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Olive (Olea europaea L.) is the main perennial Spanish crop. Soil management in olive orchards is mainly
based on intensive and tillage operations, which have a great relevancy in terms of negative environmen-
tal impacts. Due to this reason, the European Union (EU) only subsidizes cropping systems which require
the implementation of conservation agro-environmental techniques such as cover crops between the
rows. Remotely sensed data could offer the possibility of a precise follow-up of presence of cover crops
to control these agrarian policy actions, but firstly, it is crucial to explore the potential for classifying vari-
ations in spectral signatures of olive trees, bare soil and cover crops using field spectroscopy. In this
paper, we used hyperspectral signatures of bare soil, olive trees, and sown and dead cover crops taken
in spring and summer in two locations to evaluate the potential of two methods (MultiLogistic regression
with Initial and Radial Basis Function covariates, MLIRBF; and SimpleLogistic regression with Initial and
Radial Basis Function covariates, SLIRBF) for classifying them in the 400–900 nm spectrum. These meth-
ods are based on a MultiLogistic regression model formed by a combination of linear and radial basis
function neural network models. The estimation of the coefficients of the model is carried out basically
in two phases. First, the number of radial basis functions and the radii and centres’ vector are determined
by means of an evolutionary neural network algorithm. A maximum likelihood optimization method
determines the rest of the coefficients of a MultiLogistic regression with a set of covariates that include
the initial variables and the radial basis functions previously estimated. Finally, we apply forward step-
wise techniques of structural simplification.

We compare the performance of these methods with robust classification methods: Logistic Regression
without covariate selection, MLogistic; Logistic Regression with covariate selection, SLogistic; Logistic
Model Trees algorithm (LMT); the C4.5 induction tree; Naïve Bayesian tree algorithm (NBTree); and
boosted C4.5 trees using AdaBoost.M1 with 10 and 100 boosting iterations. MLIRBF and SLIRBF models
were the best discriminant functions in classifying sown or dead cover crops from olive trees and bare
soil in both locations and seasons by using a seven-dimensional vector with green (575 nm), red (600,
625, 650 and 675 nm), and near-infrared (700 and 725 nm) wavelengths as input variables. These models
showed a correct classification rate between 95.56% and 100% in both locations and seasons. These
results suggest that mapping covers crops in olive trees could be feasible by the analysis of high resolu-
tion airborne imagery acquired in spring or summer for monitoring the presence or absence of cover
crops by the EU or local administrations in order to make the decision on conceding or not the subsidy.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Olive (Olea europaea L.) is the main perennial Spanish crop with
a total area of about 2.5 M ha, of which 1.5 are in Andalusia (south-
ern Spain; MAPYA, 2007). Soil management in olive orchards is
mainly based on intensive tillage operations, which have a great
relevancy in terms of the increase of atmospheric CO2, desertifica-
tion, erosion and land degradation (Hill, Megier, & Mehl, 1995;
ll rights reserved.

: +34 957 218 630.
).
Schlesinger, 2000). Due to these negative environmental impacts,
the European Union (EU) only subsidizes cropping systems which
require the implementation of conservation agro-environmental
techniques such as cover crops in olive orchards (Andalusian
Administration Regulation, 2007). Traditionally, olive trees are sep-
arated 10–12 m each other and cover crops are 4–6 m wide. These
include the cultivation with cover crops between the rows, usually
grass species (sown cover crops), or recycled crop residues (dead
cover crops). Sown cover crops are planted in autumn each year
(mid November in Mediterranean conditions) and must be man-
aged when the plants have completed their vegetative cycle by
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using either herbicides applied at the end of spring, i.e. end of
March in our conditions, or through various passes of the chain
mower just before cover crop starting to compete for water and
nutrients with olive trees.

To control these agrarian policy actions a precise follow-up or
monitoring of presence or absence of cover crops is required by
the EU and Andalusian administrations. Current methods to esti-
mate the cover crop soil coverage consist of sampling and ground
visits to only 1% of the total olive orchards at any time from mid-
March to late-June. However, this procedure is time-consuming
and very expensive, delivering inconsistent result due to the fact
that it covers relatively small areas or only target fields, and it does
not sample inaccessible areas. Remotely sensed data may offer the
ability to efficiently identify and map crops and cropping methods
over large areas (South, Qi, & Lusch, 2004). These techniques may
imply lower costs, faster work and better reliability than ground
visits. At the same time, the accuracy of the thematic map is extre-
mely important because this map could be used as a tool to help
the administrative follow-up to make the decision on conceding
or not the subsidy.

To detect and map olive trees and cover crops, it is necessary
that suitable differences exist in spectral reflectance among them
and bare soil. As part of an overall research programme to investi-
gate the opportunities and limitations of remote sensed imagery in
mapping accurately olive trees, bare soil, and cover crops, it is cru-
cial to explore the potential for identifying variations in their spec-
tral signatures using field spectroradiometry by analysing the
ability of the discrimination at distinct cover crop phenological
stages. Such an approach should indicate the wavelengths suitable
for land use discrimination and classification. Previous works have
demonstrated that the spectral signature of any plant species var-
ies with time and therefore it is intrinsically related to the specific
phenological stage when it was taken (López-Granados, Jurado-
Expósito, Peña-Barragán, & García-Torres, 2006; Peña-Barragán,
López-Granados, Jurado-Expósito, & García-Torres, 2006; Schmidt
& Skidmore, 2003). To predetermine a subset of narrow wave-
lengths without losing any essential information of spectral signa-
tures, several statistical methods have been applied. For instance,
artificial neural networks to discriminate nitrogen status in corn
(Goel et al., 2003) and to classify grass weeds in wheat in field con-
ditions (López-Granados et al., 2008). Moreover, computational
methods have been presented as very useful tools for improving
decision making by olive oil growers (González-Andujar, 2009) or
by pepper growers (González-Diaz, Martínez-Jimenez, Bastida, &
González-Andujar, 2009).

Multispectral and medium spatial resolution satellite imagery
such as Landsat Thematic Mapper and Spot has often proven to
have an insufficient or inadequate accuracy for detailed vegetation
studies (Harvey & Hill, 2001). Hyperspectral sensors offer an
improvement over multispectral: hyperspectral sensors have
many narrow and contiguous wavebands, usually around 25 nm
width, whereas multispectral sensors collect data for several (3–
7) broad bands. Hyperspectral scanner systems can detect small
or local variations in absorption features that might otherwise be
masked within the broader multispectral scanner systems (Koger,
Shaw, Reddy, & Bruce, 2004; Schmidt & Skidmore, 2003). New sat-
ellites are being developed to provide high resolution hyperspec-
tral data and high spatial resolution with the minimum spatial
resolution (at least 1 m spatial resolution) to classify olive orchards
at the tree scale and cover crops between trees. Airborne hyper-
spectral sensors such as Compact Airborne Spectral Imager (CASI)
and artificial neural networks have already been considered to be
a useful data source, which accurately determines agronomic vari-
ables such as prediction of corn yield (Uno et al., 2005) or detection
of weeds (Karimi et al., 2005). The potential advantages are that
hyperspectral satellite imagery usually cover higher surface and
hyperspectral airborne sensors have superior flight versatility. CASI
is capable of acquiring data up to 288 wavelengths at the spectral
range of 400–1000 nm (visible and near-infrared) at 1.9 nm inter-
vals. Moreover, CASI spectral collection is user programmable, and,
if proper altitudes are maintained, it can achieve resolutions of
0.5–1 m, which are particularly useful for classifying vegetation
classes. Thus, for effective olive tree-cover crop-bare soil discrimi-
nation, the identification of subtle differences in the spectral signa-
tures at different seasons is required and it is also necessary the
classification of the different spectra into the specific group to
which they belong.

The problem of assigning a specific group to the different spec-
tra analysed is treated in this paper using a pattern recognition
technique. Multi-class pattern recognition is a problem of building
a system that accurately maps an input feature space to an output
space of more than two pattern classes. Whereas a two-class clas-
sification problem is well understood, multi-class classification is
relatively less-investigated. In general, the extension from two-
class to the multi-class pattern classification problem is not trivial,
and often leads to unexpected complexity or weaker perfor-
mances. This paper presents a MultiLogistic generalized regression
where the linear predictor is replaced or extended using a non-
parametric neural network model. The ideas introduced follow
those presented in a recently proposed combination of neural
networks and logistic regression (Gutiérrez, López-Granados,
Peña-Barragán, Jurado-Expósito, & Hervás-Martínez, 2008a;
Gutiérrez et al., 2009; Hervás-Martínez & Martínez-Estudillo,
2007; Hervás-Martínez, Martínez-Estudillo, & Carbonero-Ruz,
2008; Torres, Hervás-Martínez, & García, 2009) based on the
hybridization of a linear MultiLogistic regression model and a
non-linear Product-Unit Neural Network model for binary and
multi-class classification problems. The presented methodology
named Logistic Regression with Initial and Radial Basis Function
covariates, LIRBF, combines different elements such as MultiLogis-
tic regression, MLR, radial basis neural networks, RBFNNs, and
evolutionary algorithms, EAs.

Logistic regression was used for the classification of spectral
signatures because the LR may be preferred when the data distri-
bution is not normal, or the group sizes are unequal (Neupane,
Sharma, & Thapa, 2002). In Pu and Gong (2004) and Van Deventer,
Ward, Gowda, and Lyon (1997), LR is applied for covariate selection
from multispectral data used for binary classification. The results
from these papers advocate the utility of the LR as a potential ap-
proach for the soft classification similar to the other recent ones
such as the neural networks (Foody & Arora, 1996), possibilistic
c-means clustering (Ibrahim, Arora, & Ghosh, 2005), and decision
tree regression (Xu, Watanachaturaporn, Varshney, & Arora,
2005). A hard classification can be produced by assigning the spec-
trum with the class having a maximum probability.

Although LR is a simple and useful procedure, we cannot fre-
quently formulate the stringent assumption of additive and purely
linear effect of the covariates of the predictor function, so it is
interesting to hybridize this classification model with other soft
computing techniques (Kin, 2009). In this way, our technique over-
comes these difficulties by augmenting the input covariates with
new RBF covariates. From the opposite point of view, adding linear
terms to a RBFNN in the predictor functions of a logistic regression
yields models that are simpler and easier to interpret than models
with only RBF covariates. In particular, if a covariate appears only
linearly in the logistic final model, then the model is a traditional
parametric model with regard to that covariate. A second reason
is to reduce the variance associated with the overall modelling pro-
cedure, and a third is to reduce the likelihood of ending up with
unnecessary terms in the final model. RBFNNs are an alternative
to traditional Multilayer Perceptrons (Fukunaga, 1999; Lee, Chiang,
Shih, & Tsai, 2009) and are based on localized hidden nodes (which
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have high non-zero outputs over only a localized region of the in-
put space), instead of projection ones (which have high non-zero
outputs over a large region of the input space).

RBFNNs have been found to be very helpful to many engineer-
ing problems because: (1) they are universal approximators (Park
& Sandberg, 1991); (2) they have more compact topology than
other neural networks (Lee & Kil, 1991); and (3) their learning
speed is fast because of their locally tuned neurons (Moody & Dar-
ken, 1989). The learning procedure of a RBFNN mainly includes
two parts: one is the adjustment of the connection weights, and
the other is the modification of the parameters of the RBF units,
namely, the hidden centres and the RBF widths or radii.

MLR models are in general fit by maximum likelihood, where
the Newton–Raphson algorithm is the traditional way to estimate
the maximum ‘‘a posteriori” parameters. Usually, the algorithm
converges, since the log-likelihood is concave. However, in our ap-
proach, the non-linearity of the RBFs with regard to the centres and
radii implies that the corresponding Hessian matrix is generally
indefinite and the likelihood could have local maxima. These rea-
sons justify, in our opinion, the use of an EA (Goldberg, 1989) as
an alternative heuristic procedure to estimate the parameters of
the model.

The estimation of the coefficients is carried out basically in two
steps. In a first step, an EA, which we have called Evolutionary RBF
(ERBF) algorithm, determines the number of RBFs in the model and
their corresponding centres and radii. This step can be seen as a
global search in the coefficients’ model space. In a second step,
once the basis functions have been determined by the ERBF algo-
rithm, we consider a transformation of the input space by adding
the non-linear transformations of the input variables given by
the obtained basis functions. The final model is linear in the set
of covariates formed by these new covariates and the initial covar-
iates. Now, the Hessian matrix is definite and fitting proceeds with
the standard maximum likelihood optimization method. Finally,
we use a forward stepwise procedure, adding variables sequen-
tially to form the model and including a cross-validation for assess-
ing the test performance.

This methodology is tested for discriminating cover crops in
olive orchards as affected by their phenological stage using a
high-resolution field spectroradiometer. The objectives of this
study were: (1) to determine the hyperspectral reflectance curves
of sown (live and desiccated) and dead cover crops, bare soil, and
olive trees, (2) to select the best hyperspectral wavelengths and
phenological stages to assess the different classification models
based in the LIRBF methodology for reaching the best discrimina-
tion approach, (3) to compare the accuracy performance for a
spectrum classification into the group to which it belongs, and
(4) to establish the misclassification percentage and validate the
classification accuracy of this analysis by using a 10-fold ap-
proach for cross-validation procedure. Five were the models
tested: (a) evolutionary radial basis functions neural networks,
ERBF; (b) MultiLogistic regression with RBF covariates, MLRBF;
(c) SimpleLogistic regression with RBF covariates, SLRBF; (d) Mul-
tiLogistic regression with Initial and RBF covariates, MLIRBF; (e)
SimpleLogistic regression with Initial and RBF covariates, SLIRBF.
These objectives would provide information to programme the
suitable wavelengths of airborne hyperspectral sensors such as
CASI for administrative follow-up and monitoring of agro-
environmental measures in olive orchards under conservation
agriculture.

The remainder of the paper is structured as follows: Section 2 is
based in Materials and methods (the study sites, the spectral read-
ings and the description of the LIRBF methods and the comparison
methods). In Section 3, the results and an associated discussion are
provided and, finally, the work is summarized and conclusions
drawn in Section 4.
2. Materials and methods

2.1. Study sites and spectral readings

The study was conducted in Andalusia, southern Spain, in two
locations named ‘‘Cortijo del Rey” and ‘‘Matallana” in early spring
and early summer. Sown cover crop species composition was made
of Lolium rigidum Gaudin. (ryegrass) in ‘‘Cortijo del Rey” and of
Hordeum murinum L. (barley) in ‘‘Matallana”. Before the herbicide
treatment, sown cover crops in spring had the typical green colour
of the vegetative growing phase (life cover crops, Fig. 1a), while
cover crops were yellow-like colour in early summer as they had
been previously desiccated with herbicide (desiccated cover crops,
Fig. 1b). Dead cover crops (Fig. 1c) consisted of remaining of the
corresponding olive spring pruning. Covers crops had been estab-
lished for over 6 years in both locations. Twenty spectral signa-
tures of live, desiccated and dead cover crops, and ten of olive
trees and bare soil were taken in 2007, on 22 and 23 March, and
on 23 and 24 June, in ‘‘Cortijo del Rey” and ‘‘Matallana”, respec-
tively (this number of spectral signatures and the main character-
istics of each dataset can be seen in Table 1).

Measurements were collected using an ASD Handheld FieldSpec
Spectroradiometer (Analytical Spectral Devices, Inc., Boulder) un-
der sunny conditions between 12.00 and 14.00 h (Salisbury,
1999) and measuring an area of about 0.15–0.20 m2. A telescopic
pole (Fig. 2) was used for positioning the spectroradiometer at
80–100 cm above the olive tree canopy. In addition, each measure-
ment was georeferenced using the sub-meter differential DGPS
TRIMBLE PRO-XRS (Trimble, Sunnyvale, CA) provided with TDC-1
unit for further remote sensing analysis. The spectral data were
converted into reflectance, which is the ratio of energy reflected
off the target to an energy incident on the target, with reference
to a barium sulphate standard (Spectralon, Labsphere, North Sut-
ton, NH) before and immediately after each measurement. The
hyperspectral range was between 325 and 1075 nm (1.5 nm band-
width). However, the reflectance spectra data were noisy at the ex-
tremes on the range and only the measurements between 400 and
900 nm were analysed. Previous studies have shown that neigh-
bouring wavelengths can frequently provide similar information
(Peña-Barragán et al., 2006; Thenkabail, Enclona, Ashton, & Van
Der Meer, 2004; Thenkabail, Smith, & De-Pauw, 2000). Thus, the
high spectral resolution of hyperspectral measurements collected
was demeaned and averaged to represent 20-, 25-nm-wide mea-
surements between 400 and 900 nm. These 20 wavelengths of
the spectral signatures were considered in a previous cross-valida-
tion hold out analysis which basically showed that only the seven
wavelengths between 575 and 725 nm were always selected in the
discriminant functions. Therefore, we used a seven-dimensional
vector with green (575 nm), red (600, 625, 650, and 675 nm), and
near-infrared (700 and 725 nm) wavelengths as the input vari-
ables. Results from 20 and 7 wavelengths did not show relevant
differences in terms of accuracy, but in number of links of the dis-
crimination functions (data not shown), leading to a worse model
interpretation.
2.2. Methods

The methods presented in this paper are based on a MultiLogis-
tic regression model (LIRBF), whose coefficients are obtained using
a hybrid learning procedure.
2.2.1. Logistic regression using radial basis function and initial
covariates model (LIRBF)

In classification problems, measurements xi, i = 1, 2, . . ., k, are
taken on a single individual (or object), and the individuals are to



Table 1
Main characteristics of each location and season tested: total number of instances or
spectral signatures (# Instances), number of wavelengths representing each spectral
signature (# Inputs), number of classes to discriminate (# Classes) and number of
signatures per each class (Distribution).

Location and seasons #
Instances

#
Inputs

#
Classes

Distribution

‘‘Cortijo del Rey” spring 80 7 4 (40, 20, 10,
10)

‘‘Cortijo del Rey”
summer

50 7 4 (10, 20, 10,
10)

‘‘Matallana” spring 60 7 4 (20, 20, 10,
10)

‘‘Matallana” summer 60 7 4 (20, 20, 10,
10)

Fig. 2. Measuring olive tree canopy reflectance using a hand-held spectroradiom-
eter with a telescopic pole under sunny conditions. Every olive tree was georefer-
enced for future remote sensing investigations.

Fig. 1. Images of the different elements to discriminate: (a) live cover crops in March; (b) desiccated cover crops in June; and (c) dead cover crops.
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be classified into one of J classes on the basis of these measure-
ments. It is assumed that J is finite, and the measurements xi are
random observations from these classes. Based on the training
sample D = {(xn, yn); n = 1, . . ., N}, where xn = (x1n, . . ., xkn) is the vec-
tor of measurements taking values in X � Rk, and yn is the class le-
vel of the n-th individual, we wish to find a decision function
C:X ? {1, 2, . . ., J} for classifying the individuals. A misclassification
occurs when the decision rule C assigns an individual of the train-
ing sample to a class j when it is actually coming from a class l – j.
To evaluate the performance of the classifiers, we define the Cor-
rect Classification Rate by CCR ¼ 1

N

PN
n¼1IðCðxnÞ ¼ ynÞ, where I(.) is

the zero-one loss function and the common technique of repre-
senting the class levels using a ‘‘1-of-J” encoding vector y = (y(1),
y(2), . . ., y(J)) is adopted, such as y(l) = 1 if x corresponds to an exam-
ple belonging to class l and y(l) = 0 otherwise. A good classifier tries
to achieve the highest possible CCR in a given problem for the gen-
eralization set. It is usually assumed that the training data are
independent and identically distributed sample from an unknown
probability distribution.
Suppose that the conditional probability that x belongs to class l
verifies: pl ¼ pðyðlÞ ¼ 1jxÞ > 0; l ¼ 1; 2; . . . ; J; x 2 X. Let (X1, X2,
. . ., Xk, Y) be a set of variables, under a multinomial logistic regres-
sion, the probability that x belongs to class l, l = 1, . . ., J is based in
the equation:

plðx; blÞ ¼
expðflðx; blÞÞPJ
l¼1 expðflðx; blÞÞ

;
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where the prediction function flðx; blÞ ¼ bT
l x is linear in the x covar-

iates, bl = (bl, 0, bl, 1, . . ., bl, m), and the x0 = 1 value has been added to
the input covariates vector x. The vector components bl are esti-
mated from the training data set D. If we use the probability axiom
of the normalization, we have fJ(x, hJ) = 0, and, in this way, we re-
duce the number of parameters to be estimated.

The LIRBF model is based on the combination of the standard
initial covariates and non-linear radial basis functions transformed
covariates. The model in matrix form is given by the following
expression:

flðx; hlÞ ¼ aT
l xþ bT

l Bðx;WÞ; l ¼ 1; . . . ; J � 1; ð1Þ

where x = (1, x1, . . ., xk) and B(x, W) = (B1(x, w1), . . ., Bm(x, wm)) for

Bj ¼ Bjðx; wjÞ ¼ exp �kx� cjk2

r2
j

 !
; j ¼ 1; . . . ; m: ð2Þ

Then, the prediction function of the LIRBF model, is

flðx; hlÞ ¼ al
0 þ

Xk

i¼1

al
ixi þ

Xm

j¼1

bl
j exp �kx� cjk2

r2
j

 !
;

l ¼ 1; 2; . . . ; J ¼ 1:

Let hl = (al, bl, W) be the parameters of the model, where
al ¼ ðal

0; al
1; . . . ; al

kÞ and bl ¼ ðbl
1; . . . ; bl

mÞ are the coefficients of
the MultiLogistic regression model and W = (w1, w2, . . ., wm) are
the parameters of the RBF transformations, wj = (wj0, wj1, . . ., wjk),
cj = (wj1, . . ., wjk) is the centre of the j-th Gaussian RBF and rj = wj0

is the corresponding radius.
To perform the maximum likelihood estimation of h = (h1, h2, . . .,

hJ � 1), one can minimize the negative log-likelihood function:

LðhÞ ¼ � 1
N

XN

n¼1

log pðynjxn; hÞ

¼ 1
N

XN

n¼1

�
XJ�1

l¼1

yðlÞn flðxn; hlÞ þ log
XJ�1

l¼1

exp flðxn; hlÞ
" #

:

The classification rule coincides with the optimal Bayes’ rule. In
other words, an individual should be assigned to the class CðxÞ ¼ l̂
which has the maximum probability, given the vector measure-
ment x, i.e. l̂ ¼ arg maxl plðx; ĥlÞ for l = 1, . . ., J � 1. The non-linear-
ity of the model with regard to the hl parameters and the indefinite
character of the associated Hessian matrix do not recommend the
use of gradient-based methods to maximize the log-likelihood
function. Moreover, the optimal number of basis functions of the
model (i.e. the number of hidden nodes in radial basis neural net-
work) is unknown. Thus, the estimation of the vector parameter ĥ

is carried out by means of a hybrid procedure, combination of an
EA and a standard maximum likelihood optimization method.

2.2.2. Estimation of the LIRBF coefficients
The process is structured basically in two steps. The first step

obtains a RBFNN best model, and the second obtains the LIRBF
model. Once the basis functions have been determined by the EA,
we consider a transformation of the input space by adding the
non-linear transformations of the input variables given by theses
basis functions. The model is now linear in these new variables
and the initial covariates. The remaining coefficient vectors a and
b are calculated by the maximum likelihood optimization method.

2.2.2.1. Step 1: Evolutionary radial basis functions neural networks
(ERBF). We apply an evolutionary neural network algorithm
(which we have called Evolutionary RBF algorithm, ERBF) to find
the basis functions:

Bðx; WÞ ¼ ðB1ðx; w1Þ; . . . ; Bmðx; wmÞÞ;
corresponding to the non-linear part of f(x, h) in Eq. (1). We have to
determine the number of basis functions m and the weight vector
W. To apply evolutionary neural network techniques, we consider
RBFNNs with the standard structure: an input layer with a node
for every input variable; a hidden layer with several nodes; and
an output layer with nodes, one for each category. There are no con-
nections between the nodes of a layer and none between the input
and output layers either. The activation function of the j-th node in
the hidden layer is given by Eq. (2). The activation function of the
output node l is given by:

glðx; bl; WÞ ¼ bl
0 þ

Xm

j¼1

bl
jBjðx; wjÞ;

where bl
j is the weight of the connection between the hidden node j

and the output node l. The transfer function of all output nodes is
the identity function.

The weight vector W is estimated by means of the ERBF algo-
rithm (detailed next) that optimizes the error function given by
the negative log-likelihood for N observations associated with the
RBFNN model:

Lðb; WÞ ¼ 1
N

XN

n¼1

�
XJ�1

l¼1

yðlÞn glðxn; bl; WÞ þ log
XJ�1

l¼1

exp glðxn; bl; WÞ
" #

:

ð3Þ

Although in this step the evolutionary process obtains a con-
crete value for the b vector, we only consider the estimated weight
vector Ŵ ¼ ðĉ1; ĉ2; . . . ; ĉm; r̂1; r̂2; . . . ; r̂mÞ, which builds the ba-
sis functions.

Among the different paradigms of Evolutionary Computation,
we have chosen Evolutionary Programming due to the fact that
we are evolving artificial neural networks. The population-based
algorithm for architectural design and the estimation of real-coef-
ficients have points in common with other EAs in the bibliogra-
phy (Angeline, Saunders, & Pollack, 1994; Martínez-Estudillo,
Hervás-Martínez, Martínez-Estudillo, & García-Pedrajas, 2006a;
Martínez-Estudillo, Martínez-Estudillo, Hervás-Martínez, & Gar-
cía-Pedrajas, 2006b; Yao & Liu, 1997). The search begins with
an initial population and in all iterations the population is up-
dated using a population-update algorithm. The population is
subject to the operations of replication and mutation. Crossover
is not used due to its potential disadvantages in evolving artificial
networks (Angeline et al., 1994). The basic steps the ERBF algo-
rithm are represented in Fig. 3.

A brief description of the algorithm is given next. The algorithm
receives a training dataset D and returns the optimized RBFNN that
minimizes the cross-entropy error L(b, W) given by Eq. (3). In this
way the fitness function of an individual g(x, b, W) is a strictly
decreasing transformation of the error function L(b, W) given by
Aðb; WÞ ¼ 1

1þLðb; WÞ, where 0 < Aðb; WÞ 6 1 (Fig. 3, steps 2, 6a and
8). The algorithm evolves architectures and connection weights
simultaneously, each individual being a fully specified RBFNN.
The nets are represented using an object-oriented approach and
the algorithm deals directly with the neural network phenotype.
The population is initialized (Fig. 3, steps 1–5) in the following
way: first we generate 5000 RBFNNs and evaluate them; then,
we select the best 10% of these RBFNNs and improve their centres
by using standard k-means clustering algorithm (Fukunaga, 1999).
Each of the iteration of the algorithm is performed as follows: we
evaluate the individuals, sort them by increasing fitness (Fig. 3,
step 6b) and apply two different mutations (parametric mutation
to the best 10% of the individuals and structural mutation to the
best 90% of individuals minus one for considering the elitism). It
is important to note that the algorithm always maintains the best
individual (Fig. 3, step 6c), resulting in an elitist algorithm. The
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parametric mutation (Fig. 3, step 6f) alters the value of the weights
of the neural net and it is accomplished for each coefficient cji, rj of
the W and bl

j of the model with the same Gaussian noise. The struc-
tural mutation (Fig. 3, step 6g) modifies the number of radial basis
functions of the RBFNNs and the number of connections of the
model. For more details about this algorithm and the different
mutations aforementioned, we recommend consulting some previ-
ous works where it is more deeply explained (Gutiérrez et al.,
2008b; Martínez-Estudillo et al., 2006b).

As it can be observed, the ERBF algorithm includes several
parameters that have to be defined in order to apply it. All these
parameters are common for the four data sets analysed below.
The first thing that we have to take into account is that we have
done a simple linear rescaling of the input variables in the interval
[�2, 2], k�i being the transformed variables. In this way, the centres
cji are initialized in this interval and the coefficients bl

j are initial-
ized in the [�5, 5] interval. The initial value of the radii rj is ob-
tained as a random value in the interval (0, dmax], where dmax is
the maximum distance between two training input examples.
The size of the population is N = 500. The minimum and maximum
values for the number of hidden nodes in the hidden layer are 2
and 4, respectively. The stop criterion is reached whenever one
of the following two conditions is fulfilled: a number of genera-
tions is reached (50 generations in our experiments, a low value
that reduces the computational cost) or the variance of the fitness
of the best ten percent of the population is less than10�4.

2.2.2.2. Step 2: Optimization of the rest of coefficients. We transform
the input space by including the non-linear basis functions
obtained by the ERBF algorithm, z1 ¼ B1ðx; ŵ1Þ; . . . ; zm ¼
Bmðx; ŵmÞ, and then minimize the negative log-likelihood function
for N observations defined in (2). Now, the Hessian matrix of the
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negative log-likelihood in the new variables x1, x2, . . ., xk, z1, . . ., zm

is semi-definite positive. In this paper, two different algorithms
have been considered for obtaining the maximum likelihood solu-
tion for the MultiLogistic regression model, both available in the
WEKA machine learning workbench (Witten & Frank, 2005):

(1) MultiLogistic: It is an algorithm for building a multinomial
logistic regression model with a ridge estimator to guard
against over-fitting by penalizing large coefficients, based
on work by Le Cessie and Van Houwelingen (1992). In order
to find the coefficient matrix h for which L(h) is minimized, a
Quasi-Newton method is used. Specifically, the method used
is the active-sets’ method with Broyden–Fletcher–Goldfarb–
Shanno (BFGS) update (Gill, Murray, & Wright, 1982).

(2) SimpleLogistic: This algorithm builds multinomial logistic
regression models fitting them by using the LogitBoost algo-
rithm, which was proposed by Friedman, Hastie, and Tibsh-
irani (2000) for fitting additive logistic regression models.
These models are a generalization of the (linear) logistic
regression models described in Section 2.2.1.

This results in two different models, one with all x1, x2, . . ., xk,
z1, . . ., zm covariates present in the model (MultiLogistic algorithm)
and the other with only those variables selected by the SimpleLo-
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Fig. 4. Spectral reflectance (%) curves in ‘‘Cortijo del Rey” spring: (a) live cover
gistic algorithm. These two approaches will be called MLIRBF and
SLIRBF, respectively. For comparison purposes, we have also con-
sidered the MultiLogistic regression models that are obtained with
these two algorithms but constructed only from the non-linear
transformations given by the RBFNN of the ERBF algorithm, i.e.
z1, . . ., zm. This results in two other approaches which we will call
MLRBF and SLRBF.

2.3. Comparison to other classification methods

In this paper, the experimental design for the ERBF, MLIRBF,and
SLIRBF methods was conducted using a 10-fold cross-validation
procedure (Kohavi, 1995), with 10 repetitions per each fold using
the seven wavelengths as the input variables. We compare our
LIRBF approaches (MLIRBF and SLIRBF) to the results obtained
using eight recent and competitive methodologies (Landwehr,
Hall, & Frank, 2005): Logistic Regression without covariate selec-
tion, MLogistic; Logistic Regression with covariate selection,
SLogistic; Logistic Model Tree algorithm (LMT) (Landwehr et al.,
2005); the C4.5 induction tree (Quinlan, 1993); Naïve Bayesian
tree algorithm: NBTree (Kohavi, 1996); boosted C4.5 trees using
AdaBoost.M1 with 10 and 100 boosting iterations (Freund &
Schapire, 1996), and our evolutionary radial basis functions neural
networks, ERBF.
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crop (Lolium rigidum), (b) dead cover crop, (c) bare soil, and (d) olive tree.
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3. Results and discussion

First of all, the different reflectance curves used for the experi-
ments are going to be briefly analysed. Figs. 4–7 show these reflec-
tance curves, which are consistently affected by the kind of land
use and the cover crop phenological stage. There were apparent
reflectance differences in several wavelengths for the different land
uses, which showed that there was a potential for discrimination.
The overall shape of the reflectance curves for live cover crops
and olive trees in ‘‘Cortijo del Rey” and ‘‘Matallana” in spring were
similar and exhibited the characteristic highest reflectance from
700 to 750 nm (near-infrared) of the green vegetation (Figs. 4a
and d, and 6a and d). This demonstrates that they were in an active
living stage. Desiccated and dead cover crops reflectance curves for
‘‘Cortijo del Rey” and ‘‘Matallana” summer steadily increased as
wavelengths increased, indicating that both cover crops were no
photosynthetically active vegetation and, consequently, their spec-
tral signatures were very similar to bare soil (Figs. 4b and c, 5a–c,
6b and c, and 7a–c).

Once the potential of discrimination by using these wave-
lengths have been assessed, a further analysis of the results ob-
tained with the different methodologies was performed. Table 2
shows the mean value and the standard deviation (Mean ± SD)
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Fig. 5. Spectral reflectance (%) curves in ‘‘Cortijo del Rey” summer: (a) desiccated co
obtained from 100 values of the Correct Classification Rate for
the generalization set (CCRG) of the best models in all the experi-
ments performed. Our models, MLIRBF and SLIRBF, produced very
satisfactory results in mean and standard deviation with regard to
the CCRG. The MLIRBF methodology is the most accurate, in mean
and variance, for ‘‘Matallana” summer, and the second best, in
mean, for ‘‘Matallana” spring. SLIRBF yields the best results, in
mean, for ‘‘Cortijo del Rey” spring and summer, with very low stan-
dard deviations values.

In order to assess the significance of the differences observed
between the methods, a set of statistical tests have been per-
formed. In general, the nature of the CCRG results does not imply
the normality and the equality of variances hypothesis. This reason
justifies the use of a non-parametric Friedman test (Friedman,
1940) with the ranking of the mean CCRG values of the different
methods as the test variable with the aim of determining the sta-
tistical significance of the differences observed for each method
in the different datasets, ‘‘Cortijo del Rey” and ‘‘Matallana” in
spring and summer. This test is based on obtaining a ranking R(i)

for each method for all datasets, where 1 6 i 6 12 (with the same
id for each method than that used in Table 2), R(i) = 1 for the best
method and R(i) = 12 for the worst method. Then, the mean ranking
RðiÞ is obtained as the mean value of these rankings for the i-th
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Fig. 6. Spectral reflectance (%) curves in ‘‘Matallana” spring: (a) live cover crop (Hordeum murinum), (b) dead cover crops, (c) bare soil, and (d) olive tree.
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method (these mean ranking can be observed in the first column of
Table 3). The null-hypothesis is H0 � Rð1Þ ¼ . . . ¼ Rð12Þ and, in our
experiments, the test shows that the effect of the method used
for classification is statistically significant at a significance level
of 5%, as the confidence interval is C0 = (0, F0.05 = 2.09) and the F-
distribution statistical value is F* = 15.09 R C0. Consequently, we re-
ject the null-hypothesis stating that all algorithms perform equally
in mean ranking.

On the basis of this rejection, two post-hoc non-parametric
Bonferroni–Dunn tests (Hochberg & Tamhane, 1987) were applied
with the best performing algorithms (MLIRBF and SLIRBF) as the
control methods. The results of the Bonferroni–Dunn test for
a = 0.1 and a = 0.05 can be seen in Table 3 using the corresponding
critical values for the two-tailed test. The results show that SLIRBF
obtains better significant mean ranking of CCRG than C4.5 and
NBTree for a = 0.05. MLIRBF yields significant better results in
mean CCRG ranking than the same before two methods for
a = 0.05 and than ABoost(100) and ERBF for a = 0.1. Therefore,
our models MLIRBF and SLIRBF performed better or equally than
the other classification methods herein presented (widely used in
statistics and machine learning), whose percentage of correct clas-
sifications were already higher than 90% for most of the methods.

Table 4 presents the best functions obtained from the 100 exe-
cutions performed in our experiments. Best discriminant functions
were obtained by SLIRBF for ‘‘Cortijo del Rey” and by MLIRBF for
‘‘Matallana”. In ‘‘Cortijo del Rey” spring, the three discriminant
functions of the best classification model have only four covariates
k�575; k�675; k�700 and k�725 and three radial basis functions localized in
k�625; k�650 and k�725, indicating that the six wavelengths were used
for a successful classification of live cover corps, bare soil and olive
trees. In ‘‘Cortijo del Rey” summer, the best model has only two
covariates, k�675 and k�725, and two basis radial functions localized
in k�575 and k�600. One of the discriminant functions has not any
RBF transformation, which matches with Fig. 5a–c, where the form
of the spectral signatures for desiccated and dead cover crops, and
bare soil, is quasi-linear. In ‘‘Matallana” spring, the discriminant
functions are composed of all covariates and three RBF transforma-
tions defined for k�575; k�650 and k�725. Finally, the seven wavelengths
are also present in ‘‘Matallana” summer. Moreover, four additional
RBF transformation are defined around k�575; k�600; k�650 and k�675

wavelengths. If we compare the wavelengths used in this case to
those used in ‘‘Cortijo del Rey” summer, two extra wavelengths
are necessary, k�650 and k�675, because, as it can be seen in Fig. 7d,
there is a non-linearity associated to the class olive tree over these
wavelengths. The accuracy or CCR of these models for the training
and generalization sets (CCRT and CCRG) are also included in Table
4. The obtained models perform a perfect classification in the gen-
eralization set (CCRG = 100%) in both seasons and locations. For the
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Fig. 7. Spectral reflectance (%) curves in ‘‘Matallana” summer: (a) desiccated cover crop (Hordeum murinum), (b) dead cover crops, (c) bare soil, and (d) olive tree.

Table 2
Statistical results (mean ± SD) of the CCRG, for different competitive classifiers of bare soil, olive trees and sown, and dead cover crops in spring and summer in ‘‘Cortijo del Rey”
and ‘‘Matallana”.

Location and seasons (1) (2) (3) (4) (5) (6)

‘‘Cortijo del Rey” spring 91.63 ± 9.74 95.25 ± 7.70 95.25 ± 7.70 87.50 ± 11.51 84.50 ± 11.53 91.00 ± 8.90
‘‘Cortijo del Rey” summer 89.60 ± 14.06 91.00 ± 12.19 91.40 ± 11.81 77.40 ± 14.95 72.00 ± 12.39 80.00 ± 14.49
‘‘Matallana” spring 97.50 ± 5.98 91.50 ± 11.24 91.33 ± 11.23 84.67 ± 14.92 86.50 ± 14.92 87.00 ± 13.52
‘‘Matallana” summer 98.50 ± 4.79 95.83 ± 7.25 95.83 ± 7.25 91.00 ± 11.22 90.00 ± 11.36 91.00 ± 11.22

(7) (8) (9) (10) (11) (12)

‘‘Cortijo del Rey” spring 91.25 ± 8.79 86.00 ± 5.11 88.63 ± 9.42 87.63 ± 8.79 92.13 ± 7.88 96.13 ± 7.04
‘‘Cortijo del Rey” summer 79.60 ± 14.77 86.60 ± 15.06 86.20 ± 14.13 87.80 ± 13.30 91.40 ± 10.73 92.80 ± 10.45
‘‘Matallana” spring 85.83 ± 13.69 86.17 ± 11.37 90.33 ± 10.64 88.33 ± 10.98 97.00 ± 6.44 92.00 ± 8.37
‘‘Matallana” summer 91.00 ± 11.22 91.00 ± 9.60 94.33 ± 9.54 92.17 ± 9.01 99.50 ± 2.86 93.50 ± 9.14

(1) MLogistic; (2) SLogistic; (3) LMT; (4) C4.5; (5) NBTree; (6) ABoost(10); (7) ABoost(100); (8) ERBF; (9) MLRBF; (10) SLRBF; (11) MLIRBF; (12) SLIRBF. The best result for each
location and season is in bold face, and the second best result in italics.
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training set of ‘‘Matallana”, the models result in a CCRT = 98.61% in
spring and a CCRT = 95.56% in summer, while for ‘‘Cortijo del Rey”
training set both seasons result in a perfect classification,
CCRT = 100%.

Our study reveals that reducing the number of covariates to se-
ven wavelengths allowed a better interpretability and a lower cost-
efficiency ratio during the modelling process.
The results demonstrated that there were significant spectral
differences between bare soil, the different cover crops and olive
trees in spring and summer, and that our models successfully clas-
sified their spectral signatures at any of the seasons. Therefore,
there would be different timeframes for future image acquisition.
To have a wide timeframe is essential for a proper mapping of cov-
er crops by using remote sensing; specially taking into account that



Table 3
Bonferroni–Dunn test for SLIRBF and MLIRBF control methodologies.

Mean ranking ðRÞ Difference with RSLIRBF Difference with RMLIRBF

RMLogistic ¼ 3:25 jRMLogistic � RSLIRBFj ¼ 0:50 jRMLogistic � RMLIRBFj ¼ 0:88

RSLogistic ¼ 3:50 jRSLogistic � RSLIRBFj ¼ 0:75 jRSLogistic � RMLIRBFj ¼ 1:13

RLMT ¼ 3:38 jRLMT � RSLIRBFj ¼ 0:63 jRLMT � RMLIRBFj ¼ 1:00
RC4:5 ¼ 10:63 jRC4:5 � RSLIRBF j ¼ 7:88ð�Þ jRC4:5 � RMLIRBFj ¼ 8:25ð�Þ
RNBTree ¼ 11:25 jRNBTree � RSLIRBF j ¼ 8:50ð�Þ jRNBTree � RMLIRBFj ¼ 8:88ð�Þ
RABoost10 ¼ 8:38 jRABoost10 � RSLIRBFj ¼ 5:63 jRABoost10 � RMLIRBFj ¼ 6:00
RABoost100 ¼ 9:13 jRABoost100 � RSLIRBF j ¼ 6:38 jRABoost100 � RMLIRBFj ¼ 6:75ð��Þ
RERBF ¼ 9:38 jRERBF � RSLIRBF j ¼ 6:63 jRERBF � RMLIRBFj ¼ 7:00ð��Þ
RMLRBF ¼ 6:75 jRMLRBF � RSLIRBFj ¼ 4:00 jRMLRBF � RMLIRBFj ¼ 4:38
RSLRBF ¼ 7:25 jRSLRBF � RSLIRBF j ¼ 4:50 jRSLRBF � RMLIRBFj ¼ 4:88
RMLIRBF ¼ 2:38 jRSLIRBF � RMLIRBFj ¼ 0:38 -

RSLIRBF ¼ 2:75 - jRSLIRBF � RMLIRBFj ¼ 0:38

Critical difference for a = 0.1, CD0.1 = 6.65; and for a = 0.05, CD0.05 = 7.24.
(� and ��): Statistically significant differences for a = 0.05 (�) and a = 0.1 (��).

Table 4
Discrimination equations provided by the best SLIRBF and MLIRBF models in ‘‘Cortijo del Rey” and ‘‘Matallana” for classification of spectral signatures of bare soil, olive trees and
sown (live in spring, desiccated in summer), and dead cover crops. The accuracy in the training (CCRT) and generalization (CCRG) sets are also included, together with the number
of RBFs and the number of coefficients of the models.

‘‘Cortijo del Rey” spring. SLIRBF model
F1 ¼ �18:83� 17:64 k�575

� �
� 1:80 k�675

� �
þ 9:96 k�700

� �
þ 19:43ðRBF1Þ

F2 ¼ �16:53� 10:58ðk�575Þ þ 4:10ðk�675Þ þ 9:02 k�700

� �
� 4:77 k�725

� �
þ 4:71ðRBF1Þ þ 21:68ðRBF3Þ

F3 ¼ 7:44� 4:83 k�575

� �
þ 9:02 k�700

� �
þ 4:71ðRBF1Þ � 30:17ðRBF2Þ

RBF1 ¼ exp �0:5 k�725 � 1:18
� �2
� �

0:5=ð1:28Þ2
� �� �

RBF2 ¼ exp �0:5� k�625 þ 0:67
� �2
� �0:5

=ð0:93Þ2
� �� �

RBF3 ¼ exp �0:5 � k�625 þ 0:39
� �2 þ ðk�650 þ 0:21Þ2
� �0:5

=ð1:13Þ2
� �

Number of RBFs = 3, number of coefficients=21, CCRT = 98.61%, CCRG = 100%

‘‘Cortijo del Rey” summer. SLIRBF model
F1 ¼ 0:68þ 1:53 k�675

� �
þ 1:28 k�725

� �
F2 ¼ �1:19þ 1:53 k�675

� �
þ 5:57ðRBF1Þ

F3 ¼ �1:44þ 1:53 k�675

� �
þ 4:30ðRBF2Þ

RBF1 ¼ exp �0:5 k�600 þ 0:72
� �2
� �

0:5=ð0:66Þ2
� �

RBF2 ¼ exp �0:5 k�575 � 1:23
� �2
� �0:5

=ð0:87Þ2
� �

Number of RBFs = 2, number of coefficients = 11, CCRT = 95.56%, CCRG = 100%

‘‘Matallana” spring. MLIRBF model
F1 ¼ �66:76� 49:91 k�575

� �
� 28:50 k�600

� �
� 5:45 k�625

� �
þ 8:46 k�650

� �
þ 21:41 k�675

� �
þ 43:34 k�700

� �
þ 13:89 k�725

� �
þ80:71ðRBF1Þ þ 32:17ðRBF2Þ þ 78:14ðRBF3Þ
F2 ¼ �46:36þ 24:86 k�575

� �
þ 9:31 k�600

� �
þ 2:19 k�625

� �
� 1:70 k�650

� �
� 9:35 k�675

� �
� 14:45 k�700

� �
� 27:96 k�725

� �
þ78:58ðRBF1Þ � 22:88ðRBF2Þ þ 92:22ðRBF3Þ
F3 ¼ þ37:93þ 15:64 k�575

� �
þ 16:01 k�600

� �
þ 8:67 k�625

� �
þ 1:46 k�650

� �
� 2:92 k�675

� �
� 2:99 k�700

� �
� 1:94� k�725

� �
�34:58ðRBF1Þ � 3:676ðRBF2Þ � 146:02ðRBF3Þ

RBF1 ¼ exp �0:5 k�650 � 0:36
� �2
� �0:5

=ð0:86Þ2
� �

RBF2 ¼ exp �0:5 k�650 þ 1:42
� �2
� �0:5

=ð1:04Þ2
� �

RBF3 ¼ exp �0:5 k�575 þ 0:17
� �2 þ ðk�725 � 1:77Þ2
� �0:5

=ð1:00Þ2
� �

Number of RBFs = 3 , number of coefficients = 37, CCRT = 100%, CCRG = 100%

‘‘Matallana” summer. MLIRBF model
F1 ¼ 7:08� 46:26 k�575

� �
� 21:87 k�600

� �
þ 1:33 k�625

� �
þ 18:80 k�650

� �
þ 28:50 k�675

� �
þ 24:34 k�700

� �
� 6:82 k�725

� �
�0:34ðRBF1Þ � 51:50ðRBF2Þ � 64:85ðRBF3Þ
F2 ¼ �15:83þ 37:59 k�575

� �
þ 25:85 k�600

� �
þ 14:16 k�625

� �
þ 6:80 k�650

� �
þ 3:16 k�675

� �
� 15:27 k�700

� �
� 56:01 k�725

� �
þ58:83ðRBF1Þ þ 8:31ðRBF2Þ þ 14:59ðRBF3Þ
F3 ¼ þ7:30þ 14:08 k�575

� �
þ 9:39 k�600

� �
þ 3:25 k�625

� �
� 1:32 k�650

� �
� 3:42 k�675

� �
� 6:81 k�700

� �
� 12:76 k�725

� �
þ19:51ðRBF1Þ þ 36:91ðRBF2Þ � 24:58ðRBFk3Þ

RBF1 ¼ expð�0:5ððk�575 þ 0:10Þ2 þ ðk�600 þ 0:32Þ2Þ0:5=ð1:07Þ2Þ
RBF2 ¼ expð�0:5ððk�575 � 1:54Þ2 þ ðk�600 � 1:42Þ2Þ0:5=ð0:74Þ2Þ
RBF3 ¼ expð�0:5ððk�650 þ 1:10Þ2 þ ðk�675 þ 1:76Þ2Þ0:5=ð1:32Þ2Þ

Number of RBFs = 3, number of coefficients = 39, CCRT = 100%, CCRG = 100%

F i ¼ log odd pi; k�i 2 ð�2; 2Þ
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it is very frequent to have cloudy days in March and April (spring in
our Mediterranean conditions) and no remote images can be taken
in these circumstances. If image acquisition fails on spring, we
could programme the remote images acquisition around June
when there are plenty of sunny days. In addition, this double pos-
sibility could be used for re-monitoring a doubtful and specific
field analysed in previous spring. This is essential for programming
and implementing the control tools and for avoiding the annoying
and frequent bottle neck of administrative follow-up to concede or
not the subsidy. Once MLIRBF and SLIRBF have been shown as
promising to successfully classify spectral signatures of bare soil,
olive trees, and live, desiccated and dead cover crops, next investi-
gations should explore their potential discrimination and mapping
by image analysis of CASI imagery taken in spring and summer and
programmed with seven wavelengths in the green (575 nm), red
(600, 625, 650, and 675 nm), and near-infrared (700 and 725 nm)
spectral range, rather than using the 288 available wavelengths.
Granted that, in our case, computational requirements for training
LIRBF models were nearly insignificant once the ERBF models are
built, three considerations should be made: the improvement in
correct classification obtained with our models, MLIRBF and SLI-
RBF, the computational or expertise requirements involved in the
modelling process and the objective that we wish to achieve. From
an agronomic point of view, if we would aim to create a map for
crop inventory with detailed vegetation classifications of olive
orchards, then a simpler, easier model, for example MLogistic or
SLogistic, would be the best choice as its accuracy of classification
was high enough and the higher computational requirements for
MLIRBF and SLIRBF would not be justified; however, if we need
to produce a very accurate thematic map ready to be used for deci-
sion-making procedures by administrations, the criteria for select-
ing MLIRBF and SLIRBF should not be based on decreasing
computational requirements and complexity, but on the accuracy
of the classifications and these more sophisticated and accurate
models would be highly recommended.

Finally, a current trend is that farmers use dead cover crops
rather than sown ones due to dead covers come from the recycling
of olive tree residues. This has several economical and environ-
mental advantages due to the non-use of fertilizers and herbicides.
Dead cover crops only have to be cut through light farm equip-
ment. However, seed for sown cover crops must be brought, sown,
and plants fertilized and treated with herbicide in a specific time,
which also implies the use of machinery and fuel. Fertilizers, her-
bicide and fuel are the most important crop inputs in any agrarian
system. Thus, it is worth noting that our models clearly classified
dead cover crops from olive trees and bare soil, this being very
important for future remote sensing investigations.
4. Conclusions

This study demonstrated the capability of LR and RBFNN combi-
nation models, where the final coefficients were estimated using
MultiLogistic regression. These models (MLIRBF and SLIRBF) were
applied for the discrimination of cover crops in olive orchards as
affected by their phenological stage using the spectral signatures
obtained with a high-resolution field spectroradiometer. The
objective was to differentiate bare soil, olive trees and cover crops
(live or dead).

SLIRBF and MLIRBF models provided better accuracy models in
the generalization sets than linear LR. Mean generalization accura-
cies of 96.13% and 92.80% were obtained using the SLIRBF method-
ology for the two seasonal stages of ‘‘Cortijo del Rey”. Moreover,
the best model in this location in spring resulted in an accuracy
of 98.61% in the training set and 100% in generalization and
95.56% in the training set and 100% in generalization set in sum-
mer. Furthermore, a 97.00% and 99.50% of generalization mean
accuracies was obtained using MLIRBF methodology for the two
seasonal stages of ‘‘Matallana” and a 100% in training and general-
ization sets for the best models obtained in the two phenological
stages. Last, seven advanced methodologies (MLogistic, SLogistic,
LMT, C4.5, NBTree, AdaBoost 10 and 100) were compared to the
methodologies herein presented, resulting in lower accuracy ex-
cept for ‘‘Matallana” spring where MLogistic obtained a slightly
higher result. From the statistical test results we can conclude that
the best methodology is MLIRBF because it presents statistically
significant differences for a = 0.05 or a = 0.1, for four out of the
11 compared methodologies.

To summarize, our models successfully discriminated bare soil,
olive trees and all of the possible kind of cover crops used by farm-
ers in our conditions in spring and summer. However, more re-
search is needed to study if high spatial and spectral resolution
airborne imagery would correctly classify and map any of the land
uses proposed in this paper.
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