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Recently, a novelty multinomial logistic regression method where the initial covariate space is increased
by adding the nonlinear transformations of the input variables given by Gaussian Radial Basis Functions
(RBFs) obtained by an evolutionary algorithm was proposed. However, there still exist some problems
with the standard Gaussian RBF, for example, the approximation of constant valued functions or the
approximation of high dimensionality associated to some real problems. In order to face these problems,
we propose the use of the generalized Gaussian RBF (GRBF) instead of the standard Gaussian RBF. Our
approach has been validated with a real problem of disability classification, to evaluate its effectiveness.
Experimental results show that this approach is able to achieve good generalization performance.

� 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

In artificial neural networks (ANNs), the hidden neurons are the
functional units and can be considered as generators of function
spaces. Most existing neuron models are based on the summing
operation of the inputs, and, more particularly, on sigmoidal unit
functions, resulting in what is known as the Multilayer Perceptron
(MLP). However, alternatives to MLP emerged in the last few years:
Product Unit Neural Network (PUNN) models are an alternative to
MLPs and are based on multiplicative neurons instead of additive
ones. They correspond to a special class of feed-forward neural
network introduced by Durbin and Rumelhart (1989). While MLP
network models have been very successful, networks that make
use of Product Units (PUs) have the added advantage of increased
information capacity (Durbin & Rumelhart, 1989). That is, smaller
PUNNs architectures can be used rather than those used with MLPs
(Ismail & Engelbrecht, 2002). They aim to overcome the non-linear
effects of variables by means of non-linear basis functions, con-
structed with the product of the inputs raised to arbitrary powers.
These basis functions express possible strong interactions between
the variables, where the exponents may even take on real values
and are suitable for automatic adjustment.

Another interesting alternative to MLPs are Radial Basis Function
Neural Networks (RBFNNs). RBFNNs can be considered a local
approximation procedure, and the improvement in both its approx-
imation ability, as well as in the construction of its architecture has
been noteworthy (Bishop, 1991). RBFNNs have been used in the
84

85

86
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most varied domains, from function approximation to pattern
classification, time series prediction, data mining, signals process-
ing, health monitoring, and non-linear system modelling and con-
trol (Howlett & Jain, 2001; Zheng, Li, & Wang, 2011). RBFNNs use,
in general, hyper-ellipsoids to split the pattern space. In many cases,
MLP, PU and RBF networks are trained by using evolutionary
algorithms (EAs), thus obtaining advantages with respect to
traditional training approaches (Chakravarty & Dash, 2011; Fernán-
dez-Navarro, Hervás-Martı́nez, Cruz, Gutierrez, & Valero, 2011a;
Fernández-Navarro, Hervás-Martı́nez, Gutierrez, & Carboreno,
2011d; Tallón-Ballesteros & Hervás-Martínez, 2011; Yao, 1999).

On the other hand, logistic regression (LR) has become a widely
used and accepted method of analysis of binary or multi-class out-
come variables as it is more flexible and it can predict the probabil-
ity of the state of a multi-class variable based on the predictor
variables. Guti’errez, Hervás-Martínez, and Martínez-Estudillo
(2011) proposed a multinomial logistic regression method, combin-
ing evolutionary Radial Basis Function (ERBF) and LR methods. The
LR methods apply a logit function to the linear combination of the
input variables. The coefficients values of each input variable are
estimated by means of the Iterative Reweighted Least Square (IRLS)
algorithm. Roughly, the methodology is divided into 3 steps. Firstly,
an evolutionary algorithm (EA) is applied to estimate the parame-
ters of the RBF. Secondly, the input space is increased by adding
the nonlinear transformation of the input variables given by the
RBFs of the best individual in the last generation of the EA. Finally,
the LR algorithms are applied in this new covariate space.

The standard Gaussian RBF has some drawbacks, for example, its
performance decreases drastically when it is applied to approxi-
mate constant valued function or when dimensionality grows. For
fication by combining evolutionary Generalized Radial Basis Function and
16/j.eswa.2012.01.186
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this reason, we propose the use of a Generalized RBF (GRBF) (Cas-
taño, Fernández-Navarro, Hervás-Martı́nez, Gutierrez, & Garcı́a,
2010; Fernández-Navarro, Hervás-Martı́nez, Sánchez-Monedero, &
Gutierrez, in press), instead of the standard Gaussian RBF. This
novelty basis function incorporates a new parameter, s, that allows
the contraction–relaxation of the standard RBF, solving the prob-
lems previously stated.

The performance of the proposed multinomial logistic regression
methodology was evaluated in a real problem of permanent disabil-
ity classification. Permanent disability is a term used in the insur-
ance industry and law. Generally speaking, it means that due to a
sickness or injury a person is unable to work in their own, or any
occupation for which they are suited by training, education, or expe-
rience. In Spain, the evaluation and classification of permanent dis-
ability follows a procedure which is clearly defined and divided into
three development phases: introduction, instruction and resolution.

The main principles of the measures adopted with the aim of
obtaining a consolidated and rationalized system for the determi-
nation of permanent disability are the contributory element, equity
and solidarity. Furthermore, in order to establish greater legal
security in the process of determining permanent disability, it is
necessary to elaborate a list of diseases and the evaluation of their
influence on the reduction of work capacity. This list must be cre-
ated according to objective criteria based on the actual evaluations
and proceedings of the disability assessment teams.

To understand the nature of permanent disability, it is necessary
to define the terminology first. Permanent disability takes into ac-
count continuous alteration of health and its impact on the work-
er’s occupational situation. The disability assessment team is
supported by a medical unit. The medical unit’s competencies
are: to examine the disability situation of the worker, to determine
the reduction or alteration of the physical integrity of the worker,
to determine the level of incapacity for work, to determine
whether the character of the disease is common or professional,
to extend the period of medical observation in case of professional
diseases, to monitor programs for the control of temporal disability
compensations, and to provide technical assistance and advice on
any contentious issues concerning occupational disabilities.

In our work we consider three main categories that can be as-
signed to a worker depending on the degree of permanent disabil-
ity: no disability (when the worker is not assigned the status of
permanent disability), permanent disability (when the worker is as-
signed some degree of permanent disability) and fee (when the
worker is not assigned any degree of permanent disability, but is
financially compensated). The objective of this study is to offer
an initial model based on artificial neural networks and logistic
regression which facilitates preparing reports in the process of
determining the existence of permanent disability. This model al-
lows to obtain an approximation of the expected result for each
case of permanent disability. The training dataset used to obtain
the model is composed of information from reports of the medical
unit. Each report is tagged with one of the three categories (no dis-
ability, permanent disability or fee). An important characteristic of
the dataset is that it is highly unbalanced.

2. Occupational situation and permanent disability

Permanent disability (PD), in its contributory modality, takes
into account the continuous alteration of health and, particularly,
its impact on occupational situation.

It has an exclusively professional profile and its evaluation
should avoid references to other circumstances, such as socio-eco-
nomic status, age, family, etc. These circumstances may be consid-
ered in order to evaluate other effects, but should not be taken into
account when determining the degree of disability to be protected
by contributory income.
Please cite this article in press as: Castaño, A., et al. Permanent disability classi
logistic regression methods. Expert Systems with Applications (2012), doi:10.10
The occupational situations to be protected by the status of
permanent disability are:

� Permanent disability which, in practice, stands for the lack of
income due to the loss of salary which is a result of either tem-
porary, or permanent disability. This lack of income is alleviated
by financial aid.
� The necessity to recover psycho-physical well being.
� The necessity to receive financial support during the process of

recovery.
� The process of reintegrating a disabled person into work envi-

ronment, which should be protected by selective employment.

Depending on the determining cause, permanent disability is
classified according to the following degrees:

� Partial PD for usual occupation means that a worker’s capacity
to perform his/her job is diminished by not less than 33%. How-
ever, it does not prevent him/her from performing tasks which
are fundamental for his/her occupation.
� Total PD for usual occupation means that a worker is unable to

perform tasks which are fundamental for his/her occupation,
but may opt for a different occupation.
� Absolute PD means that a worker is unable to perform any

profession.
� Grand disability means that a worker who is affected by PD due

to his/her physical and functional impairments requires assis-
tance in basic life activities such as dressing up, moving from
one place to another, eating, etc.
� Non-disabling permanent damages refers to permanent impair-

ments which do not have impact on work capacity, but mean
that a worker’s physical integrity is reduced. Non-disabling per-
manent damages are classified by ‘‘Ley General de la Seguridad
Social’’.

In case of accidents, whether work accidents or not, the term
‘‘usual occupation’’ should be understood as work performed by
a worker at the time of the accident.

2.1. Initial data and variables

The medical unit of the disability assessment team elaborates
synthesis medical reports (SMR) to evaluate permanent disability.
We use these reports as a source of information for our experi-
ments. Synthesis medical reports are based on:

1. Clinical examination performed by a medical evaluator.
2. Medical reports provided by the ill.
3. Complementary tests and examinations requested by the med-

ical evaluator.

The data used here had been obtained from the synthesis med-
ical reports and proceedings of the sessions held by the disability
assessment team which were then compiled into files. Some data,
like age or sex, have been extracted directly from these documents
while others, like occupational repercussion, have been collected
by qualified persons.

For each file there have been obtained the following attributes:

� From the synthesis medical reports: Age, sex, occupation, sick
leave period, diseases.
� From the proceedings of the sessions held by the disability

assessment team: Classification (permanent disability degree),
contingency, period of time between examinations.
� Occupational repercussion. The following information has been

taken into account when evaluating it as low, middle or high:
fication by combining evolutionary Generalized Radial Basis Function and
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Table 1
List of variables and associated description of the dataset obtained from the synthesis
medical reports and proceedings of the sessions held by the disability assessment
team.

Variable Description

x1 Age
x2 Sex
x3�21 CNO-94
x22 Sick leave time
x23�42 Principal categories of ICD9-CM
x43 Low occupational repercussion
x44 Middle occupational repercussion
x45 High occupational repercussion
x46 Total number of diseases
x47 CD contingency
x48 NWA contingency
x49 OD contingency
x50 WA contingency
x51 Period of time between examinations

Class Description

ND No disability
PD Permanent disability
F Fee
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– Functional repercussion of different diseases.
– Worker’s occupation.

The classification (permanent disability degree) is grouped into:

� No disability (ND).
� Permanent disability (PD).
� Fee (F).

The contingency can be classified into two types:

� Common
- Common disease (CD).
- Non-working accident (NWA).

� Professional
- Occupational disease (OD).
- Working accident (WA).

We have used the code of the Spanish ‘‘National Classification of
Occupations’’ (CNO-94) to collect the data related to professions.
To gather the data related to diseases, we have used the ‘‘Interna-
tional Classification of Diseases’’ (ICD9-CM).

The final variables used in our work are shown in Table 1.
A total of 978 records have been extracted from the data be-

tween 2002 and 2003.
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3. Generalized Radial Basis Function

A RBF is a function which has been built taking into account a
distance criterion with respect to a center. Different basis functions
like multiquadratic functions, inverse multiquadratic functions
and Gaussian functions have been proposed, but normally the se-
lected one is the Gaussian function. The standard RBF model is de-
scribed as follows:

Bjðx;wjÞ ¼ exp �kx� cjk
rj

� �2

: ð1Þ

where wj = (cj,rj), cj = (cj1, cj2, . . . ,cjk) is the center or average of the
jth Gaussian RBF transformation, rj is the corresponding radius or
standard deviation.

In the same way that the Gaussian RBF is based on the Gaussian
distribution, we could obtain different RBFs considering parametric
versions of the Gaussian distribution. One example of a parametric
version of the Gaussian distribution is the Generalized Gaussian
distribution (Andai, 2009; Nandi & Mämpel, 1995; Sharifi & Ler-
on-Garcia, 1995). This distribution function adds a real parameter,
s, allowing the representation of different distribution functions,
like the Laplacian distribution for s = 1 or the uniform distribution
for s ? 0.

Based on this distribution, we define the Generalized RBF by
replacing the quadratic exponent of previous model by s:

Bjðx;wjÞ ¼ exp �kx� cjk
rj

� �s

; ð2Þ

In this case x also includes the parameter sj representing the expo-
nent of the basis function, where cji; sj; rj 2 R. Fig. 1 presents the ra-
dial unit activation for the GRBF for different values of s.
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

τvalues

Fig. 1. Radial unit activation in one-dimensional space with c = 0 and r = 1 for the
GRBF with different values of s.
4. Neuro-logistic models

In the classification problem, some measurements xi, i = 1,2, . . . ,k
are taken on a single pattern, and the patterns are classified into one
of J populations. The measurements xi are random observations
from these J classes. A training sample D = {(xn,yn); n = 1,2, . . . ,N}
Please cite this article in press as: Castaño, A., et al. Permanent disability classi
logistic regression methods. Expert Systems with Applications (2012), doi:10.10
is available, where xn = (x1n, . . . ,xkn) is the vector of measurements
taking values in X � Rk, and yn is the class level of the nth individual.

The common technique of representing the class levels using a
‘‘1-of-J’’ encoding vector is adopted, y = (y(1),y(2), . . . ,y(J)), such as
y(l) = 1 if x corresponds to an example belonging to class l and
y(l) = 0 otherwise.

Based on the training sample, we wish to find a decision func-
tion F : X ? {1,2, . . . , J} for classifying the individuals. In other
words, F provides a partition, say D1 ,D2, . . . ,DJ, of X, where Dl cor-
responds to the lth class, l = 1,2, . . . , J, and measurements belonging
to Dlwill be classified as coming from the lth class. A misclassifi-
cation occurs when the decision rule F assigns an individual (based
on the measurement vector) to a class j when it is actually coming
from a class l – j.

Logistic Model supposes that the conditional probability that x
belongs to class l verifies: p(y(l) = 1jx) > 0, l = 1,2, . . . , J, x 2X, and
sets the function:

flðx; hlÞ ¼ log
pðyðlÞ ¼ 1jxÞ
pðyðJÞ ¼ 1jxÞ ; ð3Þ
fication by combining evolutionary Generalized Radial Basis Function and
16/j.eswa.2012.01.186
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where hl is the weight vector corresponding to class l, and
fJ(x,hJ) = 0. Under a multinomial logistic regression, the probability
that x belongs to class l is then given by:

pðyðlÞ ¼ 1jx; hÞ ¼ exp flðx; hlÞPJ
j¼1 exp fjðx; hjÞ

; l ¼ 1;2; . . . ; J; ð4Þ

where h = (h1,h2, . . . ,hJ�1). The hybrid neuro-logistic models are
based on the combination of the standard linear model and nonlin-
ear terms constructed with RBFs or GRBFs, which captures possible
locations in the covariate space. The general expression of the mod-
el is given by:

flðx; hlÞ ¼ al
0 þ

Xk

i¼1

al
ixi þ

Xm

j¼1

bl
jBjðx;wjÞ ð5Þ

where l = 1,2, . . . , J � 1, hl = (al,bl,W) is the vector of parameters
for each discriminant function, al ¼ ðal

0;al
1; . . . ;al

kÞ and bl ¼
bl

1; . . . :; bl
m

� �
are the coefficients of the multilogistic regression

model and W = (w1,w2, . . . ,wm) are the parameters of the nonlinear
transformations and Bj is the RBF or GRBF (described in Section 3).

The general structure of this kind of models can be analyzed in
Fig. 2.

5. Estimation of neuro-logistic parameters

In the supervised learning context, the components of the
weight vectors h = (h1,h2, . . . ,hJ�1) are estimated from the training
dataset D. To perform the maximum likelihood estimation of h,
one can minimize the negative log-likelihood function:

LðhÞ ¼ � 1
N

XN

n¼1

XJ

l¼1

yl
i log pðynjxn; hÞ

� �
¼ 1

N

XN

n¼1

�
XJ

l¼1

yðlÞn fl þ log
XJ

l¼1

exp fl

" #
; ð6Þ

where fl = fl(xn,hl) corresponds to the hybrid model defined in (5).
The methodology proposed tries to maximize the log-likelihood

function where classical gradient methods are not recommended
due to the convolved nature of the error function. It is based on
the combination of an evolutionary programming algorithm (EP)
(global explorer) and a local optimization procedure (local exploi-
ter) carried out by the standard maximum likelihood optimization
method.

In this paper, two different algorithms have been considered for
obtaining the maximum likelihood solution for the multilogistic
regression model, both available in the WEKA workbench (Witten
& Frank, 2005): MultiLogistic and SimpleLogistic. The first one is an
algorithm for building a multinomial logistic regression with a
ridge estimator to prevent overfitting by penalizing large coeffi-
cients. This model is trained with a Quasi-Newtonian Method.
The second one builds a multinomial logistic regression model fit-
ting the coefficients with the LogitBoost algorithm (Landwehr, Hall,
& Frank, 2005).

The estimation of the model coefficients is divided into three
steps.

Step 1. We apply an EP algorithm to find the basis functions:

403

Please
logisti
Bðx;WÞ ¼ fB1ðx;w1Þ; B2ðx;w2Þ; . . . ;Bmðx;wmÞg; ð7Þ
404

405

406

407

408

409
corresponding to the nonlinear part of f(x,hl). We have to determine
the number of basis functions m and the weight matrix
W = (w1,w2, . . . ,wm).
The weight matrix W, the parameters of the output layer (b vector)
and the structure of the GRBF are estimated by means of an evolu-
tionary neural network algorithm that optimizes the error function
cite this article in press as: Castaño, A., et al. Permanent disability classi
c regression methods. Expert Systems with Applications (2012), doi:10.10
given by the negative log-likelihood for N observations associated
with the neural network model (see Eq. (6)). The specific details
of this EP algorithm can be found in some previous works (Fernán-
dez-Navarro, Hervás-Martínez, García-Alonso, & Torres-Jimenez,
2011b, 2011c, 2012).
As we discussed previously, the model introduces a new parameter,
s, which it is necessary to be estimated during the evolutionary pro-
cess. In the initialization step of the EP, the s value of all basis func-
tion is set to 2, since the GRBF with s = 2 is equivalent to the
standard Gaussian RBF. On the other hand, the parametric mutator
modified the s parameter of each basis function by adding an uni-
form random value f in the interval [�0.25,0.25]. Finally, when
the structural mutator adds a new GRBF hidden node, it is included
in the model with a s = 2.
We only consider the estimated weight matrixcW ¼ ðŵ1; ŵ2; . . . ; ŵmÞ,
which builds the basis functions. The values for the b vector will be
determined in step 3 together with those of the a coefficient vector.
Step 2. We consider the following transformation of the input

space by including the nonlinear basis functions obtained
by the EP algorithm in step 1:
fication
16/j.esw
H : Rk ! Rkþm;

ðx1; x2; . . . ; xkÞ ! ðx1; x2; . . . ; xk; z1; . . . ; zmÞ;
ð8Þ
where z1 ¼ B1ðx; ŵ1Þ; . . . ; zm ¼ Bmðx; ŵmÞ.
Step 3. In the third step, we minimize the negative log-likelihood

function for N observations:
Lða;bÞ ¼ 1
N

XN

n¼1

�
XJ

l¼1

yðlÞn !þ log
XJ

l¼1

exp !

" #
; ð9Þ
where � = (alxn + blzn), xn = (1,x1n, . . . ,xkn) and zn = (z1n, . . . ,zmn).
Now, the Hessian matrix of the negative log-likelihood in the
new variables x1,x2, . . . ,xk, z1, . . . ,zm is semi-definite positive. The
estimated coefficient vector ĥ ¼ ðâ; b̂;cWÞ determines the model
of (5) with Bj(x,wj) defined as (2).

In this final step, both logistic regression algorithms have been
used for obtaining the parameter matrix h. Moreover, two different
versions of the hybrid neuro-logistic models have been considered:
LR models with only the non-linear part, i.e. the model does not in-
clude the initial covariates of the problem, and LR models with both
the linear and the non-linear part, i.e., the models. The combined
application of both algorithms logistic regression with the two
evolutionary algorithms (using RBF and GRBF) with out initial
covariates results into four different methods: MultiLogistic regres-
sion with GRBFs (MLGRBF), SimpleLogistic regression with GRBFs
(SLGRBF), MultiLogistic regression whith RBFs (MLRBF) and Simple-
Logistic regression with RBFs (SLRBF). In the same way other four
methods are obtained including initial variables: MLIGRBF, SLI-
GRBF, MLIRBF and SLIRBF.
6. Experiments

6.1. Experimental design and statistical analysis

Various methods discussed above were compared to the follow-
ing state-of-art algorithms (since they are some of the best per-
forming algorithms of recent literature on classification problems):

� The k Nearest Neighbour (k-NN) classifier, adjusting the value of
k using a nested 10-fold cross-validation.
� A Gaussian Radial Basis Function Network (RBFNetwork) avail-

able in the WEKA workbench (Witten & Frank, 2005).
� Both standard logistic regression algorithms presented in Sec-

tion 5: SimpleLogistic (SLogistic) and MultiLogistic (MLogistic).
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Fig. 2. Structure of neuro logistic models.

Table 2
Mean, standard deviation, maximum and minimum values of the accuracy results
(CG) from 100 executions of a 10-fold cross validation. Number of wins, draws and
loses when comparing the different methods using the Mann–Whitney U rank sum
test a = 0.05. Q3

CG (%) Mann–Whitney U test

Mean ± SD # Wins # Draws # Loses

EGRBF 85.26 ± 5.08 5 4 5
MLGRBF 85.76 ± 5.42 5 5 4
SLGRBF 85.30 ± 4.90 5 5 4
MLIGRBF 89.03 ± 3.34 11 1 2
SLIGRBF 90.70 ± 3.02 13 1 0

ERBF 79.76 ± 11.36 1 2 11
MLRBF 79.88 ± 11.20 1 2 11
SLRBF 79.56 ± 13.54 1 2 11
MLIRBF 86.39 ± 8.96 5 5 4
SLIRBF 89.86 ± 9.40 12 2 0

k-NN 66.04 ± 8.12 0 0 14
RBFNetwork 86.75 ± 9.30 6 4 4
SLogistic 89.77 ± 9.39 11 2 1
MLogistic 86.54 ± 9.31 5 5 4
NaiveBayes 84.17 ± 9.15 4 0 10
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� The Naive Bayes standard learning algorithm (NaiveBayes)
(Witten & Frank, 2005).

A 10-fold cross-validation has been applied and the perfor-
mance has been evaluated by using the Correct Classification Rate
or accuracy (C) in the generalization set (CG). When applying the
algorithms proposed (GRBF and RBF (Guti’errez et al., 2011) meth-
ods), ten repetitions are performed per each fold, and when apply-
ing the rest of methods, the 10-fold process is repeated ten times,
in order to obtain an average and a standard deviation of the CG

from the same sample size (100 models). A simple linear rescaling
of the input variables was performed in the interval [�2,2], X�i
being the transformed variables, for RBFs (Guti’errez et al., 2011)
and GRBF methodologies.

Table 2 shows in the second column the results obtained with
the different techniques tested. The SLIGRBF method obtained
the best result in terms of CG out of all the techniques compared.
Other important observation is that GRBF methods generally out-
perform their RBF equivalents, obtaining also a lower standard
deviation. It is well known that Neural Networks, Evolutionary
Computations, and Fuzzy Logics, are three representative methods
of Soft Computing (Corchado, Arroyo, & Tricio, in press). In this pa-
per, we hybridize two of them (Neural Networks and Evolutionary
Computation). Therefore, we could consider our proposal as a com-
petitive method within the scope of Soft Computing.

In order to ascertain the statistical significance of the observed
differences between the mean CG of the best models obtained for
each methodology, we have applied the Mann–Whitney U rank
sum test for all pairs of algorithms since a previous evaluation of
the Kolmogorov–Smirnov test (KS-test) stated that a normal distri-
bution cannot be assumed in all the results reported by the algo-
rithms and the non-parametric Kruskal–Wallis test concluded
that these differences were significant. The results of the Mann–
Whitney U rank sum test are included in Table 2 column 3–5. From
Please cite this article in press as: Castaño, A., et al. Permanent disability classi
logistic regression methods. Expert Systems with Applications (2012), doi:10.10
the analysis of these results, the SLIGRBF method has to be high-
lighted as the most competitive one (with only one draw), followed
by SLIRBF. Consequently, GRBFs are better suited for classifying
permanent disability than RBFs.

One of the major advantages of the SLIGRBF model is the
reduced number of features and GRBFs included in the final
expression, since the MA reduces its complexity by pruning muta-
tions and the Simple Logistic algorithm does feature selection reli-
ably. This can result in a better interpretability of the model, which
is especially important when dealing with real problems. In this
way, Table 3 includes the best predictor functions of the SLIGRBF
fication by combining evolutionary Generalized Radial Basis Function and
16/j.eswa.2012.01.186
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Table 3
Probability expression of the best SLIGRBF model, CG and test confusion matrix.

Best SLIGRBF permanent disability probability model

pND ¼ efPD ðx;hÞ

1þefPD ðx;hÞþefND ðx;hÞ
; pPD ¼ efND ðx;hÞ

1þefPD ðx;hÞþefND ðx;hÞ

fND(x,h) = 0.78 + 0.23x1 + 0.25x22 � 0.19x32 + 0.27x35 + 1.05x42

� 1.16x47 + 0.67x49 + 6.76GRBF1

fPD(x,h) = 5.16 + 0.30x10 + 0.25x22 + 0.19x32 + 0.27x35 + 1. 05x42

� 1.38x47 � 0.72x49 � 3.76GRBF1

GRBF1 ¼ exp � ððx2þ0:07Þ2þðx35þ0:10Þ2þðx41þ1:98Þ2þðx42�0:73Þ2þðx43�1:41Þ2Þ0:5
5:20

� �17:28

x1 (age); x10 (rcno94 = 12); x22 (sick leave time)
x32 (disease10); x35 (disease13); x41 (disease19)
x42 (disease20); x43 (low occupational repercussion);

x47 (contingency = CD); x49 (contingency = WA)

xi 2 [�2.0,2]; CG = 96.43%

Generalization confusion matrix

Predicted

Target NI I B

NI 46 2 0
I 1 32 0
B 0 0 3
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model obtained for the Permanent Disability classification prob-
lem. The model is formed only for ten input variables, demonstrat-
ing the reliability of both the evolutionary algorithm and the
Simple Logistic algorithm to effectively reduce the feature space.
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7. Conclusions

We have study the combination of Evolutionary Generalized
Radial Basis Function instead of Evolutionary Radial Basis Function
and logistic regression methods. This basis function solve some
problems that lacks the performance of the standard Gaussian
model, such as the approximation of constant valued function or
the approximation of high dimensionality datasets. The good syn-
ergy between these two techniques has been experimentally
proved using a permanent disability classification problem.

The hybrid neuro-logistic models have proved to serve as an
accurate tool in the classification of permanent disability. A com-
parative study between an extensive collection of standard classi-
fiers and the results of the statistical tests applied, and the hybrid
neuro-logistic models shows that the latter are more precise in
determining the degree of permanent disability.

Our hybrid models include a non-linear component (from dif-
ferent kinds of neural networks) and a standard linear component,
combining both in a logistic regression predictor. The complexity
of the model and the high amount of parameters involved in these
classifiers encouraged us to use a combined methodology, includ-
ing an evolutionary algorithm and a standard maximum-likelihood
optimization process.

Useful information could be extracted from the most accurate
model, given its simple structure (number of connections and
number of hidden neurons). Simple structure is one of the main
advantages of the models presented.

The obtained model is not intended to be a widely used tool in
the classification of permanent disability. First, it would be neces-
sary to examine more data as the scope of the PD problem is very
broad due to the high number and complexity of cases. However,
our findings can be used to develop new, improved systems. For
instance, an extended model could be used to create an informa-
tion system, both for patients and professionals, which would
provide assistance in the evaluation of permanent disability.
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