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Abstract—This paper proposes a multiclassification algorithm
using multilayer perceptron neural network models. It tries to
boost two conflicting main objectives of multiclassifiers: a high
correct classification rate level and a high classification rate for
each class. This last objective is not usually optimized in clas-
sification, but is considered here given the need to obtain high
precision in each class in real problems. To solve this machine
learning problem, we use a Pareto-based multiobjective optimiza-
tion methodology based on a memetic evolutionary algorithm. We
consider a memetic Pareto evolutionary approach based on the
NSGA2 evolutionary algorithm (MPENSGA2). Once the Pareto
front is built, two strategies or automatic individual selection are
used: the best model in accuracy and the best model in sensitivity
(extremes in the Pareto front). These methodologies are applied
to solve 17 classification benchmark problems obtained from
the University of California at Irvine (UCI) repository and one
complex real classification problem. The models obtained show
high accuracy and a high classification rate for each class.

Index Terms—Accuracy, local search, multiclassification, multi-
objective evolutionary algorithms, neural networks, sensitivity.

I. INTRODUCTION

C LASSIFICATION is one of the most frequently en-
countered decision making tasks in human activity.

A classification problem occurs when an object needs to be
assigned into a predefined group or class based on a number
of observed attributes related to that object. Many problems
in business, science, industry, and medicine can be treated as
classification problems [10], [37], [50]. Some examples in-
clude, among others, bankruptcy prediction [27], credit scoring
[65], medical diagnosis [42], quality control [46], handwritten
character recognition [24], and speech recognition [60]. The
extension from two-class to a multiclass pattern classification
problem is nontrivial, and often leads to unexpected complexity
or weaker performances [25].
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A classifier design method is usually an algorithm that
develops a classifier to approximate an unknown input–output
mapping function from finitely available data, i.e., training
samples. Once this classifier has been designed, it can be used
to predict the class labels that correspond to unseen samples.
Hence, the objective of developing a good classifier is to ensure
high prediction accuracy for unseen future data, i.e., testing
capability. Many techniques have been proposed to improve
the overall testing capability of the classifier designed, but
very few methods maintain this capability in all classes. This
is very important in some data sets (such as medicine, remote
sensing, economy, etc.) to ensure the benefits of one classifier
over another.

Artificial neural networks (ANNs) [9] have been an object of
renewed interest among researchers, both in statistics and com-
puter science, owing to the significant results obtained in a wide
range of classification and pattern recognition problems. Many
different types of neural network architectures have been used,
but the most popular one is multilayer perceptron (MLP). Re-
cent vast research activities in neural classification have estab-
lished that neural networks are a promising alternative to various
conventional classification methods [75].

Learning algorithms for ANN models can be divided into
two basic groups: local search algorithms and global search
algorithms. The backpropagation algorithm (BP) belongs to the
first group. Some methods require a topology to be preset by
an expert and only modify the value of the coefficients while
the topology changes through iterative processes of growth
(constructive) or pruning (destructive). Evolutionary algorithms
(EAs), which can evolve network models optimizing the archi-
tecture and weights individually or simultaneously [71], belong
to the second group.

Often a great number of objectives must often be processed
to obtain a viable solution to a problem, usually without any a
priori knowledge of how the objectives interact with each other
[40]. In this optimization process, within the field of ANNs, the
objective of optimizing both the network model and the accu-
racy of the model (measured by the percentage of correctly clas-
sified patterns or ) is usually to minimize the number
of coefficients in the model to thus encourage more simple and
more interpretable models which generally yield better results
in accuracy for the testing data set.

There are different methods for optimizing two or more ob-
jectives. The most popular are the methods that use a regular-
ization term or aggregating function (scalarized multiobjective
learning), which aggregates a scalar objective function, and also
the methods based on Pareto dominance [14], [16]. However,
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the first case is not an efficient way to solve the problem. First,
the scalarized multiobjective learning method can only generate
one Pareto solution at a time and it assumes the convexity of
the Pareto frontier. Second, choosing a suitable regularization
term is occasionally a tedious problem of trial and error. This is
particularly important if multiple objectives conflict with each
other, and consequently, no single optimal solution is able to op-
timize all the objectives simultaneously.

An additional potential advantage of the Pareto-based
learning approach is that using multiobjective techniques may
help the learning algorithm to get out of local optima, thus
improving the accuracy of the learning model. Some empirical
evidence has been reported in [4] and [6].

ThetrainingofANNsbyevolutionaryPareto-basedalgorithms
[40] known as multiobjective evolutionary artificial neural
networks (MOEANNs), has been in use in the last few years
to solve classification tasks [50], having some of its main
exponents in [1] and [40]. The objective pursued when using
multiobjective evolutionary algorithms (MOEAs) with ANNs
is mainly the design of models with the greatest possible
accuracy in a classification problem and with little structural
complexity (this last objective defined as the squared sum of
all the weights in the network, squared sum of the absolute
value of the weights, the number of hidden neurons in the
net or the number of links or connections in the network)
[4], [11], [41].

The idea of designing neural networks within a multiobjec-
tive setup was first considered by Abbass [4]. In his work, the
multiobjective problem formulation essentially involved the set-
ting up of two objectives: the complexity of the network and
the training error (quadratic error/mean square error). For it, an
algorithm called MPANN which uses Pareto differential evolu-
tion [5] was proposed, showing improvements over many other
MOEAs. MPANN was considered later in [3] for learning and
to form ANN ensembles, albeit, with a different multiobjective
formulation.

On the other hand, it is theoretically and empirically verified
that the combination (ensemble) of the results obtained by dif-
ferent classifiers may improve the results that each provides in-
dividually [66]. The success of an ensemble depends basically
on two factors related to the classifiers in it: accuracy and di-
versity. Both the quality of each individual classifier and the
differences between them are necessary conditions for the ef-
fective functioning of the ensemble in which the classifiers are
integrated. A recent algorithm called diverse and accurate en-
semble learning algorithm (DIVACE) [12] makes use of good
ideas found in negative correlation learning (NCL) [44] and
MPANN [3]. Also DIVACE formulates the ensemble learning
problem as a multiobjective problem explicitly within an evolu-
tionary setup, aimed at finding a good tradeoff between diver-
sity and accuracy. Other good studies about ensembles can be
found in [38] and [39], where nondominated ANNs on the ac-
curacy–complexity tradeoff surface were used to construct an
ensemble classifier from the Pareto front obtained by MOEAS.

This type of model (ensembles) presents, in general, a good
result on the testing set, because the usual effect of ensemble
averaging is to reduce the variance of the error of a set of classi-
fiers. They are accuracy oriented: their weighting strategy may

bias towards the prevalent class since that contributes more to
overall classification accuracy [64].

The objective of this paper is to propose a simple neural net-
work model for classification based on a 2-D performance mea-
sure associated with multiclass problems. This is done because
a simple model makes it easier to understand the cause–effect
relationship between the input variables and the output clas-
sification target, e.g., by applying a rule-based system to the
best neural network model [61]. Our proposal tries, unlike most
works which seek high accuracy (the measure for the correct
classification rate ), to achieve a high classification rate level
in the testing data set with a good classification level for each
class. Concretely, we consider the minimum of the sensitivities
of all classes , that is, the lowest percentage of examples cor-
rectly predicted as belonging to each class with respect to the
total number of examples in the corresponding class and the tra-
ditionally used accuracy . The sensitivity versus accuracy pair

expresses two features associated with a classifier: global
performance and the rate of the worst classified class . These
two objectives, after certain levels, are usually in conflict in the
optimization process. This can be seen in Section V.

In our opinion, the results given in [48] show that sensitivity
as an objective provides interesting ideas on creating models
for pattern recognition. In this previous work, an approach
is proposed to deal with multiclass classification problems
using an EA for designing ANNs. From this perspective,
we try to optimize accuracy and sensitivity with different
strategies observing the behavior of different fitness functions
such as accuracy, entropy, sensitivity, and area (a combination
of accuracy and sensitivity) in an evolutionary neural network
scheme. From this analysis, we presented a two-stage EA
with entropy (first stage) and area (second stage) as fitness
functions. The two-stage algorithm obtained promising results,
achieving a high classification rate level in the global data
set with an acceptable level of accuracy for each class. We
also considered a mono-objective algorithm with only the
sensitivity fitness function. The results obtained in the work
just mentioned showed that the sensitivity fitness function
generally obtains classifiers with a better sensitivity level than
the accuracy fitness function, although at a lower accuracy
level. This behavior is especially significant when unbalanced
data sets or multiclass problems with a high number of classes
are considered. In summary, this previous work shows the
importance of optimizing precision with sensitivity but does
not really obtain a satisfactory result for both measures. In
the present work, we show that a multiobjective approach is a
much better option to optimize both accuracy and sensitivity.
We build a much more robust algorithm that achieves an
interesting result in this new area of dealing with multiclass
problems.

So, to obtain classifiers with high accuracy and good levels
of sensitivity , for all classes, this work presents an MOEA
for classification with ANNs, concretely, a memetic version of
NSGA2 introducing the iRprop+ [34] algorithm as the local op-
timizer. The algorithm designs the ANN architecture, finding an
adequate number of neurons in the hidden layer and number of
connections along with the weights of the net. A network with
a low number of neurons cannot generalize correctly due to a
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learning disability, while a network with a large number of neu-
rons increases the complexity of the model and overtrains the
patterns.

This methodology is applied to solve 17n benchmark clas-
sification problems obtained from the University of California
at Irvine (UCI) repository [8] and one real complex qualitative
chemometric problem. The algorithm has been empirically an-
alyzed, justifying the strategy with an MOEA based on Pareto
dominance. Our approach is compared to two well-known
Pareto-based multiobjective algorithms.

The rest of the paper is organized as follows. In Section II,
accuracy and sensitivity measures are proposed and their prop-
erties are discussed. Section III presents an overview of multiob-
jective evolutionary neural networks. Section IV describes the
MPENSGA2 algorithm and our problem is shown as a multi-
objective Pareto-based optimization problem. Section V shows
the experimental design, and finally, the conclusions are drawn
in Section VI.

II. ACCURACY AND SENSITIVITY IN CLASSIFICATION

PROBLEMS

A. Accuracy

Statistics and machine learning communities have tradition-
ally used overall correct classification or accuracy to measure
the performance of a classifier, generally avoiding the classifi-
cation level of each class in the results. However, the pitfalls of
using accuracy have been pointed out by several authors [56],
[55]. Actually, it is enough to realize that accuracy cannot cap-
ture all the different behavioral aspects found in two different
classifiers.

Assuming that all misclassifications are equally costly and
that there is no profit gained by a correct classification, we as-
sume that a good classifier should obtain both a high accuracy
level and an acceptable level for each class. In real problems
these objectives are usually in competition. Achieving a high
overall classification accuracy level usually means sacrificing
classification accuracy in one or more classes. This problem is
especially significant when we deal with classification problems
that differ in their prior class probabilities (class imbalances) or
where there are a great number of classes [30]. It is clear that
in many medical problems and imbalanced problems there is a
cost associated with the classifier, so receiver operating charac-
teristic (ROC) curves [20] are often used to check if one classi-
fier is better than another in terms of the minority class.

When there are two classes, ROC curves are an alternative to
accuracy. However, the standard ROC perspective is limited to
classification problems with two classes. Extension of the stan-
dard two class ROC for multiclass problems ( -classes) is at-
tractive, since it would confer the benefits of ROC analysis to
more problems in pattern recognition. Recently, a number of
studies in this area have been performed. In [19], the approach
considers a multiobjective optimization problem where the ob-
jective is to simultaneously minimize the misclas-
sification rates given by the off-diagonal elements of the con-
fusion matrix. The main shortcoming of this approach is that
unfortunately the dimension of the Pareto optimal fronts grows
at the rate of the square of the number of classes. In [43], the

authors simplify the multiclass ROC by means of an algorithm
that analyzes the ROC dimensions that are independent of each
other, identifying independent classes and groups of interacting
classes, allowing the ROC to decompose. The resulting decom-
posed ROC hypersurface can be studied in the same way as the
ideal case. In [49], the ROC concepts are extended to diagnostic
enterprises with three possible outcomes, and a ROC surface
on 3-D coordinates is plotted for a trichotomous decision task
using the volume under the ROC surface (VUS). Thus, the VUS
summarizes global diagnostic accuracy for trichotomous tests,
just as the area under the ROC curve does for a two-alternative
diagnostic task. Information gain at points on the surface can
be calculated in the same way as for 2-D ROC curves, and re-
searchers can thus compare three-way ROCs by comparing the
maximum information gain on each ROC surface. On the other
hand, Everson and Fieldsend [19] extend multiclass ROC anal-
ysis based on tradeoffs between the misclassification rates from
one class to each of the other classes; the multiclass ROC sur-
face is considered to be the solution to the multiobjective opti-
mization problem when the objectives are these misclassifica-
tion rates. Thus, the computational cost grows as a function of
the number of classes.

Even though the ROC analysis can be theoretically extended
to cover a multiclass case, in real cases, this extension presents
difficulties. Unfortunately, the dimension of the Pareto optimal
fronts grows at the rate of the square of the number of classes.
Moreover, it is very difficult to obtain a good estimate of the
Pareto front in the objectives or fitness function space when
there is an increase in the number of objectives to be optimized.
The Pareto fronts obtained will have a lot of individuals which
increases the computational cost for finding each Pareto front.
Finally, working with more than two objectives has the disad-
vantage of visualization in more than three dimensions.

B. Sensitivity–Accuracy Approach

Let us define a problem of classification with classes and
training or testing patterns. We define the performance of a

classifier by means of the corresponding contingency
or confusion matrix

where represents the number of times that the patterns are
predicted by classifier to be in class when they really belong
to class . The diagonal corresponds to correctly classified pat-
terns and the off-diagonal corresponds to mistakes in the classi-
fication task.

Let us denote the number of patterns associated with class
by

Two scalar measures can be defined in order to take the ele-
ments of the confusion matrix into consideration from different
points of view. Let be the number of patterns cor-
rectly predicted to be in class with respect to the total number
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of patterns in class (sensitivity for class ). Therefore, the sensi-
tivity for class estimates the probability of correctly predicting
a class example.

From the above quantities, we define the sensitivity of the
classifier as the minimum value of the sensitivities for each class

.
The correct classification rate or accuracy is defined as

that is, the rate of all the correct predictions.
Specifically, it is the 2-D measure associated with a

given classifier that is considered in this work. This measure
tries to evaluate two features of the classifier: the global perfor-
mance in the whole data set and the performance in each class.

The selection of as a complementary measure of can be
justified upon considering that

is the weighted average of the sensitivities in which the weights
depend on the data set, thus providing both intuitive and compu-
tational support of the sensitivities of each one of the classes.

is estimated based on fixed weight , and it is the choice of
that minimizes

From a statistical point of view, since it is a weighted av-
erage, will be a good and representative -estimator of lo-
cation of the set of sensitivities if they are homogeneous [31].
On the other hand, will not be a representative measure if
the sensitivities are very scattered. Keeping this fact in mind,
the complementation of the information contributed by to a
classifier could be obtained by considering some measure that
minimizes dispersion. The range is
a possible choice. Its minimization may be reached either mini-
mizing or maximizing . Since the first option
should be ruled out considering that increases if the sensitiv-
ities increase, the second will be the appropriate choice. There-
fore, can be considered a complementary mea-
sure of whose value must be maximized. It will improve
as a weighted average of the correct classification rates of the
classes. This perspective involves two objectives that have not
been used previously in the design of ANN models although
they are equivalent (subsets) to those points on the sur-
face which trade off the smallest total error, sum of the
elements, against the worst misclassification rate for any class
(i.e., the largest sums in the rows of the off-diagonal
elements in the confusion matrix) [19]. Then, in a Pareto sense,
therefore, a 2-D line is traced out on the surface.

It is clear that two quantities cannot collect all the informa-
tion given by the misclassification rates included in
the confusion matrix. However, the pair tries to avoid the
disadvantages of the approaches based on misclassi-
fication rates (i.e., the difficulties for a graphic representation

Fig. 1. Unfeasible region in the 2-D ����� space for a given classification
problem.

that would allow us to visualize the performance of the clas-
sifiers; the increase in the dimension of the Pareto front with
respect to the number of objectives, in our case, the
misclassification rates, and the computational problem associ-
ated with a multiobjective optimization problem which presents
a lot of objectives). In this way, the pair tries to find a
point between the scalar accuracy measure and the multidimen-
sional ones based on misclassification rates. These two mea-
sures verify that

(1)

being the minimum of the estimated prior probabilities, value
that has an important role in the relationship between the two
measures.

Sensitivity is represented on the horizontal axis and accu-
racy on the vertical axis. One point in space domi-
nates another if it has more accuracy and equal or greater sensi-
tivity, or if it has greater sensitivity and equal or better accuracy.
Therefore, ideally, from the previous inequality of (1), each clas-
sifier will be represented as a point in the white region in Fig. 1,
hence the area outside the triangle is marked as unfeasible. The
area inside the triangle may be feasible (attainable), or may
not be, depending upon the classifier and the difficulty of the
problem. Observe that the optimum classifier
is not feasible for all problems/classifiers, especially for prob-
lems with stochastic elements. For this reason, it is better to say
that a classifier cannot be located in the unfeasible region. Fur-
thermore, the points on the vertical axis correspond to classifiers
that are not able to correctly predict any pattern of a given class.
Note that it is possible to find among them classifiers with a high
level of accuracy, particularly in problems with low (unbal-
anced problems).

The following comments can be made from the concrete
shape of the region. First, observe that an increase in accuracy

does not imply an increase in sensitivity . Reciprocally, an
increase in sensitivity does not mean an increase in accuracy

. On the other hand, it should be noted that for a fixed value
of accuracy , a classifier will be better when it corresponds to
a point nearer to the diagonal of the square.
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Fig. 2. Accuracy and sensitivity as conflicting objectives—an illustration.

It is important to note that sensitivity and accuracy are
not cooperative in general, especially at certain levels. At the
beginning of a learning process, accuracy and sensitivity could
be cooperative, but after a certain level, objectives become com-
petitive and an improvement in one objective tends to involve a
decrease in the other one. The example, Fig. 2, shows that ac-
curacy and sensitivity are conflicting objectives in general. For
that unbalanced two-class example, in the left graph, the linear
classifier obtains , and . If we want to improve
the sensitivity, the decision boundary should be moved to sep-
arate the triangle class from the square one but, and in general
because of that, it is necessary to reduce accuracy.

When the number of classes increases or when the problem is
highly unbalanced, the quantity decreases in
both cases, and the straight line which defines the upper border
of the feasible set in space tends to be horizontal because
(1) tends to , thus the range of values will be
large even for high values of . In these conditions, the use of

as the only measure is inadequate as it hides many different
possibilities for . These comments show that the sensitivity
measurement versus that of accuracy can be especially useful
in problems concerning unbalanced classes or when there are a
great number of classes, and confirm, again, the inadequacy of
accuracy in these situations.

III. MULTIOBJECTIVE EVOLUTIONARY NEURAL NETWORKS

Evolutionary artificial neural networks (EANNs) have been
a key research area for the last few years [72]. Methods and
techniques have been developed to find better approaches for
evolving ANNs, trying to design networks with good gener-
alization capability. On the other hand, finding a good ANN
architecture has also been a debatable issue in the field of
ANNs. Methods for network growing, denominated construc-
tive algorithms [52], start with a small network, usually a single
neuron. This network is trained until it is unable to continue
learning, and then new components are added to the network.
This process is repeated until a satisfactory solution is found.
Destructive methods, also known as pruning algorithms [57],
start training with a larger network than necessary, and then
remove unnecessary parts. The reason is that the large-sized
network can learn reasonably quickly with less sensitivity to
initial conditions while the reduced complexity of trimmed
networks shows improved testing performance. However, all
these methods still suffer from their slow convergence and long
training time. In addition, they are based on gradient-descent

techniques and, therefore, can easily get stuck at a local min-
imum, as the BP algorithm and its variants do.

The uses of evolutionary approaches in ANN training (with a
single error function) have a number of intuitive advantages over
gradient-descent training in this domain. A major advantage of
the evolutionary approach over traditional learning algorithms,
like BP, is its ability to escape a local optimum, its robustness,
and its ability to adapt itself to a changing environment. Training
ANNs with EAs is a powerful approach to address the exploita-
tion/exploration dilemma. Selecting the size of the architecture
of a neural network for a particular application is a difficult task.
The architecture of the neural network directly affects two of the
most important factors of neural network training: testing and
training efficiency and efficacy.

EANNs can automatically find good architectures (a number
of hidden neurons and weight values that do not produce
overtraining or lack of learning in testing) for a neural network
through evolutionary process and through crossover and muta-
tion operators designed for this purpose. The evaluation of each
individual in the population of each generation simulates the
process of natural selection. There have been many applications
for parametric learning (evolving the weights of the network)
[58] and for both parametric and structural learning (evolving
the weights and the number of hidden nodes and connections
simultaneously) [7], [73]. On the other hand, Palmes et al.
[51] classified two major types of EANNs: noninvasive and
invasive. The first one refers to approaches where evolutionary
selection is used but some gradient training is required for
fitness evaluation; while an invasive approach tries to optimize
weights and architecture in the evolution process. The authors
point out that the invasive approach is better for the generation
of efficient networks, avoiding gradient-based fitness evalua-
tion, and resulting in more robust search coverage. This could
indicate the appropriate selection of that methodology for
training neural networks. Yao [70] presents a thorough review
of the field of EANNs. Differential evolution (DE) is a branch
of EAs developed by Storn and Price [63] for optimization
problems over continuous domains. DE has been used in the
last few years to design ANNs. For example, Ilonen et al. [36]
analyzed DE as a candidate global optimization method for
feedforward neural networks as compared to gradient-based
methods, and designed ANNs using mean square error as the
objective function.

On the other hand, Pareto-based techniques, specifically
MOEAs, should provide a well distributed nondominated front
and provide diversity (in the objective space) to explore the
fitness landscape, although it is difficult to define appropriate
quality in a Pareto front [14]. Also, these techniques present
an uncountable set of solutions that, when evaluated, produce
vectors whose components represent a tradeoff in an objective
space. A decision maker then implicitly chooses an acceptable
solution (or solutions) by selecting one or more of these vectors.

There are a limited number of studies using an MOEA to train
a population of multiobjective ANNs which is usually applied
to minimize the error in the training set and the complexity
of the network. For example, Abbass has presented different
studies on the design and training of ANNs using accuracy
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and complexity as objectives [4], [5]. Along with Abbass,
other authors use DE as the basis of their MOEAs [54], [74],
but the most current MOEAs are not based on DE and are
being used to design ANN models, with multiple applications
and uses for them. The reader may refer to [21], [22], [28],
and [59] for more details and examples about these studies
based on accuracy complexity.

An improvement of the EA, both mono-objective and multi-
objective based or not on Pareto dominance, is the incorpora-
tion of local search procedures throughout the evolution. Some
studies carried out on the process of the convergence of an EA
in a concrete optimization problem show how the genetic algo-
rithm quickly finds acceptable solutions for the problem. How-
ever, it needs many generations to reach a good solution and they
are too poor to find the best solution when they are in a region
where the algorithm converges toward a global optimum [33].
On the other hand, it is well known that certain local procedures
are able to find the global optimum when the search is carried
out in a small region of the space. Therefore, in the combina-
tion of EAs and local procedures, EAs would carry out a global
search inside the space of solutions, locating the ANNs near the
global optimum, so the local procedure could arrive at the best
solution quickly and efficiently. This type of algorithm receives
the name of memetic or hybrid algorithm [62], [69].

Recently, new methods have been developed in order to
improve the lack of precision of the EAs using local optimiza-
tion algorithms [15]. Gradient-descent techniques are the most
widely used class of local search algorithms for supervised
learning in neural networks. The resilient backpropagation
algorithm (Rprop) [34] is the best of these techniques known
to the authors in terms of convergence speed, accuracy and
robustness with respect to its parameters, although classic
algorithms like BP are also frequently used. Recently, the
improved resilient backpropagation (iRprop) algorithm has
been proposed, which applies a backtracking strategy (i.e., it
decides whether to take a step back along a weight direction, by
means of a heuristic). It has been shown in several benchmark
problems [35] that the improved Rprop consistently exhibits
better performance than the original Rprop algorithm, and that
is why we use a variant of the same algorithm in this work.

There are several studies that make use of MOEAs along
with local optimizers, used after the mutation phase, to fine
tune the weights. After learning, the fitness of each individual
is updated with respect to the approximation error. This is
called “lifetime learning.” In addition, the modified weights
are encoded back to the chromosome during lifetime learning.
This is known as the Lamarckian type of inheritance. Jin
et al. presented [41] a comparison of the results obtained
with NSGA2 algorithm along with Rprop in several works
[38], and mono-objective algorithms with a weighted sum of
objectives, trying to minimize the mean square error (MSE)
and the complexity of the network in terms of the number of
links and hidden layer neurons. In [2], Abbass obtains neural
network models for the diagnosis of cancer and other data sets
from the UCI, using the BP algorithm as the local procedure
and using, again, accuracy–complexity as objectives. In [26],
MOEAs are used to classify human faces and cars by using the
NSGA2 algorithm with the introduction of a local search in each

generation. The MSE and the number of neurons in the hidden
layer are minimized to obtain the classifiers. This is carried out
with the improved Rprop algorithm although it involves a high
computational cost. We wanted to avoid a high computational
cost in this paper so the local search was introduced in a
very small number of generations. As can be seen, MOEAs
generally used for designing ANN models for classification
try to minimize the error and minimize the complexity, but in
no case is sensitivity used to improve a classifier when there
are more than two classes (multiclassification problems). In
this paper, we propose a memetic MOEA to design ANN
models for multiclass problems [50], specifically the NSGA2
used in combination with the iRprop algorithm. This local
search will improve the Pareto front obtained in only one
objective, specifically in the direction of the objective that tries
to minimize the classification error, which in this case is the
cross-entropy error function (presented in the next section).

IV. THE MPENSGA2 MEMETIC MULTIOBJECTIVE

EVOLUTIONARY ALGORITHM

A. Base Classifier Framework

We consider that the most widely used models of ANNs are
the multilayer perceptron (MLP) neural networks. The func-
tional model considered is the following:

where is the transpose matrix containing all
the neural net weights,
is the vector of weights of the output node,

is the vector of weights of the connections
between input layer and the th hidden node, is the number
of classes of the problem, is the number of sigmoidal units
in the hidden layer, is the number of features in each pattern
to be classified, is the input pattern, and has the
following expression:

The outputs of the neural network can be seen from a prob-
abilistic point of view, which considers the softmax activation
function given by the following expression:

(2)

where is the probability pattern has of be-
longing to class . We adopt the common technique of
representing the class levels using a “ -of- ” encoding vector

, such as if corresponds to
an example belonging to class , and otherwise. Taking
this consideration into account, it can be seen that the class
predicted by the classifier corresponds to the neuron on the
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Fig. 3. MPENSGA2 algorithm pseudocode. Local search in italic face.

output layer whose output value is the greatest. The optimum
rule is the following:

where

for

Therefore, it is probable that one of the classes does not need
to be estimated because of the normalization condition. With no
loss in generality we can assume , which implies
a reduction of one node in the output layer of the neural network
equal to , where is the number of classes.

B. Fitness Functions

In order to establish a measure for determining the goodness
of the MLP models, two functions have been considered: accu-
racy and the cross-entropy error function. If we use the training
data set then accuracy is given
by

where is the zero-one loss function and is the number
of patterns in the data set. A good classifier tries to achieve the
highest possible in a given problem for the testing set. The
other function used in this research to evaluate a classification
model is the cross-entropy error [9] and is given by the fol-
lowing expression for classes:

(3)

The advantage of using the error function instead
of is that this is a continuous function, which makes
the convergence more robust. The first fitness measure to maxi-
mize is a strictly decreasing transformation of the entropy error

given by

where is the function
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Fig. 4. General framework for MPENSGA2.

The second fitness measure to maximize is the minimum sen-
sitivity of the classifier

This objective, a priori, could be considered to be in no con-
flict with , and to share a relationship of mutual dependency
with it. However, it has been experimentally verified that they
are in conflict depending on the data sets as the levels of accu-
racy achieved by the classifiers. The tradeoff situation between
them can, therefore, be represented as a Pareto front [14], [16].

C. Mutations

We consider two types of mutation operators (structural
and parametric) to obtain new individuals in the evolutionary
process. These mutations are similar to those defined in the
GNRL model [7]. The mutation operators inject new genetic
material into a population of individuals, thereby ensuring that
a larger part of the search space is covered.

There are five mutations, four structural mutations, and one
parametric mutation, and the probability of choosing a type of
mutator and applying it to an individual is equal to 1/5.

Parametric mutation [45] is done for each weight of the
neural network with Gaussian noise

where , represents a 1-D normally dis-
tributed random variable with mean 0 and variance , and

represents a temperature in descent throughout the evo-
lutionary process (descent value is configurable in the algo-
rithm), making abrupt changes at the beginning (exploration)
and smaller changes at the end (exploitation).

Structural mutation introduces diversity in the population
that leads to different locations in the search space. Specifi-
cally, the operators used are add/delete neurons and add/delete
connections. With regard to the mutations add or delete links,
the number of links to add or delete are applied between the
input layer and the hidden layer and between the hidden layer
and the output layer. Specifically, we randomly add or delete
30% of the total number of links in the input-hidden layers,
and 5% of the total in the hidden-output layers. Weights are
assigned using uniform distribution defined throughout two
intervals, for connections between the input layer and
hidden layer and for connections between the hidden
layer and the output layer. These values have been obtained
experimentally and are sufficiently robust.

If the structural mutation that has been assigned randomly
cannot be applied to a network, a new mutation is chosen. This
can occur in cases in which we try to add or delete a neuron
in the hidden layer when the maximum or minimum set value
is reached (these values are dependent on the problem and are
obtained experimentally by trial and error). This can also occur
when trying to delete a link when it is the only one between two
neurons, or if the elimination of a link in a hidden layer leaves
a neuron unlinked to the output layer.

For further details about these mutations and about the gener-
ation of the neural networks in the beginning and during the evo-
lutionary process, the reader can consult previous works [47].

D. iRprop+ Local Optimizer

The Rprop algorithm is believed to be a fast and robust
learning algorithm. It employs a sign-based scheme to update
the weights in order to eliminate harmful influences of the
derivatives’ magnitude on the weight updates, i.e., the magni-
tude of the update along each weight direction only depends
on the sign of the corresponding derivative. The size of the
update step along a weight direction is exclusively determined
by a weight-specific “update-value” . The improved Rprop
algorithm (denoted by iRprop+) applies a backtracking strategy
(i.e., it decides whether to take a step back along a weight
direction or not by means of a heuristic). The idea of this mod-
ification is that weight updates causing changes in the signs
of corresponding partial derivatives should be reverted only in
case of error increase. Thus, this training scheme combines the
local information (i.e., the sign of the partial derivative of the
error with respect to a weight like Rprop) with more global
information (i.e., the error value at each iteration) in order to
decide whether to revert an update step for each weight indi-
vidually. It has been shown in several benchmark problems in
[35] that the iRprop+ exhibits consistently better performance
than the Rprop algorithm.

We have carried out the adaptation of the iRprop+ local op-
timizer to the softmax activation function (2) and the cross-en-
tropy error function (3). In this case, the gradient vector is given
by
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Fig. 5. Achieving statistical results from MPENSGA2.

Let be any of the parameters of and , being therefore

Finally, we have the following expressions for the output
layer:

and for the hidden layer

where

E. MPENSGA2

This section describes an MOEA for designing neural net-
work models applied to multiclassification problems, with a
local search procedure, called memetic Pareto evolutionary
NSGA2 (MPENSGA2). This algorithm obtains different non-
dominated sets with classifiers that present a good balance

between accuracy and sensitivity. We select the first nondom-
inated set (see process in NSGA2 [17] for obtaining Pareto
fronts) that is obtained in the objectives space (fitness functions
space).

Our approach evolves architectures and connection weights
simultaneously, each individual being a fully specified ANN.
The ANNs are represented using an object-oriented approach
and the algorithm deals directly with the ANN phenotype.
Each connection is specified by a binary value indicating if the
connection exists and a real value representing its weight. As
crossover is not considered due to its potential disadvantages
in evolving artificial networks [7], [72], this object-oriented
representation does not assume a fixed order between the
different hidden nodes.

The MOEA starts by generating a random population of
size . The population is sorted on nondomination, assigning
to each solution a fitness (or rank) equal to its nondomination
level (1 is the best level, 2 is the next-best level, and so on). Then,
the usual binary tournament selection and mutation operators
are used to create an offspring population of size . Since
elitism is introduced by comparing the current population with
previously found best nondominated solutions, the procedure
is different after the initial generation. In Fig. 3, we show the
pseudocode of the MPENSGA2 algorithm. The reader can see
[17] to compare our algorithm to the original NSGA2 proposed
by Deb et al..

A local search procedure is applied when we combine the
parents and offspring populations in NSGA2. Then, only the
individuals from the first Pareto front (obtained from the fast
nondominated sort) of this combined population are optimized
by iRprop+ [34], considerably reducing the computational cost
since the local procedure is not applied to the whole mutated
offspring population. iRprop+ can be seen as a kind of lifetime
learning (only for the Entropy error function) within a gener-
ation. After learning, the fitness of each individual is updated
with regard to the approximation error. In addition, the weights
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TABLE I
CHARACTERISTICS OF UCI BENCHMARKS AND A QUALITATIVE ANALYTICAL CHEMISTRY DATA SET

modified during lifetime learning are encoded back to the chro-
mosome, which is known as the Lamarckian type of inheritance
[68]. Lifetime learning is done at the beginning, in the middle of
the evolution and at the end of the evolutionary process, that is,
only three local search procedures are carried out throughout the
evolutionary process. In Fig. 4, we can observe the framework
used in this paper, and in [40], we can see the general framework
of different Pareto-based multiobjective work with ANNs.

V. EXPERIMENTS

A. Data Sets

For the experimental design, we consider 17 data sets taken
from the UCI repository [8] and a qualitative analytical chem-
istry data set outside the UCI repository which is not commonly
used, called BTX.

The design was conducted using a stratified holdout proce-
dure (see [53]) with 30 runs, where approximately 75% of the
patterns were randomly selected for the training set and the re-
maining 25% for the test set.

Table I shows the features for each data set. We have divided
the table into two sets. The first set consists of binary classifi-
cation problems (two classes), while the second set consists of
multiclass problems. This division has been made since many
classification algorithms present a lower performance when they
are applied to multiclass problems because, among other rea-
sons, the higher the number of classes, the lower the value is.
The table shows the total number of instances in each data set,
the number of instances in training and testing, the number of
input variables, the number of classes (outputs), the total number
of instances per class, and the value.

The BTX data set must be specially mentioned due to current
interest in applications to real problems. The BTX is a classi-
fication problem consisting of discriminating different types of
drinking waters. The data set includes a set of 63 drinking water

samples spiked with individual standards of benzene, toluene, or
xylene as well as with binary or ternary mixtures of them at con-
centrations between 5 and 30 g/L. This constitutes an overall
data set composed of seven different classes of contaminated
drinking water samples with the same number of patterns per
class. The reader can find more information about this problem
in [29].

The experiments were performed with the same data sets and
training and testing partitions for all algorithms.

B. Experimental Setup

Once the Pareto front is built, we use two strategies or au-
tomatic selection methodologies of individuals: the best model
in accuracy and the best model in sensitivity (extremes in the
Pareto front). This allows us to compare the and values
with other classification methods found in the literature. The
process of obtaining these models is as follows (see Fig. 5):
as our procedures are stochastic, the MPENSGA2 algorithm
is run 30 times. In each execution, once the first Pareto front
is calculated, we chose the extreme values in training, that is,
the best individual in entropy and the best individual in sensi-
tivity. These individuals are called (entropy individual) and

(sensitivity individual). Once this is done, we get the values
of accuracy and sensitivity in the testing of the best indi-
viduals and . Therefore, we will have an individual per-
formance and another
individual performance
for one run. This is repeated 30 times and then the average
and standard deviation obtained from the 30 individuals is cal-
culated, obtaining and

. Therefore, the first ex-
pression represents the average performance obtained
taking entropy into account as the primary objective when we
choose an individual from the first Pareto front, and the second

taking into account sensitivity. So, we are taking the
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TABLE II
STATISTICAL RESULTS FOR MPENSGA2E, MPENSGA2S, TRAINDIFFEVOL, MPANN-MSE, AND MPANN-HN FOR THE

TESTING SETS OF THE TWO CLASSES AND MULTICLASS PROBLEMS CONSIDERED

opposite ends of the Pareto front in each of the runs. Hence,
the first procedure to obtain the average performance
is called MPENSGA2E and the second procedure to obtain the
average performance is called MPENSGA2S.

In all experiments, the population size for MPENSGA2 is es-
tablished at . The mutation probability for each op-
erator is equal to 1/5. For iRprop+, the adopted parameters are

(decreasing factor for stepsize), (increasing
factor for stepsize), (the initial value of the step-
size for the weights ), (minimum stepsize for the
weights), (maximum stepsize for the weights), and
Epochs (number of epochs for the local optimization).

C. Comparison Procedure

MPENSGA2 is compared to two popular ANN training
algorithms:

• MPANN (memetic Pareto artificial neural networks) [4].
MPANN is an MOEA based on differential evolution [63]
with two objectives; one is to minimize the error (MSE)
and the other is to minimize the ANN complexity (number
of hidden units). The BP algorithm is used in MPANN for
local search. We have implemented a Java version using
the pseudocode shown in [4] and the framework for evo-
lutionary computation JCLEC [67], since the source code
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TABLE III
MEAN TESTING ACCURACY �� ���� AND SENSITIVITY �� ����, MEAN ACCURACY RANKING � �� � AND MEAN SENSITIVITY RANKING � �� � FOR

THE DIFFERENT METHODS EVALUATED AND THE EIGHTEEN DATA SETS

TABLE IV
MEAN RANKING, CRITICAL DIFFERENCE VALUES, AND DIFFERENCES OF RANKINGS OF THE BONFERRONI–DUNN TESTS APPLIED FOR

ACCURACY AND SENSITIVITY, USING MPENSGA2E AND MPENSGA2S AS THE CONTROL METHODS

TABLE V
BEST MODELS FOR PIMA IN TRAINING FOR THE EXTREMES OF THE PARETO FRONT

is not publicly available. The strategy or automatic selec-
tion methodology of individuals is the same as that used
with MPENSGA2 (see Section V-B). We also select the ex-
tremes in the Pareto front obtained by the algorithm. Thus,
the methodology is named MPANN-MSE if the extreme
chosen is the one that has better MSE; or MAPNN-HN if
the extreme chosen is one with better complexity value.
The local optimization algorithm incorporated in the algo-
rithm is the iRprop+ instead of the standard BP proposed
in [4], since this algorithm has proven to render higher per-
formance [35].

• TRAINDIFFEVOL (differential evolution training algo-
rithm for feedforward neural networks) [36]. It is a mono-
objective algorithm to train feedforward MLP neural net-
works, also based on the differential evolution [63]. This
algorithm uses the mean squared error regularized by the
mean squared weights and biases (MSEREG) for training
the networks. We have implemented a modification of the
source code provided by the authors1 which obtains sensi-
tivity for each class of the models trained.

1A Matlab implementation of TRAINDIFFEVOL is available at
http://www.it.lut.fi/project/nngenetic/
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Fig. 6. Pareto front in training ���� � and ����� associated values in testing for Australian Card, Breast Cancer, Breast Cancer Wisconsin, and German data
sets in one specific run of the 30 runs carried out.

For MPANN and TRAINDIFFEVOL, we evaluate the testing
accuracy and sensitivity of the best models obtained by different
algorithms. From a statistical point of view, these comparisons
are possible because we use the same partitions of the data sets.

In other cases, it is difficult to justify the equity of the com-
parison procedure. Regarding the settings of each of the algo-
rithms that MPENSGA2 has been compared to, we initially use
the values advised by the authors in their respective paper.
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Fig. 7. Pareto front in training ���� � and ����� associated values in testing for Heart, Ionosphere, Pima, and Vote data sets in one specific run of the 30 runs
carried out.

However, having experimentally checked that those values re-
sulted in a poor performance for some of the data sets considered
(especially for multiclass problems), the most important param-
eters (number of epochs and number of individuals) have been
individually adjusted by a trial and error process.

Table II presents the values of average and standard deviation
for and for the testing set of each data set obtained for the
best models in each run. This table is organized in the two dif-
ferent sets considered: two class problems and multiclass prob-
lems. In general, the best results for or are obtained through
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Fig. 8. Pareto front in training ���� � and ����� associated values in testing for Autos, Balance, BTX, and Gene data sets in one specific run of the 30 runs
carried out.

MPENSGA2E or MPENSGA2S approaches in all data sets ex-
cept for Breast Cancer Wisconsin, Heart-Statlog, and Post-op.

Table III summarizes all these results, including the mean
testing accuracy and the mean sensitivity for all

the data sets and methods. The ranking of each method in each
data set ( for the best performing method and
for the worst one) is obtained and the mean accuracy ranking
throughout all the data sets and the mean sensitivity
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Fig. 9. Pareto front in training ���� � and ����� associated values in testing for Iris, Lymphograpy, Newthyroid, and Post-op data sets in one specific run of
the 30 runs carried out.

ranking are also included in Table III. By analyzing these
two tables, the following specific comments can be made.

1) A descriptive analysis of the results leads to the following
remarks: the MPENSGA2E methodology obtains the best

results in for 13 out of the 18 data sets, the second best
results for three other data sets, the best mean accuracy
( 82.81%) and the best mean ranking .
In , it obtains the best result for five data sets, the second
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Fig. 10. Pareto front in training ���� � and ����� associated values in testing for vowel and yeast data sets in one specific run of the 30 runs carried out.

best result for eight other data sets, the second best mean
sensitivity ( 55.70%), and the second best mean sen-
sitivity ranking . Hence, we should choose
this methodology (from a quantitative point of view) if our
objective is to obtain classifiers with good results in and
acceptable values in .

2) On the other hand, the results of the MPENSGA2S
methodology show that, in , it is the best method for
four data sets and it is the second best for seven other data
sets, resulting in the second best mean accuracy (
79.82%) and the second best mean accuracy ranking

. In , it obtains the best results for 12 data
sets, the second best results for four other data sets, the
best mean sensitivity ( 62.32%), and the best mean
sensitivity ranking . This methodology
should be chosen if our objective is to obtain classifiers
with good results in and acceptable values in .

3) A tendency to classify the examples in the majority class
has been observed when analyzing the confusion matrices
obtained by the models optimized by the TRAINDIF-
FEVOL algorithm. Consequently, this algorithm yields
better results when applied to binary classification prob-
lems or well-balanced problems, but it yields a poor
performance when applied to multiclass problems or very
unbalanced problems.

4) The MPENSGA2E approach obtains the best accuracy
and sensitivity values for Ionosphere, Vote, BTX, Iris, and
Lymphography.

5) The MPENSGA2S approach obtains the best accuracy and
sensitivity values for Australian Card, Gene, Lymphog-
raphy, and Newthyroid.

6) The Autos, Lymphography, Post-op, and Yeast data sets
deserve special mention. These problems are difficult clas-
sification problems for all methodologies because they are
very unbalanced data sets (see Table II; all these data sets
have a value lower than 0.05). This makes the improve-
ment in sensitivity very difficult. Although the accuracy
rate is acceptable, the sensitivity level is very low due to
the minority class with only 3, 2, 2, and 5 patterns, re-
spectively. The MPENSGA2S procedure obtains for :
42.28% on average in Autos, 5.17% in Lymphography,
3.96% in Post-op, and 12.13% in Yeast without dramati-
cally reducing the average in (see Table II), while the
sensitivity with other methodologies maintains an average
of 0.00%. When the problem is extremely unbalanced such
as Autos and Lymphograpy, it is very difficult to improve
sensitivity levels. These cases suggest, as future work, in-
tegrating resampling techniques [13] in our methodology.
Then, we would see if these techniques obtain better results
in and than our methodology.

To determine the statistical significance of the rank differ-
ences observed for each method in the different data sets, two
nonparametric Friedman tests [23] have been carried out with
the ranking of and of the best models as the test vari-
able. The use of nonparametric tests is justified in this case,
since a previous evaluation of the and values results in
rejecting the normality and equality of the variance hypothesis
(it is enough to observe the high variance values obtained espe-
cially for the sensitivity evaluation, and the differences existing
between the variances in all methods). The test shows that the
effect of the method used for classification is statistically sig-
nificant for values at a significance level of 5%, since the
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Fig. 11. Pareto front in training ������ and ����� associated values in training and testing for Pima data in one specific run.

confidence intervals are and the -dis-
tribution statistical value is . For values, the
test also shows the significance of the method applied, since the
confidence intervals are and the -dis-
tribution statistical value is . Consequently,
we reject the null hypothesis stating that all algorithms perform
equally in mean accuracy and mean sensitivity rankings.

On the basis of these rejections, two post-hoc nonparametric
Bonferroni–Dunn tests [18], [32] were applied, one for
values and other one for values. The objective of these tests
is to assess if the best performing algorithm for each evaluated
measure (MPENSGA2E for and MPENSGA2S for )
obtains significant differences in mean ranking when com-
pared to other methods. In this way, MPENSGA2E will be the
control method when comparing mean ranking values and
MPENSGA2S when comparing mean ranking values. The
results of the Bonferroni–Dunn test for and
can be seen in Table IV, using the corresponding critical values
for the two-tailed Bonferroni–Dunn test.

From the analysis of the results of these tests, we can conclude
that the MPENSGA2E method obtains a statistically significant
higher mean ranking of when compared to all the methods,
although the differences in the mean ranking of MPENSGA2S
can only be assessed when we consider . Regarding
the MPENSGA2S method, it obtains a statistically significant
higher mean ranking of with when compared to
all the methods except MPENSGA2E. It is important to note
that both methodologies (MPENSGA2E and MPENSGA2S) re-
sult in a good tradeoff between the two objectives (accuracy and
sensitivity) and this makes statistically significant differences
between the two methods very difficult to assess. This is espe-

cially observed in those data sets where the individuals obtained
are near optimum values in or .

Therefore, we can conclude that the methodologies used for
obtaining models based on the Pareto front are well suited for
improving one of the two objectives without, in general, causing
the other to decrease.

These results are consistent with the Pareto fronts of entropy
versus sensitivity for the training sets and the graphs of the
correct classification rate versus sensitivity for the testing sets
that are shown in Figs. 6– 10. In these figures, we can see the
results obtained for each data set and the space. The
graphs are divided into training graphs and
testing graphs. The procedure for obtaining these graphs is the
following: in each of the 30 runs carried out, 30 Pareto fronts
are obtained, then the front for one specific run is selected, the
front selected being that which presents the best individual in
Entropy in training at the end of the 30 runs of the hybrid EA.
On the training graphs, we show the Pareto fronts obtained, ,
and sensitivity being the objectives guiding the MPENSGA2.
The testing graphs show the and values throughout the
testing set for the individuals who are reflected in the training
graphs. These graphs show the goodness of the classifiers
obtained and their proximity to the optimal point within
the space. Observe that the values do not form
Pareto fronts in the testing set, and the individuals that were in
the first Pareto front in the training graphs can now be located
within the space in a region that is worse, since there is
no exact mathematical relation between training entropy and
testing accuracy, although an improvement in entropy produces
an improvement in accuracy.
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In the graphs for the testing set, in general, and for
sufficiently balanced data sets, these objectives are seen to be
linearly related for low values of and , although they are in
conflict for high values of or . For very unbalanced data sets,
the increase in does not imply an increase in . We can also
observe that in some data sets like Breast Cancer, German, and
Pima, the size (cardinality) of the Pareto front is relatively large
compared to others such as Autos, Lymphograpy, and Vote.
There is a relationship between the number of points in the
Pareto front, the size of each class of the problem, and the value
of .

Finally, so that the reader can observe the training classifi-
cation error versus sensitivity for the MPENSGA2 algorithm,
we have included a graph example in Fig. 11 for the Pima data
set. In this figure, we can see the Pareto front in training in the

space and the associated values in the space in
training and testing for Pima data set in one specific run. Also
we have shown the best models obtained in training (extreme of
the Pareto front) together with the number of neurons, number
of links, the , , , and values in training, and the

and values in testing (see Table V). One important point
to underline about these models is that the algorithm prunes
its connections, selecting the most important variables (e.g., the
MPENSGA2S does not include the 3 variable).

VI. CONCLUSION

In this paper, we have proposed a new approach for classi-
fication based on a 2-D performance measure associated with
multiclass problems. Sensitivity and accuracy measures ex-
press two key features associated with a classifier: global perfor-
mance and the rate of the worst classified class . Although
sensitivity is not usually optimized in classification, it has been
considered here given the need to obtain high precision in each
class in real problems. The results show that optimizing these
two measures, it is possible to obtain classifiers that combine a
high classification level in the data set with a good classification
rate for each class.

The methodology uses an MOEA which tries to boost these
conflicting main objectives. Concretely, a memetic version of
NSGA2, which introduces the iRprop+ algorithm as a local op-
timizer adapted to the softmax activation function and the cross-
entropy error function, designs the ANNs architecture finding
an adequate number of neurons in the hidden layer and an ad-
equate number of connections along with their corresponding
weights. This automated optimization allows good values of ac-
curacy and sensitivity to be obtained in the training and testing
sets, and avoids overtraining.

The special features of the Pareto optimal front allowed us to
consider two strategies or automatic selection methodologies of
individuals: the best model in and the best model in sensi-
tivity (extremes in the Pareto front). The approach is applied to
solve 17 benchmark classification problems from UCI reposi-
tory and a complex environment problem in qualitative analyt-
ical chemistry. The results confirm that the Memetic NSGA2
method in the two versions (MPENSGA2E and MPENSGA2S)
obtains promising results with good levels of accuracy and sen-
sitivity, improving the average values of sensitivity in the clas-

sifier in almost all the data sets analyzed, and obtaining values
of accuracy similar to or higher than those obtained with other
DE methodologies, except in very unbalanced data sets.

In our opinion, the perspective and the memetic
NSGA2 approach reveal a new point of view for dealing with
multiclass classification problems, and provide the opportunity
to improve the sensitivity and accuracy of a multiclassifier for
a wide range of data sets.

Several future research directions are suggested by this study.
First, other memetic MOEAS based on the measures
could be devised. Second, since the measures are inde-
pendent of the EA and the base classifier used, other types of
base classifiers can be considered. Third, ensemble tools could
be incorporated to deal with the Pareto-front obtained. Finally, a
possible extension of the current work is to see whether this ap-
proach can be adapted to deal with very unbalanced problems,
incorporating resampling techniques in the algorithm.
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