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Abstract. This paper proposes a Neural Network model using Generalised kernel functions for the hidden layer of a feed forward
network. These functions are Generalised Radial Basis Functions (GRBF), and the architecture, weights and node topology
are learned through an evolutionary algorithm. The proposed model is compared with the corresponding standard hidden-node
models: Product Unit (PU) neural networks, Multilayer Perceptrons (MLP) with Sigmoidal Units (SUs) and the RBF neural
networks. The proposed methodology is tested using twelve benchmark classification datasets from well-known machine learning
problems. GRBFs are found to perform better than other standard basis functions at the classification task.
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1. Introduction

The simplest classification method generates a class
label based on observations via linear functions of the
input variables. This process of model fitting is quite
stable, resulting in low variance but a potentially high
bias. Frequently, in real-classification problem, we
cannot make the stringent assumption of additive and
purely linear effects of the input variables. A traditional
technique to overcome these difficulties is to augment
or replace the variables of the input vector with new
variables, the basis functions. These, are transforma-
tions of the input variables, and a linear model can be
used in this new space of derived input features.

Depending on the basis function used in the hidden
nodes, we can distinguish, among other, the following
Neural Networks (NNs) [1]: 1) NNs based on projec-
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tion basis functions, such as the Multilayer Perceptron
(MLP) NNs where the transfer functions are Sigmoidal
Units (SUs) or the Product Unit (PU) NN [2,3], and 2)
NNs based on kernel basis functions, such as the Radial
Basis Function (RBF) NN [4].

The RBF NN can be considered a local averaginge
procedure. Its improved approximation capability and
its architecture have drawn a lot of attention. Bish-
op [4] concluded that an RBF NN can provide a fast
linear algorithm capable of representing complex non-
linear mappings. A detailed discussion on various ap-
plications of the RBF NN can be found in [5]. The
RBF NN has been proven to be a universal approxima-
tor [6]. In the literature, it has been compared to other
universal approximators such as MLPs [5,7] and fuzzy
systems [8,9].

Training of RBFs can be classified into two cate-
gories: quick learning and full learning. A Quick learn-
ing usually involves a two-step process. First, the pa-
rameters governing the basis functions are determined
by a relatively fast, unsupervised clustering or vector
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quantisation (VQ) approach. Next, the weights of the
basis functions are determined using linear optimisa-
tion techniques. One drawback of quick learning is that
the clustering/VQ methods are usually unsupervised
and the target outputs are totally ignored during learn-
ing [10]. In addition, the linear optimisation problem
may be ill-condited in some cases [11]. A full learn-
ing scheme optimises all of the parameters in a super-
vised mode [10,12,13]. Compared to quick learning,
full learning usually provides more accurate results be-
cause it trains the model using both input and target
variables.

In high-dimensionalspace, all pairwise distances be-
tween patterns seem to be very similar, i.e., the dis-
tances to the nearest and furthest neighbours look near-
ly identical. In this kind of problem, the distances are
concentrated, and the Gaussian kernel loses its interpre-
tation in terms of locality around its centre [14]. There-
fore, the widely-used Gaussian kernel and Euclidean
distance are not necessarily appropriate functions to
quantify similarity in high dimensional spaces. De-
spite this problem, the use of the Euclidean distance in
high-dimensional spaces has not been questioned by the
machine learning community, because it corresponds
to the distance as we define for our three-dimensional
world.

This work evaluates the accuracy obtained by a spe-
cial class of RBF NNs, namely Generalised Radial Ba-
sis Function (GRBF) NNs. This work aims to alleviate
the problem associated with the high dimensionality
of the input space. It is important to observe that the
GRBF NN is not an alternative to the classic Gaussian
function but is, a parametric generalisation of Gaussian
function, with a new parameter,τ , that relaxes or con-
tracts the basis function (Fig. 1). The training of these
networks is performed by a specific evolutionary algo-
rithm, in which the principal issue is the establishment
of a method to choose adequate values for the principal
parameters of the GRBF NNs, which involves fitting a
new parameterτ . The key of this proposal is constitut-
ed by the relationship between this new parameter and
deviations of distances or the width of the RBF,r.

This paper is organised as follows. Section 2 in-
troduces RBF Neural Networks and specifically, the
GRBF model. Section 3 formally presents the GRBF
model considered in this work, which is adapted to the
classification problem. In section 4, the main charac-
teristics of the algorithm used for training the model are
described. Section 5 presents the experiments carried
out and discusses the results obtained. Finally, Section
6 presents the main conclusions and future directions
suggested by this study.

2. RBF Neural Networks and GRBF model

RBF NNs [15] have been used in extremely var-
ied domains, including function approximation, pattern
classification, time series prediction, data mining, sig-
nals processing, and nonlinear system modelling and
control. RBF NNs have some useful properties that
render them suitable for modelling and control. From a
structural viewpoint, RBFNN are closely related to di-
rect kernel methods [16] and Support Vector Machines
(SVM) with Gaussian kernels functions [17–19].

The RBF NN learning process, i.e., the optimisation
of adjustable parameters, includes determining centre
vectors, radii (or widths) of the distributions, and linear
output weights connecting the RBF hidden nodes to the
output nodes. Another important issue is the determi-
nation of the network structure or the number of RBF
hidden nodes based on the parsimonious principle [20,
21]. The number and positions of the basis functions,
which correspond to the neurons in the hidden layer of
the network, have an important influence on the per-
formance of the RBF NN. Both problems have been
tackled using a variety of approaches. For instance,
the number and position of the RBFs may be fixed
and defined a priori [21]; they may be determined by
unsupervised clustering algorithms [22]; they may be
determined through a supervised learning scheme that
includes growing and pruning procedures [23]; or they
can be evolved using evolutionary [24,25], or hybrid
algorithms [26].

One of the most common RBF models is represent-
ed by a Gaussian function where the output depends
on the distance between the instance and the centre of
the RBF. This distance can be formulated in different
ways. The most common formulation is the Euclidean
distance, but when dimensionality grows and/or when
data are concentrated in boundaries of theK dimen-
sional space, standard Gaussian basis functions do not
perform well. To prevent the effects observed for stan-
dard Gaussian RBFs, these basis functions can be gen-
eralised by including a new parameterτ which can re-
lax or contract the basis functions. In this way, the
Generalized Radial Basis Function (GRBF) is defined
using the following expression [14]:

B(x, wj) = exp

(
−‖x − cj‖τj

r
τj

j

)
(1)

whereK is the number of inputs,xi = (x1i, . . . , xKi)
is the random vector of measurements andwj =
(wj0, wj1, . . . , wjK , wj(K+1)), with rj = wj0, cj =
(wj1, . . . , wjK) andτj = wj(K+1). In this way, the
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Fig. 1. Generalised Gaussian withr = 1, and differentτ values.

weight vectorwj includes, respectively, the width, the
centre and the exponent of thej-th GRBF. These basis
functions allow a better matching between the shape of
the kernel and the distribution of the distances, since the
τ parameter provokes concavity or convexity around
the point where the distance isr (see Fig. 1).

3. Generalized Radial Basis Functions for
Classification

In a classification problem, measurementsxi, i =
1, 2, . . . , K, of a single individual (or object) are tak-
en, and the individuals are to be classified into one of
theJ classes based on these measurements. A training
sampleD = {(xn, yn); n = 1, 2, . . . , N} is available,
wherexn = (x1n, . . . , xkn) is the random vector of
measurements taking values inΩ ⊂ R

K , andyn is the
class level of then-th individual, where the common
technique of representing class levels using a “1-of-J”
encoding vector is adopted,y = (y(1), y(2), . . . , y(J)),
and the Correctly Classified Rate or accuracy of the
classifier is defined byC = 1

N

∑N

n=1 I(C(xn) = yn),
whereI(.) is the zero-one lost function. A good clas-
sifier tries to achieve the highest possibleC in a given
problem.

In order to tackle this classification problem, the
outputs of the GRBF model have been interpreted from
the point of view of probability through the use of the
softmax activation function [2], which is given by:

gl(x, θl) =
exp fl(x, θl)∑J

j=1 exp fj(x, θj)
, l = 1, 2, . . . , J (2)

where J is the number of classes in the problem,
fj(x, θl) is the output of thej output neuron for pattern
x, θl = (βl

0, · · · , βl
m, w1, · · · , wm), m is the number

of GRBFs andgl(x, θl) is the probability a patternx
has of belonging to classj. The model to estimate the
functionfl(x, θl) is defined by the following equation:

fl(x, θl) = βl
0 +

m∑

j=1

βl
j exp

(
−‖x − cj‖τj

r
τj

j

)
(3)

Using the softmax activation function presented in
Eq. (2), the class predicted by the NN corresponds to
the node in the output layer whose output value is the
greatest. In this way, the optimum classification rule
C(x) is the following:

C(x) = l̂, wherêl = argmaxl gl(x, θl),
(4)

for l = 1, 2, . . . , J

The function used to evaluate a GRBF NN is the func-
tion of cross-entropy error and it is given by the follow-
ing expression:

l(θ) =

N∑

n=1

[−
J∑

l=1

y(l)
n fl(xn, θl)

(5)

+log

J∑

l=1

expfl(xn, θl)]
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Fig. 2. Structure of Generalised Radial Basis Function Neural Networks: an input layer withk input variables, a hidden layer withm RBFs and
an output layer withJ − 1 nodes.

whereθ = (θ1, . . . , θJ). The proposed algorithm re-
turns the best cross-entropy individuals as feasible so-
lutions. Finally, because of the normalization condi-
tion:

J∑

l=1

gl(x, θl) = 1 (6)

and the probability for one of the classes does not need
to be estimated. For that reason, the GRBF NN models
proposed haveJ − 1 outputs nodes instead ofJ output
nodes since thegJ(x, θJ) = 1 −∑J−1

i=0 gi(x, θi). This
was used to reduce the number of output nodes in the
GRBF NN and, consequently, the complexity of the
model. A scheme of these models is given in Fig. 2,
whereJ is the number of classes andm is the number
of hidden nodes or RBFs of the neural net.

The error surface associated with the model is very
convoluted with numerous local optima and the Hes-
sian matrix of the error functionl(θ) is, in general, in-
definite. Moreover, the optimal number of basis func-
tions in the model (i.e. the number of hidden nodes in
the neural network) is unknown, and, in this case, the

GRBFs are not Mercer’s kernels, i.e., they are not posi-
tive semi-definite for all values of theτ parameter [14].
This means that the optimisation problem will gener-
ally not be convex. Thus, we estimate the parameters
θ by means of an evolutionary algorithm. This kind of
metaheuristics has been proof to be very effective when
optimizing neural network models [27–29].

4. Evolutionary Algorithm

A population-based Evolutionary Algorithm (EA) is
used for the architectural design and the estimation of
the real coefficients of the GRBF NN. The search begins
with an initial population of GRBF NNs, and, in each
iteration, the population is updated using a population-
update algorithm. The population is subject to the op-
erations of replication and mutation. The general struc-
ture of the EA is similar to the structure of the one pre-
sented in [30,31], but with several significant modifi-
cations. In the current approach,l(θ) is the error func-
tion for an individualg of the population, whereg is a
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GRBF NN, which is given by the multivaluated func-
tion g(x, θ) = {g1(x, θ1), . . . , gl(x, θJ−1)} [since the
number of outputs can be reduced because of the nor-
malization condition, see Eq. (6)]. The fitness measure
is a strictly decreasing transformation of the entropy er-
ror l(θ) given byA(g) = 1

1+l(θ) . The severity of muta-
tions depends on the temperatureT (g) of the GRBF NN
model, defined byT (g) = 1 − A(g), 0 6 T (g) 6 1.

To define the topology of the NNs generated during
the evolution process, we consider three parameters:
m, ME and MI. The parametersm and ME corre-
spond to the minimum and maximum number of hid-
den nodes in the whole evolutionary process andMI

corresponds to the maximum number of hidden nodes
in the initialisation process. To obtain an initial popula-
tion formed by models simpler than the most complex
model possible, the parameters must fulfil the condition
m 6 MI 6 ME.

We generate10Np networks, whereNp = 200 is the
number of population networks during the evolution-
ary process. Then we select the bestNp neural net-
works. To generate a network, the number of nodes in
the hidden layer is taken from a uniform distribution
in the interval[m, MI]. For hidden nodes, the number
of connections is alwaysK + 2, because these connec-
tions represent, respectively, the centre, the width and
the exponent of each generalised radial basis function.
The number of connections between each output node
and the hidden layer is determined from a uniform dis-
tribution in the interval(1, J − 1), and the connection
to the bias node is always present.

For the GRBF hidden nodes, the connections be-
tween the input layer and hidden layer are initialized
using a clustering algorithm, so the EA can start the
evolutionary process with well positioned centers. The
main idea is to cluster input data inM groups,M being
the number of GRBF hidden nodes. Therefore, each
hidden GRBF neuron can be positioned at the centroid
of its corresponding cluster.

The first algorithm modification consists of initiali-
sation of the GRBF radii, where the determination of
the initial τ andr values are intimately related to the
distribution of the distances and can be set according
to the specificities of that distribution. The method to
choose adequate values forτ and r is based on the
following criterion: the largest or “furthest” distances
(dF, the 5-th percentile of the distribution) must be
mapped to lower values of probability. Then,τ andr
can be calculated as follows by solving two different
equations [32]:

exp

(
−
(

dF

r

)τ)
= 0.05;

(7)
exp

(
−
(µ

r

)τ)
= 0.5

whereµ is the mean of point’s distances of the mem-
bers of the cluster to the centroid anddF is a value
representing “farest” distances. Indeed, the most criti-
cal part of these equations is determined by theµ and
dF values. For this reason, we use an estimator ofdF

associated to the statistical distribution of the distances
between the centroids and the individuals in the clus-
ter: dF values can be approximately calculated, under
normality hypothesis, asµ + 1.645σ, whereσ is the
standard deviation of these distances.

In every generation, a parametric mutation is accom-
plished for each coefficientwji or βl

j of the model
by adding Gaussian noise, where the variances of the
Normal distribution are updated throughout the evo-
lution of the algorithm. Once the mutation is per-
formed, the fitness of the individual is recalculated and
a conventional simulated annealing process is applied.
First, the link weights are mutated by adding a value
ε ∈ N(0, α · T (g)) whereα is the learning rate and
T (g) is the network temperature. The radiirj of each
GRBF hidden node is mutated in the same way, adding
another valueη ∈ N(0, α · T (g)). The learning rate
α is updated throughout the evolution of the algorithm.
There are different methods to update the variance. We
use one of the simplest methods: the 1/5 success rule of
Rechenberg [33]. The modification of GRBFs is very
sensitive toτ variation. Indeed, whenτ is near to the
interval [0, 2.5], a τ variation drastically changes the
contraction of the GRBF basis function. On the other
hand, whenτ ≫ 2.5, the sameτ variation does not
drastically change the generalised Gaussian. Due to
this behaviour, theτ modification value must depend
on the desired effect (see Fig. 3). To define this desired
effect, theτ mutation is formulated as:

τn+1 =
e · r(τn − e · r · tan(∆))

e · r + τntan(∆)
(8)

wheree is the Euler’s constant,τn, τn+1 are the values
of τ in the generationt andt + 1 and∆ is the angle’s
variation that must be produced on the tangent of the
curve associated to the generalized function at the point
where the radii isr (see Fig. 3). Further details about
theτ mutation and the mathematical derivation of the
formula can be found in the Appendix.

The angle’s variation∆ is updated in each generation
since it depends of the learning rateα and it is defined
as:
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Fig. 3. Parametric Mutation for the GRBFs models based on the∆ value.

∆ = a · π

30
·
(

1 − 1

1 − eα−10.5

)
(9)

wherea is an integer value that can take values of 1 or
−1 with probability 0.5.

Structural mutation implies a modification in the
neural network structure and allows explorations in dif-
ferent regions of the search space while promoting the
diversity of the population. There are four structural
mutations: connection deletion, connection addition,
node deletion and node addition. These mutations are
applied sequentially to each network. The reader can
consult [31] for more details about structural mutations.

The stop criterion is reached if one of the following
conditions is fulfilled: a maximum number of gener-
ations is reached or the variance of the fitness for the
best ten percent of the population is less than10−4.

5. Experiments

In the first subsection, the the datasets and the exper-
imental configuration are described. In the subsequent
subsections, the main experiments are presented.

5.1. Description of the datasets and the experimental
design

The proposed methodologies are applied to twelve
datasets taken from the UCI repository [34], to test
their overall performance when compared among them-

selves. To analyse the performance of the GRBF
method, its results are compared to those obtained with
the same evolutionary algorithm and parameters but
using other basis functions commonly used in NNs for
classification: RBFs with Gaussian transfer functions,
Sigmoidal Units (SUs) and Product Units (PUs).

The selected datasets include seven binary problems
and five multi-class problems. They present differ-
ent numbers of instances, features and classes (see Ta-
ble 1). The minimum and maximum number of hid-
den nodes were obtained from the best result of a pre-
liminary experimental design ANOVA I, considering a
small, medium and high value [35] for the parameters
m, MI, ME. On each dataset, we performed 10 dif-
ferent simulations (out of the 27 possible configuration
that satisfy the constraintm < MI < ME). The Tukey
post-hoc test was applied to analyse the results of the
simulations [36]. If there were no statistically signifi-
cant differences among the30 CT values (accuracy in
the training set) for each configuration, we selected the
configuration corresponding to the minimum values of
m, MI andME. Otherwise, we selected the configura-
tion that achieved the best results. After that, we ran
the EA using the configuration previously selected for
each dataset. This value is also included in Table 1.

The experimental design was conducted using a
holdout cross validation procedure with3/4 · n in-
stances for the training dataset andn/4 instances for
the generalisation dataset. To evaluate the stability of
the methods, the evolutionary algorithm was run 30



Galley Proof 12/11/2010; 15:56 File: his117.tex; BOKCTP/wyn p. 7
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Table 1
Characteristics of the thirteen datasets used for the experiments: number of instances (Size), number of Real (R),
Binary (B) and Nominal (N) input variables, total number of inputs (# In.), number of classes (# Out.), per-class
distribution of the instances (Distribution), minimum andmaximum number of hidden nodes used for each dataset
([m, MI, ME]) and number of generations (# Gen.)

Dataset Size R B N # In. # Out. Distribution [m, MI, ME] # Gen.

Labor 57 8 3 5 29 2 (30, 27) [1, 2, 3] 25
Hepatitis 155 6 13 − 19 2 (32, 123) [1, 2, 3] 25
Sonar 208 60 − − 60 2 (98, 110) [1, 2, 3] 300
BreastC 286 4 3 2 15 2 (201, 85) [1, 2, 3] 50
Ionos 351 33 1 − 34 2 (126, 225) [3, 4, 5] 300
Card 690 6 4 5 51 2 (307, 308) [1, 2, 3] 50
German 1000 6 3 11 61 2 (700, 300) [2, 3, 4] 300
Newthyroid 215 5 − − 5 3 (150, 35, 30) [1, 1, 4] 100
Post-Op 90 1 − 7 20 3 (2, 24, 64) [1, 2, 3] 100
Glass 214 9 − − 9 6 (70, 76, 17, 13, 9, 29) [7, 8, 9] 500
Zoo 101 1 15 − 16 7 (41, 20, 5, 13, 4, 8, 10) [4, 7, 9] 300
Ecoli 336 7 − − 7 8 (143, 77, 52, 35, [4, 7, 9] 300

20, 5, 2, 2)

All nominal variables are transformed to binary variables.
BreastC: Breast-Cancer.

times. The performance of each method was evaluated
using the correct classification rate (C).

All parameters of the EA are common for all prob-
lems, exceptm, MI , ME and the number of gener-
ations values, which are represented in Table 1. We
have carried out a simple linear rescaling of the input
variables to the interval[−2, 2], X∗

i representing the
transformed variables. The connections between the
hidden and output layers are initialised in the[−5, 5]
interval. The initial value of the radiirj are obtained
in the interval(0, dmax], wheredmax is the maximum
distance between two training input examples.

The size of the population isN = 200. For the struc-
tural mutation, the number of nodes that can be added
or removed is within the[1, 2] interval, and the number
of connections to add or delete in the hidden and the
output layer during structural mutations is within the
[1, 7] interval.

5.2. Results of the GRBF NN

Table 2 shows the mean and the standard deviation
of the correct classification rate in the generalisation set
(CG) for each dataset and the GRBF, RBF, SU and PU
models. All of the algorithms were run 30 times. Based
on the meanCG of the 30 executions, we obtained the
ranking for each model on each dataset (R = 1 for the
best performing model andR = 4 for the worst one).
Table 2 also includes the mean accuracy (CG) and the
mean ranking (RCG

) for all datasets. From these re-
sults, we conclude from a purely descriptive point of
view, that the GRBF models obtained the bestCG re-
sults for nine datasets and the RBF models yield the

highest performance for three datasets. Furthermore,
the GRBF models yield the best mean (CG = 83.26%)
and ranking (RCG

= 1.33) in CG. As can be ob-
served, the GRBF models are especially accurate when
dealing with high dimensionality problems (e.g., see
the German, Card, Ionos or Labor datasets), because
the τ parameter contracts or relaxes the shape of the
Gaussian, adapting to the statistical distribution of the
distance.

To determine the statistical significance of the rank
differences observed for each method in the different
datasets, we have carried out a non-parametric Fried-
man test [37] using theCG rank of of the best models as
the test variable. A previous evaluation of theCG val-
ues resulted in rejecting the normality and the equality
of variances’ hypothesis. The Friedman test shows that
the effect of the method used for classification is statis-
tically significant with a significance level of 5%, as the
confidence interval isC0 = (0, F0.05 = 2.89) and the
F-distribution statistical values areF ∗ = 6.50 /∈ C0.
Consequently, we reject the null-hypothesis stating that
all algorithms perform equally in mean ranking.

Based on this rejection, the Nemenyi post-hoc test is
used to compare all classifiers to each other. This test
considers that the performance of any two classifier is
deemed significantly different if their mean ranks differ
by at least the critical difference (CD):

CD = q

√
K(K + 1)

6D
(10)

where K and D are the number of classifiers and
datasets, and theq value is derived from the studen-
tized range statistic divided by

√
2 [38,39]. However,
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Table 2
Statistical results of the evolutionary algorithm using different basis functions:
Mean and Standard Deviation (SD) of the accuracy in the generalisation set
(CG(%)), mean accuracy (CG(%)) and mean ranking (R)

Method (CG(%))
GRBF RBF PU SU

Labor 91.19± 8.32 90.71± 6.26 83.33± 10.15 85.71± 9.56
Hepatitis 85.96± 3.21 86.84± 3.16 85.08± 5.04 85.52± 5.01
Sonar 74.10± 3.60 73.68± 3.53 75.25± 4.87 68.71± 4.08
BreastC 68.87± 2.10 68.45± 1.87 67.65± 2.49 68.68± 2.14
Ionos 93.75± 1.76 90.42± 2.60 91.15± 2.20 92.61± 2.75
Card 87.94± 1.38 76.69± 3.33 87.50± 2.75 87.71± 1.42
German 74.33± 2.77 71.69± 1.32 71.24± 1.24 73.07± 1.64
Newthyroid 97.10± 1.93 95.00± 2.01 96.85± 2.71 94.88± 2.26
Post-Op 79.09± 8.06 78.93± 7.21 78.93± 8.39 76.51± 7.17
Glass 68.93± 5.19 64.91± 4.74 65.16± 4.17 67.67± 3.49
Zoo 94.93± 2.77 75.07± 5.00 94.80± 4.48 92.67± 4.34
Ecoli 82.98± 3.82 84.44± 2.92 80.30± 5.20 83.73± 2.45

CG(%) 83.26 79.73 81.43 81.45
R 1.33 2.87 3.04 2.75

The best result is in bold face and the second best result in italics.

Table 3
Statistical analysis of the evolutionary algorithm using different basis
functions: Critical Difference (CD) values and differences of rank-
ings of the Bonferroni-Dunn and Nemenyi tests, using GRBF asthe
control method

Nemenyi test (CG)

Method (j)
Method(i) RBF PU SU GRBF

RBF − 0.16 0.12 1.54+
•

PU − − 0.25 1.70+
•

SU − − − 1.41+
•

Bonferroni-Dunn test (CG)

Compared Method
Control Method RBF PU SU GRBF

GRBF 1.54+
•

1.70+
•

1.41+
•

−

Nemenyi Test:CD(α=0.1) = 1.20,CD(α=0.05) = 1.35;
Bonferroni-Dunn Test:CD(α=0.1) = 1.12,CD(α=0.05) = 1.26;
•, ◦: Statistically difference withα = 0.05 (•) andα = 0.1 (◦);
+: The difference is in favour of the Control Method or Method(j).

it has been noted that the approach of comparing all
classifiers to each other in a post-hoc test is not as sen-
sitive as the approach of comparing all classifiers to a
given classifier (a control method). One approach to
this latter type of comparison is the Bonferroni-Dunn
test. This test can be computed using Eq. (10) with
appropriate adjusted values ofq [39].

The results of the Bonferroni-Dunn and Nemenyi
tests forα = 0.10 andα = 0.05 can be seen in Table 3,
using the corresponding critical values. From the re-
sults of these tests, it can be concluded that the GRBF
method obtains a significantly higherCG ranking when
compared to all of the other basis functions. This result
justifies the proposal.

6. Conclusions

The proposed models, formed using Generalised Ra-
dial Basis Functions (GRBF) as transfer functions, are
a viable alternative to existing methods and obtained
more accurate classifications than other methods we
tested. These models were designed with an evolution-
ary algorithm constructed specifically to account for
the characteristics of this kernel model. The evalua-
tion of both the model and the algorithm for the twelve
datasets we considered showed results that are better
than those using other basis function neural network
models. The post-hoc Bonferroni-Dunn test was ap-
plied usingCG as the test variable and the results show
that the GRBF method obtained a significantly higher
CG ranking when compared with the rest of the basis
functions.

Appendix: Derivation of the formula used for the
mutation of the τ parameter

Firstly, the Generalized Radial Basis Function (RBF)
is presented:

f(x) = e−( x
r
)τ

(11)

Then we evaluate its derivative forx = r. This value
is equal to the the line’s slope which is tangent to the
GRBF in this point:

f ′(x) = −e−( x
r
)τ

τ(x
r
)τ−1

r

tan(β) = − τ

e ∗ r
(12)
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Using the Tangent’s Sum Theorem:

tan(β + ∆) = −τn+1

e ∗ r
(13)

tan(β + ∆) =
tan(β) + tan(∆)

1 − tan(β) ∗ tan(∆)
(14)

Finally a system compounded by Eqs (13) and (14) is
solved and theτn+1 value is obtained

τn+1 =
e · r(τn − e · r · tan(∆))

e · r + τntan(∆)
(15)
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