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Abstract. This paper proposes a Neural Network model using Geneddltisrnel functions for the hidden layer of a feed forward
network. These functions are Generalised Radial Basistiuwnsc(GRBF), and the architecture, weights and node tagolo
are learned through an evolutionary algorithm. The propasedel is compared with the corresponding standard hi
models: Product Unit (PU) neural networks, Multilayer Rgtcons (MLP) with Sigmoidal Units (SUs) and the RBF neural
networks. The proposed methodology is tested using twametimark classification datasets from well-known macléaenin
problems. GRBFs are found to perform better than other atanghsis functions at the classification task.
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1. Introduction tion basis functions, such as the Multilayer Perceptron
(MLP) NNs where the transfer functions are Sigmaidal
The simplest classification method generates a class Units (SUs) or the Product Unit (PU) NN [2,3], and 2)
label based on observations via linear functions of the NNs based on kernel basis functions, such as the Radial
input variables. This process of model fitting is quite Basis Function (RBF) NN [4].
stable, resulting in low variance but a potentially high The RBF NN can be considered a local averaginge
bias. Frequently, in real-classification problem, we procedure. Its improved approximation capability and
cannot make the stringent assumption of additive and its architecture have drawn a lot of attention.
purely linear effects of the input variables. Atraditional op [4] concluded that an RBF NN can provide a fast

used in this new space of derived input features. tor [6]. In the literature, it has been compared to other

Depending on the basis function used in the hidden ynjversal approximators such as MLPs [5,7] and fuzzy
nodes, we can distinguish, among other, the following systems [8,9].

Neural Networks (NNs) [1]: 1) NNs based on projec-  Training of RBFs can be classified into two cate-
gories: quick learning and full learning. A Quickle

*Corresponding author: Adiel Casia Department of Informat- ing usually InVOI\./eS a two-sFep pro_cess. First, th pa—
ics. University of Pinar del Rio. Pinar del Rio. Cuba, TedXF+53 rameters governing the basis functions are determined
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guantisation (VQ) approach. Next, the weights of the 2. RBF Neural Networks and GRBF model
basis functions are determined using linear optimisa-

tion techniques. One drawback of quick learningisthat RBF NNs [15] have been used in extremely var-
the clustering/VQ methods are usually unsupervised ied domains, including function approximation, pattern
and the target outputs are totally ignored during learn- classification, time series prediction, data mining, sig-
ing [10]. In addition, the linear optimisation problem nals processing, and nonlinear system modelling and
may be ill-condited in some cases [11]. A full learn- control. RBF NNs have some useful properties|that
ing scheme optimises all of the parameters in a super- render them suitable for modelling and control. From a
vised mode [10,12,13]. Compared to quick learning, structural viewpoint, RBFNN are closely related to di-
full learning usually provides more accurate results be- rect kernel methods [16] and Support Vector Machines
cause it trains the model using both input and target (SVM) with Gaussian kernels functions [17-19].
variables. The RBF NN learning process, i.e., the optimisation
In high-dimensional space, all pairwise distances be- of adjustable parameters, includes determining centre
tween patterns seem to be very similar, i.e., the dis- vectors, radii (or widths) of the distributions, and linear
tances to the nearest and furthest neighbours look near-output weights connecting the RBF hidden nodes to the
ly identical. In this kind of problem, the distances are output nodes. Another important issue is the determi-
concentrated, and the Gaussian kernelloses its interpre-nation of the network structure or the number of RBF
tation in terms of locality around its centre [14]. There- hidden nodes based on the parsimonious principle [20,
fore, the widely-used Gaussian kernel and Euclidean 21]. The number and positions of the basis functions,
distance are not necessarily appropriate functions to which correspond to the neurons in the hidden layer of
quantify similarity in high dimensional spaces. De- the network, have an important influence on the per-
spite this problem, the use of the Euclidean distance in fgrmance of the RBF NN. Both problems have been
high-dimensional spaces has notbeen questioned by thetackled using a variety of approaches. For instance,
machine learning community, because it corresponds the number and position of the RBFs may be fixed
to the distance as we define for our three-dimensional 3nd defined a priori [21]; they may be determined by
W°”d_- ) unsupervised clustering algorithms [22]; they may be
_This work evaluates the accuracy obtained by a spe- getermined through a supervised learning scheme that
c!al class.of RBF NNs, namely Generahsed Radla! Ba- includes growing and pruning procedures [23]; or they
sis Function (GRBF) NNs. This work aims to alleviate -5 pe evolved using evolutionary [24,25], or hybrid
the problem associated with the high dimensionality algorithms [26].

of the input space. It is important to observe that the "6 of the most common RBF models is represent-
GRBF NN is not an alternative to the classic Gaussian gy py 5 Gaussian function where the output depends
function butis, a parametric generalisation of Gaussian g, the gistance between the instance and the centre of
function, with a new parameter, that relaxes or COn- e RBE. This distance can be formulated in different
tracts the .baS|s function (Fig. 1)._The training of these ways. The most common formulation is the Euclidean
networks is performed by a specific evolutionary algo- jistance. but when dimensionality grows and/or
rithm, in which the principal issue is the establish_me_nt data are,concentrated in boundaries of falimen
of amethod to choose adequate value_s forthe pr!nmpal sional space, standard Gaussian basis functions do not
parameters of the GRBF NNs, which involves fitting a perform well. To prevent the effects observed for stan-
new parameter. The key of this proposal is constitut- dard Gaussian RBFs, these basis functions can be gen-

e a1 1 by nccing  new paremeteichcan -
' lax or contract the basis functions. In this way, the

This paper is organised as follows. Section 2 in- ; . ; . . .
troduces RBF Neural Networks and specifically, the Ge_nerahzed Ra_dlal Basis F_unctlon. (GRBF) is defined
using the following expression [14]:

GRBF model. Section 3 formally presents the GRBF

model considered in this work, which is adapted to the X —¢||™

classification problem. In section 4, the main charac- B(x,wj) = eap I (1
teristics of the algorithm used for training the model are J

described. Section 5 presents the experiments carriedwhereK is the number of inputss; = (215, ..., 2 k)
out and discusses the results obtained. Finally, Sectionis the random vector of measurements amg =
6 presents the main conclusions and future directions (wjo, wj1, ..., Wik, Wj(x+1)), With r; = wjo, €; =

suggested by this study. (wj1, ..., wjx) andt; = wjk41). In this way, th
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Fig. 1. Generalised Gaussian with= 1, and different- values.

weight vectow; includes, respectively, the width, the a(x0) = —=P Ji(x.61)

centre and the exponent of thieh GRBF. These basis ’ Z‘j’:l exp f;(X, 6;) ’
functions allow a better matching between the shape of ] )
the kernel and the distribution of the distances, since the Where J is the number of classes in the probl
+ parameter provokes concavity or convexity around 7 " (X 6,) is the output of thg output neuron for patte

the point where the distancerngsee Fig. 1). X, 0 = (B, ,ﬂm,W1_, B =
of GRBFs andy;(x, 6;) is the probability a patterr

has of belonging to clags The model to estimate t

1=1,2,...,J(2

3. Generalized Radial Basis Functions for function f;(x, 6;) is defined by the following equatic
Classification m X ¢ [
Fi(%00) = 66+ B exp< B ) 3
In a classification problem, measuremenfs: = j=1 J

1,2,..., K, of a single individual (or object) are tak-  Using the softmax activation function presente
en, and the individuals are to be classified into one of Eq. (2), the class predicted by the NN correspon

the J classes based on these measurements. A trainingthe node in the output layer whose output value i
sampleD = {(Xn,Yn);n = 1,2,..., N} is available, greatest. In this way, the optimum classification
wherex,, = (z1in,...,Zrn) is the random vector of  (C(x) is the following:

measurements taking valuestiinc R%, andy,, is the . N

class level of thex-th individual, where the common C(x) = I, wherel = argmax g;(X, 0),
technique of representing class levels using a “1Fof- forl=1,2 T (4

encoding vector is adopted,= (y™"),y?, ..., y),

and the Correctly Classified Rate or accuracy of the The function used to evaluate a GRBF NN is the f
classifier is defined by’ = +; Zﬁ[:l I(C(Xn) = Yn), tion of cross-entropy error and it is given by the foll
wherel(.) is the zero-one lost function. A good clas- ing expression:

sifier tries to achieve the highest possiblen a given

N J
problem. 1) = _ D) £,(x,,, 0
In order to tackle this classification problem, the ©) ;[ ;yn fion,60)
outputs of the GRBF model have been interpreted from J 6
the point of view of probability through the use of the +log Z expfi (X, 1))

softmax activation function [2], which is given by: =1

, Wy, ), m is the numbe

d in
ds to
s the
rule

Uunc-
DW-
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g1(x,BL, W) ga(x, BZLW) - - gr1(x, B, W)

[ Softmax

Fig. 2. Structure of Generalised Radial Basis Function Bledetworks: an input layer witk input variables, a hidden layer with RBFs and
an output layer with/ — 1 nodes.

whered = (64,...,0;). The proposed algorithm re-  GRBFs are not Mercer’s kernels, i.e., they are not posi-
turns the best cross-entropy individuals as feasible so- tive semi-definite for all values of theparameter [14].
lutions. Finally, because of the normalization condi- This means that the optimisation problem will gener-

tion: ally not be convex. Thus, we estimate the parameters
J 6 by means of an evolutionary algorithm. This kind of
Z a(x,0;) =1 (6) metaheuristics has been proof to be very effective when
=1 optimizing neural network models [27-29].

and the probability for one of the classes does not need
to be estimated. For that reason, the GRBF NN models
proposed have — 1 outputs nodes instead dfoutput 4. Evolutionary Algorithm
nodes since the;(x,60,) =1 — Z;.];Ol gi(X, 6;). This
was used to reduce the number of output nodes in the A population-based Evolutionary Algorithm (EA) is
GRBF NN and, consequently, the complexity of the used for the architectural design and the estimation of
model. A scheme of these models is given in Fig. 2, thereal coefficients ofthe GRBF NN. The search begins
whereJ is the number of classes andis the number with an initial population of GRBF NNs, and, in each
of hidden nodes or RBFs of the neural net. iteration, the population is updated using a population-
The error surface associated with the model is very update algorithm. The population is subject to the op-
convoluted with numerous local optima and the Hes- erations of replication and mutation. The general struc-
sian matrix of the error functioi{6) is, in general, in- ture of the EA is similar to the structure of the one pre-
definite. Moreover, the optimal number of basis func- sented in [30,31], but with several significant modifi-
tions in the model (i.e. the number of hidden nodes in cations. In the current approacky) is the error func-
the neural network) is unknown, and, in this case, the tion for an individualg of the population, wherg is
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GRBF NN, which is given by the multivaluated func-
tion g(x,6) = {g1(X,601),....q1(x,0,-1)} [since the
number of outputs can be reduced because of the nor-
malization condition, see Eq. (6)]. The fithess measure

rori(6) givenbyA(g) = y75y. The severity of muta-
tions depends on the temperatiliigy) of the GRBF NN
model, defined b’ (g) =1 — A(g),0 < T'(g9) < 1.

To define the topology of the NNs generated during
the evolution process, we consider three parameters:
, Mg and My. The parameters: and My corre-
spond to the minimum and maximum number of hid-
den nodes in the whole evolutionary process and
corresponds to the maximum number of hidden nodes
in the initialisation process. To obtain an initial popula-
tion formed by models simpler than the most complex
model possible, the parameters must fulfil the condition

< My € M.

We generaté0.N, networks, whereV, = 200 is the
number of population networks during the evolution-
ary process. Then we select the b#gt neural net-
works. To generate a network, the number of nodes in
the hidden layer is taken from a uniform distribution
in the intervalim, Mj]. For hidden nodes, the number
of connections is alwayK + 2, because these connec-
tions represent, respectively, the centre, the width and
the exponent of each generalised radial basis function.
The number of connections between each output node
and the hidden layer is determined from a uniform dis-
tribution in the interval1, J — 1), and the connection
to the bias node is always present.

For the GRBF hidden nodes, the connections be-
tween the input layer and hidden layer are initialized
using a clustering algorithm, so the EA can start the
evolutionary process with well positioned centers. The
main idea is to cluster input dataid groups,M being

the number of GRBF hidden nodes. Therefore, each
hidden GRBF neuron can be positioned at the centroid
of its corresponding cluster.

The first algorithm modification consists of initiali-
sation of the GRBF radii, where the determination of
the initial 7 andr values are intimately related to the
distribution of the distances and can be set according
to the specificities of that distribution. The method to
choose adequate values ferand r is based on the
following criterion: the largest or “furthest” distances
(dr, the 5-th percentile of the distribution) must be
mapped to lower values of probability. Thenandr
can be calculated as follows by solving two different
equations [32]:
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is a strictly decreasing transformation of the entropy er- \yhere, is the mean of point's distances of the mem-

bers of the cluster to the centroid adgd is a valu
representing “farest” distances. Indeed, the most criti-
cal part of these equations is determined by ihen
dr values. For this reason, we use an estimataiof
associated to the statistical distribution of the distance
between the centroids and the individuals in the
ter: dr values can be approximately calculated, under
normality hypothesis, ag + 1.6450, whereo is th
standard deviation of these distances.

In every generation, a parametric mutation is accom-
plished for each coefficient;; or 6§. of the model
by adding Gaussian noise, where the variances of the
Normal distribution are updated throughout the evo-
lution of the algorithm. Once the mutation is per-
formed, the fitness of the individual is recalculated and
a conventional simulated annealing process is applied.
First, the link weights are mutated by adding a value
e € N(0,a - T(g)) wherea is the learning rate and
T(g) is the network temperature. The ragjiof eac
GRBF hidden node is mutated in the same way, adding
another value) € N(0,a - T'(g)). The learning rate
« is updated throughout the evolution of the algorithm.
There are different methods to update the variance. We
use one of the simplest methods: the 1/5 success rule of
Rechenberg [33]. The modification of GRBFs is very
sensitive tor variation. Indeed, when is near to the
interval [0, 2.5], a T variation drastically changes the
contraction of the GRBF basis function. On the other
hand, whenr > 2.5, the samer variation does not
drastically change the generalised Gaussian. Due to
this behaviour, the- modification value must depend
on the desired effect (see Fig. 3). To define this desired
effect, ther mutation is formulated as:

e r(m, —e-r-tan(A))
e 1+ mtan(A)

Tn+1 =

wheree is the Euler’s constant,,, 7,,+1 are the values
of 7 in the generatiom and¢ + 1 andA is the angle’s
variation that must be produced on the tangent of the
curve associated to the generalized function at the point
where the radii i3 (see Fig. 3). Further details about
the mutation and the mathematical derivation of the
formula can be found in the Appendix.
The angle’s variation is updated in each generation
since it depends of the learning ratend it is defined
as:
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3.0
r=1 X
Fig. 3. Parametric Mutation for the GRBFs models based on\halue.
Aea.- X (1= 1 9) selves. To analyse the performance of the G
30 1—ea—105 method, its results are compared to those obtainec

wherea is an integer value that can take values of 1 or the same evolutionary algorithm and parameter
—1 with probability 0.5. using other basis functions commonly used in NN

Structural mutation implies a modification in the classification: RBFs with Gaussian transfer functi

neural network structure and allows explorationsin dif- Sigmoidal Units (SUs) and Product Units (PUs).
ferent regions of the search space while promoting the ~ The selected datasets include seven binary pro
diversity of the population. There are four structural and five multi-class problems. They present di

RBF
1 with
s but
s for
ons,

blems
ffer-

mutations: connection deletion, connection addition, €ntnumbers of instances, features and classes (see Ta-

node deletion and node addition. These mutations are Ple 1). The minimum and maximum number of t
applied sequentially to each network. The reader can den nodes were obtained from the best result of &
consult[31] for more details about structural mutations. liminary experimental design ANOVA |, considerin

The stop criterion is reached if one of the following small, medium and high value [35] for the parame
conditions is fulfilled: a maximum number of gener- ™, M1, Mg. On each dataset, we performed 10
ations is reached or the variance of the fitness for the ferentsimulations (out of the 27 possible configura

best ten percent of the population is less than?. that satisfy the constraint < M; < Mg). The Tuke
post-hoc test was applied to analyse the results

nid-

L pre-
ga
ters
dif-
ition

y
of the

simulations [36]. If there were no statistically signifi-

5. Experiments cant differences among 139 C'r values (accuracy
the training set) for each configuration, we selecte

in
d the

In the first subsection, the the datasets and the exper-configuration corresponding to the minimum values of

imental configuration are described. In the subsequent m, M; andMg. Otherwise, we selected the config
subsections, the main experiments are presented. tion that achieved the best results. After that, we
the EA using the configuration previously selectec

5.1. Description of the datasets and the experimental each dataset. This value is also included in Table
design The experimental design was conducted usi
holdout cross validation procedure withy4 - n in-

The proposed methodologies are applied to twelve stances for the training dataset amg! instances for

datasets taken from the UCI repository [34], to test the generalisation dataset. To evaluate the stabil
their overall performance when compared among them- the methods, the evolutionary algorithm was rur

ura-
> ran
1 for
1.

ng a

ity of
1 30
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Table 1
Characteristics of the thirteen datasets used for the empets: number of instances (Size), number of Real (R),
Binary (B) and Nominal (N) input variables, total number oputs ¢ In.), number of classes# Out.), per-class
distribution of the instances (Distribution), minimum amé@ximum number of hidden nodes used for each dataset
([m, My, Mg]) and number of generationg:(Gen.)

Dataset Size R B N #In. # Out. Distribution [m, M1, Mg] # Gen.
Labor 57 8 3 b 29 2 (30, 27) [1,2,3] 25
Hepatitis 155 6 13 19 2 (32,123) [1,2,3] 25
Sonar 208 60 - - 60 2 (98,110) [1,2,3] 300
BreastC 28 4 3 2 15 2 (201, 85) [1,2,3] 50
lonos 351 33 1 — 34 2 (126, 225) 3,4, 5] 300
Card 690 6 4 5 51 2 (307, 308) [1,2,3] 50
German 1000 6 3 11 61 2 (700, 300) [2,3,4] 300
Newthyroid 215 5 - - 5 3 (150, 35, 30) [1,1,4] 100
Post-Op 90 1 - 7 20 3 (2,24, 64) [1,2,3] 100
Glass 214 9 - - 9 6 (70,76,17,13,9,29) [7,8,9] 500
Zoo 101 1 15 - 16 7 (41, 20,5, 13, 4, 8, 10) [4,7,9] 300
Ecoli 336 7 - - 7 8 (143,77,52, 35, [4,7,9] 300
20, 5,2,2)

All nominal variables are transformed to binary variables.
BreastC: Breast-Cancer.

times. The performance of each method was evaluated highest performance for three datasets. Furthermore,
using the correct classification rat@)( the GRBF models yield the best meai( = 83.26%)
All parameters of the EA are common for all prob- and ranking Rc~ = 1.33) in Cg. As can be ob
lems, exceptn, M;, Mg and the number of gener-  served, the GRBF models are especially accurate when
ations values, which are represented in Table 1. We dealing with high dimensionality problems (e.g., see
have carried out a simple linear rescaling of the input the German, Card, lonos or Labor datasets), because
variables to the intervel-2, 2], X7 representing the  the r parameter contracts or relaxes the shape of the
transformed variables. The connections between the Gaussian, adapting to the statistical distribution of the

hidden and output layers are initialised in theb, 5] distance.

interval. The initial value of the radii; are obtained To determine the statistical significance of the rank

in the interval(0, dpa.], Whered,,.. is the maximum  differences observed for each method in the different
distance between two training input examples. datasets, we have carried out a non-parametric Fried-

The size of the population i = 200. Forthe struc-  man test [37] using th€ rank of of the best models as
tural mutation, the number of nodes that can be added the test variable. A previous evaluation of iig val-
or removed is within thél, 2] interval, and the number  yes resulted in rejecting the normality and the equality
of connections to add or delete in the hidden and the of variances’ hypothesis. The Friedman test shows that
output layer during structural mutations is within the the effect of the method used for classification is statis-

[1, 7] interval. tically significant with a significance level of 5%, asithe
confidence interval i€y = (0, Fy.05 = 2.89) and the
5.2. Results of the GRBF NN F-distribution statistical values a&* = 6.50 ¢ C.

Consequently, we reject the null-hypothesis stating that
Table 2 shows the mean and the standard deviation all algorithms perform equally in mean ranking.

of the correct classification rate in the generalisationset  Based on this rejection, the Nemenyi post-hoc test is
(Cg) for each dataset and the GRBF, RBF, SU and PU ysed to compare all classifiers to each other. This test
models. All ofthe algorithms were run 30 times. Based considers that the performance of any two classifier is
on the mear€c of the 30 executions, we obtained the deemed significantly different if their mean ranks differ

ranking for each model on each dataget£ 1 for the by at least the critical differenc€&(D):

best performing model an& = 4 for the worst one).

Table 2 also includes the mean accuraGy;J and the CD =g K(K +1) (10
mean ranking B¢ ) for all datasets. From these re- 6D

sults, we conclude from a purely descriptive point of where K and D are the number of classifiers and
view, that the GRBF models obtained the b€st re- datasets, and the value is derived from the studen-

sults for nine datasets and the RBF models yield the tized range statistic divided by2 [38,39]. However,
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Table 2
Statistical results of the evolutionary algorithm usindfedent basis functions:
Mean and Standard Deviation (SD) of the accuracy in the gdisation set
(Ca (%)), mean accuracy({ (%)) and mean rankingk)

Method C'c (%))

GRBF RBF PU SU
Labor 91.1948.32 90.71+6.26  83.33+10.15 85.719.56
Hepatitis 85.96+3.21 86.84+3.16  85.084+5.04 85.52+ 5.01
Sonar 74.10+£3.60 73.68+3.53  75.254+4.87 68.71+ 4.08
BreastC 68.87+2.10 68.45+1.87 67.65+£2.49  68.68+ 2.14
lonos 93.75+ 1.76  90.42+ 2.60 91.15-2.20 92.61+2.75
Card 87.94+1.38 76.69+ 3.33 87.50+2.75  87.71+ 1.42

German 74.33+£2.77 71.69% 1.32 71.24-1.24  73.07+1.64
Newthyroid 97.104+1.93  95.00+ 2.01 96.85+ 2.71 94.88+ 2.26
Post-Op 79.09+£8.06 78.93+7.21 78.93+ 8.39 76.51 7.17

Glass 68.93+£5.19 64.91+474 65.16:4.17 67.67+3.49
Zoo 94.93+277 75.07+5.00 94.80+4.48  92.67+4.34
Ecoli 82.98:+3.82 84.44+292 80.30+520 83.73+ 245
Ca (%) 83.26 79.73 81.43 81.45
R 1.33 2.87 3.04 2.75

The best result is in bold face and the second best resudtlicsit

Table 3
Statistical analysis of the evolutionary algorithm usiifedent basis
functions: Critical Difference@ D) values and differences of rank-

6. Conclusions

e, o: Statistically difference witle = 0.05 () anda = 0.1 (0);

+: The difference is in favour of the Control Method or Metkjpd functions.

it has been noted that the approach of comparing all Appendix: Derivation of the formula used for the
classifiers to each other in a post-hoc test is not as Sen- . utation of the + parameter

sitive as the approach of comparing all classifiers to a

this latter type of comparison is the Bonferroni-Dunn js presented:
test. This test can be computed using Eq. (10) with (=)

X . flx)=e"'7 (11
appropriate adjusted valuespf39]. ) o )

The resu'ts Of the Bonferroni_Dunn and Nemenyi Then we evaluate its derivative fer= r. This value
tests fora = 0.10 andv = 0.05 can be seen in Table 3, IS equal to the the line’s slope which is tangent to
using the corresponding critical values. From the re- GRBF in this point:
sults of these tests, it can be concluded that the GRBF ,
method obtains a significantly high@g; ranking when r)=- r
compared to all of the other basis functions. This result -

justifies the proposal. tan(f) = ——— (12

ings of the Bonferroni-Dunn and Nemenyi tests, using GRBthas The proposed models, formed using Generalised Ra-
control method dial Basis Functions (GRBF) as transfer functions, are
Nemenyi testC) a viable alternative to existing methods and obtained
Method (j) more accurate classifications than other methods we
Method(i) RBF PU su GRBF tested. These models were designed with an evolution-
RBF - 0.16 0.12  1.548 ary algorithm constructed specifically to account for
PU - - 025  1.707 the characteristics of this kernel model. The evalua-
SuU - - - 141y tion of both the model and the algorithm for the twelve
Bonferroni-Dunn test(') datasets we considered showed results that are better
Compared Method than those using other basis function neural network
Control Method  RBF  PU SU  GRBF models. The post-hoc Bonferroni-Dunn test was ap-
GRBF 1.54F  170f  1ad - plied usingC¢ as the test variable and the results show
Nemenyi TestC'D(o—0.1) = 1.20,CD(4=0.05) = 1.35; that the GRBF method obtained a significantly higher
Bonferroni-Dunn TestC'D q4—¢.1) = 1.12,CD(a=0.05) = 1.26; C¢ ranking when compared with the rest of the basis

given classifier (a control method). One approach to  Firstly, the Generalized Radial Basis Function (RBF)

the
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Using the Tangent's Sum Theorem: [11]
T,
tan(8 + A) = — L (13)
exr [12]
tan(3) + tan(A [13]
tan(8 4+ A) = (8) (2) (14)
1 — tan(8) * tan(A) [14]
Finally a system compounded by Eqgs (13) and (14) is
solved and the;,; value is obtained
e 1r(tn —e-r-tan(A))
T4l = 15 [15]
it e 1+ Thtan(A) (15)
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