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Abstract This paper presents a new multiobjective
cooperative–coevolutive hybrid algorithm for the de-
sign of a Radial Basis Function Network (RBFN). This
approach codifies a population of Radial Basis Func-
tions (RBFs) (hidden neurons), which evolve by means
of cooperation and competition to obtain a compact and
accurate RBFN. To evaluate the significance of a given
RBF in the whole network, three factors have been pro-
posed: the basis function’s contribution to the network’s
output, the error produced in the basis function radius,
and the overlapping among RBFs. To achieve an RBFN
composed of RBFs with proper values for these quality
factors our algorithm follows a multiobjective approach
in the selection process. In the design process, a Fuzzy
Rule Based System (FRBS) is used to determine the
possibility of applying operators to a certain RBF. As
the time required by our evolutionary algorithm to con-
verge is relatively small, it is possible to get a further
improvement of the solution found by using a local min-
imization algorithm (for example, the Levenberg–Mar-
quardt method). In this paper the results of applying our
methodology to function approximation and time series
prediction problems are also presented and compared
with other alternatives proposed in the bibliography.
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1 Introduction

The extensive research work carried out on the design
of neural networks (Haykin 1999; Lipmann 1987; Platt
1991; Widrow and Lehr 1990), and more specifically on
RBFNs, reveals the difficulty of this task and the ab-
sence of general mechanisms to automatically set the
network parameters. In this field, the importance of soft-
computing (Tettamanzi and Tomassini 2001) must be
highlighted as one of the lines of development with the
best results. Evolutionary Computation (EC) (Schwefel
1995) is one of the soft-computing strategies frequently
applied to design neural networks.

According to Potter and De Jong (2000), it can be
difficult to solve certain types of problems using evo-
lutionary computation, especially when an individual
represents a complete solution (i.e. a net) made of inde-
pendent subcomponents. In these situations, the indi-
viduals’ size can imply a premature convergence of the
population and specific operators and mechanisms must
be used to avoid it. Moreover, the role of good (or bad)
independent subcomponents has not been taken into
consideration in an individual solution or net. In theses
cases, it is suitable to extend the basic computational
model of evolution to provide a frame where the sub-
components evolve and cooperate to reach a solution in
an independent way and to maintain the diversity.

A solution for this problem is Cooperative Coevolu-
tion (Potter and De Jong 2000; Rosin and Belew 1997), in
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which the individuals in the population represent only a
part of the solution and evolve in parallel, not only com-
peting to survive but also cooperating to find a common
solution at the same time. Compared with other evolu-
tionary procedures, this new approach has the advan-
tage of being less computationally complex and thus
more cost effective since an individual does not repre-
sent the whole solution but only a part of it. The key
point in a cooperative coevolutionary procedure is the
credit assignment or the allocated fitness to each individ-
ual according to its contribution to the final solution.

Due to the novelty of this field and the difficulties of
an adequate implementation of the above aspects, few
proposals have been carried out in cooperative coevo-
lution for the design of neural networks. A first exam-
ple would be the Smalz and Conrad model (Smalz and
Conrad 1994), where multilayer networks are built by
subpopulations of nodes and the credit assignment is
done according to the compatibility of each population
with different networks. The Symbiotic Adaptive Neuro
Evolution (SANE) developed by Moriarty and Miikku-
lainen (1997) is based on the coevolution of nodes, which
take part in different candidate networks. The credit
assignment to each node is done by using the average
efficiency of the five best networks it participates in. An-
other interesting paper that applies cooperative coevo-
lution to design neural networks can be shown in garcia
et al. (2002). In this paper, subcomponent credit assign-
ment is determined through a multiobjective coopera-
tive coevolutionary technique which measures factors
such as their efficiency and complexity.

In RBFNs, the response of the hidden neurons is
localized, and they can be optimized by means of coop-
erative coevolutive methods. The main contribution of
this paradigm is to direct the search using a credit assign-
ment for each RBF based on its contribution to the per-
formance of the network as a whole and also based on
its importance.

In this paper a new hybrid cooperative coevolutive
methodology for optimization of RBFNs is presented.
To carry out the credit assignment three quality factors
which define the role of each RBF have been defined: the
basis function’s contribution to the network’s output; the
error in the basis function radius; and the overlapping of
RBFs. To combine them in a proper way a multiobjec-
tive technique is incorporated. Moreover, an FRBS is
used to determine the application of different operators
over an RBF.

The organization of this paper is as follows. Section 2
introduces the RBFNs and describes different alterna-
tives for the optimization of the network parameters.
In Sect. 3, the details of the proposed multiobjective
cooperative coevolutionary algorithm are described.

Fig. 1 Radial Basis Function Network

Section 4 describes the experiments and compares the
results with other approaches presented in the bibliog-
raphy. Finally, the conclusions of the paper are discussed
in Sect. 5.

2 The design of radial basis function networks

Radial Basis Function Networks (RBFNs) (Broomhead
and Lowe 1988; Powell 1985; Moody and Darken 1989)
have been proved as a very suitable paradigm for func-
tion approximation problem. The function approxima-
tion learning problem consists in finding a function f that
fits a set of sample data described by means of an input
vector with n features and a target output.

RBFNs are a feedforward kind of neural network,
with three layers: an input layer with n nodes, a hidden
layer with m neurons or RBFs, and an output layer with
one or several nodes. For function approximation prob-
lem, an RBFN has only one node in its output layer (see
Fig. 1) and implements the function f : Rn → R, that
can be described by:

f (�x) =
m∑

i=1

wiφi(�x). (1)

The m radially-symmetric radial basis functions, φi, are
often taken to be translated dilations of a prototype
radial basis function φi: Rn → R i.e. φi(�x) = φi

(∥∥�x −
ci

∥∥/
di

)
, where �ci ∈ Rn is the center of basis function

φi, di ∈ R is a dilation of scaling factor for the radius∥∥�x − �ci
∥∥, and ‖‖ is typically the Euclidean norm on Rn.

From all the possible choices for φi (Rojas et al. 1997),
the Gaussian function φ(r) = exp(−r2), that is the most
used, is the one used in this paper as RBF.

Different methods for the RBFNs learning have been
set out in the specialized bibliography (Howlett and Jain
2001a, b provide a good overview of them). Evolution-
ary algorithms have been used for the design of RBFNs
(Buchtala et al. 2005; Harpham et al. 2004; Lacerda
et al. 2001, 2005 reviews can be found) but existing
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approaches typically suffer from the problems of a high
runtime and a premature convergence in local minima.
Those are both objectives to reach in any evolutionary
proposal for the design of RBFNs.

In Butchala et al. (2005) analyze the combination of
evolutionary algorithms and RBFNs and consider that
this hybridization can be classified in different categories
related to the aspect that is optimized:

1. The computation of weights, i.e., centers and radii
of RBFs and/or output weights.

2. The determination of the architecture of RBFN.
3. The feature selection for the RBFN.
4. The combination of networks in form of ensembles.

In this paper, the structure of the RBFN is fixed pre-
vioulsy and we only consider the evolutionary compu-
tation of centers and radii of RBFs. The weights are
adjusted by means of Levenberg–Marquardt training.
For this problem, in the specialized bibliography differ-
ent evolutionary approaches have been presented with
individuals which are complete RBFNs or single RBFs
which constitute a network.

The former idea is investigated in Rivas et al. (2002),
in which the genetic algorithm evolves a population
of RBFNs to determine the network parameters. In
this proposal the SVD algorithm (Golub and Van Loan
1996) was used to calculate the weights of the net. In a
paper by González et al. (2003), this codification scheme
is used in a multiobjective genetic algorithm which in
some of its stages, also employs conventional techniques
such as clustering algorithms, Orthogonal Least Squares
OLS (Chen et al. 1999) or Singular Value Decomposi-
tion (SVD) (Golub and Van Loan 1996). In this
approach the Levenberg-Marquardt algorithm (Marqu-
ardt 1963) is used to further minimize the approximation
error.

The evolution of single RBFs is investigated by White-
head and Choate (1996) where a cooperative-competi-
tive evolution of centers and radii is proposed. In their
genetic algorithm, selection operates on individual RBFs
rather than on whole networks and the entire population
corresponds to a single RBFN and the credit assignment
to each individual is based on its contribution to the per-
formance of the network as a whole and on the RBF
weight. With this credit assignment strategy, it is shown
that it is possible to maintain the diversity in the pop-
ulation. In this approach, the algorithm Singular Value
Decomposition (SVD) (Golub and Van Loan 1996) is
also applied to determine more accurate values for the
weights of the network.

Although evolutionary alternatives to design RBFNs
are frequent, few cooperative coevolutionary procedures

have been implemented up to now, due to the problems
arising in their development, especially with the credit
assignment strategy which must promote competition
among similar RBFs and cooperation among the differ-
ent ones at the same time.

In this paper (an extended version can be found by
Rivera 2003) we present a new hybrid methodology for
the optimization of RBFNs based on a cooperative–
coevolutionary algorithm. The proposal defines three
criteria for the credit assignment, establishes a multiob-
jective selection for the individuals and uses an FRBS
for the application of the operators in the evolution-
ary process. We have presented other coevolutionary
approaches for this problem. In Rivera et al. (2003)
the fitness of an RBF was calculated as a combination
of different factors (a factor which takes into account
its weight, a factor that measures its closeness to worst
approximated points and a factor which quantifies the
overlapping among RBFs), probabilistic rules are used
to apply the operators and a monoobjective approach is
considered. In the paper (Rivera et al. 2003), a prelimi-
nary approach was presented, with different criteria to
evaluate an RBF.

3 A new approach for the optimization of RBF using
a multiobjective cooperative–coevolutive algorithm

In the approach proposed in this paper each individ-
ual represents a basis function (RBF), and therefore
forms only a part of the solution to the problem under
analysis. Thus the entire population is responsible for
the final solution. This allows for an environment where
the individuals cooperate towards a definitive solution.
However, they also compete for survival, since if their
performance is poor, they will be eliminated.

One of the most important contributions of this pro-
posal is the evaluation of each basis function by means of
three criteria related with its role in the complete RBFN.
These quality factors allow for an accurate evaluation of
its participation within the network, or more generally,
the assigned credit of each RBF to the final solution. To
be precise, the three factors are the following ones:

• ai: which measures the basis function’s contribution
to the network’s output.

• ei: that calculates the local error produced in the
basis function radius.

• oi: which evaluates the degree of overlapping of
RBFs. This objective will be used to maintain the
diversity of the population.

The three objectives are important to obtain accurate
RBFNs, with a good local and global performance and
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composed of a set of RBFs which describe information
about different areas of search space.

Another important characteristic of our approach is
that the way to combine these objectives is to evaluate
the RBFs. In a previous approach (Rivera et al. 2001), we
calculate the credit assignment as a weighted expression
of characteristic parameters. This proposal has two dis-
advantages: the subjective determination of the weights
and the possibility of obtaining a solution with a high
value in one objective but very low values in the others.
In this RBFN design process with a cooperative coe-
volutive approach it is most suitable to consider each
objective in an independent way and to apply multiob-
jective theory to sort the RBFs.

To complete the hybrid bio-inspired architecture, a
Fuzzy Rule Based System (FRBS) is used as the main
strategy in order to decide the operators’ application
over a certain RBF. The inputs for the FRBS are the
values of the objectives previously defined. The use of
an FRBS for this task let us include in our cooperative
coevolutive methodology the knowledge of an expert
on the RBFN design.

The RBF network obtained from the hybrid bio-
inspired procedure here described provides a solution
to the problem of function approximation from a set of
data points. This solution has a proper level of accuracy
and simplicity (see the results in Sect. 4). Nevertheless,
if more accuracy is required, it is possible to improve
the quality of the solution found, by applying a local
optimization procedure. More specifically, the Leven-
berg–Marquardt algorithm (Marquardt et al. 1963) has
been incorporated to our cooperative coevolutionary
procedure.

The fact that the cooperative coevolution methodol-
ogy we propose, where a population of RBFs and not
RBFNs evolve, decreases the computational cost must
be highlighted (see experimental results in Sect. 4).

It is remarkable that in the evolutionary design of
RBFNs (Buchtala et al. 2005) research field there are not
so many coevolutionary approaches. The most impor-
tant work is described before by Whitehead and Choate
(1996), in which the credit assignment for each RBF is
only based on the weight of the RBF. And, it does not
include expert knowledge in the evolution.

In the following a detailed description of hybrid mul-
tiobjective methodology for cooperative coevolutionary
optimization of RBFNs is shown.

3.1 Detailed algorithm

As is mentioned previously the complete population
represents an RBFN with a number of radial basis func-
tions determined by the population size.

Algorithm 1. Detailed algorithm for the design of the
RBFNs

1. Initialize RBFN
2. Train RBFN
3. Evaluate RBFs
4. Select the worst RBFs
5. Apply operators to the worst RBFs using
an FRBS

6. Substitute the RBFs that were eliminated
7. Train RBFN
8. If the stop− condition is not verified
go to step 3, else go to 9

9. Apply Levenberg− Marquardt

The main steps of the proposed algorithm are shown
in Algorithm 1. These steps are explained in the follow-
ing subsections:

3.1.1 Initializing the population

A simple process is used to define the first network to
begin with. According to the population size (i.e. the
number of RBFs, m), the centre, c̄i, for each basis func-
tion, φi, in the network is randomly generated by keep-
ing a minimum distance with the centres of the basis
functions already generated. This minimum distance is
the half of the radius that the m basis functions of the
network would have if they were uniformly distributed
and covering the whole input space without overlapping.

Initially, the radius will be set to a random value
around the average distance from each RBF to the near-
est neighbour RBF, and the weights are set to 0.

3.1.2 RBFN training

There are several methods like LMS (Widrow and Lehr
1990), SVD (Golub and Van Loan 1996), etc. to adapt
the weights of a RBFN. In our proposal LMS is used
because it is a simple and efficient (in computational
cost) technique to calculate these weights. In addition,
this technique can obtain a more or less precise solution,
depending on the value of parameter alfa or the times
that the method is applied. This is a suitable characteris-
tic in our algorithm, because in the main loop we do not
want a very accurate solution and we can save compu-
tational time. At the end of the algorithm we apply the
Levenberg–Marquardt algorithm to reach a high quality
solution.

In this stage, the LMS algorithm is executed over the
training set until the error does not decrease for two
consecutive iterations.
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3.1.3 Evaluating RBFs

From the coevolutionary point of view of this work, a
credit assignment mechanism is required to evaluate the
role of each base function in the whole network. For this
purpose, three parameters for each RBF φi are defined,
taking into account the local behaviour of an RBF:

• ai: measures the contribution of the base function to
the output of the network.

• ei: gives the error in the basis function radius.
• oi: evaluates the overlapping among RBFs.

The contribution, ai, of the RBF φi, i = 1, . . . , m, is
determined by considering its weight wi and the num-
ber of points of the training set inside its radius, pri.

ai = α· |wi| · pri
1
m

∑m
j=1 prj

, (2)

where the parameter α allows the normalization of ai

inside the interval [0,1]. This normalization is required
to assure an adequate FRBS performance.

The error measure, ei, for each RBF φi, is obtained
from the normalized root mean square error nrmsei of
the data points inside the radius of the RBF, as well as
the standard deviation error, S(ẽi), also defined in the
radius of the RBF.

ei = β · nrmsei · S(ẽi)

1
m

∑m
j=1 S(ẽi)

. (3)

Again, to be able to analyze the error values through
an FRBS, they have to be moved around the interval
[0, 1] with the parameter β.

Any overlapping among the RBF φi and other RBFs
is quantified by using the parameter oi. This parame-
ter is calculated by taking into account the fitness shar-
ing (Golberg and Richardson 1987) methodology, whose
aim is to keep the diversity in the population, thus main-
taining the bases of the coevolutionary algorithms.

The parameter oi is expressed as:

oi =
m∑

j

oij, (4)

where oij measures the overlapping among the RBFs
φj, j = 1, . . . , m, and φi, is calculated as:

oij =
{(

1 − ∥∥φi − φj
∥∥/

di

)
if

∥∥φi − φj
∥∥ < di

0 otherwise
, (5)

where || · || is the Euclidean distance between the two
basis functions, and di is the radius of the basis function
φi.

In opposite to the calculation of the previous param-
eters, the expression to determine the values of oi pro-
vides an absolute measure of the neurons overlapping,
since it does not depend either on the problem, or on
the current network. The parameters oi can be directly
analyzed using an FRBS without applying any kind of
displacement.

Figure 2 shows the behaviour of the parameter oij.
In a the value of oij is 0 because there is not overlap
between i and j. However in b the value of oij is greater
than 0, and therefore the overlap between the hidden
neurons is detected.

3.1.4 Sorting and selecting basis functions

An appropriate way to sort the basis functions must
take into account the three parameters that characterize
their contribution to the final solution. A multiobjective
(Coello et al. 2002) approach (not based in the search
for the Pareto optimal front) has been used to take into
account these three parameters, which have been con-
sidered as different objectives.

To sort the population, first the worst basis function
φi is selected, which is the one with the worst values for
the three parameters (the lowest value for ai, the high-
est value for ei, and the highest value for oi). If there
is no such basis function, the worst RBF is randomly
chosen between the RBFs with the worst values in two
of the three parameters. If such basis function does not
exist, any of the parameters is randomly chosen and the
basis function that presents the worst value within this
parameter is selected as the worst basis function. This
procedure is repeated with the remaining RBFs until all
the basis functions have been sorted.

Once the sorting procedure is applied, the m/2 worst
functions are selected and the operators described in the
following subsection are applied to these selected RBFs.

3.1.5 Applying the operators to the set of worst basis
functions

In the research field of cooperative coevolutive learning
it is frequent to use only the mutation operator (Rechen-
berg 1973) to explore the search space. Moreover, in the
evolutionary design of RBFNs the crossover operator
can be destructive when the individuals are not made by
independent subcomponents as in our case (Angeline
et al. 1994; Yao 1999).

Taking this into account, in this proposal, only two
operators are defined to be applied to the selected RBFs:
an operator that eliminates RBFs, and an operator that
adapts the selected RBF to the zone where it is situated.
These operators exploit the local information that can
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Fig. 2 Example of RBFs. a With no overlap. b With overlap
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be obtained from the contribution of each basis func-
tion to the network. A more detailed explanation of the
proposed operators is given below:

• Operator REMOVE: It simply eliminates an RBF.
• Operator ADAPT: This operator adapts the RBF to

the examples belonging to the zone where the RBF
is allocated. To do this, the output of the network
is evaluated at the training points inside the radius
of the RBF, and according to this output, the centre
and the radius of the RBF are modified. These mod-
ifications are based on the LMS algorithm (Widrow
and Lehr 1990).

As has been said, to decide the application of an opera-
tor to a basis function, an FRBS (Mendel 1995) is used.
The goal of this fuzzy system is to take decisions about
the operators according to expert knowledge and the
behaviour of the RBF in the RBFN.

The three objectives previously defined characterize
the contribution of each base function to the network,
and its relation with the rest of the base functions. In this
way, the parameters ai, ei and oi are used as inputs in
the fuzzy system. These inputs are considered as linguis-
tic variables vai, vei and voi. Moreover, two outputs are
defined. The output premove is the probability of applying
the operator REMOVE, while the output padapt deter-
mines the probability of applying the operator ADAPT.

The number of linguistic labels has been empirically
determined and their fuzzy sets are defined according
to their meaning. To be precise three linguistic labels
Low, Medium, High are used for each input. Figure 3a,
shows the membership functions for these linguistic la-
bels. With respect to the outputs, four linguistic labels
Low, Medium–Low, Medium–High, High are consid-
ered. Figure 3b shows the shape of the corresponding
membership functions.

The rules base provides a set of simple guidelines
from logics and heuristics that represent expert knowl-
edge to be used in the design of RBFNs. To establish the
set of rules the following facts are taken into account:

• An RBF is worse if its contribution (ai) is low, its
error (ei) is high and its overlapping (oi) is also high.

• On the other hand, one RBF is better when its con-
tribution is high, its error is low and its overlapping
is also low.

• The probability to eliminate a basis function should
increase, when the associated RBF is worse.

• The probability to adapt an RBF should increase,
when the associated basis function is better.

• In general, the value of padapt should be high when
the contribution is higher than an intermediate value.

Fig. 3 a Input variables membership functions for the FRBS.
b Output variables membership functions

Table 1 Rule base used in the FRBS

Antecedents Consequents

va ve vs premove padapt

L M–H M–H
M M–L H
H L H

L L H
M M–L H
H M–H M–H

L L H
M M–L H
H M–H M–H

Table 1 shows the simple rule base used, with a small
number of rules which describe the expert knowledge.

These strategies are intended to keep a progressive
network evolution. To do so, for most of the iterations,
the adapt operator tries to adjust the RBF to the zone
in which it is defined.

With regards to the inference engine, Mandani infer-
ence procedure is used (Mandani and Assilian 1975).
This reasoning mechanism is configured considering the
Max function as the T-conorm and the Min function as
the T-norm and implication operators.

3.1.6 Introduction of new RBFs

In this step of the algorithm, the eliminated RBFs are
substituted by new RBFs. These RBFs will be located in
the zones with highest error, contrary to what is usually
performed in this type of algorithm (Platt 1991), where
the new RBFs are located at the points with highest
error.
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The above indicated zones with the highest error are
determined by using the points that are outside any basis
function radius. From these points, the one with the high-
est error will be the new centre of the one with a radius
equal to the average of the RBFs radius. The error in this
zone is calculated as the normalized root mean squared
error (nrmse) of the points inside the zone.

The new RBFs will be iteratively introduced in
these zones with higher error until the population is
completed.

4 Experimental results

This section provides some experimental results ob-
tained by the proposed algorithm in function approx-
imation and time series forecasting problems.

For the experimentation the following conditions are
established:

• The stop condition for the algorithm is a maximum
number of iterations determined in a dynamical way:
first, stop condition is set to 300 iterations. But if in
the last 50 iterations an improvement of the error is
obtained, the new stop condition is increased by 50.

• The solution is the RBFN chosen is the RBFN with
the best error obtained during the entire run.

• The error used to measure the approximation of our
model is the nrmse.

• The results are obtained after 30 runs of the method.

4.1 Function Approximation

The function approximation problem can be defined as
the problem of estimating an unknown function, f, from
a set of training examples: (�xk; zk); k = 1, 2, . . . , K; with
zk = f (�xk) ∈ R, and �xk ∈ Rn.

In the following subsections the functions used and
the results obtained are shown.

Example 1 First, a 1-D target function is considered:

dickerson(x)=3x(x−1)(x−1.9)(x+0.7)(x+1.8),

x ∈ [−2.1, 2.1
]
. (6)

This function was proposed by Dickerson and Kosko
(1996), where a hybrid neuro-fuzzy system is proposed
using ellipsoidal rules to approximate the original func-
tion. This function was also used by Pomares et al.
(2000), where a robust algorithm for the identification
and optimization of a fuzzy system is proposed.

In this experimentation, to evaluate the behaviour of
the proposed algorithm, a training set of 500 samples and
a test set of 1,000 samples of the dickerson(x) function

Fig. 4 Comparison of the results obtained for the Training
NRMSE using different numbers of RBFs or Rules for the bench-
mark function Dickerson

are generated by using inputs that have been randomly
sampled from the interval where the function is defined
as by González et al. (2003).

Figure 4 and Table 2 show the results of the proposed
algorithm in the approximation of dickerson(x) func-
tion and the comparison with other methods for direct
synthesis of fuzzy systems and neural networks reported
in the bibliography. The notation used is the following:
m stands for the number RBFs or rules (depending on
the model) in the solution obtained; np is the number
of parameters learned by the algorithm; MSE stands for
mean square error and NRMSE is the normalized root
mean square error. In this case error for the training
set is showed because only these results are found in
the specialized bibliography. Anyway, we have checked
that these results are very similar to test results for our
algorithm.

From these data, it is clear that the inclusion of new
RBFs decreases the error index. The proposed algo-
rithm outperforms the results of other procedures pre-
sented by Dickerson and Kosko (1996), Pomares et al.
(2000), Rives et al. (2002) and gives similar results to
the error indexes by González et al. (2003). Neverthe-
less, the algorithm presented here is much simpler and
has a lower computational cost (see results in Sect. 4.3)
because (González et al. 2003) uses traditional evolu-
tionary computation (an individual is a complete RBFN)
or complex mutation operators based on Singular Value
Decomposition (SVD) and Orthogonal Least Squares
(OLS).

Example 2 In this example the bidimensional function
approximation problem is considered. The two selected
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Table 2 Comparison of the proposed algorithm with other methods for direct synthesis of neuro-fuzzy systems to approximate the
target function dickerson (x)

Algorithm m np MSE NRMSE

Dickerson and Kosko (1996) Different weights for rules wk = 1 6 – 94.65 –
wk = 1/vk 28.25 –
wk = 1/v2

k 10.53 –
Not supervised 7.927 –
Supervised 3.069 –

Pomares et al. (2000) 5 8 5.01 0.33
6 10 1.35 0.17
7 12 0.46 0.10

González et al. (2003) 3 9 5.57 ± 0.00 0.3455 ± 0.0000
4 12 0.99 ± 0.49 0.1415 ± 0.0390
5 15 0.30 ± 0.02 0.0797 ± 0.0023

Rivas et al. (2002) 8.3 24.9 0.05 ± 0.04 –
Proposed algorithm 3 9 3.57 + 0.00 0.2839 ± 0.0000

4 12 1.27 ± 0.38 0.1671 ± 0.0285
5 15 0.26 ± 0.09 0.0739 ± 0.0239
6 18 5.7E-3 ± 0.01 0.0036 ± 0.0052

functions, f4 and f7, are defined by the following
equations:

f4(x1, x2) = 1 + sin(2x1 + 3x2)

3.5 + sin(x1 − x2)
, x1, x2 ∈ [−2, 2], (7)

f7(x1, x2) = 1.9
[
1.35 + ex1sen(13(x1 − 0.6)2)

·e−x2 sen(7x2)

]
x1, x2 ∈[

0, 1
]
. (8)

f4 function was reported by Cherkassky et al. (1996),
where new methods for the design of Multilayer Per-
ceptron are introduced. This function was also used by
González et al. (2003), and Pomares et al. (2000).

The f7 function is used by Charkassky and Lari-Najafi
(1991) as a benchmark to compare the behaviour of
several paradigms applied to function approximation,
such as Projection Pursuit (PP) (Frideman 1981), Multi-
variate Adaptive Regression (MARS) (Friedman 1991),
Constrained Topological Mapping (CTM) and Multi-
layer Perceptron (MLP). This function was also used
as a benchmark by Castillo (2000), Cherkassky et al.
(1996), and Pomares et al. (2000).

The training set is formed by 400 points randomly
selected from each cell of a 20 × 20 grid partition of the
input space. The test set is built with 961 points obtained
by dividing the input interval into a 31 × 31 grid. The
training and test sets are similar to the ones used by
Cherkassky et al. (1996) and González et al. (2003).

Tables 3, 4 and Fig. 5 compare the proposed algo-
rithm with other methods presented in the bibliography.
It is important to note that the methodology presented
by Pomares et al. (2000) gives an approximation with
very low error due to the small number of non-linear

Fig. 5 Comparison of the result obtained for the Test NRMSE
using different numbers of RBFs or Rules for the benchmark
function f 7

parameters to be optimized. Indeed, there are a great
number of linear parameters that can be optimally cal-
culated in an FRBS. In this case, the results obtained by
the proposed algorithm are similar to those presented
by Pomares et al. (2000) and González et al. (2003) and
better than those obtained in the rest of approaches.

4.2 Time series prediction

Time-series prediction is an important practical problem
which can be formulated as follows: given
x[t−(n−1)�], x[t−(n−2)�], . . . , x[t−�], x[t] determine
x[t + j], where n and j are fixed positive integers and � is
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Table 3 Comparison of the
proposed algorithm with
other methods for direct
synthesis of neuro-fuzzy
systems to approximate the
benchmark function f4

Algorithm m np Test NRMSE

Cherkassky et al. (1996) 40 161 0.052
Pomares et al. (2000) 42 (G) 64 0.061

56 (G) 82 0.028
81 (G) 113 0.015

González et al. (2003) 21 84 0.0473 ± 0.0086
23 92 0.0362 ± 0.0088
25 100 0.0265 ± 0.0033
27 108 0.0239 ± 0.0054
29 116 0.0214 ± 0.0049

Proposed algorithm 21 84 0.0485 ± 0.0065
23 92 0.0437 ± 0.0056
25 100 0.0351 ± 0.0078
27 108 0.0299 ± 0.0057
29 116 0.0252 ± 0.0046

Table 4 Comparison of the proposed algorithm with other methods for direct synthesis of neuro-fuzzy systems to approximate the
benchmark function f7

Algorithm m np Test NRMSE

MLP (Cherkassky et al. 1996) 15 61 0.227
PP (Friedmann 1981) – – 0.206
CTM (Cherkassky et al. 1996) – – 0.197
MARS (Friedmann 1991) – – 0.179
Cherkassky et al. (1996) 40 161 0.034
Pomares et al. (2000) 16 (TP) 20 0.161

25 (TP) 31 0.109
42 (PT) 51 0.059

Castillo et al. (2000) G-Prop (fn) 118 ± 39 0.21 ± 0.01
G-Prop (fl) 105 ± 34 0.23 ± 0.01
G-Prop (fd) 115 ± 36 0.22 ± 0.02

González et al. (2003) 7 28 0.1426 ± 0.0190
10 40 0.0780 ± 0.0080
13 52 0.0590 ± 0.0103
16 64 0.0474 ± 0.0062
19 76 0.0324 ± 0.0050

Proposed algorithm 7 28 0.1621 ± 0.0200
10 40 0.0700 ± 0.0196
13 52 0.0372 ± 0.0035
16 64 0.0277 ± 0.0036
19 76 0.0215 ± 0.0031

a lag time. One popular benchmark is the Mackey–Glass
time series (Mackey and Glass 1977) which is generated
from the following delay differential equation:

dx(t)
dt

= ax(t − τ)

1 + x10(t − τ)
− bx(t). (9)

Prediction of this time series is used as a benchmark
for testing various neural-network architectures (De
Falco et al. 1998; Platt 1991; Rosipal et al. 1998; White-
head and Choate 1996). For the sake of comparison
with earlier work, the following parameters have been
selected: � = 6, j = 85, τ = 17, a = 0.2 and b = 0.1.

Four inputs: x[t −18], x[t −12], x[t −6], x[t] have been
considered, to forecast the output x[t + 85]. Most of the

authors who have used this time series predict in the
long term x[t + 85], because this prediction problem is a
significant challenge in which classical methods behave
only slightly better than chance, thus, the use of RBFN
is justified. A sample of the first 1,000 points was used
in our study of the Mackey–Glass series. The first 500
points of the series are used as training data, and the
final 500 points are used to validate the model.

As in the previous examples, Table 5 compares the
results of our procedure with several approaches to solv-
ing this problem. When compared with algorithms that
use the Multilayer Perceptron, as by De Falco et al.
(1998), the results of our procedure surpass in general
those obtained by De Falco et al. (1998).
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Table 5 Comparison of the proposed algorithm with other methods for direct synthesis of neuro-fuzzy systems to approximate the
benchmark Mackey–Glass time series prediction for x(t + 85)

Algorithm m np Test NRMSE

MLP + BGA (De Falco et al. 1998) 16 80 0.2666
RAN (Platt 1991) ε = 0.1 57 342 0.378

ε = 0.05 92 552 0.376
ε = 0.02 113 678 0.373
ε = 0.01 123 738 0.374

RAN-GQRD (Rosipal et al. 1998) ε = 0.1 14 84 0.206
ε = 0.05 24 144 0.170
ε = 0.02 44 264 0.172
ε = 0.01 55 330 0.165

RAN-P-GQRD (Rosipal et al. 1998) ε = 0.1 14 84 0.206
ε = 0.05 24 144 0.174
ε = 0.02 31 186 0.160
ε = 0.01 38 228 0.183

Fuzzy System (Bersini et al. 1997) Brute force 10 190 0.1086
11 206 0.1098
12 228 0.1026
13 247 0.2235
14 266 0.1586
15 285 0.1028

Incremental 14 266 0.0965
Whitehead and Choate (1996) 25 150 0.29

50 300 0.18
75 450 0.11

125 750 0.05
González et al. (2003) 14 84 0.1977 ± 0.0164

17 102 0.1467 ± 0.0178
20 120 0.1268 ± 0.0174
23 138 0.1012 ± 0.0132
26 156 0.0999 ± 0.0192
29 174 0.0891 ± 0.0131

Rivas et al. (2002) 72 432 0.177 ± 0.004
Proposed algorithm 14 84 0.1675 ± 0.0210

17 102 0.1281 ± 0.0091
20 120 0.1133 ± 0.0125
23 138 0.1059 ± 0.0134
26 156 0.0947 ± 0.0101
29 174 0.0803 ± 0.0066

Other comparisons can be done with methodologies
based on RBFNs, such as the classical model RAN (Platt
1991), which iteratively builds an RBFN by analyzing
the novelty of the input data. Although the algorithm
RAN was improved by Rosipal et al. (1998), giving
as the result, the algorithms RAN-GQRD and RAN-
P-GQRD, the proposed algorithm improves these meth-
ods.

Another interesting algorithm to consider is the one
presented by Whitehead and Choate (1996). This algo-
rithm evolves a population of individuals where each
one of these individuals represents an RBF. Therefore,
this algorithm corresponds to an approach similar to
our procedure, keeping in mind that it also carries out
a final minimization of the error by the application of
the SVD algorithm. Comparing the NRMSE, one can

observe that, although the algorithm offers similar error
values to those obtained by our algorithm, it requires a
higher number of RBFs. Regarding the computational
cost, both algorithms can be considered similar.

With regard to the algorithm (González et al. 2003),
the differences in error are small; nevertheless it is impor-
tant to take into account that the computational cost of
this algorithm is very high compared with the cost of our
algorithm.

The results of our procedure are also compared with
those of an algorithm based on a fuzzy system presented
by Bersini et al. (1997). In this paper two different algo-
rithms are presented in order to optimize the member-
ship functions and the fuzzy system generated: a brute
force one, and an incremental one. The unstable behav-
iour of the brute force is also evident when the number
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Fig. 6 Results obtained by different algorithms in the prediction
of the long term, x(t + 85), Mackey–Glass time series

of fuzzy rules increases. It is important to note that,
although there is a certain similarity among the errors
obtained with those of our procedure, the number of
free parameters of the fuzzy models generated by this
method Bersini et al. (1997) is far greater.

Finally, it is important to note that our procedure is
able to find a set of Pareto-optimum solutions that dom-
inate all the solutions in the Table 5. This is graphically
shown in Fig. 6.

4.3 Analysis of the independent phases
and computational cost of the algorithm

Next, the two main phases of the algorithm, the hy-
brid bio-inspired phase and the minimization phase, are
analyzed. For this objective both the bio-inspired phase
and the minimization phase are executed from the same
initialization and the results of the two phases of the
algorithm and the results of the complete algorithm are
shown in the Fig. 7.

As can be seen from these data, the bio-inspired phase
reaches a good solution near the solution of the com-
plete algorithm. Also, this phase has coherent behav-
iour and when new RBFs are introduced the RBFN
error decrease. Moreover the standard deviation is low.
If only the minimization phase is applied the results are
very bad with incoherent behaviour, where more RBFs
do not imply a better result or where the standard devi-
ation in high.

These results also confirm the reliability of the com-
plete algorithm. The solutions obtained from the hybrid
bio-inspired phase are the most suitable because with a
high probability, the minimization phase reaches practi-
cally a global optimum.

Fig. 7 Comparison of the results of the different phases of the
algorithm for the approximation of the function f4. + results of the
complete algorithm. x results if only Bio-inspired phase is applied.
o results if only minimization phase is applied

Fig. 8 Comparison of the mean computational time required
for the proposed algorithm for approximating different problems
(function of one and two dimensions, the Mackey–Glass time se-
ries), compared with the approach presented by Gonzalez et al.
(2003)

Finally, one of the most important feature of the pro-
posed methodology is the computational cost of the
algorithm. In fact, the presented algorithm is very fast
because the cooperative coevolutionary method selec-
tion operates on individual RBFs rather than on whole
networks, therefore instead of evolving complex neu-
ral networks, it evolves individual neurons. The entire
population corresponds to a single RBFN, instead of
different approaches (González et al. 2003), in which
the entire population corresponds to a large number
of neural networks. This can be verified analyzing the
computational time in Fig. 8.
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5 Conclusions

A new multiobjective cooperative–coevolutionary algo-
rithm for the optimization of the parameters defining an
RBFN has been proposed. An important contribution of
the presented procedure is the identification of the role
of each basis function defining the network. In order
to evaluate the significance of a given RBF, three fac-
tors are used: the RBF contribution to the network’s
output, ai; the error in the basis function radius, ei; and
the degree of overlapping among RBFs, oi. Two main
operators are used to drive the cooperative–coevolutive
algorithm: one is used for the elimination of a hidden
neuron and the other for the adaptation of the param-
eters defining the neurons. In this way, our hybrid pro-
cedure includes a fuzzy rule based system to decide the
application of the operators to a given RBF (to remove
or adapt it). Thus, the probability of applying an opera-
tor is provided by the fuzzy rule based system by using
as an input the three parameters, ai, ei, and oi, used for
credit assignment.

The hybrid procedure here proposed is able to find
a RBF network composed of few RBFs and with high
accuracy. Nevertheless, it is also possible to include a
further step if a further improvement in the quality of
the RBF should be obtained. In our present implemen-
tation this step uses the Levenberg–Marquardt method
as a local minimization algorithm that makes it possi-
ble to obtain the local minimum near the solution given
by our bio-inspired procedure. In this way, the initial
conditions given to Levenberg–Marquardt method are
the most suitable ones due to the quality of the
cooperative coevolutionary algorithm used in the first
phase, thus implying that the final local optimum ob-
tained will be a global optimum with a high degree of
probability.

The paper provides a detailed comparison of our algo-
rithm and other solutions presented in the bibliography
for function approximation and time series prediction.
From the analysis of the results obtained, it can be con-
cluded that the proposed algorithm produces in gen-
eral, good results for function approximation, is much
simpler and has a lower computational cost than other
multiobjective evolutionary algorithms presented in the
bibliography that use traditional evolutionary computa-
tion and complex operators. It is important to take into
account the low values for the standard deviations of
the error index. This circumstance indicates the robust-
ness of the presented procedure with respect to its error
indices. Moreover, as the differences between the train-
ing set error and the test set errors are small, the good
generalization capability of our algorithm is clearly dem-
onstrated.

Finally as regards to future work, it would be inter-
esting to analyze the importance and the contribution
of each objective in the final solution and as a future
line, a deeper research in the evolution of the individ-
uals applying multiobjective techniques will be carried
out.
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