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a r t i c l e i n f o

Available online 10 August 2011

Keywords:

q-Gaussian Radial Basis Functions Neural

Networks

Hybrid Algorithms

Classification

Remote sensing

Weed discrimination and control
12/$ - see front matter & 2011 Elsevier B.V. A

016/j.neucom.2011.03.056

paper is a very significant extension of a cont

rnational Conference on Hybrid Artificial Inte

astian, Spain).

esponding author. Tel.: þ34 957 21 83 49; fa

ail address: i22fenaf@uco.es (F. Fernández-Na
a b s t r a c t

A classification problem is a decision-making task that many researchers have studied. A number of

techniques have been proposed to perform binary classification. Neural networks are one of the

artificial intelligence techniques that has had the most successful results when applied to this problem.

Our proposal is the use of q-Gaussian Radial Basis Function Neural Networks (q-Gaussian RBFNNs). This

basis function includes a supplementary degree of freedom in order to adapt the model to the

distribution of data. A Hybrid Algorithm (HA) is used to search for a suitable architecture for the q-

Gaussian RBFNN. The use of this type of more flexible kernel could greatly improve the discriminative

power of RBFNNs. In order to test performance, the RBFNN with the q-Gaussian basis functions is

compared to RBFNNs with Gaussian, Cauchy and Inverse Multiquadratic RBFs, and to other recent

neural networks approaches. An experimental study is presented on 11 binary-classification datasets

taken from the UCI repository. Moreover, aerial imagery taken in mid-May, mid-June and mid-July was

used to evaluate the potential of the methodology proposed for discriminating Ridolfia segetum patches

(one of the most dominant and harmful weeds in sunflower crops) in two naturally infested fields in

southern Spain.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Radial Basis Function Neural Networks (RBFNNs) have
received an extensive attention in the literature, and their
applications vary from face recognition [1] to time series predic-
tions [2] or signal processing [3], and as they are the object of
continuous research, there is also abundant literature on exten-
sions and improvements in RBFNN learning and modeling [4–6].

Different basis functions like Standard Gaussian (SRBF), thin-plate
Spline (TPSRBF) [7], Multiquadratic (MRBF) [8], Inverse Multiquadra-
tic (IMRBF) [8], and Cauchy (CRBF) [9] have been proposed for hidden
layer nodes. Even so, the standard Gaussian function is the one most
commonly selected (SRBF). Compared to other types of Artificial
Neural Networks (ANNs), the RBFNNs require less computational
time for learning and also have a more compact topology [10]. RBFs
have been applied in the area of ANNs, and are used as a replacement
for the sigmoidal unit in Multilayer Perceptron Neural Networks
ll rights reserved.
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(MLPNNs) [11] or for multiplicative units in Product Unit Neural
Networks (PUNNs) [12–14].

This paper presents a novel RBF based on q-Gaussian distribution
which parametrizes standard Gaussian distribution by replacing
exponential expressions with q-exponential expressions [15], while
maximizing Tsallis entropy [16] under certain constraints [17,18].
This novel basis function incorporates a real parameter q (besides the
centers and width of the RBF) which can relax or contract the shape
of the kernel. It matches the shape of the kernel and the distribution
of the distances better, since the modification of the q parameter
allows the representation of different basis functions (CRBF, SRBF,
IMRBF, y). This basis function has been recently analysed in
predictive microbiology [19].

On the other hand, the neural network learning scheme refers to
the procedure in which the algorithm estimates neural network
parameters from a set of previously labeled examples. Depending on
how examples are provided, learning can be performed in an
incremental mode (online/sequential method), or in a batch mode
(offline method). In practical classification applications, even though
there is initially a large data set, more new training data becomes
available from time to time and will arrive sequentially. To handle
the training of the network for the new data, batch learning schemes
require the network to be retrained all over again, resulting in a long
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training time. A learning scheme would be quite useful in real
applications to handle this sequential data without retraining all the
data all over again [20–22].

A new learning algorithm called the Extreme Learning Machine
(ELM) has recently been proposed for single hidden layer feed
forward neural networks [23,24]. This novel procedure, unlike
conventional implementations of gradient-based learning algo-
rithms, chooses randomly hidden nodes and analytically determines
the output weights of the network [25]. This algorithm provides
good generalization performances at extremely fast learning speeds
and in theory the universal approximator property has proved to
hold true [26]. However, ELM may need a higher number of hidden
nodes due to the random determination of input weights and hidden
biases. Several algorithms based on the ELM method (hybrid
proposals which use the differential evolution algorithms [27] and
a convex optimization method [28,29]) have been developed to
achieve good generalization performances with more compact net-
works. Originally, the ELM algorithm worked with a batch learning
mode, although recently an online version has been proposed [30].

Classical neural network training assumes a fixed architecture
that is difficult to establish beforehand. Evolutionary algorithms
(EAs), which are stochastic search algorithms that execute a
global search in the input space preventing a fall to local optimum
[31,32], have demonstrated great accuracy in designing a nearly
optimal architecture. This fact, together with the complexity of
the error surface associated with an ANN, justifies the use of an
EA to design the structure and to adjust the weight of these
models [4,14,33]. For this reason, a Hybrid Algorithm (HA) is
employed in this study to estimate the parameters of the RBFs:
the number of hidden nodes, the centers, the width and the value
of the q parameter of q-Gaussian RBFNNs.

In this way, the procedure is hybridized by two artificial
intelligence paradigms: Neural Networks and Evolutionary Com-
putation. The Hybrid Artificial Intelligent System (HAIS) denotes a
software system which employs a combination of methods and
techniques from artificial intelligence subfields [34,35]. Therefore,
the proposal of this paper can be considered a new alternative
approach within the scope of HAIS.

In order to analyze the performance and robustness of the
methodology proposed, it is applied to both 11 datasets taken
from the UCI repository and also to an interesting agronomical
problem that involves discriminating Ridolfia segetum patches in
sunflower fields, using multispectral imagery. R. segetum is a very
frequent annual, umbelliferous weed that is abundant in clay soils
in Andalusia (Spain). Its life cycle coincides with that of the
sunflower, which enhances its competitiveness. It results in an
average crop yield reduction of about 32% when there are two
R. segetum plants per m�2. In order to reduce herbicide applica-
tions by applying Site-Specific Weed Management (SSWM) stra-
tegies in the fields infested with R. segetum, approaches based on
the combination of Evolutionary Product-Unit Neural Networks
(EPUNNs) and Logistic Regression (LR) were previously applied to
remotely sensed images [36,37].

The results are compared to other RBFNNs obtained with the
same HA (SRBF, CRBF and IMRBF), to a sequential ELM classifier
(Online Sequential ELM for RBF (OS-ELM-RBF) [30]), and to batch
neural network classifiers (original ELM using Sigmoidal and RBF
(ELM-SIG and ELM-RBF) and Evolutionary ELM for RBF (EELM-RBF)
[27]). The q-Gaussian method is found to obtain better results than
SRBF in almost all the datasets considered. A measure of statistical
significance is used to determine differences in mean ranking,
which indicates that q-Gaussian reaches the state-of-the-art.

This paper is organized as follows: a brief analysis of RBFNN
models and their application to binary-classification problems is
given in Section 2; a methodology to estimate the RBF parameters
based on HAs is presented in Section 3; Section 4 explains the
experiments carried out; and finally, Section 5 summarizes the
conclusions of our work.
2. Probabilistic radial basis function neural networks

RBFNNs [38] are well-suited for function approximation and
pattern recognition due to their simple topological structure and
ability to reveal how learning proceeds in an explicit manner.
A RBF is a function which has been built into a distance criterion
with respect to a center. Let the number of nodes in the input
and hidden layer be p and m, respectively. For any sample
x¼ ðx1,x2, . . . ,xpÞ, the output of the RBFNN is fRBFNNðxÞ. The model
of a RBFNN can be described using the following equation:

fRBFNNðxÞ ¼ b0þ
Xm
i ¼ 1

bi �fiðdiðxÞÞ, ð1Þ

where fiðdiðxÞÞ is non-linear mapping from the input layer to the
hidden layer, b¼ ðb0,b1,b2, . . . ,bmÞ is the vector including the
weights of the connections between the hidden layer and the
output layer, and b0 is the bias. The function diðxÞ can be defined as:

diðxÞ ¼
Jx�ciJ

2

y2
i

, ð2Þ

where yi is the scalar parameter that defines the width for the i-th
radial unit, J � J represents the Euclidean norm and ci ¼ ½c1,c2, . . . ,cp�

is the i-th center of the RBFNN. The SRBF is the Gaussian function,
which is given by:

fSRBFi
ðdiðxÞÞ ¼ e�diðxÞ: ð3Þ

The radial basis function fiðdiðxÞÞ can take different forms,
including the Cauchy RBF (CRBF) defined by:

fCRBFi
ðdiðxÞÞ ¼

1

1þdiðxÞ
, ð4Þ

and the Inverse Multiquadratic RBF (IMRBF), given by:

fIMRBFi
ðdiðxÞÞ ¼

1

ð1þdiðxÞÞ
1=2

: ð5Þ

Fig. 1a illustrates the influence of the choice of the RBF in
hidden unit activation. One can observe that the Gaussian func-
tion presents higher activation close to the radial unit center than
the other two RBFs. The CRBF has been successfully applied
to image retrieval [39] and Computerized Tomography [40],
whereas the IMRBF has been used in applications related to
real-time signal-processing [8], among other scientific and engi-
neering applications.

This paper analyses the use of the q-Gaussian function as the
RBF. Based on the idea of q-Gaussian distribution [16,17], the
q-Gaussian RBF is defined by transforming the exponential
expression of the standard RBF to a q-exponential expression.
The q-exponential function, which reduces the exponential func-
tion in the q-1 limit, is defined as follows:

ex
q � ð1þð1�qÞxÞ1=ð1�qÞ

¼
1

ð1�ðq�1ÞÞ1=ðq�1Þ
: ð6Þ

Therefore, the q-Gaussian RBF can be defined as:

fq-GaussianRBFi
ðdiðxÞÞ ¼ ð1�ð1�qÞdiðxÞÞ

1=ð1�qÞ, ð7Þ

if ð1�ð1�qÞdiðxÞÞZ0, and 0, otherwise. The q-Gaussian RBF can
reproduce different RBFs for different values of the real q para-
meter. As an example, when the parameter q is close to 2, the
q-Gaussian is the CRBF, for q¼3, the activation of a radial unit
with an IMRBF for diðxÞ turns out to be equal to the activation of
a radial unit with a q-Gaussian RBF for diðxÞ=2 and, finally, when
the value of q converges to 1, the q-Gaussian converges to the



Fig. 2. Hybrid Algorithm (HA) framework.
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Fig. 1. Radial unit activation in one-dimensional space with c¼0 and y¼ 1 for

different RBFs: (a) SBRF, CRBF and IMRBF and (b) q-Gaussian with different values of q.
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Gaussian function (SRBF). Fig. 1b presents the radial unit activa-
tion for the q-Gaussian RBF for different values of q. As can be
seen in Fig. 1b, a slight increase in the q value results in a smooth
modification in the shape of the RBF.

In this work, the outputs of the neural networks are inter-
preted from the point of view of probability through the use of the
softmax activation function. The softmax activation function is
given by:

gðxÞ ¼
efRBFNNðxÞ

1þefRBFNN ðxÞ
, ð8Þ

where gðxÞ is the probability that a pattern x has of belonging to
the class of interest. The probability a pattern x has of not
belonging to the class is 1�gðxÞ.

The error surface associated with the model is very convo-
luted. Thus, the parameters of the RBFNNs are estimated by
means of a HA (detailed in Section 3). The HA was developed to
optimize the error function given by the negative log-likelihood
for N observations, which is defined for a classifier g:

lðgÞ ¼
1

N

XN

n ¼ 1

½�ynfRBFNNðxnÞþ log exp fRBFNNðxnÞ�, ð9Þ

where yn is equal to 1 if the pattern xn belongs to the first class
and equal to 0 otherwise, and fRBFNN is defined in Eq. (1).
Finally, a RBFNN that allows linear combinations of SRBF, CRBF
and IMRBF in the same RBFNN could have been considered,
because the use of linear combinations of different kinds of kernel
functions is commonplace in RBFNN design. However, this option
presents two drawbacks with respect to using q-Gaussian RBFNN:
(1) our proposal is more flexible because infinite types of RBF can
be obtained by modifying the value of the q parameter (not
only well-known RBFs); (2) having a continuous parameter,
which can vary the shape of the RBF, allow the mutations within
the evolutionary algorithm to be less abrupt which improves the
convergence of the evolutionary algorithm.
3. Hybrid Algorithm

The proposed Hybrid Algorithm (HA) is composed of two stages.
In the first stage, an evolutionary algorithm (EA) is used as a global
stochastic search algorithm which generates candidate RBFNNs. In
the second stage, the iRpropþalgorithm performs a local optimiza-
tion procedure on the best RBFNN individual from the previous
generation. For the sake of simplicity and to reduce the computa-
tional cost, the local improvement procedure (iRpropþ) is applied
only at the end of the HA, and only to the best solution. This implies
that the HA renounces merge exploration (global search) with
exploitation (local search), as occurs commonly in evolutionary
algorithms. Fig. 2 describes the procedure to estimate the parameters
of the radial units.

The basic framework of the EA is the following: the search
begins with an initial population of RBFNNs and, in each iteration,
the population is updated using a population-update algorithm
which evolves both its structure and weights. The population is
subject to operations of replication and mutation. The main
characteristics of the algorithm are the following:
1.
 Representation of the individuals: The algorithm evolves archi-
tectures and connection weights simultaneously, each indivi-
dual being a fully specified RBFNN. RBFNNs are represented
using an object-oriented approach and the algorithm deals
directly with the RBFNN phenotype. Each connection is speci-
fied by a binary value indicating if the connection exists, and a
real value representing its weights.
2.
 Error and fitness functions: l(g) (see Eq. (9)) is considered as the
error function of an individual g in the population. The fitness
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measure needed to evaluate the individuals is a strictly
decreasing transformation of the error function l(g) given by
AðgÞ ¼ 1=ð1þ lðgÞÞ, where 0oAðgÞr1.
3.
 Initialization of the population: The initial population is gener-
ated trying to obtain RBFNNs with the maximum possible
fitness. First, 5000 random RBFNNs are generated. The centers
of the radial units are first defined by the k-means algorithm.
k-means are run for all the different values of k, where
kA ½Mmin,Mmax�. Mmin and Mmax are parameters of the HA
defined as the minimum and maximum number of hidden
nodes allowed for any RBFNN model. We assign a random
value mA ½Mmin,Mmax� per RBFNN, and consider the centers
obtained through the corresponding k-means. The widths of
the RBFNNs are initialized at the geometric mean of the
distance to the two nearest neighbors and the q parameter at
values in the interval [0.75,1.25], since when q-1, the
q-Gaussian reduces the SRBF. A random value in the ½�I,I�
interval is assigned for the weights between the hidden layer
and the output layer. The individuals obtained are evaluated
using the fitness function, and the initial population is finally
obtained by selecting the best 500 RBFNNs.
4.
 Parametric and structural mutations: Parametric mutation con-
sists of a simulated annealing algorithm [12]. Structural muta-
tion implies a modification in the structure of the RBFNNs and
allows the exploration of different regions in the search space,
helping to maintain the diversity of the population. There are
four different structural mutations: hidden node addition, hid-
den node deletion, connection addition and connection deletion.
These four mutations are applied to each network sequentially.
More information about the genetic operators proposed can be
seen in [41,42]. It is important to highlight how the structural
and parametric mutations of q are performed:
– Structural mutation: If the structural mutator adds a new

node in the RBFNN, the q parameter is assigned a g value,
where gA ½0:75,1:25�, since when q-1, the q-Gaussian
reproduces the SRBF.

– Parametric mutation: The q parameter is updated by adding
a e value, where eA ½�0:25,0:25�, since the modification of
the q-Gaussian is very sensitive to the q variation (Fig. 1b).
5.
 iRpropþ local optimizer: The local optimization algorithm used
in our paper is the iRpropþ [43] optimization method. In the
proposed methodology, after the EA is run, then the local
optimization algorithm is applied to the best solution obtained
by the EA in the previous generation. We have adapted the
iRpropþ local improvement procedure to the softmax activation
function (8) and the cross-entropy error function (9). In this
case, the gradient vector is given by the following equation:

rlðb,c,r,qÞ ¼
@l

@b
,
@l

@c
,
@l

@r
,
@l

@q

� �
: ð10Þ

Let Z be any of the parameters of b,c,r and q where b is the
vector with the connection weights of hidden to output node, c
is the vector with the centers values of the q-Gaussian RBFs, r
includes the values of the width of each q-Gaussian and q stores
the q values of each q-Gaussian RBF, being therefore:

@l

@Z ¼
1

N

XN

n ¼ 1

yn
1

gðxn,hÞ

@gðxn,hÞ

@Z ,

@gðx,hÞ

@Z ¼ ðg�g2Þ
@f

@Z ,

where gðxn,hÞ ¼ g and f ðxn,hÞ ¼ f . Finally, we have the following
expressions for the output layer:

@f

@b0

¼ 1;
@f

@bs

¼fsðdsðxÞÞ
and for the hidden layer:

@f

@cst
¼ bs

2fsðdsðxÞÞ
qs ðxst�cstÞ

r2
s

,

@f

@rs
¼ bs

2fsðdsðxÞÞ
qs ð1�fsðdsðxÞÞ

ð1�qsÞ

rsð1�qsÞ
,

@f

@qs
¼

bs

ð1�qsÞ
2
ðfsðdsðxÞÞ

qs ð1�fsðdsðxÞÞ
ð1�qsÞÞ

þfsðdsðxÞÞlnðfsðdsðxÞÞ
ð1�qsÞÞÞ,

where fsðdsðxÞÞ represents the output of the s-th q-Gaussian
RBF, s¼ 1,2, . . . ,m and t¼ 1,2, . . . ,p. In the case of the remaining
basis function considered (SRBF, CRBF and IMRBF) the gradient
vector is given by the following equation:

rlðb,c,rÞ ¼
@l

@b
,
@l

@c
,
@l

@r

� �
: ð11Þ

Taking into account that the only difference from other neural
networks considered with respect to the q-Gaussian RBFNN is
the basis function employed in hidden layer, the only derivatives
that differ with respect to those shown in the case of the
q-Gaussian, are the derivatives of the output function with
respect to the c and r parameters. In the case of SRBF, we have
the following expressions for the hidden layer:

@f

@cst
¼ bsfsðdsðxÞÞ

ðxt�cstÞ

r2
s

,

@f

@rs
¼ bsfsðdsðxÞÞ

Pp
j ¼ 1ðxj�csjÞ

2

r3
s

,

where fsðdsðxÞÞ represents the output of the s-th SRBF. For the
IMRBF, we obtain the following equations:

@f

@cst
¼ bs

fsðdsðxÞÞ
3
ðxt�cstÞ

r2
s

,

@f

@rs
¼ bs

fsðdsðxÞÞð1�fsðdsðxÞÞ
2
Þ

rs
,

where fsðdsðxÞÞ represents the output of the s-th IMRBF. Finally,
the derivatives of the hidden layer for the CRBF are obtained as:

@f

@cst
¼ bs

2fsðdsðxÞÞ
2
ðxt�cstÞ

r2
s

,

@f

@rs
¼ bs

2ð1�fsðdsðxÞÞ
2
Þ

rs
,

where fsðdsðxÞÞ represents the output of the s-th CRBF.

4. Experiments

4.1. Description of the datasets and the experimental design

The methodology proposed is applied to 11 datasets taken
from the UCI repository [44]. Two additional datasets have been
included that correspond to remote-sensing agricultural problems
concerning weed patch determination in sunflower crops,
described in Section 4.2.

Table 1 summarizes the properties of the selected datasets.
It shows, for each dataset, the number of instances (Size),
number of Real (R), Binary (B) and Nominal (N) input variables,
total number of inputs (#In:), and per-class distribution of the
instances (Distribution). There is a simple linear rescaling of the
input variables in the interval [�2,2], Xn

i being the transformed
variables.



Table 1
Summary description of the datasets.

Dataset Size R B N #In: Distribution

Labor 57 8 3 5 29 (30, 27)

Promoters 106 – – 57 114 (53, 53)

Hepatitis 155 6 13 – 19 (32, 123)

Sonar 208 60 – – 60 (98, 110)

Heart 270 13 – – 13 (150, 120)

Breast-C 286 4 3 2 15 (201, 85)

Heart-C 302 6 3 4 26 (164, 138)

Liver 345 6 – – 6 (145, 200)

Vote 435 – 16 – 16 (267, 168)

Card 690 6 4 5 51 (307, 308)

German 1000 6 3 11 61 (700, 300)

Mtb-May 1600 4 – – 4 (800, 800)

Mtb-June 1600 4 – – 4 (800, 800)

Mtb-July 1600 4 – – 4 (800, 800)

SC-May 1600 4 – – 4 (800, 800)

SC-June 1600 4 – – 4 (800, 800)

SC-July 1600 4 – – 4 (800, 800)

All nominal variables are transformed to binary variables. Breast-C, Breast-Cancer;

Heart-C, Heart-disease; Mtb, Matabueyes; SC, Santa Cruz.
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The proposed model (q-Gaussian RBFNN) is compared to:
�
 Other RBFNNs obtained applying the same HA (detailed in
Section 3):
J The Standard Radial Basis Function (SRBF), where the

transfer function is Gaussian.
J The Cauchy Radial Basis Function (CRBF).
J The Inverse Multiquadratic Radial Basis Function (IMRBF).
�
 Sequential Neural Network Classifiers:
J Online Sequential Extreme Learning Machine for Radial

Basis Function (OS-ELM-RBF) [30]. This algorithm is an
online sequential learning algorithm for Single Layer Feed-
forward Networks (SLFNs) with RBF hidden nodes. In OS-
ELM-RBF, the parameters of hidden nodes (the centers and
radius of RBF nodes) are randomly selected and the output
weights are analytically determined based on data that
arrives sequentially.
�
 Batch Neural Networks Classifiers:
J Original Extreme Learning Machine (ELM) [23]. We have

employed two different basis functions for the ELM algo-
rithm: Sigmoidal (ELM-SIG) and RBF (ELM-RBF). In the
ELM-RBF algorithm, the centers have been taken randomly
from the data points and the widths randomly drawn
between percentile 20 and percentile 80 of the distance
distribution in the input space, as suggested in [45].

J The Evolutionary Extreme Learning Machine for Radial
Basis Function (EELM-RBF) [27] improves the original ELM
by using a Differential Evolution (DE) algorithm. DE was
proposed by Storn and Price [46] and it is known as one of
the most efficient evolutionary algorithms. The EELM-RBF
uses DE to select the input weights between input and
hidden layers (centers and radius) and the Moore-Penrose
generalized inverse to analytically determine the output
weights between hidden and output layers.
The experimental design was conducted using 10-fold cross
validation, with 10 repetitions per fold, except for the ‘‘Mata-
bueyes’’ and ‘‘Santa Cruz’’ datasets. The experimental design
followed for the Matabueyes and Santa Cruz datasets is described
in Section 4.2. For these datasets, we did not perform a 10-fold
cross validation in order to compare our results with those
obtained in [36].

The evaluation of different models in the generalization set has
been performed using three different measures: Correctly Classified
Rate (CG) or accuracy, Root Mean Squared Error (RMSEG) and Area
Under the ROC Curve (AUCG) because they have been identified as
three of the most commonly used metrics for determining the
performance of a classifier [47]. C represents threshold metrics,
while AUC is a probability metric and RMSE is a rank metric.

All the parameters used in the evolutionary algorithm, except for
the maximum and minimum number of RBFs in the hidden layer and
the number of generations, have the same values in all the problems
analysed below. For the selection of these parameters, a grid search
algorithm was applied with ten-fold cross validation in the same way
as for SVM, using the following ranges: ½Mmin,Mmax�Af½2,5�,½4,7�g and
#GenAf20,40,100,400g. In the case of the compared methods (OS-
ELM-RBF, ELM-SIG, ELM-RBF, EELM-RBF), the most critical parameter
is the number of nodes in the hidden layer. In the experiments, the m

value for these methods was experimentally determined by a cross
validation procedure applied to the training set, using the values
f10,20, . . . ,100g. With respect to EELM-RBF, in order to achieve good
performance results, the population of the EELM-RBF is set at 500
individuals to obtain better diversity in the population. Similarly, the
maximum number of generations is set at 100.

The connections between the hidden and output layer are
initialized in the [�5,5] interval (i.e. [� I,I]¼[�5,5]). The size of
the population is N¼500. For the structural mutation, the number of
nodes that can be added or removed is within the [1,2] interval, and
the number of connections to add or delete in the hidden and the
output layer during structural mutations is within the [1,7] interval.

4.2. Description and experimental design of the ‘‘Matabueyes’’ and

‘‘Santa Cruz’’ datasets

The original dataset was taken from [36]. In [36], the authors
evaluate the potential of Evolutionary Product-Unit Neural Net-
works (EPUNNs), Logistic Regression (LR) and a combination of both
(Logistic Regression using Initial Covariates and Product Units,
LRIPU) to discriminate R. segetum patches in the sunflower crops
in two naturally infested fields. The hybridization of LR and EPUNNs
was proposed in two recent works [48,49]. This study was con-
ducted in two fields in Andalusia, southern Spain, called Matabueyes
and Santa Cruz that were naturally infested by R. segetum.

Conventional-color (CC) and color infrared (CIR) aerial imagery
of the areas under study were taken in mid-May, mid-June and
mid-July. Then, the photographs were digitalized and re-sampled
to a pixel size representing 40 cm � 40 cm ground area.

Input variables included the digital values of all the bands in
each available image: CC images responded to blue (B), green
(G) and red (R) broad bands of the electromagnetic spectrum, and
CIR images to green, red and near infra-red bands. The authors
geo-referenced a total of 1600 pixels in each phenological stage,
where 800 pixels corresponded to R. segetum, 400 pixels corre-
sponded to the bare soil class and 400 corresponded to sun-
flowers. The objective is to differentiate between R. segetum and
all other pixels, because it is not necessary to distinguish between
soil and sunflower. More details can be found in [36].

The experimental design was conducted using a stratified
holdout cross validation procedure, where the size of the training
set was approximately 3n/4, and that of the generalization set
was n/4, n being the size of the full dataset. Consequently, each
dataset mentioned above was randomly split into two datasets.
A 1120 instance dataset was used for model training and the
remaining 480 instances formed the generalization dataset.

4.3. Comparison to other radial basis functions and to other recent

neural networks approaches

An analysis was performed on the performance of all the
traditional RBFs (CRBF, IMRBF and SRBF) obtained by the HA and
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on other recent neural networks approaches when compared to
the q-Gaussian model. This was essential because the proposed
model can reproduce different RBFs by changing an additional q

parameter. Consequently, the q-Gaussian model had to achieve
better performance than all these RBFs in order to justify the
additional q parameter.

As mentioned above, the agronomical problem datasets were
already evaluated with product-unit neural networks and with
their hybridization with logistic regression models.

Tables 2–4 show the mean and the standard deviation of the
correct classification rate, Root Mean Squared Error and Area
Under the ROC Curve in the generalization set (CG, AUCG and
RMSEG) in a total of 100 executions for the datasets taken from
Table 2
Comparison of the proposed basis functions to other basis functions: mean and stand

datasets (C Gð%Þ), and mean CG ranking (RC ).

Method (CGð%Þ)

OS-ELM-RBF ELM-SIG ELM-RBF EELM-RBF

Labor 89.30710.34 78.66717.99 90.00712.06 89.33712

Promoters 78.30715.35 61.78713.97 81.03713.16 82.34710.

Hepatitis 83.7577.44 82.3677.19 82.9778.54 83.5977.7

Sonar 73.2073.87 69.9579.75 75.4774.93 77.3076.4

Heart 81.8076.09 81.9575.09 82.5974.67 82.9376.7

Breast-C 72.0976.55 70.8977.78 71.5177.38 72.3475.3

Heart-C 84.9874.70 83.2174.68 85.1074.21 84.3173.5

Liver 71.4076.69 70.0679.40 69.2977.91 69.0877.1

Vote 96.0272.17 95.7872.40 95.9872.52 96.4273.5
Card 85.9573.77 85.9473.99 86.2874.02 86.5873.8

German 75.4673.90 73.2073.77 74.9373.46 74.3273.9

Mtb-May 63.8972.13 61.3071.89 64.3271.87 66.8972.4

Mtb-June 96.5970.39 95.7070.12 97.1270.57 97.3070.6

Mtb-July 73.3472.32 75.7173.49 75.3472.12 75.4273.1

SC-May 74.3271.63 76.1271.70 76.2471.19 75.4571.8

SC-June 94.9871.42 95.1072.12 95.4171.89 95.0871.9

SC-July 81.3271.23 80.1272.12 79.9872.58 80.4071.9

C Gð%Þ 80.98 78.69 81.38 81.71

RC 5.64 6.79 5.11 4.52

The best result is in bold face and the second best result in italics.

Table 3
Comparison of the proposed basis functions to other basis functions: mean and stand

(AUCG), mean AUCG over all the datasets (AUC G), and mean AUCG ranking (RAUC ).

Method (AUCG)

OS-ELM-RBF ELM-SIG ELM-RBF EELM-RBF

Labor 0.9070.10 0.8370.09 0.9170.09 0.9070.09

Promoters 0.8470.17 0.7070.17 0.8670.12 0.8770.11

Hepatitis 0.8070.07 0.8170.06 0.8070.07 0.8170.07

Sonar 0.7870.09 0.7570.12 0.8570.10 0.8870.10
Heart 0.8270.07 0.8370.04 0.8370.03 0.8570.09

Breast-C 0.6870.08 0.6270.09 0.6370.09 0.6970.09

Heart-C 0.8670.09 0.8770.08 0.8870.07 0.8670.08

Liver 0.7270.12 0.6870.09 0.6870.10 0.6970.13

Vote 0.9970.02 0.9870.04 0.9770.01 0.9770.02

Card 0.8270.06 0.8470.05 0.8970.05 0.9470.07
German 0.7870.05 0.7570.06 0.7670.02 0.7570.06

Mtb-May 0:72719� 10�3 0:70718� 10�3 0:72711� 10�3 0:73710�

Mtb-June 0:96721� 10�3 0:95716� 10�3 0:96715� 10�3 0:96714�

Mtb-July 0:76722� 10�3 0:79714� 10�3 0:80715� 10�3 0.81715�

SC- May 0:77721� 10�3 0:78716� 10�3 0:80711� 10�3 0:76713�

SC-June 0:95711� 10�3 0:95721� 10�3 0:96718� 10�3 0:96714�

SC-July 0:81721� 10�3 0:78715� 10�3 0:79723� 10�3 0:79729�

AUC G
0.82 0.80 0.82 0.83

RAUC 5.76 6.67 5.17 4.70

The best result is in bold face and the second best result in italics.
the UCI repository and 30 executions for the remote sensing
agricultural problems. The analysis of the results leads us to
conclude that the q-Gaussian model obtained the best results for
seven datasets using CG as the test variable. Furthermore, the
q-Gaussian model got the best results for ten datasets in AUCG

and for seven datasets in RMSEG, obtaining the best mean
performance and the best mean ranking of all the metrics used
in the experiments.

In this case, a performance analysis of the results using a
parametric statistical treatment could lead to mistaken conclu-
sions, since a previous evaluation of the CG, AUCG and RMSEG

value resulted in rejecting the normality and the equality of the
variance hypothesis. Furthermore, DemǍar [50] suggested that
ard deviation of the generalization accuracy results (CGð%Þ), mean CG over all the

SRBF CRBF IMRBF q-Gaussian

.04 91.33712.09 95.00711.24 91.6678.78 93.33711.65

53 75.54713.56 80.1876.66 81.0978.69 84.0076.15
8 86.3378.09 83.1677.15 85.1277.52 85.3077.54

2 78.3879.03 74.09710.20 76.02711.16 76.04713.56

0 81.8578.97 83.7078.76 84.8178.45 84.0777.20

1 72.0476.39 71.3578.00 73.1076.39 73.0676.77

0 85.4473.83 85.4575.59 85.7773.05 85.7975.20
2 68.4175.15 65.2378.23 65.5276.31 71.3076.50

3 96.3273.97 95.3973.59 94.9472.36 96.0873.45

9 86.0873.14 86.5273.55 85.9473.80 87.8770.37
0 74.8073.82 74.9073.17 74.4072.50 75.2572.98

0 69.8470.98 69.7871.10 68.9371.12 69.9571.56
6 99.2770.10 98.4570.27 98.9070.30 99.1570.05

2 75.2471.97 73.5971.85 73.2171.58 76.6372.14
8 77.8571.30 77.9271.40 77.1471.39 78.2571.17
2 97.7070.26 97.4070.22 97.2670.29 97.8770.31
8 83.5370.55 83.3870.62 83.5770.60 83.4770.73

82.35 82.08 82.19 83.37

3.64 4.41 4.08 1.76

ard deviation of the area under the ROC curve results over the generalization set

SRBF CRBF IMRBF q-Gaussian

0.9270.10 0.9570.09 0.9170.07 0.9770.10
0.8370.15 0.8670.14 0.8570.08 0.9070.09
0.8670.10 0.8170.08 0.8470.08 0.8270.11

0.8870.12 0.8370.09 0.8270.05 0.8670.08

0.8770.06 0.8270.06 0.8570.07 0.8970.06
0.6770.06 0.6670.05 0.7070.08 0.7170.09
0.8970.05 0.8870.04 0.9070.05 0.9270.04
0.7070.10 0.6570.13 0.6870.10 0.7170.09

0.9970.01 0.9770.02 0.9770.01 0.9870.01

0.8870.05 0.8770.08 0.8570.05 0.9370.03

0.7470.06 0.7670.06 0.7770.06 0:7870:04

10�3 0:7971� 10�3 0.7772� 10�3
0:7678� 10�3 0.7777� 10�3

10�3 0:9771� 10�3 0.9873� 10�3
0:9772� 10�3 0:9971� 10�3

10�3
0:8073� 10�3 0:7875� 10�3 0:7776� 10�3 0:8471� 10�3

10�3 0:8072� 10�3 0:7874� 10�3 0.8171� 10�3
0:8577� 10�3

10�3 0:9971� 10�3 0.9872� 10�3 0.9872� 10�3
0:9971� 10�3

10�3 0:8575� 10�3 0.8974� 10�3
0:9072� 10�3 0:8874� 10�3

0.85 0.83 0.84 0.88

3.29 4.64 3.97 1.76



Table 4
Comparison of the proposed basis functions to other basis functions: mean and standard deviation of the generalization Root Mean Squared Error results (RMSEG), mean

RMSEG over all the datasets, and mean RMSEG ranking (RRMSE ).

Method (RMSEG)

OS-ELM-RBF ELM-SIG ELM-RBF EELM-RBF SRBF CRBF IMRBF q-Gaussian

Labor 0.3270.21 0.3470.23 0.2770.23 0.2970.19 0.2270.21 0.1870.19 0.2470.17 0.1970.17

Promoters 0.4270.27 0.5270.32 0.4070.22 0.4170.22 0.4370.14 0.3970.11 0.4170.09 0.3570.10
Hepatitis 0.3770.07 0.4170.07 0.4070.08 0.3970.06 0.2870.03 0.3670.07 0.3170.05 0.3470.06

Sonar 0.4170.04 0.4770.05 0.4070.06 0.3970.07 0.4170.08 0.4470.10 0.4370.09 0.3970.08
Heart 0.4070.05 0.3970.07 0.4270.05 0.4070.05 0.3370.05 0.3870.08 0.3870.09 0.3570.07

Breast-C 0.4470.07 0.4870.06 0.4970.06 0.4270.06 0.4770.03 0.4970.04 0.4370.03 0.4170.03
Heart-C 0.4770.07 0.4370.08 0.3570.07 0.3670.06 0.3770.05 0.4070.05 0.3570.03 0.3370.04
Liver 0.4570.03 0.4970.07 0.4770.05 0.4970.03 0.4770.01 0.5070.03 0.4970.02 0.4870.02

Vote 0.1770.09 0.2170.06 0.1870.05 0.1770.06 0.1970.06 0.2270.07 0.2370.07 0.1570.07
Card 0.3170.05 0.3170.03 0.3070.04 0.2870.05 0.3370.04 0.3570.05 0.3570.06 0.2970.03

German 0.3970.05 0.4570.02 0.4370.03 0.4070.03 0.4670.02 0.4470.03 0.4670.03 0.4170.02

Mtb-May 0:56712� 10�3 0:54713� 10�3 0:54712� 10�3 0:50712� 10�3 0:4073� 10�3 0:4775� 10�3 0:4979� 10�3 0.4473� 10�3

Mtb-June 0:26712� 10�3 0:26715� 10�3 0:24710� 10�3 0:22717� 10�3 0.1272�10�3
0:2076� 10�3 0:1573� 10�3 0:0875� 10�3

Mtb-July 0.50719�10�3 0.39717�10�3 0.48714�10�3 0.47711�10�3
0:4971� 10�3 0:4771� 10�3 0:5271� 10�3 0.4171� 10�3

SC-May 0.61710�10�3 0.53714�10�3 0.5579�10�3 0.56710�10�3 0.4675�10�3 0.4873�10�3 0.4176� 10�3 0.3975�10�3

SC-June 0.27711�10�3 0.25712�10�3 0.24715�10�3 0.24715�10�3 0.1074�10�3 0.1773�10�3 0.1573�10�3 0.1377�10�3

SC-July 0.4379�10�3 0.47711�10�3
0:48710� 10�3 0.51710�10�3 0.3972�10�3 0.3772�10�3 0.3275�10�3 0.3573� 10�3

RMSEG 0.39 0.40 0.39 0.38 0.34 0.34 0.35 0.31

RRMSE 5.55 6.20 5.0 4.50 3.79 4.70 4.38 1.85

The best result is in bold face and the second best result in italics.
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Fig. 3. Bonferroni–Dunn graphic for a¼ 0:05.

Table 5
Adjusted p-values using CGð%Þ, AUCG and RMSEG as the test variables (q-Gaussian

is the control method).

Model Unadjusted p pBonferroni pHolm pHochberg

CGð%Þ variable test

ELM-Sig 2:14� 10�9 1:50� 10�8 1:50� 10�8 1:50� 10�8

OS-ELM-RBF 3:82� 10�6 2:67� 10�5 2:29� 10�5 2:29� 10�5

ELM-RBF 6:58� 10�5 4:60� 10�4 3:29� 10�4 3:29� 10�4

EELM-RBF 9:99� 10�4 69:9� 10�4 39:9� 10�4 39:9� 10�4

CRBF 0.00162 0.01140 0.00488 0.00488

IMRBF 0.00568 0.03977 0.01136 0.01136

SRBF 0.02506 0.17543 0.02506 0.02506

AUCG variable test

ELM- Sig 5:03� 10�9 3:52� 10�8 3:52� 10�8 3:52� 10�8

OS-ELM-RBF 1:92� 10�6 1:34� 10�5 1:15� 10�5 1:15� 10�5

ELM-RBF 4:89� 10�5 3:42� 10�4 2:44� 10�4 2:44� 10�4

EELM-RBF 4:64� 10�4 32:4� 10�4 18:5� 10�4 18:0� 10�4

CRBF 6:02� 10�4 42:1� 10�4 18:5� 10�4 18:0� 10�4

IMRBF 0.00865 0.04056 0.01730 0.01730

SRBF 0.04870 0.11092 0.04570 0.04570

RMSEG variable test

ELM-Sig 2:20� 10�7 1:54� 10�6 1:54� 10�6 1:54� 10�6

OS-ELM-RBF 1:02� 10�5 7:20� 10�5 6:17� 10�5 6:17� 10�5

ELM-RBF 1:79� 10�4 12:5� 10�4 8:99� 10�4 8:99� 10�4

CRBF 6:84� 10�4 47:9� 10�4 27:3� 10�4 27:3� 10�4

EELM-RBF 0.00162 0.01140 0.00488 0.00488

IMRBF 0.00260 0.01825 0.00521 0.00521

SRBF 0.02086 0.14603 0.02086 0.02086

F. Fernández-Navarro et al. / Neurocomputing 75 (2012) 123–134 129
the independence condition was not truly verified in ten-fold
cross validation (a portion of samples was used either for training
or testing in different partitions).

Therefore, in order to determine the statistical significance of
the rank differences observed for each method in the different
datasets, we have carried out three non-parametric Friedman
tests [51] with the ranking of CG, AUCG and RMSEG of the best
models as the test variables. These tests show that the effect of
the method used for classification is statistically significant at a
significance level of 5% for CG, AUCG and RMSEG, as the confidence
interval is C0 ¼ ð0,F0:05 ¼ 2:09Þ and the F-distribution statistical
values are Fn ¼ 9:21=2C0 for CG, Fn ¼ 9:92=2C0 for AUCG and
Fn ¼ 6:28=2C0 for RMSEG. Consequently, we reject the null-hypoth-
esis stating that all algorithms perform equally in mean ranking of
CG, AUCG and RMSEG.

In our case, the Friedman test shows significant differences in
the results. Due to these differences, three post-hoc statistical
analyses were required. These analyses have been performed
choosing the best performing model, q-Gaussian, as the control
method, for comparison with the rest of the models.
The Bonferroni–Dunn test considers that the performance of
any two classifiers is deemed to be significantly different if their
mean ranks differ by at least the critical difference (CD):

CD¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðKþ1Þ

6D

r
, ð12Þ

where K and D are the number of classifiers and datasets, and
q can be computed as suggested in [52]. Fig. 3 illustrates the
application of the Bonferroni–Dunn test for each test variable.
This graph is a bar chart where the bars have a height proportional



Table 7
Comparison of the proposed basis functions to EPUNN and LRIPU.

Best CGð%Þ

EPUNN LRIPU q-Gaussian

Mtb-May 70.6 70.6 72.50
Mtb-June 98.7 99.2 99.38
Mtb-July 79.8 79.0 80.00
SC-May 78.4 77.5 79.77
SC-June 98.4 98.7 98.42

SC-July 83.1 84.3 85.30

The best result is in bold face.
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to the average rank obtained for each algorithm, following
the procedure of Friedman. Adding the ranking value of the lowest
bar (associated with the q-Gaussian model) to the Critical Differ-
ence (CD) value obtains a vertical line (denoted as ‘‘Threshold’’),
which is displayed in the graphic. The bars exceeding this line are
those associated with the algorithms whose performance is sig-
nificantly worse than the control algorithm. From the results of
these tests, it can be concluded that the q-Gaussian model produced
a significantly better CG, AUCG and RMSEG ranking than all the other
RBFs and methodologies considered except for the SRBF model.

More powerful tests are applied, such as Holm’s and Hoch-
berg’s [52] tests, to compare the control model (q-Gaussian
RBFNN) with the rest of the models. Holm and Hochberg tests
are detailed in [50,52]. Table 5 shows all the adjusted p-values for
each comparison, using CG, AUCG and RMSEG as the test variables
and q-Gaussian RBFNN as the test method. The adjusted p-values
represent the lowest level of significance of a hypothesis that
results in a rejection [53]. In this manner, we can find out whether
two algorithms are significantly different and also obtain a metric
of how different they are. Holm’s and Hochberg’s tests indicate
that the control model (q-Gaussian) outperforms all the remain-
ing models in CG, AUCG and RMSEG, which justifies the proposal.

4.4. Analysis of the best q-Gaussian models obtained for the

agricultural remote sensing problems

As mentioned above, these datasets were formerly evaluated
with Evolutionary Product-Unit Neural Networks (EPUNNs) and
Table 6
Probability expression of the best q-Gaussian RBF m

Best q-Gaussian RBF Matabueyes model

P¼ 1=ð1þexpð�5:92þ7:89RBF1þ10:96RBF2�6:47

RBF1 ¼ ð1�ð1�0:17Þd1Þ
1=ð1�0:17Þ; RBF2 ¼ ð1�ð1�0:52

RBF3 ¼ ð1�ð1þ0:54Þd3Þ
1=ð1þ0:54Þ; RBF4 ¼ ð1�ð1þ1:1

RBF5 ¼ ð1�ð1þ0:69Þd5Þ
1=ð1þ0:69Þ

d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR%þ1:92Þ2þðG%�0:27Þ2

q
1:25

0
@

1
A

2

; d2 ¼

ffiffiffiffiffiffiffiffi
ðR%þ

q0
@

d3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR%þ0:38Þ2þðG%þ0:94Þ2þðB%þ1:16Þ2

q
1:31

0
@

1
A

2

d5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB%�0:44Þ2

q
0:74

0
@

1
A

2

CCRT ¼ 98:30%, CCRG ¼ 99:38%

AUCT ¼ 0:99, AUCG ¼ 0:99

RMSET ¼ 0:10, RMSEG ¼ 0:07

Best q-Gaussian RBF Santa Cruz model

P¼ 1=ð1þexpð�4:03þ6:23RBF1þ4:86RBF2þ6:87R

RBF1 ¼ ð1�ð1þ0:09Þd1Þ
1=ð1þ0:09Þ;RBF2 ¼ ð1�ð1�0:11

RBF3 ¼ ð1�ð1þ0:44Þd3Þ
1=ð1þ0:44Þ;RBF4 ¼ ð1�ð1þ0:2

RBF5 ¼ ð1�ð1�0:11Þd5Þ
1=ð1�0:11Þ;RBF6 ¼ ð1�ð1þ1:04

d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR%þ1:20Þ2þðNIR%

�1:95Þ2
q

2:37

0
@

1
A

2

; d2 ¼

ffiffiffiffi
ðR

q0
@

d3 ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR%�0:33Þ2 þðNIR%

�1:91Þ2
p

0:77

� �2

; d4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR%�0:60

q0
@

d5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR%þ1:24Þ2þðB%�0:41Þ2

q
1:75

0
@

1
A

2

; d6 ¼

ffiffiffiffiffiffiffiffi
ðR%�

q0
@

CCRT ¼ 98:26%, CCRG ¼ 98:42%

AUCT ¼ 0:99, AUCG ¼ 0:99

RMSET ¼ 0:10, RMSEG ¼ 0:12

R% ,G% ,B% ,NIR% A ½�2,2�; ð1�ð1�qiÞdiÞZ0
with their hybridization with Logistic Regression models (LRIPU).
Like the methodology proposed, all these models predict a
probability, thus differentiating the pixels of the image (for
concluding R. segetum presence or absence).

Taking into account only the best model per dataset,
q-Gaussian RBF outperformed both EPUNN and LRIPU in five of
the six datasets considered (Table 7).

This section studies in detail the best q-Gaussian RBFNN
obtained for the biclass Matabueyes and Santa Cruz datasets in
mid-June. The mathematical expressions of the different models
are presented in Table 6, all of them being relatively simple.

We now justify the use of q-Gaussian RBF models instead of
standard Gaussian RBF models for agricultural remote sensing
problems.
odel for Matabueyes and Santa Cruz problems.

RBF3þ3:70RBF4þ1:45RBF5ÞÞ

Þd2Þ
1=ð1�0:52Þ

6Þd4Þ
1=ð1�1:16Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:45Þ2þðG%þ0:07Þ2

0:85

1
A

2

; d4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR%þ1:70Þ2þðB%�0:08Þ2

q
2:06

0
@

1
A

2

BF3�7:34RBF4þ12:06RBF5�9:94RBF6ÞÞ

Þd2Þ
1=ð1�0:11Þ

0Þd4Þ
1=ð1þ0:20Þ

Þd6Þ
1=ð1þ1:04Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Two and three dimensional graphic representations have been
included of the non-linear relationship between the value asso-
ciated with each q-Gaussian RBF and the corresponding input
variables for the Matabueyes and Santa Cruz mid-June datasets, in
Figs. 4 and 5. It is important to keep in mind that the input
variables are scaled (XiA ½�2,2�).

As shown in Figs. 4 and 5, the Hybrid Algorithm (HA) generates
models with q values other than 1 (where q-Gaussian RBFNN is
reduced to the standard Gaussian RBFNN), indicating the need for
a great number of basis functions with q values under 1. These
types of basis functions present a very selective response, with
high activation for patterns close to the centroid and very small
activation for distant patterns, since this type of basis function
has almost no tail.

In order to use our models to derive agronomical information
and evaluate the contribution of the bands studied to predict the
probability of occurrence R. segetum, the response of the R and
NIR bands is studied when the B and G bands are fixed to certain
interpretable values (Fig. 6). An overhead view of the field in mid-
June showed that the sunflower crop had established a closed
canopy of greenish coloration, the R. Segetum patches were
entirely flowering and yellow, growing over the sunflower plants
and, in general, the soil was completely covered by the crop. The
yellowish color of R. segetum was generated when the reflectance
in the R and G regions was similar and even higher than in the B
Fig. 5. Three-dimensional graphical representation of the non-linear relationship bet

variables, in the Santa Cruz-mid June model given by the q-Gaussian RBFNN: (a): fSan

Fig. 4. Three and two dimensional graphical representation of the non-linear relation

input variables, in the Matabueyes-mid June model given by the q-Gaussian RBFNN: (
region. Furthermore, the sunflower generally showed a relative
reflectance maximum in the G region due to the high amounts of
chlorophyll content in the living vegetation and an absolute
maximum in the NIR region due to its vigorous and dense canopy.

When the B and the G bands were fixed at low values (Fig. 6a
and b), R. segetum was only absent in the region defined by
NIR-band values which were much greater than R-band values.
This scenario is typical of vigorous and healthy vegetation that, in
our case, might be attributed to zones completely covered in a
dense sunflower crop, free of weed infestation and scarcely
affected by soil background. In the opposite scenario, formed by
high values of B and G bands (Fig. 6c and d), the probability of
weed occurrence was high when the R-band values were close to
or greater than those of both the B-band and G-band. In this case,
the low probability of weed occurrence can be assigned to two
different situations: (1) the presence of non-infested sunflowers,
when the NIR-band values are greater than those of the R-band
and (2) the high background effect of bare soil in zones with low
crop development, when the NIR-band values are lower than
those of visible (B, G, R) bands. Another scenario studied was
formed by values relatively greater in the G region than in other
visible bands, which showed greenish areas in the fields studied
(Fig. 6e and f). In this case, the probability distribution was
partially similar to the previous plots except in the region
delimited by low values of R and NIR bands, which might be
ween the value associated with the hidden nodes and the corresponding input

taCruz1
; (b): fSantaCruz2

; (c): fSantaCruz3
; (d): fSantaCruz4

; (e): fSantaCruz5
; (f): fSantaCruz6

.

ship between the value associated with the hidden nodes and the corresponding

a): fMatabueyes1
, (b): fMatabueyes2

(c): fMatabueyes4
(d): fMatabueyes5

.



Fig. 6. Contribution of the R and NIR multispectral bands to the probability of R. segetum occurrence in the field Santa-Cruz in mid-June for certain fixed values of blue

(B) and green (G) bands: (a,b) B¼�2, G¼�2; (c,d) B¼1, G¼1; (e,f) B¼�1, G¼1; (g,h) B¼1, G¼�1. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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attributed to the zones where the sunflower crop was in an
advanced stage of development (initial desiccation), and then it
could be confused with R. segetum patches. Although in mid-June
both species showed consistent spectral differences, the coinci-
dence of different phenological stages of the two plant species
could obviously complicate their discrimination, as previously
reported by [54]. Lastly, the scenario formed by B-band values
relatively greater than G-band ones was also plotted (Fig. 6g
and h), although it might be unusual in the data studied because,
from an agronomical point of view, it could only be attributed to
zones with bare soil or hardly covered by vegetation. In this
assumption, it is noteworthy that the threshold for R. segetum

occurrence was established at R-band values greater than G-band
values, demonstrating that the influence of the B region was
practically negligible, as also inferred from the analysis of the
previous plots.

As a general conclusion, the probability of R. segetum presence
depended mainly on the interaction between the R and NIR
bands. A minor contribution was derived from the B and G bands,
because only a reduced part of the figures changed when values of
the two bands were interchangeable with each other. Previous
reports also demonstrated that differences between the R and the
NIR bands were very good at separating species since this spectral
region was strongly affected by chlorophyll and pigment contents
and changes in the phenological stages of the plants. Furthermore,
the distinction between vegetation and bare soil is also usually
based on both bands [55]. These results could provide informa-
tion for mapping this weed in sunflower crops using multispectral
bands from remote sensed imagery, which in the future may help
contribute to efficient weed management strategies and timely
site-specific herbicide application decisions.
5. Conclusions

A Hybrid Algorithm (HA) with specific operators has been
developed to automatically find q-Gaussian Radial basis-Function
Neural Networks to solve binary-classification problems. The HA
optimizes all the parameters related to neural network architec-
ture, i.e., the number of hidden neurons and their configuration.
The evaluation of the model and the algorithm for the 17 datasets
considered showed that q-Gaussian RBF obtained higher accuracy,
Root Mean Squared Error and area under the ROC curve when
compared to other RBFs and to other recent neural network
approaches.

These models can provide information to program suitable
wavelengths of further Compact Airborne Spectral Imager (CASI)
images for Site-Specific Weed Management (SSWM). Moreover,
comparing q-Gaussian RBFNNs to EPUNNs and LRIPU has shown
that q-Gaussian RBFNNs models are very competitive models and
has demonstrated how they are able to analyze multispectral
imagery to predict R. segetum presence in the field under study,
providing a useful tool for early SSWM.
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