murphey, Multi-class pattern classification using neural net-
works, Pattern Recognition 40 (1) (2007) 4–18.

[19] J. Van Hulse, T.M. Khoshgoftaar, A. Napolitano, Experimental perspectives on
learning from imbalanced data, Proceedings of the 24th International Con-
ference on Machine Learning (ICML’07), vol. 227, 2007, pp. 935–942.

[20] R.C. Prati, G.E.A.P.A. Batista, M.C. Monard, Class imbalances versus class
overlapping: an analysis of a learning system behavior, MICAI 2004:
Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol.
2972, 2004, pp. 312–321.

[21] M. Kubat, R.C. Holte, S. Matwin, Machine learning for the detection of oil
spills in satellite radar images, Machine Learning 30 (2–3) (1998) 195–215.

[22] T. Fawcett, F. Provost, Adaptive fraud detection, Data Mining and Knowledge
Discovery 1 (3) (1997) 291–316.

[23] K.J. Ezawa, M. Singh, S.W. Norton, Learning goal oriented Bayesian networks
for telecommunications management, in: Proceedings of the 13th Interna-
tional Conference on Machine Learning, 1996, pp. 139–147.

F. Fernández-Navarro et al. / Pattern Recognition 44 (2011) 1821–18331832

Author's personal copy

[24] P. Riddle, R. Segal, O. Etzioni, Representation design and brute-force induc-
tion in a boeing manufacturing domain, Applied Artificial Intelligence 8 (1)
(1994) 125–147.

[25] F. Fernández-Navarro, A. Valero, C. Hervás-Martı́nez, P. Gutı́errez, R. Garcı́a-
Gimeno, G. Zurera-Cosano, Development of a multi-classification neural
network model to determine the microbial growth/no growth interface,
International Journal of Food Microbiology 141 (2010) 203–212.

[26] C. Cardie, N. Howe, Improving minority class prediction using case-specific
feature weights, in: Proceedings of the 14th International Conference on
Machine Learning, 1997, pp. 57–65.

[27] G.E.A.P.A. Batista, R.C. Prati, M.C. Monard, A study of the behavior of several
methods for balancing machine learning training data, SIGKDD Explorations
6 (1) (2004) 20–29.

[28] N. Japkowicz, S. Stephen, The class imbalance problem: a systematic study,
Intelligent Data Analysis Journal 6 (5) (2009) 429–449.

[29] G.M. Weiss, Mining with rarity: a unifying framework, ACM SIGKDD
Explorations Newsletter (2004) 67–119.

[30] R. Akbani, S. Kwek, N. Japkowicz, Applying support vector machines to
imbalanced datasets, in: Proceedings of the 15th European Conference on
Machine Learning (ECML), 2004, pp. 39–50.

[31] B. Raskutti, A. Kowalczyk, Extreme re-balancing for SVMs: a case study,
SIGKDD Explorations 6 (1) (2004) 60–69.

[32] A.K.C. Wong, Y. Wang, High-order pattern discovery from discrete-valued
data, IEEE Transactions on Knowledge and Data Engineering 9 (6) (1997)
877–893.

[33] F. Provost, T. Fawcett, Analysis and visualization of the classifier perfor-
mance: comparison under imprecise class and cost distribution, in: Proceed-
ings of the Third International Conference on Knowledge Discovery (KDD97)
and Data Mining, AAAI Press, 1997, pp. 43–88.

[34] J. Huang, C.X. Ling, Using auc and accuracy in evaluating learning algorithms,
IEEE Transactions on Knowledge and Data Engineering 17 (3) (2005)
299–310.

[35] T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 27
(2006) 861–874.

[36] H. Mamitsuka, Selecting features in microarray classification using ROC
curves, Pattern Recognition 39 (12) (2006) 2393–2404.

[37] M.J. Zolghadri, E.G. Mansoori, Weighting fuzzy classification rules using
receiver operating characteristics analysis, Information Sciences 177 (11)
(2007) 2296–2307.

[38] C. Marrocco, R.P.W. Duin, F. Tortorella, Maximizing the area under the ROC
curve by pairwise feature combination, Pattern Recognition 41 (6) (2008)
1961–1974.

[39] D.J. Hand, R.J. Till, A simple generalisation of the area under the roc curve for
multiple class classification problems, Machine Learning 45 (2001) 171–186.

[40] C. Ferri, J. Hernández-Orallo, M.A. Salido, Volume under the roc surface for
multi-class problems, Machine Learning: ECML 2003, Lecture Notes in
Computer Science, vol. 2837, 2003, pp. 108–120.

[41] R.M. Everson, J.E. Fieldsend, Multi-class roc analysis from a multi-objective
optimisation perspective, Pattern Recognition Letters 27 (8) (2006) 918–927.

[42] F.J. Martı́nez-Estudillo, P.A. Gutiérrez, C. Hervás-Martı́nez, J.C. Fernández,
Evolutionary learning by a sensitivity-accuracy approach for multi-class
problems, in: Proceedings of the 2008 IEEE Congress on Evolutionary
Computation (CEC’08), IEEE Press, Hong Kong, China, 2008, pp. 1581–1588.

[43] J. Fernandez, C. Hervas, F. Martinez, P. Gutierrez, Memetic pareto evolu-
tionary artificial neural networks to determine growth/no-growth in pre-
dictive microbiology, Applied Soft Computing 11 (1) (2011) 534–550.

[44] J. Fernandez-Caballero, F. Martinez, C. Hervas, P. Gutierrez, Sensitivity versus
accuracy in multiclass problems using memetic pareto evolutionary neural
networks, IEEE Transactions on Neural Networks 21 (5) (2010) 750–770.

[45] N. Japkowicz, Supervised versus unsupervised binary-learning by feedfor-
ward neural networks, Machine Learning 42 (1–2) (2001) 97–122.

[46] J.A.S. Freeman, D. Saad, Learning and generalization in radial basis function
networks, Neural Computation 7 (5) (1995) 1000–1020.

[47] Y. Hwang, S. Bang, An efficient method to construct radial basis function
neural network classifier, Neural Networks 10 (8) (1997) 1495–1503.

[48] M.J.L. Orr, Regularisation in the selection of radial basis function centres,
Neural Computation 7 (3) (1995) 606–623.

[49] C.R. De Silva, S. Ranganath, L.C. De Silva, Cloud basis function neural network:
a modified rbf network architecture for holistic facial expression recognition,
Pattern Recognition 41 (4) (2008) 1241–1253.

[50] F. Fernández-Navarro, C. Hervás-Martı́nez, M. Cruz-Ramı́rez, P.A. Gutiérrez,
A. Valero, Evolutionary q-Gaussian radial basis function neural network to
determine the microbial growth/no growth interface of Staphylococcus aureus,
Applied Soft Computing 11 (3) (2011) 3012–3020.

[51] K. Fukunaga, Introduction to Statistical Pattern Recognition, second ed.,
Academic Press, 1999.

[52] F.J. Martı́nez-Estudillo, C. Hervás-Martı́nez, P.A. Gutiérrez, A.C. Martı́nez-
Estudillo, Evolutionary product-unit neural networks classifiers, Neurocom-
puting 72 (1–2) (2008) 548–561.

[53] A.C. Martı́nez-Estudillo, C. Hervás-Martı́nez, F.J. Martı́nez-Estudillo,
N. Garcı́a-Pedrajas, Hybridization of evolutionary algorithms and local search
by means of a clustering method, IEEE Transactions on Systems, Man and
Cybernetics, Part B: Cybernetics 36 (3) (2006) 534–545.

[54] C. Igel, M. Hüsken, Empirical evaluation of the improved Rprop learning
algorithms, Neurocomputing 50 (6) (2003) 105–123.

[55] D.L. Whitley, V.S. Gordon, K.E. Mathias, Lamarckian evolution, the Baldwin
effect and function optimization, in: Y. Davidor, H.P. Schwefel, R. Männer
(Eds.), Parallel Problem Solving from Nature—PPSN III, Springer, Berlin, 1994,
pp. 6–15.

[56] A. Asuncion, D. Newman, UCI machine learning repository, /http://www.ics.
uci.edu/�mlearn/MLRepository.htmlS, 2007.

[57] A. Valero, F. Pérez-Rodrı́guez, E. Carrasco, J.M. Fuentes-Alventosa, R.M. Garcı́a-
Gimeno, G. Zurera, Modelling the growth boundaries of Staphylococcus aureus:
effect of temperature, ph and water activity, International Journal of Food
Microbiology 133 (1–2) (2009) 186–194.

[58] F. Fernández-Navarro, A. Valero, C. Hervás-Martı́nez, P.A. Gutiérrez,
R.M. Garcı́a-Gimeno, G. Zurera-Cosano, Development of a multi-classification
neural network model to determine the microbial growth/no growth inter-
face, International Journal of Food Microbiology 141 (2010) 203–212.

[59] M. Friedman, A comparison of alternative tests of significance for the
problem of m rankings, Annals of Mathematical Statistics 11 (1) (1940)
86–92.

[60] O.J. Dunn, Multiple comparisons among means, Journal of the American
Statistical Association 56 (1961) 52–56.

[61] Y. Hochberg, A. Tamhane, Multiple Comparison Procedures, John Wiley &
Sons, 1987.

Francisco Fernández Navarro was born in Córdoba, Spain, in 1984. He received the B.S. Degree in computer science from the University of Córdoba, Spain, in 2007. He is
currently working toward the Ph.D. Degree at the department of computer science and numerical analysis, in the area of computer science and artificial intelligence. His
current interests include neural networks evolutionary computation and hybrid algorithms.

César Hervás Martı́nez, was born in Cuenca, Spain. He received the B.S. Degree in statistics and operating research from the Universidad Complutense, Spain, in 1978 and
the Ph.D. Degree in mathematics from the University of Seville, Seville, Spain, in 1986. He is a professor with the University of Córdoba in the department of computing and
numerical analysis, in the area of computer science and artificial intelligence. His current research interests include neural networks, evolutionary computation, and the
modelling of natural systems.

Pedro Antonio Gutiérrez was born in Córdoba, Spain, in 1982. He received the B.S. degree in Computer Science from the University of Seville, Spain, in 2006, and the Ph.D.
degree in Computer Science and Artificial Intelligence from the University of Granada, Spain, in 2009. He is currently an Assistant Professor in the Department of Computer
Science and Numerical Analysis, University of Córdoba, Córdoba. His current research interests include neural networks and their applications, evolutionary computation,
and hybrid algorithms.

F. Fernández-Navarro et al. / Pattern Recognition 44 (2011) 1821–1833 1833

