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a b s t r a c t

This work presents a new approach for multi-class pattern recognition based on the hybridization of a
linear and nonlinear model. We propose multinomial logistic regression where some new covariates
are defined by a product unit neural network, where in turn, the nonlinear basis functions are constructed
with the product of the inputs raised to arbitrary powers. The application of this methodology involves,
first of all, training the coefficients and the basis structure of product unit models using techniques based
on artificial neural networks and evolutionary algorithms, followed by the application of multinomial
logistic regression to both the new derived features and the original ones. To evaluate the efficacy of
our technique we pose a difficult problem, the classification of sheep with respect to their milk produc-
tion in different lactations, using covariates that only involve the first weeks of lactation. This enables the
productive capacity of the animal to be identified more rapidly and leads to a faster selection process in
determining the best producers. The results obtained with our approach are compared to other classifi-
cation methodologies. Although several of these methodologies offer good results, the percentage of cases
correctly classified was higher with our approach, which shows how instrumental the potential use of
this methodology is for decision making in livestock enterprises, a sector relatively untouched by the
technological innovations in business management that have been appearing in the last few years.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Classification problems are often encountered in many different
fields, such as biology (Hajmeer & Basheer, 2003), medicine (Sch-
warzer, Vach, & Schumacher, 2000; Youngdai & Sunghoon, 2006),
computer vision (Subasi, Alkan, & Koklukaya, 2005), artificial intel-
ligence and remote sensing (Yuan-chin & Sung-Chiang, 2004). In
the business world, applications of this type are becoming more
and more frequent: in finance (Parag & Pendharkar, 2005; Rada,
2008; Tian-Shyug et al., 2006), marketing (Kaefer, Heilman, &
Ramenofsky, 2005), and human resource management (Sexton &
McMurtrey, 2005). There has been a renewed interest in this type
of technique in the last few years due to the difficulties inherent in
such new problems as dealing with data mining, document classi-
fication, financial forecasts, web-mining, etc. This great practical
interest in classification problems has motivated researchers to de-
velop a huge number of methods as quantitative models for classi-
fication purposes (i.e. see Bernadó & Garrell, 2003; Duda & Hart,
ll rights reserved.
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2001). Linear Discriminant Analysis (LDA) (Johnson & Wichern,
2002) was the first method developed to address the classification
problem from a multidimensional perspective. LDA has been used
for decades as the main classification technique and it is still being
used, at least as a reference point, to compare the performance of
new techniques. Another widely used parametric classification
technique, developed to overcome LDA’s restrictive assumptions
(multivariate normality, equality of dispersion matrices between
groups), is Quadratic Discriminant Analysis (QDA). The Logistic
Regression model (LR) has also been widely used in statistics for
many years and has recently been the object of extensive study
in the machine learning community (Dreiseitl & Ohno-Machado,
2002; Duda & Hart, 2001; Hosmer & Lemeshow, 2000; Yuan-chin
& Sung-Chiang, 2004). During the last two decades several alterna-
tive non-parametric classification techniques have also been devel-
oped, including, among others, mathematical programming
techniques (Fredd & Glover, 1981), multicriteria decision aid meth-
ods (Doumpos, Zopounidis, & Pardalos, 2000), neural networks
(Patuwo, Hu, & Hung, 1993; Widrow, 1962) and machine learning
approaches (Kordatoff & Michlaski, 1990).

However, in spite of the great number of techniques developed
to solve classification problems, there is no optimum methodology
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or technique to resolve a specific problem and this is why the com-
parison and combination of different types of classification is a
common practice today (Lin, Lee, & Lee, 2008; Major & Ragsdale,
2001; Martínez, Hervás, et al., 2006).

As a matter of fact, the present work deals with the application
of a new hybrid methodology that combines multinomial logistic
regression and unit-product network models as an alternative to
other well known techniques (some relatively recent and others
more traditional) for solving a real classification problem in the
livestock sector. It is an extension to more than two classes of a re-
cent work which propose this method for two classes (Hervás &
Martínez, 2007).

The combination of the two techniques is justified by the fact
that, although LR is a simple and useful procedure, it poses prob-
lems when applied to a real problem of classification, where we
frequently cannot make the stringent assumption that there are
additive and purely linear effects of the covariates. These difficul-
ties are usually overcome by augmenting or replacing the input
vector with new variables, basis functions, which are transforma-
tions of the input variables, and then by using linear models in this
new space of derived input features. Methods like sigmoidal feed-
forward neural networks (Bishop, 1995), projection pursuit learn-
ing (Friedman & Stuetzle, 1981), generalized additive models
(Hastie & Tibshirani, 1990) and PolyMARS (Kooperberg, Bose, &
Stone, 1997), and a hybrid of multivariate adaptive splines
(Friedman, 1991; Tian-Shyug et al., 2006), specifically designed
to solve classification problems, can be seen as different non-linear
basis function models.

The unit-product networks are similar to standard sigmoidal
neural networks but are based on multiplicative nodes instead of
additive ones. These functions correspond to a special type of neu-
ral networks called product-unit neural networks (PUNN) intro-
duced by Durbin and Rumelhart (1989), and developed by Ismail
and Engelbrecht (1999) and Schmitt (2002). The nonlinear basis
functions of the model are constituted by the product of the vari-
ables initially included in the problem formulation raised to arbi-
trary powers. We estimate the variables’ exponents and
determine the optimum number of product units in several steps
(solving one of the main problems in the use of this type of mod-
els). In a first step an evolutionary algorithm (EA) is applied that
optimizes a loss function. However, these algorithms are relatively
poor at finding the precise optimum solution in the region that the
algorithm converges to. So a local optimization algorithm was
used, in a second step, to improve the EA’s lack of precision. Once
the basis functions have been determined by the EA, the model is
linear in these new variables together with the initial covariates,
and the fitting proceeds with the standard maximum likelihood
optimization method for multinomial logistic regression. Finally,
a backward-step procedure is applied, pruning variables sequen-
tially to the model obtained previously until further pruning does
not improve the fit. In this way the models obtained can be simpler
and more comprehensible for researchers in the livestock sector.

The performance of the proposed methodology was evaluated
in a real problem which consists of classifying a sheep flock into
three classes, according to its milk production capacity, by using
solely the first milk controls, and thus shortening the current eval-
uation process that uses the selection schema of the Manchegan
breed (Montoro & Pérez-Guzmán, 1996). Three classes are estab-
lished: the best productive ones (called ‘‘good”), the worst (called
‘‘bad”) and the intermediate (called ‘‘normal”). With the results
of the classification, the stock farmer would be able to identify
the most productive animals in the flock with a minimum of nec-
essary information and could then contribute to the genetic pro-
gress of the breed. Moreover, these models could lead to a
decrease in the great differences in production that have been
found in the last few years between different Spanish sheep breeds,
like the Manchegan, with respect to other breeds (the French Laca-
une, for example) (Buxadé, 1998; Gallego & Bernabeu, 1994; Ser-
rano & Montoso, 1996).

So we have here an application of new computational method-
ologies for the management of a dairy, a sector relatively
untouched by the technological innovations in business manage-
ment that have been appearing in the last few years (Torres,
Hervás, & Amador, 2005). In general, the greater part of operational
researchers’ and agrarian economists’ attention has been concen-
trated on the area of animal feed, due more to their connection
with the animal food industry than to any connection with the
dairy establishments themselves.

Simultaneously we compare our model results with those ob-
tained by a standard multinomial logistic regression that uses only
the original input variables, to verify the advantages of our ap-
proach. Furthermore, other classification algorithms based on arti-
ficial neural networks were applied (Dreiseitl & Ohno-Machado,
2002). Specifically we use a standard multilayer perceptron model
(MLP) that uses a back-propagation learning algorithm (Hayken,
1994; Williams & Minai, 1990), and another MLP model, where
an evolutionary algorithm is coupled with a pruning one to elimi-
nate non-significant model coefficients (Bebis & Georgipoulos,
1997; Honaver & Balakrishnan, 1998) (from now on we will call
this model MLPEA). Thus we attempt to achieve the neuronal net-
work architecture that will allow us to predict what sheep produc-
tive capacity will be relying on the least possible amount of
information. We have also applied the second most popular choice
of network in classification problems; the radial basis function net-
work (RBF). This type of network has a very strong mathematical
foundation and uses normalized Gaussian radial basis functions
(Orr et al., 1996; Oyang, Hwang, Ou, Chen, & Chen, 2005).

Finally we apply other well known classification methods to our
problem (some of them of statistical origin and others from the
computational field) to compare their classification capacity with
ours. We have used: the classical decision tree C4.5 (Quinlan,
1993) with pruning (http://www.cse.unsw.edu.au/quinlan/); three
statistical algorithms: a Linear Discriminant Analysis, LDA, where
hypothetically the instances within each class are normally distrib-
uted with a common covariance matrix; a quadratic discriminant
analysis, QDA, where each covariance matrix is different and esti-
mated by the corresponding sample covariance matrix; and, final-
ly, the K-Nearest Neighbour algorithm (KNN) (Dasarathy, 1991;
Hervás & Martínez, 2007; Kaefer et al., 2005).

The rest of the paper is organized as follows. Section 2 describes
the proposed logistic regression model and the other methodolo-
gies applied, Section 3 explains the process to obtain the data set
as well as the procedure to select the variables to include in the
models. The results of the experiment are tabulated and discussed
in Section 4. Finally, conclusions are presented in Section 5.
2. Methodology

2.1. Multinomial logistic regression with product unit covariates

Logistic regression methods are common statistical tools for
modelling discrete response variables such as binary, categorical
and ordinal responses. If the values of the response of these vari-
ables refer to different categories where a specific group of ele-
ments (called a sample), can be grouped into a class according to
a series of characteristics which have previously been measured
for each element, we are confronted with what is called a classifi-
cation problem. So, in a classification problem we find the follow-
ing elements: a number of features xi, i = 1, . . . ,p which are
measured from each element in the sample; a finite number of
classes K where the elements have to be classified as well as the
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group of elements (individuals or objects) that make up the sample
Then if we have measurements of each variable xi for each element
of a group of size N we can represent the sample by D = {(xn,yn);
n = 1,2, . . . ,N} where xn = (x1n, . . .xpn) is the vector of input variables
taking values in X � Rk and yn is the class level of the nth individ-
ual. The class level is represented with a ‘‘1-of-K” encoding vector
y = (y(1), y(2), . . .,y(K)), such as y(l) = 1 if x corresponds to an example
belonging to class l and y(l) = 0 otherwise. The problem is, based on
the training sample, to find a decision function C:X ? {1,2, . . . ,K}
for classifying the individuals. In other words, C provides a parti-
tion, say D1, D2,. . ., Dk, of X, where Dl corresponds to the lth class,
l = 1,2, . . . ,K, and measurements belonging to Dl will be classified as
coming from the lth class. The objective is to find the decision func-
tion permitting the identification of the class where each element
in the sample belongs, with the smallest error possible. It is usually
assumed that the data composing the training sample are indepen-
dent and identically distributed in an unknown probability distri-
bution. Suppose that the conditional probability that x belongs to
class l verifies: p(y(l) = 1jx) > 0, l = 1,2, . . . ,K, x 2X, and sets the
function:

flðx; hlÞ ¼ log
pðyðlÞ ¼ 1jxÞ
pðyðKÞ ¼ 1jxÞ ; l ¼ 1;2; . . . ;K; x 2 X ð1Þ

where hl is the weight vector corresponding to class l and for iden-
tifiability fK(x,hK) � 0.

Under multinomial logistic regression, the probability that x be-
longs to class l is given by

pðyðlÞ ¼ 1jx; hÞ ¼ exp flðx; hlÞPK
l¼1 exp flðx; hlÞ

; for l ¼ 1;2; . . . ;K ð2Þ

where h = (h1,h2, . . .,hK�1).
Regression logistics (or soft-max in neural network literature)

(Cox, 1970a; Cox & Snell, 1989b; Hosmer & Lemeshow, 2000) uses
a classification rule which is based on the optimal Bayes rule and
tries to assign each element in the sample to a class where it has
the greatest possibility of belonging. In other words, an individual
should be assigned to that class which has the maximum probabil-
ity, given the vector measurement x:

CðxÞ ¼ l̂; where l̂ ¼ arg max
l

f lðx; ĥlÞ; for l ¼ 1; . . . ;K ð3Þ

On the other hand, because of the normalization condition we
have that,

PK
l¼1pðyðlÞ ¼ 1jx; hÞ ¼ 1 and the probability that one of

the classes (in our case the latest) need not be estimated. Observe
that we have considered fK(x,hK) � 0. In our application K is equal
to three, because the sheep are catalogued in three productive clas-
ses (‘‘good”, ‘‘normal” and ‘‘bad”) therefore we only have to esti-
mate the probability for two classes and the discrimination will
depend only on two discriminating functions.

The usual parametric approach to a multinomial logistic regres-
sion problem is to use the linear model in the input variables,
although in practice it may be desirable to model the predictor ef-
fects by using smooth, nonlinear functions. The logistic model as a
nonlinear regression model is a special case of a generalized linear
model (McCullagh & Nelder, 1989).

flðx; hlÞ ¼ h1lðx1Þ þ . . .þ hplðxpÞ; l ¼ 1;2; . . . ; k ð4Þ

where hil(xi), i = 1,2, . . . ,p are one-dimensional functions.
What we propose in this work is the application of multinomial

logistic regression models where the function fl(x,hl) is established
partly linearly and partly nonlinearly. The nonlinear term is consti-
tuted by basis functions given by products of the input variables
raised to real powers, which represents the possible interactions
between the variables. The general expression of the model is gi-
ven by:
flðx; hlÞ ¼ al
0 þ

Xp

i¼1

al
1xi þ

Xm

j¼1

bl
j

Yp

i¼1

x
wji

i ; l ¼ 1;2; . . . ;K � 1 ð5Þ

where hl ¼ ðal; bl;WÞ; al ¼ al
0;al

1; . . . ;al
p

� �
; bl ¼ bl

1; . . . ;bl
m

� �
and

W = (w1, w2,. . .,wm), with wj = (wj1, wj2,. . .,wjp), wji 2 R.
Hence we shall make use of the more general basis function

models that assume that the non-linear part of (5) corresponds
to a special class of feed-forward neural networks, namely the
product-unit neural network (PUNN), introduced by Durbin and
Rumelhart (1989) and studied in several works (Engelbrecht & Is-
mail, 2000; Hervás & Martínez, 2007; Ismail & Engelbrecht, 1999;
Martínez, Hervás, & Martínez, 2006; Martínez, Martínez, & Hervás,
2006; Schmitt, 2002). They are an alternative to the standard sig-
moidal neural networks and are based on multiplicative nodes in-
stead of additive ones. This class of multiplicative neural networks
comprises such types as sigma-pi networks and product unit net-
works. If the exponents in (5) are {0,1} we obtain a higher-order
unit, also known by the name of sigma-pi unit. In contrast to the
sigma-pi units, in the product-unit the exponents are not fixed
and may even take real values. In this way we get more flexible
models and avoid the huge number of coefficients involved in
the polynomial model. To avoid the problem that could result from
networks containing product units that receive negative inputs and
weights that are not integers, the values for the input variables (xi)
are limited to positive ones (because, as we know, a negative num-
ber raised to some non-integer power yields a complex number).
Since neural networks with complex outputs are rarely used in
applications, Durbin and Rumelhart (1989) suggest discarding
the imaginary part and using only the real component for further
processing. This manipulation would have disastrous conse-
quences for the Vapnik–Chervonenkis (VC) dimension when we
consider real-valued inputs. No finite dimension bounds could be
derived for networks containing such units (Schmitt, 2002).

Some advantages of product-unit based neural networks (PUN-
Ns) are their increased information capacity and the ability to form
higher-order input combinations. Durbin and Rumelhart (1989)
determined empirically that the information capacity of product
units (measured by their capacity for learning random Boolean
patterns) is approximately 3N, compared to 2N for a network with
additive units for a single threshold logic function, where N de-
notes the number of inputs to the network. Besides that, it is pos-
sible to obtain the upper bounds of the VC dimension in product-
unit neural networks similar to those obtained in sigmoidal neural
networks (Ismail & Engelbrecht, 1999). It is a consequence of the
Stone–Weierstrass Theorem to prove that product-unit neural net-
works are universal approximators (Schmitt, 2002) (observe that
polynomial functions in several variables are a subset of product-
unit models). A disadvantage of this type of nets with respect to
standard sigmoidal ones is the greater degree of difficulty for the
corresponding training process since small changes in exponent
values can provoke great changes in the error surface This type
of nets presents a greater number of local minimums thus increas-
ing the possibility of getting trapped in them For this reason local
back-propagation search algorithms are not very efficient for the
training of product units (Martínez, Hervás, et al., 2006, 2006), To
overcome this problem we use an evolutionary algorithm as part
of the process for the estimation of parameters (Goldberg, 1989,
1989a, 1989b) which we explain in the following section.
2.2. Hybrid estimation methodology

The methodology proposed is based on the combination of an
evolutionary algorithm (global explorer) and a local optimization
procedure (local exploiters) carried out by a maximum-likelihood
procedure. To perform maximum likelihood (ML) estimation of
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h = (h1,h2, . . . ,hK�1), that is, the components of the vector weights,
estimated in turn from the training data set, one can minimize
the negative log-likelihood function:

LðhÞ ¼ � 1
N

XN

n¼1

log pðynjxn; hÞ

¼ 1
N

XN

n¼1

�
XK

l¼1

yðlÞn flðxn; hlÞ þ log
XK

l¼1

exp flðxn; hlÞ
" #

ð6Þ

Maximum likelihood and the Newton–Raphson algorithm is the
traditional way to solve logistic regression. Typically, the algorithm
converges, since log-likelihood is concave. However, in our ap-
proach, the non-linearity of the PUNN implies that the correspond-
ing Hessian matrix is generally indefinite and the likelihood has
more local maxima (so gradient-based methods are not appropri-
ate to maximize the log-likelihood function). Moreover, it is impor-
tant to point out that computation is prohibitive when the number
of variables is large. Another difficulty is that the optimal number
of hidden nodes in the product-unit neural network is unknown
(i.e. the number of hidden nodes in the product-unit neural net-
work). For these reasons we propose a method to estimate the
parameters of the model in four steps.

(1) In a first step, an evolutionary algorithm (EA) is applied to
design the structure (the number of hidden nodes and num-
ber of connections within layers) and train the weights of the
exponents of the potential basis functions. That is, the evolu-
tionary process determines the number m of potential basis
functions (which represent the nonlinear part of the function
f(x,h) of the model) and the corresponding vector of expo-
nents W = (w1,w2, . . . ,wm).To apply evolutionary neural net-
work techniques, we consider a product-unit neural
network with the following structure: an input layer with p
nodes, a node for every input variable, a hidden layer with
m nodes, and an output layer with K � 1 nodes (K being the
number of classes). There are no connections between the
nodes of a layer, and none between the input and output lay-
ers either. The activation function of the jth node in the hid-
den layer is given by
Bjðx;wjÞ ¼
Yp

i¼1

x
wji

i ð7Þ

where p is the number of inputs, wji is the weight of the con-
nection between input node i and hidden node j and
wj = (wj1,. . .,wjp) the weights vector. The activation function
of the output node l is given by hl:

hlðx;bl;WÞ ¼ bl
0 þ

Xm

j¼1

bl
jBðx;wjÞ ð8Þ

where bl
j is the weight of the connection between the hidden

node j and the output node l and bl
0 the corresponding bias.

The transfer function of all hidden and output nodes is the
identity function. The parameters W = (w1,w2, . . . ,wm) are
estimated by means of an EA, described further on, which
optimizes the error function given by the negative log-likeli-
hood for N observations associated to the product-unit model
previously explained in (6), substituting fl (xn,hl) for hl:

L�ðb;WÞ ¼ 1
N

XN

n¼1

�
XK�1

l¼1

yðlÞn hlðxn; b
l;WÞ

"

þ log
XK�1

l¼1

exp hlðxn;b
l;WÞ

#
ð9Þ

Although in this step the evolutionary process obtains a spe-
cific value for the b vector parameter, only the
Ŵ ¼ ðŵ1; ŵ2; . . . ; ŵmÞ estimated vector parameter that builds
the basis functions is considered. The third step determines
the value for b (the vector parameter) and a (the coefficient
vector).
(2) In a second step, a transformation of the input space is con-
sidered adding the nonlinear transformations of the input
variables given by the basis functions obtained by the EA
in the first step, to the initial covariates:
H : Rp ! Rpþm

ðx1; x2; . . . ; xpÞ ! ðx1; x2; . . . ; xp; z1; . . . ; zmÞ
where z1 ¼ B1ðx; ŵ1Þ; . . . ; zm ¼ Bmðx; ŵmÞ

ð10Þ

The model is linear in these new inputs together with initial
covariates.
(3) In the third step the negative log-likelihood function for N
observations is minimized:
Lðh�Þ ¼ 1
N

XN

n¼1

�
XK

l¼1

yðlÞn ðalxn þ blznÞ
"

þ log
XK

l¼1

expðalxn þ blznÞ
#

ð11Þ

where zn ¼ ðB1ðxn; ŵ1Þ; . . . ;Bmðxn; ŵmÞÞ and h� ¼ ða;b; ŴÞ.
Now the Hessian matrix of the negative log-likelihood in the
new variables x1, . . . ,xp, z1, . . . ,zm is semi-definitely positive
and the coefficient vector h* is calculated with Newton’s
method, also known, as iteratively reweighted least squares
(IRLS) (Minka, 2003).
(4) Finally, we use a backward-step procedure, starting with the
full model with all the covariates and sequentially pruning
the covariates of the model obtained in the second step, until
further pruning does not improve the fit. At each step, we
delete the least significant covariate to predict the response
variable, that is, the one which shows the greatest critical
value (p-value) in the hypothesis test, where the associated
coefficient equal to zero is the hypothesis to be contrasted.
The procedure finishes when all tests provide p-values smal-
ler than the fixed significance level, and the model selected
in the previous step fits well.
2.3. General structure of the EA

A population-based evolutionary algorithm is used for the
architectural design and the estimation of real-coefficients. The
search begins with an initial population, and in each iteration the
population is updated using a population-update algorithm. The
general structure of the EA is the following:

(1) Generate a random initial population of size NR.
(2) Repeat the following steps until the stopping criterion is

fulfilled:

(a) Calculate the fitness of every individual in the popula-

tion and rank the individuals regarding their fitness.
(b) The best individual is copied into the new population

(elitism).
(c) The best 10% of individuals of the population are rep-

licated and substitute the worst 10% of individuals.
(d) Apply parametric mutation to the best 10% of

individuals.
(f) Apply structural mutation to the remaining 90% of

individuals.
Keeping in mind that h is a product-unit neural network and
can be seen as a multivaluated function:

hðx;b;WÞ ¼ ðh1ðx; b1;WÞ; . . . ;hK�1ðx;bK�1;WÞÞ ð12Þ
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we consider L*(b,W) as the error function of an individual h(b,W) of
the population. To measure the fitness of each individual, a decreas-
ingly strict transformation of the error function L*(b,W) is carried
out and given by:

AðhÞ ¼ 1
1þ L�ðb;WÞ where 0 < AðhÞ 6 1 ð13Þ

The mutations carried out by the algorithm can be parametric
or structural. Parametric mutations affect network weights while
the structural ones influence the network topology (hidden nodes
and connections). Parametric mutations consist of adding a nor-
mally distributed random variable with mean zero and standard
deviation r1 to each exponent wji of the model, while a normally
distributed one with mean zero and standard deviation r2 is added
to the rest of the coefficients bl

j. The standard deviation is updated
throughout the evolution according to the 1/5 success rule method
of Rechenberg (1975) which establishes the ratio of successful
mutation as 1/5. Therefore, if the ratio of successful mutation is
greater than 1/5, the mutation should increase; otherwise the devi-
ation should decrease. The adaptation tries to avoid being trapped
in local minima and to speed up the evolutionary process when
searching conditions are suitable. The modification of the expo-
nents is different from the modification of the rest of the coeffi-
cients, being r1 < r2, because the changes in the exponents
greatly affect individual fitness. The structural mutation applied
by the algorithm modifies the number of hidden nodes as well as
the connections between the nodes within the input and hidden
layers and those within the hidden and output layers, which affect
the net topology. We have applied five types of mutations: added
nodes, deleted nodes, added connections, deleted connections
and found nodes.

The parameters used in the evolutionary algorithm are the fol-
lowing: the exponents wji are initialized in the interval (�5, 5), the
coefficients bkj are initialized in (�10, 10). The maximum number
of nodes in the hidden layer is m = 6 which is large enough if we
take the number of input variables into account. We begin with
networks with two nodes. The number of nodes that can be added
or removed in a structural mutation is one or two. The number of
connections that can be added or removed in a structural mutation
is a number from one to six. The size of the population is NR = 2000.
The stop criterion is reached whenever one of the following two
conditions is fulfilled: (i) for five generations there is no improve-
ment either in the average performance of the best 20% of the pop-
ulation or in the fitness of the best individual. (ii) The algorithm
achieves 100 generations.

The input variables are normalized in the range (0.1, 0.9) to
avoid the sign saturation problems found in product unit transfer
functions. More details about the parametric and structural muta-
tion of the evolutionary algorithm can be seen in Martínez, Hervás,
et al. (2006, 2006).

2.4. MLP coupled with EA classifier (MLPEA)

To compare our results with those obtained using any standard
neural network model, we use a multilayer perceptron model
(MLP) that uses a back-propagation learning algorithm (Hayken,
1994). We have also applied a radial basis function network
(RBF), a very popular and successful method in classification prob-
lems, that implements a normalized Gaussian radial basis function
network and uses the K-means clustering algorithm to provide the
basis functions (Orr et al., 1996; Oyang et al., 2005).

Moreover another MLP model will be applied (which will be
called MLPEA), where an evolutionary algorithm is used to design
its architecture, coupled with a pruning one to eliminate non-sig-
nificant model coefficients (Honaver & Balakrishnan, 1998). The
EA applied is the same as that applied to design the structure
and train the weights of the product-unit neural network described
in 2.3. The maximum and minimum number of nodes in the hidden
layer is also the same.

The input variables are normalized in the range (0.1,0.9) to
avoid the sign saturation problems found in the sigmoid transfer
functions that are used in neuronal net models (Hayken, 1994).
Our experimental studies showed that three nodes in the hidden
layer gave the best results because a higher number caused over-
training.

2.5. Decision tree classifiers

We use an extended form of ID3, C4.5 (Quinlan, 1993, 1986) for
building the decision tree used in our analysis. C4.5 accounts for
unavailable values, continuous attribute value ranges, the pruning
of decision trees and rule derivation, and it also uses the gain-ratio
criterion to select attributes when partitioning the data. Unlike the
entropy-based criterion used in ID3, the gain-ratio criterion does
not exhibit a strong bias in favour of attributes having many out-
comes for a test. Quinlan’s goodness-of-split measure as compared
to alternative probabilistic measures is found in Breiman (1996).

2.6. Statistics classifiers

As already mentioned, LDA needs to fulfil a series of hypotheses
to be correctly applied, (for example, assuming that the covariance
matrices are equal) which does not always occur. Due to this, Qua-
dratic Discriminant Analysis (QDA) is used. In this method the
decision boundary between each pair of classes is described by a
quadratic equation in such a way that, although the procedure
for estimation by QDA is similar to those for LDA, separate covari-
ance matrices must be estimated for each class. But when the num-
ber of independent variables is high, this can mean a dramatic
increase in parameters. Classification based on the KNN algorithm
differs from the other methods considered here, as this algorithm
uses the data directly for classification, without building a model
first (Dasarathy, 1991). As such, no details of model construction
need to be considered and the only adjustable parameter in the
model is K, the number of nearest neighbours to include in the esti-
mate of class membership: the value of P(y/x) is calculated simply
as the ratio of members of class ‘‘y” among the K nearest neigh-
bours of x. By varying K, the model can be made more or less flex-
ible (small or large values of K, respectively).

We also applied standard multinomial logistic regression (LR),
with the original variables, to compare its performance to our ap-
proach (LRPU).

LDA and QDA were applied with the platform called KEEL
(Knowledge Extraction based on Evolutionary Learning), fruit of a
research project aimed at developing a Computational Environ-
ment for integrating the design and use of knowledge extraction
models from data using evolutionary algorithms. It is available
on the project’s web site (http://www.keel.es). C4.5, KNN, MLP,
RBF and LR models are part of the classifier algorithms employed
in the WEKA machine learning environment (Witten & Frank,
2000). LRPU and MLPEA were applied with specific made-to-order
programs.

2.7. Parameters of the evaluation of the findings

To measure the yield of the models, we use the Correct Classifi-
cation Rate (CCR) which represents the percentage of sheep cor-
rectly classified out of the total number of observations in
training and generalization sets, respectively. For a perfect classi-
fier, CCR will be equal to 1. We have also determined the CCR by
class, that is, the percentage of sheep correctly classified as per-
taining to a given class to the total number of sheep that belong

http://www.keel.es


Fig. 1. Graphic representation of the protect unit based neural network applied (for
nine classes E-1 = 2 output modes, and p = 6 input variables).

Fig. 2. Graphic representation of the variables used to recognize the sheep’s
production category.
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to that class. In this way we can analyse the individual difficulties
posed by the different methodologies used to recognise each class
in particular. We also analyse classification errors made with the
different techniques applied to each lactation and by classes.

3. Experiments

The application of the proposed methodology is based on the
genealogical and productive records pertaining to a 20 year period
(1980–2000) on a sheep farm of Manchegan breed sheep that is lo-
cated in the Spanish province of Ciudad Real. This breed is one of
the most important in Spanish flocks although the production of
milk obtained in the main area where this breed is found reaches
only about 70 litres per animal and lactation. This figure is very
far from the real potential production of this race, since the total
mean production per animal on those livestock farms that carry
out official milking controls is 166 litres per lactation period or
135 l in 120 days (Molina, 1987; Montoro & Pérez-Guzmán,
1996). So we try to use the new methodology as an instrument
to aid in the classification of sheep according to their productive
capacity using solely the first milk controls, shortening the current
program for the genetic selection of this breed (Torres et al., 2005).

Although there were changes in the size of the herd during this
time, there are currently still 3000 mothers in the production
phase. Nonetheless, the lack of a systematic and rigorous method
for the gathering of information (traditionally carried out by the
shepherds themselves) made the filtering of the initial data a long
and arduous task. Due to this, only those registers of original data
with the most complete information were selected, thereby limit-
ing the useful data at our disposal considerably. The lack of effi-
ciency in the cataloguing of sheep flock data is not of particular
importance in this study, however, although it is a frequent prob-
lem found by researchers in the sector and considerably curtails
progress in the current selection process of the Manchegan breed
(Molina, 1987).

3.1. Data

Production data collection was carried out in the following way:
once the sheep had given birth, the first control was registered on
the day of the week specified for this task, before the eighth day
after birth, to give the controls a week-long time span. The suckling
period of the lambs lasted between 35 and 50 days, according to
the growth reached and taking into account whether there had
been a single or double birth. During this period, the lambs were
separated from their mothers for 12 h before the control (only
one daily control was taken during this phase, thus doubling the
production obtained in the first milking). Once the lambs had been
weaned, the sheep were milked twice daily until the end of the lac-
tation period. The production was measured by volume, taken in
Table 1
Descriptive statistics on lactation duration (in days).

Lactation Mean Minimum Maximum Standard d

First 138.28 90 189 27.97
Second 144.48 91 240 33.20
Third 145.29 90 228 31.98

Table 2
Descriptive statistics on milk production during different lactations.

Lactation Mean milk production in 150 days (l) Standard deviation (l)

First 128.26 38.69
Second 143.32 45.10
Third 153.53 56.78
two daily milking controls after weaning and always without revi-
sion. In the flock analysed, all the sheep were milked from the mo-
ment of birth.
eviation Variation coefficient (%) Median Sample size

20.22 137.0 178
22.98 142.0 133
22.01 147.5 112

Variation coefficient (%) 25th Percentile (l) 75th Percentile (l)

30.16 100 148
31.47 108 173
36.98 110 182



Table 3
Linear correlation coefficients between the variable total production and the
independent variables.

Lactation Linear correlation
maximum and
total production

Linear correlation
production on the 35th
day and total production

Linear correlation
maximum date
total production

First 0.78 0.69 �0.05
Second 0.84 0.72 �0.09
Third 0.57 0.83 �0.13
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3.2. Variables

The variable used to establish the productive category of the
sheep flock was the production, in litres, obtained during 150 lac-
tation days, because this is the variable used for the genetic selec-
tion program for the Manchegan breed. We considered this span of
time because the mean duration of the lactations analysed was
nearer to this figure (as we can see in Table 1) than the 120 days
demanded by the official milking control for normalizing milk
production.

We used milk production data from 178, 133 and 112 sheep in
first, second and third lactation respectively, whose controls were
recorded weekly, with lactation periods over 90 days and whose
first controls were recorded before 35 days after birth. The number
Table 4
Discriminant functions obtained with LRPU model.

Variables Function 1

Intercept X�5

First lactation
Coeff. �29.897 8.559
Std Error 6.018 9.046
p-Value .000 .344

Function 2
Coeff. �8.196 2.810
Std Error 2.336 7.177
p-Value .000 .695
B1 ¼ X�2

� �0:122 X�3
� �0:336 X�4

� �0:194 X�6
� �0:350

B2 ¼ X�1
� ��3:735 X�2

� ��2:940 X�4
� �10:841 X�5

� ��0:558 X�6
� �2:026

# coefficients = 19

Function 1

Intercept X�1

Second lactation
Coeff. �21.621 �14.859
Std Error 4.635 11.128
p-Value .000 .182

Function 2
Coeff. �9.758 �11.345
Std Error 2.937 8.298
p-Value .001 .172
B1 ¼ X�1

� �0:203 X�3
� �0:552 X�5

� �0:609

B2 ¼ X�2
� �3:748 X�3

� ��1:290 X�4
� �1:593 X�5

� �0:982

# coefficients = 23

Function 1

Intercept X�1

Third lactation
Coeff. �253.616 �44.502
Std Error 170.219 45.257
p-Value 0.136 0.325

Function 2
Coeff. �93.491 �19.127
Std Error 57.119 33.628
p-Value 0.102 0.569
B1 ¼ X�3

� �0:320 X�4
� �0:084 X�5

� ��0:077 X�6
� �0:212

# coefficients = 20
of cases in the three different lactations is not the same because of
the information loss in some controls.

Therefore, the sheep productive category was established by
their milk production in 150 lactation days, this being the depen-
dent variable of the classification models applied. As mentioned
in the introduction, we established three categories: the ‘‘good”
one, made up of the sheep whose productions were over the
75th percentile (codified as 1 ,0,0 by network recognition and as
1 for the rest of the methodologies applied); the ‘‘bad”, those sheep
with productions under the 25th percentile (codified as 0,0,1 by
the network recognition and as 3 for the rest of the techniques
used) and ‘‘normal”, which included the remaining 50% of the cases
(codified as 0,1,0 or as 2). The use of percentiles to establish the
productive categories in each lactation, instead of fixed production
quantities, was due to the need for considering the production in-
crease caused by the age of the sheep, which is usually measured
by the birth or lactation number. Sheep milk production increases
with the birth number until the third or fourth birth, according to
the breed, decreasing after the fifth birth (see (Gallego & Bernabeu,
1994 & Pérez & Gracia, 1994)).

The limits for establishing the productive categories were fixed
according to the livestock break-even point, which was previously
calculated with all the cost and revenue stock farming data. That is
why we used the information about the range of prices received by
sheep stock farmers in the last few years (1990–2000) according to
X�6 B1 B2

1.396 71.642 16.052
6.407 18.175 66.607
.827 .000 .810

5.472 21.154 17.768
5.429 11.940 66.588
.314 .076 .790

X�2 X�4 X�5 X�6 B1 B2

�7.718 11.438 �19.376 26.961 85.551 36.748
4.938 9.425 16.195 11.537 26.657 15.081
.118 .225 .232 .019 .001 .015

�2.846 5.996 �7.896 18.044 49.468 9.494
3.500 7.813 11.838 9.145 22.050 11.129
.416 .443 .505 .048 .025 .394

X�2 X�3 X�4 X�5 X�6 B1

8.579 �263.454 -33.809 37.357 �168.638 728.146
18.146 278.478 71.720 61.809 147.172 538.416
0.636 0.344 0.637 0.546 0.252 0.176

�8.552 �130.337 �53.123 32.499 �66.998 329.500
6.165 180.137 39.957 37.531 91.773 255.442
0.165 0.469 0.184 0.387 0.465 0.197



Table 6
CCR obtained in the total generalization set for each lactation (MLPEA and LRPU are
average results of 30 runs).

Methodology Lactation CCR weighted mean

First Second Third

Total generalization set
LDA 69.4 69.1 71.1 70.9
QDA 69.4 65.4 80.0 70.9
C4.5 66.6 67.3 66.7 66.9
KNN 63.9 58.2 71.1 64.0
MLP 72.2 69.1 77.8 72.7
MLPEA 74.6 71.8 75.6 74.0
LR 70.8 67.3 71.1 69.8
LRPU 75.0 76.4 73.3 75.0
RBF 65.3 60.0 71.1 65.1

12232 M. Torres et al. / Expert Systems with Applications 36 (2009) 12225–12235
the Spanish Agricultural, Fish and Food Ministry statistical year-
book. This range oscillated between 0.75 and 0.80 euros, approxi-
mately, per milk litre, and thus the sheep farm break-even point
varied between 100 and 110 l per sheep and lactation. So if we con-
sider our flock production quantities (see Table 2), the 25th per-
centile was lower than the break-even point, therefore we
considered as ‘‘bad” those sheep whose productions did not reach
the 25th percentile. The 75th percentile approximated the poten-
tial productivity of the race, which is estimated at 166 l per sheep
and lactation (Pérez & Gracia, 1994), and was established as the
minimum production in the ‘‘good” class. The remaining 50% of
the cases were classified as the ‘‘normal” class. However, if some
cost or revenue factor (like the price of milk, for example) changed,
other quantities could be considered to establish the productive
categories.

The input variables used to estimate the sheep productive cat-
egory were: Maximum production quantity, in litres (X1); maxi-
mum production date, in number of days elapsed since birth
(X2); quantity of milk produced, in litres, from birth to the 5th
week after birth (X3); quantity of milk produced, in litres, between
the 5th and 7th week after birth (X4); quantity of milk produced, in
litres, between the 7th and 9th week after birth (X5); quantity of
milk produced, in litres, between the 9th and 11th week after birth
(X6).

Figs. 1 and 2 show, respectively, a graphic representation of the
product unit based neural network used for K � 1 = 2 classes and
p = 6 input variables; and an example of a sheep milk production
curve.

The variable-selection process was carried out according to the
following criteria: the maximum production quantity, as well as
cumulative production until the 5th lactation week, were selected
Table 5
CCR obtained in each productive category and lactation in the generalization set
(MLPEA and LRPU are average results of 30 runs).

Methodology Lactation CCR weighted mean

First Second Third

Good sheep category
LDA 50.0 90.9 30.7 54.6
QDA 63.2 72.7 61.5 65.1
C4.5 68.4 90.9 46.1 67.4
KNN 73.7 63.6 61.5 67.4
MLP 78.9 63.6 53.8 67.4
MLPEA 68.1 86.4 69.2 73.1
LR 73.7 72.7 38.5 62.8
LRPU 88.9 81.8 46.2 74.2
RBF 73.7 72.7 38.5 62.8

Normal sheep category
LDA 88.2 81.5 95.4 87.9
QDA 82.3 66.7 86.4 78.3
C4.5 64.7 74.0 81.2 72.1
KNN 52.6 62.9 70.0 60.6
MLP 76.5 74.1 86.4 78.3
MLPEA 85.7 76.8 81.8 81.8
LR 73.5 70.4 86.4 75.9
LRPU 73.5 81.5 75.0 76.5
RBF 67.6 63.0 86.4 71.1

Bad sheep category
LDA 65.0 41.2 70.0 57.3
QDA 52.6 58.8 90.0 63.0
C4.5 68.4 41.2 60.0 56.5
KNN 64.7 47.1 77.3 60.9
MLP 57.9 64.7 90.0 67.4
MLPEA 61.9 54.4 70.0 60.9
LR 63.2 58.8 80.0 65.2
LRPU 65.0 64.7 90.0 70.3
RBF 52.6 47.1 80.0 56.5
because of their strong linear correlation with the dependent var-
iable (both linear correlation coefficients were significant to a 99%
confidence level). The maximum production date was included be-
cause it is, according to numerous authors (Purroy (1982) & Ser-
rano & Montoso (1996)), one of the most influential variables in
total milk production, although in our case the linear correlation
between this variable and total production was not significant
(see Table 3). The remaining independent variables considered
(production quantities obtained at different lactation weeks) were
selected to reach the goal of estimating the sheep productive cate-
gory as soon as possible, without waiting until the end of their lac-
tations. We considered cumulative productions until the 11th
week after checking that the classification results were worse if
we eliminated the input variables referred to during the produc-
tion between the 7th to 9th, and 9th to 11th weeks. We used
cumulative production quantities from several periods instead of
daily production because the milk control dates were not the same
for all sheep.

The cases analysed in each lactation were randomly separated
into two sets: 60% for the training set, and the remaining 40% for
the generalization set (we decided not to use a validation set be-
cause of the reduced number of cases available for the second
and third lactations). Thus we worked with 106 cases for training
and 72 for generalization in the first lactation; 70 and 55, respec-
tively, in the second lactation, and finally, 67 and 45 in the third
lactation.

What must be emphasized here is the enormous difficulty
posed by the extraction of data in these circumstances, since it is
necessary for the shepherd himself to record the data out in the
country.
4. Results

We go on to comment on the results obtained with the different
methodologies applied (in terms of CCR) as well as the repercus-
sion of the misclassification of livestock.

4.1. Comparison of CCR obtained with the methodologies applied

Table 4 shows the discriminant functions obtained with our ap-
proach, logistic regression with product units (LRPU). In these
functions the X* variables are the original inputs normalized in
the range (0.1, 0.9). In Table 5 we can see the CCR obtained in each
productive category in the generalization set with LRPU, MLPEA
and other methodologies. We have included the average results
obtained with MLPEA and LRPU in 30 runs. (The right-hand column
shows the weighted arithmetic mean of the CCR obtained in the
three lactations considered with each method).



Table 7
Consequences of classification errors.

Error (observed-
estimated class)

Repercussion in the genetic progress goal Repercussion in diet cost

Good–normal A good sheep is not selected to contribute to genetic progress The diet quality is worse than this sheep should receive and can
provoke lower productivity

Good–bad A good sheep is not selected to contribute to genetic progress and moreover it
might be replaced unnecessarily

The diet quality is worse than this sheep should receive and can
provoke lower productivity

Normal–good A normal sheep is incorrectly selected to contribute to genetic progress Diet with a higher quality and cost than the sheep would receive
otherwise

Normal–bad A normal sheep can be incorrectly replaced The diet quality is worse than this sheep should receive and can
provoke lower productivity

Bad–good Totally erroneous selection of a bad sheep to contribute to genetic progress Diet with a higher quality and cost than the sheep needs
Bad–normal A bad sheep can be incorrectly maintained Diet with a higher quality and cost than the sheep needs

Table 8
Mean uncorrected classification rate (in percentage) of the six models in the three lactations analysed (generalization set).

Model Good as normal Normal as good Normal as bad Bad as normal Good as bad Bad as good

LDA 40.5 9.7 14.5 28.3 0 0
QDA 32.6 8.4 13.2 32.6 2.3 0
C4.5 30.2 10.8 16.9 41.3 2.3 2.2
KNN 30.2 16.9 32.5 45.6 0 0
MLP 32.7 8.9 12.1 29.1 1.8 0
MLPEA 21.7 8.9 9.6 39.3 0 0
LR 36.6 11.3 11.9 32.7 1.8 0
LRPU 25.6 7.2 14.5 30.4 0 0
RBF 36.6 14.8 12.9 41.8 1.8 0
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If we look at the results shown in Table 5 we can verify that
LRPU followed by MLPEA are the best approaches in ‘‘good” class
recognition.

In general, the ‘‘normal” category is the one which all the meth-
ods applied (especially LDA) find to be the best (the KNN applica-
tion is the worst).

The results show us that the ‘‘bad” class is the least recognized
one by the group of techniques used, although the LRPU model
reached the highest CCR (70.3%) in the generalization set.

Table 6 shows the value of the CCR obtained in the total gener-
alization set for each lactation (without distinguishing between
classes). In this case the LRPU model is the one that offers the best
results, followed by the MLPEA application. Therefore, if we com-
pare the mean results obtained with the LRPU model to those of
the other methods applied, we can see that our approach gets
the best results in the total generalization set, considering the
three productive categories simultaneously. Moreover LRPU (after
the C4.5) was the technique that showed the least variability in
the CCR obtained in the three lactations analysed, therefore its
CCR mean is one of the most representative.

The LRPU also gets the best results in the recognition of both the
extreme ‘‘good” and ‘‘bad” classes. However, the highest CCR ob-
tained for the ‘‘normal” class is with the LDA application.

4.2. Misclassification costs

We have to take misclassification costs into account in order to
obtain a model with the lowest possible cost (Johnson & Wichern,
2002). In our case, if we consider the different types of mistakes
that we can commit, we will understand that the most costly ones
are those that confuse the extreme classes. This is because the
‘‘good” sheep receive a more nutritious and therefore more expen-
sive diet than their flock companions and, furthermore, will be se-
lected for reproduction, thus contributing to the genetic progress
of the race. ‘‘Bad” sheep receive a cheaper and worse diet and
could be those selected for replacement in the flock. Because of
this, the confusion between the extreme classes could provoke
considerable cost both in quantity and quality for the farm stock.
The consequences of each possible type of misclassification are
summarized in Table 7. Table 8 studies the misclassification per-
centages committed in each class in the three lactations. We can
see that several methods such as: C4.5, QDA, MLP, and RBF con-
fuse the extreme classes (although in a reduced number of cases).
However, the MLPEA, LDA, KNN and LRPU models do not confuse
these categories. The rest of the possible mistakes in the classifi-
cation task (the confusion between ‘‘good” and ‘‘normal” or ‘‘bad”
and ‘‘normal”) could result in the same cost for the farmer. So, is it
a bad idea to relegate more productive capacity to a sheep than it
really has, thus investing more than necessary in its feed and care,
or even selecting it to improve the breed? Or, on the contrary, is
the alternative worse, considering a sheep to have a lower pro-
ductive capacity than it really does, thus dedicating fewer re-
sources to its maintenance, or even selling it at a lower price
than its real value and replacing it unnecessarily? If we observe
Table 8, we can check how the LRPU and MLPEA methodologies
commit the lowest misclassification rates in the majority of cases.
The most frequent classification mistakes in general are consider-
ing either good or bad sheep as normal with all the methods
applied.

5. Conclusions

In spite of the fact that new methodologies, like artificial neural
networks and evolutionary algorithms, are becoming more and
more frequent in the business world, the agricultural or stock
breeding sectors are not among the most common application
areas (like finance, accounting, engineering, productive process,
marketing). With this research we have attempted to demonstrate
that these methodologies could improve the techniques and eco-
nomic management of livestock enterprises, exemplified by the
sheep farm here studied.

The LRPU and, afterwards, MLPEA applications have offered the
best results for the recognition of sheep productive categories,
and therefore constitute the best approaches. If the goal is to max-
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imize the CCR for the total generalization set, without distinction
between classes, the LRPU and MLPEA techniques are the best op-
tions. If the goal is to increase the precision in extreme class rec-
ognition (‘‘good” and ‘‘bad”), these techniques achieve the best
results again. Although the LDA application is the best in ‘‘normal”
class recognition, we think that the recognition of extreme classes
is the most interesting one for the livestock farmer because early
identification of the most productive sheep (found solely through
the first milk controls) will permit him to select the best for
reproduction, thus contributing to the genetic progress of the
flock, and shortening the current evaluation process used by the
selection schema of the Manchegan breed. Moreover the stock
farmer could use the information about the productive capacity
of his sheep to design the flock feeding strategy (since the most
productive sheep would receive a more nutritious and expensive
diet).

Moreover the identification of the least productive sheep could
permit their exclusion from the selection program and even their
replacement (because their maintenance implies a high opportu-
nity cost for the enterprise as an unachieved profit). So early sheep
classification could lead to a decrease in the great differences in
production that have been found in the last few years between dif-
ferent Spanish sheep breeds, like the Manchegan, with respect to
other breeds (the French Lacaune, for example).

This research has attempted to demonstrate how the proposed
LRPU model as well as the artificial neural network model are able
to improve other standard multivariate statistical techniques (such
as standard LR, LDA, QDA, KNN and C4.5) in classification prob-
lems, even when the data quality is reduced. Therefore we can af-
firm that these techniques constitute a new and useful tool for
decision making in the technical and economic management of
livestock enterprises.
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