
Noname manuscript No.
(will be inserted by the editor)

Extending a simple Genetic Cooperative-Competitive Learning Fuzzy Classifier
to low quality datasets

Ana M. Palacios · Luciano Sánchez · Inés Couso

Abstract Exploiting the information in low quality datasets
has been recently acknowledged as a new challenge in Ge-
netic Fuzzy Systems. Owing to this, in this paper we dis-
cuss the basic principles that govern the extension of a fuzzy
rule based classifier to interval and fuzzy data. We have also
applied these principles to the genetic learning of a simple
cooperative-competitive algorithm, that becomes the first ex-
ample of a Genetic Fuzzy Classifier able to use low quality
data. Additionally, we introduce a benchmark, comprising
some synthetic samples and two real-world problems that
involve interval and fuzzy-valued data, that can be used to
assess future algorithms of the same kind.

1 Introduction

Fuzzy data is the main object of study in fuzzy statistics [3],
but this kind of information is seldom considered in Genetic
Fuzzy Systems (GFS) [2][6]. Indeed, GFSs obtain Fuzzy
Rule Based Systems (FRBS) from data, but the role of fuzzy
sets in a FRBS is to model vague asserts, using fuzzy logic-
based tools. Fuzzy logic techniques are not, generally speak-
ing, compatible with those fuzzy statistical techniques used
for modeling vague observations of variables. As a conse-
quence of this, most GFSs can only extract FRBS from crisp
data [13].

To this we should add that there are many different inter-
pretations of the meaning of a fuzzy membership [11], thus
there are many different approaches for relating “fuzzy data”

Ana M. Palacios, Luciano Sánchez
Departamento de Informática, Universidad de Oviedo,
33071 Gijón, Asturias, Spain
E-mail: apalaciosjimenez@gmail.com, luciano@uniovi.es

Inés Couso
Departamento de Estadı́stica e I.O. y D.M, Universidad de Oviedo,
33071 Gijón, Asturias Spain
E-mail: couso@uniovi.es

108

143min max α=0

α=0.4

Fig. 1 Fuzzy representation of vague data. Left: A missing value is
codified with an interval that spans the whole range of the variable, or
P ([min,max]) ≤ 1. Right: A compound value (in this example, five
different measurements of the variable) can be described by a fuzzy
membership, that can also be understood as an upper probability. Each
α-cut contains the true value of the variable with probability at least
1− α.

and “low quality data”. In this paper, we are choosing a pos-
sibilistic interpretation, because it matches a large amount of
practical situations. This consists in understanding a fuzzy
membership function as a nested family of sets (see Figure
1), each one of them containing the true value of the vari-
able with a probability greater or equal than certain bound
[3]. For instance, it can be used to model datasets with miss-
ing values (one interval that spans the whole range of the
variable), left and right censored data (the value is greater
or lower than a cutoff value, or it is between a couple of
bounds), compound data (each item comprises a disperse list
of values), mixes of punctual and set-valued measurements
(as produced by certain sensors, for instance GPS receivers)
etc. All these cases share in common a certain degree of ig-
norance about the actual value of a variable, and assume less
prior knowledge than the standard model, thus we will refer
to all of them with the generic term “low quality data”.

In this paper we will devise an augmented GFS that can
operate with low quality (possibilistic) data. In our context,
this means that we want a classifier that is able to operate
when we cannot accurately observe all the properties of the
object. In the most simple case (interval-valued data) we will



2

perceive sets that contain these values. In the general case,
we will be given a nested family of sets, each one of them
containing the true value with a probability greater or equal
than its level.

In the following sections we will study how this kind of
data can be routed through a FRBS to produce a set of out-
puts, how can we measure the performance of a FRBS with
this data, and genetically optimize it. In Section 2 we will
propose a new reasoning method that is compatible with the
possibilistic view of the imprecision in the data. In Section
3 we will review the algorithm that is being generalized, and
propose different extensions for some of its modules. In Sec-
tion 4 we will apply the new algorithm to different synthetic
and real-world problems, and compare the results to those
of the crisp algorithm. In Section 5 we conclude the paper
and discuss future work in the subject.

2 An Extension Principle-based Reasoning Method

In this section we discuss how to compute the output of an
FRBS, given a vague input. At a first glance, this should con-
sist in computing the cylindrical extension of the input, in-
tersecting it with the fuzzy graph implicitely defined by the
FRBS, and projecting this intersection on the output space.

However, this reasoning method does not preserve the
possibilistic meaning of the data. That is to say, it may hap-
pen that, given an input that has a possibilistic meaning, we
come out with an output that has not that kind of interpre-
tation. In order to obtain meaningful results, in this section
we adapt a reasoning method, that was proposed in [17] for
fuzzy models, to the classification case.

Let us make clear the problem with the help of a partic-
ular case; consider a fuzzy classifier comprising M rules:

if (x is Ãi ) then class is Ci, (1)

and let us use the single-winner inference mechanism. In the
first place, let us suppose that we have a crisp perception x
of the properties of an object. Its class is, therefore,

class(x) = Carg maxi{ eAi(x)}. (2)

In the second place, let the object be imprecisely observed,
thus all our information is “x ∈ X .” If we apply the fuzzy
logic based approach mentioned before, the class of the ob-
ject is still a singleton:

class’(X) = Carg maxi{min{ eAi(x)|x∈X}} (3)

which is not the result we need. We want to obtain the set of
labels that follows:

class(X) = {Carg maxi{ eAi(x)} | x ∈ X} (4)

or, in other words,

class(X) = {class(x) | x ∈ X}. (5)

which is different than eq. (3).
To solve this discrepancy, we propose to use the reason-

ing method that follows: Let X be the input space, let Nc
be the number of classes, thus K = {1, . . . , Nc} is the out-
put space, and let {Ãi → Ci}i=1,...,M be a set of M fuzzy
rules. Recall that, given a crisp input x ∈ X , the most com-
mon reasoning method for computing the output of a FRBS
takes two stages [2]:

1. An intermediate fuzzy set is composed:

õut(x)(k) = max
i=1,...,M

min{Ãi(x), δkCi
}, (6)

where δkCi
= 1 if Ci = k, 0 else.

2. This intermediate fuzzy set is transformed in a crisp value
defuz(õut(x)) ∈ K by means of a suitable defuzzifi-
cation operator. In classification problems, the “maxi-
mum” defuzzification is mostly used. Therefore, the value
defuz(õut(x)) ∈ K is often equivalent to

defuz(õut(x)) = arg max
k
{õut(x)(k)}. (7)

The extension to set valued inputs is as follows: Given an
input A ⊆ X (that, in our context, means “all we know
about the input is that it is in the set A”),

1. We determine a family of intermediate fuzzy sets in the
universe F(K), õut(A) ∈ ℘(F(K)) –where ℘(F(K))
is the set of all crisp subsets of F(K)– as

õut(A) = {õut(x) s. t. x ∈ A} (8)

2. An element of ℘(K) (that is to say, a set of crisp outputs
defuz(õut(A)) ∈ ℘(K)) is obtained, according to the
following definition:

defuz(õut(A)) = {defuz(õut(x)) s. t. x ∈ A}. (9)

Lastly, given a fuzzy input Ã ∈ F(X), we will assign it,
according to the Extension Principle (which is compatible
with the possibilistic interpretation of fuzzy sets) a fuzzy set
computed as follows:

1. We determine an intermediate fuzzy set on the universe
F(K), õut(Ã) ∈ F(F(K)), defined as

õut(Ã)(B̃) = sup{Ã(x) s. t. õut(x) = B̃},
∀B̃ ∈ F(K) (10)

2. An element of F(K) (that is to say, a fuzzy output)
defuz(õut(Ã)) ∈ F(K) is obtained as follows:

defuz (õut(Ã))(k) =
sup{Ã(x) s. t. defuz(õut(x)) = k},
∀k ∈ K.

(11)

Observe that the fuzzy set defuz(õut(Ã)) is associated to
the nested family of sets {defuz(õut(Ãα))}α∈[0,1], and that
explains the possibilistic interpretation of this procedure.



3

3 Definition of the extended Genetic Fuzzy System

We have seen in the preceding section that an imprecise
knowledge about the input variables means that the output
of the FRBS will not be completely determined: it is a fuzzy
set of classes (or a crisp subset, if the input is set-valued).
From the foregoing it can be deduced that the number of er-
rors of the FRBS in the training data will be also a set. The
same happens if any other quality function is used instead of
the number of errors, i.e. likelihood, logistic loss functions,
etc. Let us use an example: we have a classification system,
defined by these rules:

if x < 1 then class is A
if x ∈ [1, 2] then class is B
if x > 2 then class is C

(12)

and the input that follows:

x < 1.8. (13)

The output of the classifier is the set of classes {A, B}. If
the object being classified is of class C, we know that the
classifier has failed. Otherwise, we cannot know. Nonethe-
less, we can use a set-valued variable “number of errors”,
and state that the error of the classifier in that example is the
set {0, 1}.

It is remarked too that, if a point is labeled as “class {A,
B}” we are not stating that it belongs to both categories at
the same time (which is not an imprecise assert). We are
expressing that we are not sure about the class of the object,
i.e. we only know that it is not in class “C”. Therefore, if the
output of the classifier is the set of classes {A, B} and the
point is also labeled as “class {A, B}”, the error in this point
is still {0, 1} and not 0. Because of this, in this paper, each
rule will contain a single consequent. We will not consider
FRBS like, for instance,

if x < 1 then class is {A,B}
if x ∈ [1, 2] then class is B
if x > 2 then class is C

(14)

because, according to our interpretation, the first rule neces-
sarily will have a non-zero error at any example; therefore,
for any dataset we can conceive, we could find an FRBS
comprising only single-consequent rules whose error is more
specific than that of (14).

3.1 Crisp GFS

The GFS that we will generalize to vague data was intro-
duced in [7]. We have chosen this algorithm because of its
balance between simplicity and performance. In future works
we intend to extend the procedure described in this section
to more recent algorithms [16].

function GFS
1 Initialize population
2 for iter in {1, . . . , Iterations}
3 for sub in {1, . . . , subPop}
4 Select parents
5 Crossover and mutation
6 assignConsequent(offspring)
7 end for sub
8 Replace the worst subPop individuals
9 assignFitness(population,dataset)
10 end for iter
11 Purge unused rules
return population

Fig. 2 Outline of the GFS that will be generalized [7]. Each chromo-
some codifies one rule. The fitness of the classifier is distributed among
the rules at each generation.

function assignConsequent(rule)
1 for example in {1, . . . ,N}
2 m = membership(Antecedent,example)
3 weight[class[example]] = weight[class[example]] + m
4 end for example
5 mostFrequent = 0
6 for c in {1, . . . ,Nc}
7 if (weight[c]>weight[mostFrequent]) then
8 mostFrequent = c
9 end if
10 end for c
11 Consequent = mostFrequent
return rule

Fig. 3 The consequent of a rule is not codified in the GA, but it is
assigned the most frequent class label, between those compatible with
the antecedent of the rule [7].

function assignFitness(population,dataset)
1 for example in {1, . . . ,N}
2 winnerRule = 0
3 bestMatch = 0
4 for rule in {1, . . . ,M}
5 m = membership(Antecedent[rule],example)
6 if (m>bestMatch) then
7 winnerRule = rule
8 bestMatch = m
9 end if
10 end for rule
11 if (consequent(winnerRule)==class(example)) then
12 fitness[winnerRule] = fitness[winnerRule] + 1
13 end if
14 end for example
return fitness

Fig. 4 The fitness of an individual is the number of examples that it
classifies correctly. Single-winner inference is used, thus at most one
rule changes its fitness when the rule base is evaluated in an example
[7].

The pseudocode of this algorithm is shown in Figure 2. It
can be seen that it depends on two functions: “assignConse-
quent” (line 6) and “assignFitness” (line 9). These functions
are also listed in Figures 3 and 4.



4

Observe that this algorithm does not codify the conse-
quent of the fuzzy rules in the genetic individual neither
we are assigning weights to the rules. The function “assign-
Consequent” determines the class label that matches an an-
tecedent with a maximum confidence. The function “assign-
Fitness,” in turn, determines the winner rule for each object
in the training set and increments the fitness of the corre-
sponding individual if its consequent matches the class of
the object.

3.2 Generalized GFS

Generalizing a GFS to imprecise data involves changes to
the inference mechanism, that we have discussed in Section
2, and also to the fitness function, as we have introduced in
the preceding paragraphs (see also [13] for a deeper explana-
tion). In the remainder of this subsection, we will study how
to alter these functions “assignConsequent” and “assignFit-
ness”. This comprises

1. new procedures to assign the consequents,
2. computing set-valued fitness functions, and
3. the genetic selection and replacement of the worst indi-

viduals, including a short discussion about the meaning
of “best” and “worst” when the fitness is a set-valued
function.

3.2.1 Assignment of consequents

The assignment of consequents seen in Figure 3 is extended
in Figure 5. The original assigment consists in computing
the confidences of the rules “if (x is Ã) then class is C” for
all the values of “C”, then selecting the alternative with max-
imum confidence. In this case, the confidence of a rule is a
set of values.

function assignImpreciseConsequent(rule)
1 for example in {1, . . . ,N}
2 em = fuzMembership(Antecedent,example)
3 weight[{class[example]}] = weight[{class[example]}] ⊕ em
4 end for example
5 mostFrequent = {1, . . . ,Nc}
6 for c in {1, . . . ,Nc}
7 for c1 in {c+1, . . . ,Nc}
8 if (weight[c] dominates weight[c1]) then
9 mostFrequent = mostFrequent - { c1}
10 end if
11 end for c1

12 end for c
13 Consequent = mostFrequent
return rule

Fig. 5 If the examples are imprecise, we might not know the most
frequent class label –lines 5 to 12–. In this paper we have used the
dominance proposed in [10] to reduce this set to one element.

The operation “dominates” used in line 8 can have dif-
ferent meanings, ranging from the strict dominance (A dom-
inates B iff a < b for all a ∈ A, b ∈ B) [18] to other defini-
tions that induce a total order in the set of confidences. Gen-
erally speaking, we have to select one of the values in the
set of nondominated confidences and use its corresponding
consequent. In this paper, we have used the uniform domi-
nance defined in [10], that induces a total order and thus the
set of nondominated consequents has size 1. This issue is
further discussed at the end of this section.

3.2.2 Computation of fitness

We have mentioned at the beginning of this section that the
error of the FRBS at an imprecisely perceived object is an
interval or a fuzzy set. The number of errors of the whole
classifier can be obtained by adding these individual errors
with interval or fuzzy arithmetic operators.

Roughly speaking, estimating a classifier from data re-
quires a numerical technique that finds the minimum of the
classification error with respect to the free parameters of
the classifying system. In our case, this function is interval-
valued or fuzzy. But there are not many techniques for op-
timizing interval-valued or fuzzy valued functions. In the
genetic algorithms field, the solutions are related to prece-
dence operators between imprecise values [8,10,18]. In pre-
vious works, we have jointly optimized a mix of crisp and
fuzzy objectives with genetic algorithms [14]. We have also
proposed a number of different algorithms for learning re-
gression models from low quality data and the fuzzy rep-
resentation mentioned before [12,16,17]. However, to the
best of our knowledge there have not been previous GFSs
where those principles have been applied to learn classifica-
tion problems.

In case that the i-th object of the training set is perceived
through a crisp set, the output of the FRBS is a set of classes:

CFRBS(Xi) = {Carg maxj{ eAj(x)} | x ∈ Xi}. (15)

Accordingly, for a fuzzy value X̃i the output is the fuzzy
subset of {1, . . . , Nc} that follows:

C̃FRBS(Xi)(k) = max{α | k ∈ CFRBS([Xi]α)} (16)

for k ∈ {1, . . . , Nc}. It can be inferred that the theoretical
expression of the fitness function of the FRBS is:

f̃ =
⊕

ẽi (17)

where ẽi is a fuzzy subset of {0, 1}, whose α-cuts are:

[ẽi]α =


1 CFRBS([Xi]α) = Ci and #(Ci) = 1
0 CFRBS([Xi]α) ∩ Ci = ∅
{0, 1} else

(18)

In words, if the output of the FRBS is a single class label
that matches the class label of the example, this point scores



5

function assignImpreciseFitnessApprox(population,dataset)
1 for example in {1, . . . ,N}
2 setWinnerRule = ∅
3 for rule in {1, . . . ,M}
4 dominated = FALSE
5 rule.em = fuzMembership(Antecedent[r],example)
6 for sRule in setWinnerRule
7 if (sRule dominates rule) then
8 dominated = TRUE
9 end if
10 end for sRule
11 if (not dominated and rule.em > 0) then
12 for sRule in setWinnerRule
13 if (rule.em dominates sRule) then
14 setWinnerRule = setWinnerRule −{ sRule }
15 end if
16 end for sRule
17 setWinnerRule = setWinnerRule ∪{ rule }
18 end if
19 end for r
20 if (setWinnerRule == ∅) then
21 setWinnerRule = setWinnerRule ∪{ rule freq class }
22 setOfCons= ∅
23 for sRule in setWinnerRule
24 setOfCons= setOfCons ∪{ consequent(sRule) }
25 end for sRule
26 deltaFit= 0
27 if ({class(example)} == setOfCons and

size(setOfCons)==1) then
28 deltaFit = {1}
29 else
30 if ({class(example)}∩ setOfCons 6= ∅) then
31 deltaFit = {0, 1}
32 end if
33 end if
34 Select winnerRule ∈ setWinnerRule
35 fitness[winnerRule] = fitness[winnerRule] ⊕ deltaFit
36 end for example
return fitness

Fig. 6 Generalization of the function “assignFitness” to imprecise
data. If the example is imprecisely perceived, there are three ambigu-
ities that must be resolved: (a) some different crisp values compatible
the same example might correspond to different winner rules –lines 3
to 19—, (b) these rules might have different consequent, thus we do
not know if the rule base fails in the example –lines 22 to 33– and (c)
we must assign credit to just one of these rules –lines 34 and 35–.

1. If the set of classes emitted by the FRBS does not inter-
sect with that of the object, this point scores 0. Otherwise, it
scores the set {0, 1}.

The evaluation of this function is computationally very
expensive, and we will use an approximation, described in
Figure 6 for interval-valued data. This algorithm computes
an interval of values of matching between each rule and the
input, then discards all rules that can not be the winner rule,
and approximates the output of the FRBS by the set of the
consequents of the non-discarded rules. This set includes the
theoretical output, but sometimes it also includes extra class
labels. In Figure 7 we have also included a more accurate
approximation which is based on a sample of values of the
support of the input. This second approximation will be used

function assignImpreciseFitnessExhaustive(population,dataset)
1 for example in {1, . . . ,N}
2 S = sample(example)
3 maxScore =∅
4 for s in S
5 winnerRule = 0
6 bestMatch = 0
7 for rule in {1, . . . ,M}
8 m = membership(Antecedent[rule],s)
9 if (m > bestMatch) then
10 winnerRule = rule
11 bestMatch = m
12 end if
13 end for rule
14 if (consequent(winnerRule) == class(example)) then
15 score[winnerRule] = score[winnerRule] ⊕ 1
16 else
17 if consequent(winnerRule) ⊂ class(example)) then
18 score[winnerRule] = score[winnerRule] ⊕ {0, 1}
19 end if
20 end if
21 if (maxScore ∩ score[winnerRule] = ∅)
22 then maxScore = maxScore ⊕ score[winnerRule]
23 end if
24 end for s
23 if (maxScore == size(S)) then
24 fitness = fitness ⊕ 1
25 else
26 if (maxScore ∩ 0 6= ∅ and maxScore ∩ 1 6= ∅ ) then
27 fitness = fitness ⊕ {0, 1}
28 end if
29 end if
30 end for example
return fitness

Fig. 7 Other generalization of the function “assignFitness” to interval-
valued data. This function is computationally too expensive for being
used as a fitness function; it will be used instead for obtaining better
estimations of the train and test errors of the final rule bases. Lines 14–
18 deal with the case where an object has imprecise output, i.e. “the
class is A or C”; otherwise, the value of the variable “score” is crisp.

in the next section to better determine the quality of a classi-
fier, but our learning will be guided by the function in Figure
6, because of its lower cost.

3.2.3 Genetic selection and replacement

There are two other parts in the original algorithm that must
be altered in order to use an imprecise fitness function: (a)
the selection of the individuals in [7] is based on a tour-
nament, that depends on a total order on the set of fitness
values. And (b) the same happens with the removal of the
worst individuals. We leave for future works the application
of a multicriteria genetic algorithm similar to those used in
our previous works in regression modeling [17,16]. In both
cases, we have used the uniform dominance defined in [10]
to impose such a total order. This definition is recalled in the
next subsection.



6

1 3 5

2

4

5

θ1

θ2

θ1>θ2

θ1<θ2

S=0.5

S=3.5

Fig. 8 Graphical representation of the example 1, showing that
[1, 3] ≺ [2, 4].

3.2.4 Precedence in imprecise fitness-based Genetic
Algorithms

In this section we detail how we define an ordering between
fitness values, to be used in the parts of the mentioned al-
gorithm. Let f1, f2 be the fitnesses of two FRBSs. We will
assume that f1 and f2 are unknown, but we know two fuzzy
sets f̃1 and f̃2 that describe them. Let θ1 and θ2 be the
interval-valued expectations [4] of f̃1 and f̃2.

We want to determine whether one individual precedes
the other, thus we need a procedure that estimates whether
the probability of f1 < f2 is greater than that of f1 ≥ f2
(thus θ1 ≺ θ2) or not. We also want to find those cases
where there is no statistical evidence in θ1 and θ2 that makes
us prefer one of them (thus θ1 ‖ θ2). Our approach can be
regarded as a PQI interval order [19], where there is a zone
of hesitation between strict difference and strict similarity.
We have considered two different scenarios:

1. Strong Dominance
Without further assumptions, when θ1 and θ2 are non-
disjoint intervals, we do not have evidence to prefer one
of them. Otherwise, the decision is trivial. This criterion
has been called strong dominance in [10].

2. Probabilistic Prior
We introduce prior knowledge about the probability dis-
tribution of the fitness. If a joint probability P (f1, f2)
was known, comparing two individuals would be a sta-
tistical decision problem. For instance, we can decide
that θ1 ≺ θ2 when

P ({(f1, f2) : f1 < f2}
P ({(f1, f2) : f1 ≥ f2}

> 1. (19)

For instance, in [18] it was assumed that P (f1, f2) was
uniform. This use of a uniform prior will be made clear
in the examples below.

Example 1 Let θ1 = [1, 3] and θ2 = [2, 4] two non-
disjoint intervals. If we assume that P (f1, f2) is uniform
in [1, 3]× [2, 4] (see Figure 8) we obtain

P ({(f1, f2) : f1 < f2}
P ({(f1, f2) : f1 ≥ f2}

=
3.5/4
0.5/4

> 1 (20)

thus we can state that θ1 ≺ θ2.

Example 2 Let θ1 = [1, 5] and θ2 = [1.9, 4] two non-
disjoint intervals. The application of the same principle
produces

P ({(f1, f2) : f1 < f2}
P ({(f1, f2) : f1 ≥ f2}

=
4.095
4.305

< 1 (21)

therefore θ2 ≺ θ1.

The uniform prior defines a total order in the popula-
tion, since every pair of intervals is comparable. We may
question the consistency of this order, though. In the last
example, there might be situations where a fitness [1, 5]
could be prefered to [1.9, 4], and it is also reasonable to
state that these two intervals cannot be compared. We
have proposed a more complex ordering in [17], albeit
we have decided not to use it in this initial algorithm for
simplifying our explanation.

4 Numerical results

This section contains a numerical analysis of the generalized
algorithm. To the best of our knowledge, there are not pre-
vious publications with compared results of machine learn-
ing algorithms over vague datasets. Therefore, we have col-
lected our own data, and propose to use the datasets that
will be described in this section for future developments in
the field. We have considered three categories of problems:

1. Synthetic datasets: we have generated a sample of data
with Gaussian distribution and known Bayesian error. To
this data we have added different amounts of observation
error.

2. Realistic problems: a dataset comprising actual measure-
ments for a problem whose statistical distribution is not
known, but knowing the optimal solution.

3. Real-world problems: datasets originated in open prob-
lems of medical diagnosis and high performance athlet-
ics, whose optimal solution neither the statistical distri-
bution of the data nor the amount of observation error
are known.

Aditionally, we have also tested the new algorithm over some
standard, crisp datasets. This is intended for checking that
the extended algorithm has the same performance as the
original version in crisp problems.



7

4.1 Settings

All the experiments have been run with a population size
of 100, probabilities of crossover and mutation of 0.9 and
0.1, respectively, and limited to 200 generations. The fuzzy
partitions of the labels are uniform and their size is 3, ex-
cept when mentioned otherwise. We have used the prece-
dence criteria called ‘Probabilistic Prior’ in Section 3.2.4 for
comparing fitness values and also for assigning the conse-
quents to the rules. All the datasets used in this paper will be
made freely available in the website of the KEEL project:
http://www.keel.es.

4.1.1 Compared results between crisp and low quality
data-based algorithms

In this section we include compared results between crisp
and low quality data-based algorithms. We are not aware of
previous works in the field, and this comparison is difficult,
as it involves a method for removing the observation error
from the data. This is necessarily an arbitrary choice. De-
pending on the problem, the same prior assumptions about
the probability distribution of the data can be effective or
not.

In this section we have applied the following rules when
comparing crisp and interval-valued data:
– If the imprecision is in the input, each interval has been

replaced by its midpoint. For instance, a vague example
(X = [1, 3], C = A) is converted into (x = 2, C = A).

– If the imprecision is in the output, each sample has been
replicated for the different alternatives. Each replication
is assigned a degree of importance such that the contri-
bution of the example to the total fitness is not multi-
plied by the number of replicas. For instance, an exam-
ple (x = 2, C = {A,B}) is converted in two examples
(x = 2, C = A) and (x = 2, C = B), and each one
of them is assigned an importance 0.5. This requires a
small change of the original algorithm, which is shown
in Figure 9.

For removing the imprecision in fuzzy data, we have re-
placed each fuzzy set by its modal point. For instance, a
vague example (X̃ = [1; 2; 4], C = A) (where [1; 2; 4] is
a triangular fuzzy set with support [1, 4] and modal point 2)
is defuzzified in the crisp value (x = 2, C = A).

4.2 Experimentation with crisp datasets

In the first place, we have solved some crisp datasets, that
have been included for checking how the algorithm performs
on crisp data. The results show that there are not differences
between the original algorithm in [7] and the generalized
version proposed here when the datasets are crisp. We have
included these experiments in Table 1.

function assignConsequent(rule)
1 for example in {1, . . . ,N}
2 m = membership(Antecedent,example) * ω(example)
3 weight[class[example]] = weight[class[example]] + m
4 end for example
5 mostFrequent = 0
6 for c in {1, . . . ,Nc}
7 if (weight[c]>weight[mostFrequent]) then
8 mostFrequent = c
9 end if
10 end for c
11 Consequent = mostFrequent
return rule

Fig. 9 The original algorithm in [7] is altered as shown in line 2, so that
is able to learn from a database where each example has a fractional
degree of importance “ω(example).”

function assignFitness(population,dataset)
1 for example in {1, . . . ,N}
2 winnerRule = 0
3 bestMatch = 0
4 for rule in {1, . . . ,M}
5 m = membership(Antecedent[rule],example)
6 if (m>bestMatch) then
7 winnerRule = rule
8 bestMatch = m
9 end if
10 end for rule
11 if (consequent(winnerRule)==class(example)) then
12 fitness[winnerRule] = fitness[winnerRule] + * ω(example)
13 end if
14 end for example
return fitness

Fig. 10 The fitness of an individual is the number of examples that it
classifies correctly. Single-winner inference is used, thus at most one
rule changes its fitness when the rule base is evaluated in an example.
The algorithm in [7] has also been altered (see line 12) for dealing with
weighted examples.

4.3 Experimentation with synthetic datasets

The dataset that we have called “Gaussian” comprises 699
points of two classes. The distribution of both classes is bidi-
mensional Gaussian, with unity covariance matrix, and cen-
tered in (0, 0) and (3, 0) respectively. To this data we have
added interval-valued imprecision of sizes β = 0.03, 0.05,
0.1, 0.2, 0.5.

A 10cv experimental design was applied, and the mean
values of the test errors are shown in Table 2. The training er-
ror has been also included, to show the differences between
the approximation of the fitness function seen before and
the exhaustive computation that has been used to compute
the test error. Observe that the approximate error computed
by the fitness function is less specific than the actual error,
and the difference is relevant when the observation error is
high (β = 0.2 and β = 0.5), nevertheless it still guides the
evolution correctly.



8

Crisp Low Quality
Dataset Train Test Train Test
Pima 0.253 0.283 [0.254,0.258] [0.271,0.278]
Glass 0.332 0.356 [0.328,0.329] [0.356,0.356]

Haberman 0.241 0.261 [0.232,0.243] [0.254,0.261]

Table 1 Classification error in some crisp benchmarks, where the imprecise fitness function is the same as the crisp fitness function. The results
of “crisp” and “low quality” columns are similar.

Crisp Low Quality
β Theoretical Train Test Approx. Train Exh. Test Exh. Train
0 0.084 0.083 0.086 [0.086,0.086] [0.082,0.082] [0.086,0.086]

0.03 [0.076,0.091] [0.083,0.094] [0.047,0.086]
0.05 [0.071,0.094] [0.081,0.098] [0.075,0.089]
0.1 [0.076,0,093] [0.068,0.104] [0.070,0.103]
0.2 [0.075,0.089] [0.055,0.128] [0.052,0.116]
0.5 [0.014,0.225] [0.022,0.179] [0.022,0.183]

Table 2 Results of the extended GFS in the synthetic dataset “Gauss” for crisp data (‘Crisp’ columns) and different degrees of observation error
(‘Low Quality’ columns). Training error for low quality data has been computed twice, with a slow, precise algorithm (‘Exhaustive Train’) or a
fast approximation (‘Approximate Train’) (see Figure 7). The approximate fitness function (see Figure 6) has guided the evolution. The test error
is always computed with the precise algorithm (‘Exhaustive test’). The approximate error is less specific than the actual error, and the difference is
relevant when the observation error is high (β = 0.2 and β = 0.5), nevertheless it still converges to a good FRBS.

●

CTrain CTest ITrain ITest

0

0.2

0.4

0.6

0.8

Screws

Fig. 11 Boxplots illustrating the error of crisp (columns ‘CTrain’ and
‘CTest’) and extended GFS (columns ‘ITrain’ and ‘ITest’) in the prob-
lem “Screws”.

4.4 Experimentation with realistic datasets

The dataset “Screws” comprises 21 objects of three different
classes. Each object has two features, weight and length. If
all the measurements were accurate, this problem could have
been solved without error. There is no ambiguity in the class
labels, and each feature is an interval. Since the misclassi-
fication rate is entirely originated in the observation error,
the results shown in Table 3 indicate that the algorithm pro-
posed here has exploited better the information contained in
the imprecise data than the crisp algorithm.

4.5 Experimentation with real world datasets

In this section we will describe two different real-world prob-
lems. The first one is a medical diagnosis problem, and the
second one is related to the composition of teams in high
performance athletics. Both problems are open; we do not
know the best attainable error with a Genetic Fuzzy Classi-
fier.

4.5.1 Diagnosis of dyslexia

Dyslexia is a learning disability in people with normal in-
tellectual coefficient, and without further physical or psy-
chological problems explaining such disability. It has been
estimated that between 4% and 5% of schoolchildren have
dislexia, with reading and writing problems [1]. The average
number of children in a Spanish classroom is 25, therefore
most of them have dyslexic children. Dyslexia may become
apparent in early childhood, with difficulty putting together
sentences and a family history. Recognition of the problem
is very important in order to give the infant an appropriate
teaching.

Using Soft Computing techniques for diagnosing dyslexia
seems to us a natural choice, because of the properties of our
data (linguistic terms, and vague measurements). As a mat-
ter of fact, there are many references where fuzzy techniques
were used to learn medical diagnosis models from data. In
particular, in [5] and [9], fuzzy techniques have been used
in the diagnosis of disabilities in language. However, in all
of the preceding works, the data was crisp or categorical. In-
stead, most of our measurements (see Table 4) are not crisp.
Some of our responses are linguistic (“low”, “high”), others
are subjective (like the “squareness” of a hand-drawn shape



9

Crisp Low Quality
Dataset Train Test Approx. Train Exh. Test Exh. Train
Screws 0.133 0.427 [0.068,0.106] [0.377,0.377] [0.096,0.096]

Table 3 Results of the generalized GFS for the imprecise datasets “Screws”. The algorithm in this paper has exploited the low quality information
better than the crisp algorithm.

Category Test Description
Verbal comprehension BAPAE Vocabulary

BADIG Verbal orders
BOEHM Basic concepts

Logic reasoning RAVEN Color
BADIG Visual memory

Sensory-motor skills BENDER visual-motor coordination
BADIG Perception of shapes
BAPAE Spatial relations, Shapes, Orientation
STAMBACK Auditive perception, Rhythm
HARRIS/HPL Laterality, Pronunciation
GOODENOUGHT Spatial orientation, Body scheme

Reading-Writing TALE Analysis of reading and writing

Table 4 Categories of the tests currently applied in Spanish schools for detecting dyslexia in children between 5 and 8 years.

Fig. 12 Example of some of Bender’s tests for detecting dyslexia. Upper part: The angles of the shape in the right are qualified by a list of
adjectives that can contain the words “right,” “incoherent,” “acceptable,” “regular” and “extra.” Middle and lower part: The relative position
between the figures can be “right and separated,” “right and touching,” “intersecting”, etc.

–see Figure 12–) or interval valued (f.e. a dyslexia degree
“between 2 and 4”). Lastly, a high percentage of cases have
missing values. None of the preceding approaches are di-
rectly applicable to the problem at hand.

The dataset used in this section is called “Dyslexia-12”.
It has 65 objects, 4 classes and 12 features. This is a selection
of the original dataset described in [15], where the 12 most
relevant variables have been hand-picked by a psychologist.
There are imprecision in both the input and the output. The
theoretical error is unknown.

We have used a 10cv design, and the boxplots of the
compared results, in both train and test sets, are depicted in
Figure 13. Observe that the boxplots of the imprecise exper-
iments are not standard. We propose using a box showing
the 75% of the maximum and 25% percentile of the mini-

mum fitness (thus the box displays at least the 50% of data)
and also drawing two marks inside the box, because the me-
dian of the data is an interval. In Figure 14 the ranges and
means of all repetitions of the learning are shown, for both
the crisp and the imprecise versions of the algorithm. The
upper bound of the mean imprecise fitness is consistently
lower than the mean of the crisp fitness.

4.5.2 High performance athletics

The score of an athletics team is the sum of the individual
scores of the athletes in the different events. It is the coach’s
responsibility to balance the capabilities of the different ath-
letes in order to maximize the score with a team according
to the regulations. In this practical application, an algorithm



10

Crisp Low Quality
Dataset Train Test Approx. Train Exh. Test

Dyslexia-12 (4 labels) 0.541 0.657 [0.144,0.335] [0.421,0.558]
Dyslexia-12 (5 labels) 0.672 0.694 [0.155,0.355] [0.490,0.609]

Table 5 Results of the generalized GFS for the imprecise datasets “Dyslexia-12” with 4 and 5 labels/variable

Iterations

E
rr

or
s

1 50 100 150 200

0.4

0.6

0.8

Crisp. Dyslexic

Crisp

Iterations

E
rr

or
s

1 50 100 150 200

0.4

0.6

0.8

Imprecise. Dyslexic

Max Imp.Min Imp.

Fig. 14 Compared evolution of crisp (left) and imprecise GFS (right) in the dataset “dyslexia-12”. The minimum, mean and maximum classifica-
tion error at every generation are shown, for both the crisp and the imprecise versions of the algorithm. The upper bound of the imprecise fitness
is consistently lower than the crisp fitness.

CTrain CTest ITrain ITest

0.2

0.4

0.6

0.8

Fig. 13 Boxplots illustrating the results of crisp (columns ‘CTrain’ and
‘CTest’) and extended GFS (columns ‘ITrain’ and ‘ITest’) in the prob-
lem “dyslexia-12”, with 4 labels/partition.

is used for choosing the best team. The algorithm makes use
of the expected marks of the athletes at each event, and also
of the confidence degrees in the achievement of these marks.
These expected marks are determined by the trainer accord-
ing to the past performance of the athlete, a set of indicators
that are described in this section and, optionally, the marks

of rival teams. The objective is to choose the subset of ath-
letes that will get a given score, with the highest confidence.

The objective of the FRBS that is evaluated in this sec-
tion is to determine whether an athlete will improve a certain
mark, in two different events: long jump and 100 metres.
The variables that define each problem are as follows:

1. There are four indicators in long jump that are used to
predict whether an athlete will pass a given threshold
[20]: the ratio between the weight and the height, the
maximum speed in the 40 metre race and the tests of
central (abdominal) muscles and lower extremities. The
first two indicators are determined by the coach, who
was allowed to use numbers, intervals or linguistic val-
ues (fuzzy intervals) at his convenience. The two last
tests are repeated three times, and produce numbers. The
abdominal muscle test consists in counting how many
flexion movements the athlete can repeat in a minute.
Lastly, the lower extremities test measures how much
the athlete can stretch.

2. There are also four indicators in the 100 metre race: the
ratio between weight and height, the reaction time, the
starting or 20 metre speed, and the maximum or 40 me-
tre speed. We have collected two different databases for
this problem. In the first database, three different peo-



11

Crisp Train Crisp Test Low Train Low Test

0.1

0.3

0.5

0.7

Crisp Train Crisp Test Low Train Low Test

0.1

0.3

0.5

0.7

0.9

Crisp Train Crisp Test Low Train Low Test

0.1

0.3

0.5

0.7

Fig. 15 Boxplots illustrating the classification error of crisp and extended GFS in the high performance athletics problem. From left to right,:
Problems “100ml-4-I”, “Long-4”, and “100ml-4-P”.

Table 6 Expected classification error of the generalized GFS for the imprecise datasets “Long-4”, “100ml-4-P” and “100ml-4-I”

Crisp Low Quality
Dataset Train Test Train Test

Long-4 (5 labels) 0.327 0.544 [0.0,0.279] [0.349,0.616]
100ml-4-P (5 labels) 0.288 0.419 [0.076,0.320] [0.17,0.406]
100ml-4-I (5 labels) 0.259 0.384 [0.089,0.346] [0.189,0.476]

ple measure the actual reaction time, starting and max-
imum speed of the athletes. These three measurements
are joined to form an imprecise value. On the contrary,
in the second database the trainer has graded each speed
and time with a mark between 0 and 10. He was allowed
to express his grades with numbers, intervals or linguis-
tic values. This second database has a high subjective
component; it serves to assess the expert knowledge of
the trainer about the athletes, by comparing this results
with the actual measurements.

Finally, the datasets that are used in this application are:

1. Dataset “Long-4”: This dataset is used to predict whether
an athlete will improve certain threshold in the long jump,
given the indicators mentioned before. We have mea-
sured 25 athletes, thus the set has 25 instances, 4 fea-
tures, 2 classes, no missing values. All the features, and
also the output variable, are interval-valued.

2. Dataset “100ml-4-I”: Used for predicting whether a mark
in the 100 metres sprint race is being achieved. Actual
measurements are taken by three observers, and are com-
bined into the smallest interval that contains them. 25 in-
stances, 4 features, 2 classes, no missing data. All input
and output variables are intervals.

3. Dataset “100ml-4-P”: Same dataset as “100ml-4-I”, but
the measurements have been replaced by the subjective
grade the trainer has assigned to each indicator (i.e. “re-
action time is low” instead of “reaction time is 0.1 seg”).

We have compared the performance of the generalized
algorithm to that of the original crisp algorithm, as men-
tioned before. We have used a 10cv design for all datasets.

The boxplots with all the results are shown in Figure 15. Ob-
serve that the boxplots of the imprecise experiments are not
standard, as before. We propose to use an extended boxplot
that can describe a sample of interval data. We will be us-
ing a box showing the upper bound of the 75% percentile of
the maximum and the lower bound of the 25% percentile of
the minimum fitness (thus the box displays at least the 50%
of data). The also interval-valued median is drawn with two
marks inside this box. In addition, the numerical values of
the classification error have also been included in Table 6.

The results are promising in all the experiments. We ex-
pected that the extra freedom for the coach has when he is
allowed to use ranges of values and linguistic terms instead
of numbers would allow us to capture better his expertise,
and the results seem to confirm this intuition (Table 6, col-
umn “Test, Low Quality”).

5 Concluding remarks

Extending a GFS to imprecise data in classification prob-
lems is based on the use of an interval or fuzzy valued fitness
function. Most GFSs can be extended to low quality data if
some changes are made in their reasoning method, and the
genetic algorithm can deal with an imprecisely known fit-
ness function. We have shown in detail how to apply this
changes to a simple GCCL-type algorithm, and evaluated it
with some synthetic, realistic and real-world benchmarks.
The numerical results are as expected for an elementary al-
gorithm like this; there is room for improvement and future



12

works will address more complex GFSs that are based on a
multicriteria fitness function.

Acknowledgements

This work was supported by the Spanish Ministry of Ed-
ucation and Science, under grants TIN2008-06681-C06-04,
TIN2007-67418-C03-03, and by Principado de Asturias, un-
der grant PCTI 2006-2009.

References

1. Ajuriaguerra, J. Manual de psiquiatrı́a infantil (in Spanish). Toray-
Masson. (1976)

2. Cordón O, Herrera F, Hoffmann F, Magdalena L, Genetic fuzzy
systems. Evolutionary tuning and learning of fuzzy knowledge
bases. World Scientific, Singapore (2001)

3. Couso, I., Sánchez, L. Higher order models for fuzzy random vari-
ables. Fuzzy Sets and Systems 159: pp 237-258 (2008)

4. Dubois, D., Prade, H. The mean value of a fuzzy number. Fuzzy
Sets and Systems 24 (3): pp 279-300. (1987)

5. Georgopulos, V. A fuzzy cognitive map to differential diagnosis of
specific language impairment. Artificial intelligence in Medicine
29. pp 261-278. (2003)

6. Herrera, F. Genetic Fuzzy Systems: Taxonomy, Current Research
Trends and Prospects. Evolutionary Intelligence 1: pp 27-46
(2008)

7. Ishibuchi, H., Nakashima, T., Murata, T, A fuzzy classifier system
that generates fuzzy if-then rules for pattern classification prob-
lems. In Proc. of 2nd IEEE International Conference on Evolu-
tionary Computation, pp 759-764 (1995)

8. Koeppen, M., Franke, K., and Nickolay, B., Fuzzy-Pareto-
Dominance driven multi-objective genetic algorithm. in Proc. 10th
International Fuzzy Systems Assotiation World Congress (IFSA),
Istanbul, Turkey, 2003: pp 450-453. (2003)

9. Lakov, D. V. Soft Computing Agent Approach to Remote Learn-
ing of Disables. 2nd. IEEE Intl. Conf. Intelligent Systems. pp 250-
255. (2004)

10. Limbourg, P., Multi-objective optimization of problems with epis-
temic uncertainty. in EMO 2005: 413–427. (2005)

11. Medasani, S., Kim, J., Krishnapuram, S. An overview of member-
ship function generation techniques for pattern recognition Inter-
national Journal of Approximate Reasoning 19 (3-4) pp 391-417.
(1998)

12. Sánchez, L., Otero, J., Villar, J. R., Boosting of fuzzy models
for high-dimensional imprecise datasets. Proc. IPMU 2006, Paris,
France: pp 1965-1973. (2006)

13. Sánchez L., Couso I. Advocating the use of imprecisely observed
data in genetic fuzzy systems IEEE Transactions on Fuzzy Sys-
tems 15 (4): pp 551-562. (2007)

14. Sánchez, L., Couso, I., Casillas, J. Modelling vague data with ge-
netic fuzzy systems under a combination of crisp and imprecise
criteria Proc. 2007 IEEE Symp. on Comp. Int. in Multicriteria De-
cision Making, Honolulu, USA: pp 30-37. (2007)

15. Sánchez, L., Palacios, A., Couso, I., A Minimum Risk Wrapper
Algorithm for Genetically Selecting Imprecisely Observed Fea-
tures, applied to the Early Diagnosis of Dyslexia. Lecture Notes
in Computer Science 5271, pp 608-615 (2008)

16. Sánchez, L., Otero, J., Couso, I. Obtaining linguistic fuzzy rule-
based regression models from imprecise data with multiobjective
genetic algorithms. Soft Computing 13 (5) pp 467-479, (2009)

17. Sánchez, L., Couso, I., Casillas, J. Genetic learning of fuzzy rules
based on low quality data. Fuzzy Sets and Systems. 160 (17) pp
2524-2552, (2009)

18. Teich, J., Pareto-front exploration with uncertain objectives. in
EMO, 2001: pp 314-328. (2001)

19. Öztürk, M., Tsoukias, A., Valued Hesitation in intervals com-
parison, Proceedings of the SUM-07 conference, LNAI 4772,
Springer-Verlag, pp 157-170, 2007

20. Vinuessa, M., Coll., J. Tratado de atletismo. Servicio Geográfico
del Ejercito Español. (1984)


