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Abstract Combinations of physical and statistical wind

speed forecasting models are frequently used in wind speed

prediction problems arising in wind farms management.

Artificial neural networks can be used in these models as a

final step to obtain accurate wind speed predictions. The aim

of this work is to determine the potential of evolutionary

product unit neural networks (EPUNNs) for improving the

accuracy and interpretation of these systems. Traditional

neural network and EPUNN approaches have been used to

develop different wind speed prediction models. The results

obtained using different EPUNN models show that the

functional model and the hybrid algorithms proposed pro-

vide very accurate prediction compared with standard neural

networks used to solve this regression problem. One of the

main advantages of the application of these EPUNNs has

been the possibility of obtaining some interpretation of the

non-linear relation predicted by the model, as will be shown

in real data of a wind farm in Spain.

Keywords Short-term wind speed forecasting � Product

unit neural networks � Evolutionary programming

1 Introduction

Renewable energy in Europe is considered as a priority line

of actuation, with a target to achieve 20% of the energy

consumption from renewable sources by 2020. Specifi-

cally, it is expected that over 16% of the electricity gen-

erated in Europe comes from wind energy plants by that

date. Also, this value situates the wind power as one of the

main alternative sources of energy, intensively supporting

the research in technologies involved in wind farms [1–5].

One of the main problems of wind energy is the integration

of this type of energy in the electric transport networks,

which must be improved to reach the proposed objectives.

Among these problems is remarkable the management of

the energy production, influenced by the variability of the

wind in different months or seasons. In this scenario with a

high integration of wind energy in the transport network,

the prediction of the generated power in wind farms is a

key problem, both for the producers and managers of the

transport network. The different agents that manage the

national energy transportation networks must have a

knowledge of the production variability as soon as possi-

ble, to be able to plan the rest of energy supplies, main-

taining the integrity of the whole system. From the

producers point of view, the prediction of the wind energy

is not only a compulsory procedure, but also the profit-

ability of their projects is affected by their ability to predict

the generated power, because in many countries they are

penalized for failing their predictions. In addition, in a

future with a greater integration of wind power, it is

expected an increasing in the penalties for wrong predic-

tions, and thus the problem of wind power prediction in

wind farms will be crucial.

Nowadays, modern forecasting models for power pre-

diction in wind farms are based on the combination of

C. Hervás-Martı́nez � P. A. Gutiérrez

Department of Computer Science and Numerical Analysis,
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physic and statistical models. The physic models can be

global, meso-scale, or even local models, taking into

account the specific local orography of the wind farm.

Statistical models are usually included in the prediction

systems instead of local physic models, and it has been

shown that they produce a significant improvement in the

prediction over physical approaches. Generally speaking,

there exist two possibilities to make short-term predictions

in wind farms: the first one is to make a direct prediction of

the produced power in the farm considering all the wind

turbines at the same time and different conditions in the

farm (meteorology, etc.). Another way to tackle this

problem (more interesting from the point of view of

management) is to carry out a wind prediction in each wind

turbine of the farm and to convert it into expected power

production by means of the power curve of the turbine.

This last way of prediction provides a better management

of the wind farms, because it allows to evaluate the pro-

duction under a priori known conditions, such as inopera-

tive or intentionally stopped wind turbines to prevent

possible damages.

On the other hand, wind speed forecasts in each wind

turbine can be tackled from two different points of view:

wind speed forecasts based on past wind data and wind

speed forecasts using meteorological models to include the

environment dynamics. Although there are several studies

based on past data [6, 7] (note that the acquisition of past

data is simple and the application of any regression tech-

nique is straightforward), this kind of prediction is usually

applied only for long-term forecasting problems (monthly,

quarterly, yearly), and it hardly ever provides good results

in short-term prediction. For short-term prediction, the use

of meteorological models (which include information of

atmospheric dynamics) is essential to obtain competitive

results [8, 9]. In these previous works, different regression

approaches based on artificial intelligence or other tradi-

tional methods are used, such as artificial neural networks

[3, 10, 11], support vector machines [12], ARMA models

[13], and Kalman filters [4].

In this paper, the potential of the product unit neural

networks in short-term wind speed forecasting in several

wind turbines using meteorological models is studied.

These networks are optimized using different memetic

evolutionary algorithms. In this way, a methodology for

obtaining the structure and weights of a product unit neural

network is proposed, based on the combination of an

evolutionary programming algorithm, a clustering process

and a local improvement procedure carried out by the

Levenberg–Marquardt algorithm. The multiplicative neural

networks are among the most recent and interesting neural

networks models, and they contain nodes that multiply

their inputs instead of adding them, which allows inputs to

interact non-linearly. This class of multiplicative neural

networks comprises such types as sigma-pi networks and

product unit (PU) networks [14]. This paper use three-layer

networks, where only the hidden layer consists of PUs,

while the output layer has additive units. Both layers use

linear activation functions. Advantages of product unit

neural networks (PUNNs) are increased information

capacity and the ability to form higher-order combinations

of the inputs. Also, it is possible to obtain upper bounds of

the Vapnik-Chervonenkis dimension of PUNNs similar to

those obtained for sigmoidal neural networks [15]. Another

interesting property of PUNNs is that they can approximate

any function with a given accuracy as well as sigmoidal

neural networks [16]. Product unit based networks have a

major drawback: their training is more difficult than the

training of standard sigmoidal based networks [14]. The

main reason for this difficulty is that networks based on

product units have more local minima and more probability

of becoming trapped in them [17]. The flexibility of

PUNNs when compared with sigmoidal additive NNs

encourages us to select this type of network for the wind

speed prediction problem, avoiding the problems men-

tioned by using an advanced evolutionary algorithm.

The rest of the paper has the following structure: in the

next section we present in detail the hybrid system pro-

posed, describing the global model used, the first down-

scaling carried out (physical downscaling) with the MM5

model and the artificial neural network used to perform the

final statistical downscaling. The potential of evolutionary

PUNNs for this last step is evaluated in this paper, their

learning and structure being described in Sect. 3. Section 4

presents the experiments carried out to evaluate the per-

formance of our approach. The short-term (48 h horizon)

wind speed forecast in a wind park with 33 wind turbines,

located at the southeast of Spain, is considered. Section 5

gives some final remarks for concluding the paper.

2 Hybrid model considered for short-term

wind speed prediction

A system of short-term wind speed forecast based on

global and mesoscale models has been recently presented

in [8] (Fig. 1). The original system starts from a given

global weather forecast model, and two different processes

of down-scaling are considered, the first one a physical

down-scaling using a mesoscale forecasting model, and the

second one a statistical downscaling processing, using a

multi-layer perceptron. This last process of down-scaling

can be, of course, replaced by any other type of regressor.

In this paper, we study the modification of this hybrid

system for wind speed prediction to include PUNNs, the

main characteristics of these networks and how they can

improve the performance of the system.
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The system proposed in [8] uses a global prediction

system (specifically the Global Forecasting System, GFS

[18]) to obtain a first prediction of the meteorological vari-

able for future times at given positions and altitudes, con-

sidering as horizontal domain the entire Earth. The global

prediction system integrates the Navier–Stokes equations, to

provide a set of atmospheric variables which can be useful

for different applications, such as pressure (P), temperature

(T), geopotential height (gph) and also wind speed and

direction (v). In general, these variables are solved for a

given number of levels in height, which usually vary

between 10 and 1,000 hPa. In addition, the majority of the

global models also provide these basic variables at a level of

10 m over the ground. Regarding the spatial resolution of the

model proposed in [8] was 1� 9 1�. Note that the forecasts

from global models do not include local characteristics, so a

down-scaling process is carried out.

Two processes of down-scaling are considered in [8].

First, a process of down-scaling (physical down-scaling) is

performed, using the Fifth generation Mesoscale Model

(MM5 model) [19]. The MM5 is a limited area model,

which solves the Navier-Stokes equations which modelled

the behaviour of the atmosphere (similar to the global

models), but without including ocean-land interactions and

other important variables of the global forecasting models.

The MM5 initialization is carried out by using the data

from the global prediction systems considered, and also data

from atmospheric soundings, using aerostatic balloons at the

Iberian Peninsula in the following sites: Gibraltar, Madrid,

Murcia, Palma de Mallorca, Santander, and Zaragoza. In

addition, also metar data are included in the MM5 initiali-

zation. Metar are surface data measured in the 39 airports of

the Iberian Peninsula and the Balear Islands, each 30 min.

Variables included in metar data are pressure, temperature,

wind speed and direction, among others. The result of this

physical down-scaling carried out using the MM5 model is a

forecast of the wind speed and direction in a more realistic

orography than the one given by the global forecasting

models. The MM5 model can be operated using different

parametrizations, and this provides a number of possible

different models to feed the second part of the down-scaling

process, the statistical down-scaling using neural networks.

This final step consists in applying a regressor (a neural

network in our case) to the data from the MM5 models, in

order to obtain the wind speed prediction in each turbine of

the wind farm. In this paper, as it has been mentioned

before, we substitute the MLP in [8] by a PUNN, which is

trained by a dynamic hybrid evolutionary programming

algorithm with clustering (DHEPC) [20]. The PUNN is

trained to obtain the best quality wind speed prediction.

The DHEPC algorithm is based on the combination of an

evolutionary algorithm, a clustering process and a gradient

descent local search procedure. The three elements are

used for architectural design and estimation of weights.

This synergy among diverse optimization methods can

provide different families of hybrid algorithms where the

search is based on a first step of exploration, followed by a

second step of exploitation. The benefits of mutual inter-

actions between a local and a global optimization method

working together have been studied in computational sci-

ence, giving rise to techniques which have been called

memetic algorithms (MAs), hybrid evolutionary algorithms

HEAs, Lamarckian EAs, Balwinian EAs, etc. [22–24].

3 Evolutionary product unit neural networks

In this paper, different hybrid evolutionary programming

(HEP) methodologies are considered for obtaining the

structure and weights of the proposed neural networks

based on product units. The methodologies are based on the

combination of an EP algorithm (global explorer), a clus-

tering process and a local improvement procedure carried

out by the Levenberg–Marquardt (L–M) algorithm (local

exploiter). The aim of the proposed approaches is the

automatic optimization of the structure and weights of

PUNNs used for the determination of wind speed forecasts.

Global
Forecasting

Model

Physical down-scaling

Meso-scale
Model
(MM5)

Statistical down-scaling

Wind speed
prediction on
each turbine

Local observations
atmospheric soundings

Metar data

Regressor

Fig. 1 Outline of the general form of a hybrid system for short-term

wind speed forecasting

Neural Comput & Applic

123



Note that the PUNN models are feed with information

extracted from the MM5 models.

Different versions of an HEP algorithm are used

depending on how the local search and the cluster parti-

tioning are combined with the EP algorithm:

• The first one consists of the application of an Evolu-

tionary Programming algorithm (EP) without the

clustering process nor the local search. The EP

paradigm is selected, which discards the use of

recombination, since crossover is usually regarded as

less effective for network evolution [25].

• We also consider the application of an HEP approach,

where the EP is run and the local search is only applied

to the final best solution obtained in the evolutionary

process (Hybrid Evolutionary Programming optimizing

the Final best solution, HEPF). This allows the precise

local optimum around the final solution to be found.

The local search is not applied to all the individuals of

the population due to the high computational cost that it

represents and because it could result in over-fitting

training data.

• The last alternative is the so-called Dynamic Hybrid

Evolutionary Programming with Clustering (DHEPC),

which carries out a clustering process in a specific space

where each individual is mapped to a different point

depending on its performance. After that, the L–M

algorithm is applied to the best individual in each cluster

dynamically every Gt generations, where Gt must be

fixed by the user. The optimized individuals are stored

and the final solution is the best one among the local

optima found during the evolutionary process. This

combination of a clustering process and a local optimi-

zation method for EAs has been previously proposed,

reporting a good performance [20]. The process consid-

ers a large enough subset of the best individuals of the

population and it is very important to determine which

rate of the best individuals is going to be considered and

the value for the number of clusters. Thus, the local

optimization procedure is carried out in several gener-

ations of the EA. The individuals do not return to the

population, because crossover operator is not used (and

the only way the information of the optimized individ-

uals will contribute anything for future generations is by

using a crossover operator). Instead, optimized individ-

ual will be stored in a pool of individuals, and the best

final one will be returned as solution.

3.1 Product unit neural networks

In this paper, we consider a procedure to construct

regressors based on learning Product Unit Neural Networks

(PUNNs) from the patterns of the training set. This kind of

models is an alternative to Multilayer Perceptrons (MLPs),

considering multiplicative hidden nodes instead of additive

ones. In this way, the output of each hidden node

(Bj(x, wj)) is the following:

Bjðx;wjÞ ¼
Ym

i¼1

x
wji

i ð1Þ

where wj ¼ ðwj1;wj2; . . .;wjmÞ is the set of exponents for

the jth hidden node. The proposed model is a linear

combination of p of these basis functions:

y ¼ f ðx; hÞ ¼ b0 þ
Xp

j¼1

bj

Ym

i¼1

x
wji

i

 !
ð2Þ

where h ¼ fb;w1; . . .;wpg is the vector of parameters of the

model, x 2 S � R
m and S is a sub-set of the real space of

dimension m with x [ 0; 8x 2 x. The vector b ¼
fb0; b1; . . .; bpg stands for the set of coefficients multiplying

each of the basis functions, which are represented by the

vector Bi ¼ fB0ðxi;w0Þ;B1ðxi;w1Þ; . . .;Bpðxi;wpÞg, where

B0(x, w0) = 1 is the bias of the estimated output, and wj is the

vector of the coefficients associated with the jth basis function.

For the data set D = {xl, yl}, for l ¼ 1; . . .; n, the

regression model can be expressed by means of a potential

base function topology, such that

yl ¼ f ðxl; hÞ ¼ b0 þ
Xp

j¼1

bj

Ym

i¼1

x
wji

i

 !
þ el; l ¼ 1; . . .; n;

ð3Þ

where bj;wji 2 R and el is the error obtained for the lth

pattern.

If the usual methods of estimation of parameters of a

linear model are followed, in this case the procedure is not

trivial because the design matrix B ¼ fB1; . . .;Bng
depends on the wj parameters and the elements of the B

matrix are potential functions of the x values. Conse-

quently, a hybrid EA is used to estimate the optimum

values of p and those of the bj and wj coefficients. The

expression of (2) can be represented by a neural network

with a proper architecture. For the wind speed prediction

problem, the architecture is the following: one input layer

consisting of six intput neurons (corresponding to the data

of the MM5 model); one hidden layer with an appropriate

number of nodes, which will be adjusted by the evolu-

tionary algorithm; and one output layer with one output

neuron providing the wind speed for each turbine. An

example of this architecture can be seen in Fig. 2.

3.2 Evolutionary training

In this section, different versions of HEP algorithms are

presented. First of all, the base EP algorithm is described.
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Then, we describe how the local search and the cluster

partitioning are combined with the EP algorithm.

3.2.1 Base algorithm: evolutionary programming (EP)

The population-based evolutionary algorithm used for

PUNN architecture design and estimation of the real-

parameters has common points with other evolutionary

algorithms in the bibliography [26, 27]. It begins the search

with an initial population of PUNNs, and, in each iteration,

the population is updated. The population is subject to the

operations of replication and mutation. With these features,

the algorithm falls into the class of evolutionary pro-

gramming (EP). A general pseudo-code for the proposed

algorithm is shown in Fig. 3.

The high-level template of an evolutionary algorithm is a

generation with three main components: selection, recom-

bination, and replacement. In the proposed algorithms, the

recombination is discarded in favour of two types of muta-

tion operators: parametric and structural mutation. Cross-

over is not used due to its potential disadvantages in

evolving artificial networks, because of the traditional belief

that they generally disrupt the distributed functionality of the

evolving solutions. The notion that crossover will be espe-

cially disruptive when a genetic representation is used which

has a many-to-one mapping between genotype and pheno-

type has become known as the ‘‘permutation problem’’ [25].

The mutation operators generate a new solution by partly

modifying an existing solution; thus, in parametric mutation

the values of the coefficients of the model are changed

Fig. 2 Best model for Turbine

#1

Fig. 3 Pseudo-code for the

evolutionary programming (EP)

algorithm
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adding a Gaussian random value to a gene of the chromo-

some chosen at random; whereas in the structural mutation,

the new solution is obtained adding or removing addends in

the model of network (nodes); and adding, removing and/or

re-defining coefficients of the model (connections).

The algorithm evolves architectures and connection

weights simultaneously, each individual being a fully

specified PUNN. The neural networks are represented

using an object-oriented approach and the algorithm deals

directly with the PUNN phenotype. Each connection is

specified by a binary value indicating if the connection

exists, and a real value representing its weight. As the

crossover is not considered, this object-oriented represen-

tation does not assume a fixed order between the different

PUs.

The EP algorithm is based on the following operators:

• Initialization of the population. For the generation of

each network, the number of nodes in the hidden layer

is an integer value in the MMIN;MMAX½ � interval. The

number of connections between each node of the

hidden layer and the input nodes is determined from a

uniform distribution in the interval 1; kð �, where k is the

number of independent variables. Once the topology of

the network is defined, each connection is assigned a

weight from a uniform distribution in the interval

�L; L½ � for the weights between the input and hidden

layers, and in the interval �M;M½ � for the weights

between the hidden layer and the output node. The

normalization range for input and output variables is

0:1; 0:9½ �. In this form, we obtain the initial population

B of PUNNs (see Fig. 3).

• Fitness measure. Let D ¼ ðxl; ylÞ; l ¼ 1; 2; . . .; nf g be

the training data set. We consider the mean square error

of an individual f ðx; hÞ [defined using (2)] of the

population:

JðhÞ ¼ 1

n

Xn

l¼1

yl � f ðxl; hÞð Þ2 ð4Þ

and we define the fitness function AðhÞ as the following

increasing transformation of the JðhÞ error:

AðhÞ ¼ 1

1þ JðhÞ ð5Þ

• Parametric mutation. Parametric mutation uses of a

simulated annealing algorithm. The severity of a

mutation to an individual f ðx; hÞ is dictated by the

temperature, Tðf ðx; hÞÞ, given by:

Tðf ðx; hÞÞ ¼ 1� Aðf ðxl; hÞÞ; 0� Tðf ðx; hÞÞ\1 ð6Þ

Parametric mutation is accomplished for each

coefficient wji, bj of the model in (2) by adding

Gaussian noise, where the variance of the normal

distribution depends on the temperature:

wjiðt þ 1Þ ¼ wjiðtÞ þ n1ðtÞ; bjðt þ 1Þ ¼ bjðtÞ þ n2ðtÞ
ð7Þ

where nkðtÞ 2 Nð0; akðtÞ � Tðf ðx; hÞÞÞ; k 2 f1; 2g,
represents a normal random variable with mean 0 and

standard deviation akðtÞ � Tðf ðx; hÞÞ. The parameters

akðtÞ; k 2 f1; 2g, allow the adaptation of the learning

process, changing along the evolution. There are

different methods to update these parameters. We use

one of the simplest methods, the 1/5 success rule of

Rechenberg:

akðt þ 1Þ

¼
ð1þ bÞakðtÞ; if AðgÞ[ Aðg� 1Þ; 8g 2 t; t � 1; . . .; t � qf g
ð1� bÞakðtÞ; if AðgÞ ¼ Aðg� 1Þ; 8g 2 t; t � 1; . . .; t � qf g

akðtÞ otherwise

8
><

>:

ð8Þ

where k 2 f1; 2g;AðgÞ is the fitness of the best indi-

vidual in generation g, q is the number of generations

that is going to be analyzed when considering each

update and b is the ratio of increment or decrement for

the variances. It should be pointed that the modification

of the exponents wji is different from the modification

of the coefficients bj, a1(t)� a2(t), Vt.

• Structural mutation. Structural mutation implies a

modification of the structure of the function and allows

the explorations of different regions of the search space,

helping to keep the diversity of the population. There

are five different structural mutation: node addition,

node deletion, connection addition, connection deletion

and node fusion. For each mutation (except for node

fusion) there is a minimum value, dMIN, and a

maximum value, dMAX, and the number of elements

(nodes and connections) involved in the mutation is

calculated as:

DMIN þ uTðf ðx; hÞÞ ðDMAX � DMINÞb c ð9Þ

where u is a random uniform variable in the interval

0; 1½ �. In the node fusion, two randomly selected nodes,

a and b, are replaced by a node c, which is a

combination of both. The connections that are

common to both nodes are kept, with a weight given by:

bc ¼ ba þ bb; wic ¼
wia þ wib

2
ð10Þ

The connections that are not shared by the nodes are

inherited by c with probability of 0.5 and its weight is

unchanged. All the above mutations are made sequen-

tially in the given order, with probability Tðf ðxl; hÞÞ, in

the same generation on the same network. If the prob-

ability does not select any mutation, one of the
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mutations is chosen at random and applied to the net-

work. For more details see [28].

3.2.2 Hybrid evolutionary programming optimizing

the final best solution (HEPF)

EAs are a class of optimization algorithms, based in a

population of solutions, which are efficient for exploring

the entire search space. They are, however, relatively poor

at finding the precise local optimal solution in the region

into which the algorithm converges. Many researchers have

shown that EAs perform well for global searching because

they are capable of quickly finding and exploiting prom-

ising regions of the search space, but they take a relatively

long time to converge to a local optimum [29].

In the past decade, new approaches have been reported

for improving EAs using local improvement procedures

(LIPs), which search a ‘‘neighbourhood’’ of the starting

solution until either the first improvement or the best

improvement (local optimum) is found. These new meth-

odologies are based on the combination of LIPs, which are

good at finding local optima (local exploiter), and evolu-

tionary algorithms (global explorer). In this paper, we

hybridize the EP algorithm previously presented with a

local search Quasi-Newtonian algorithm, the Levenberg–

Marquardt (L–M) method, because it is especially suitable

for regression or forecasting problems where the sum-of-

squares residual should be minimized. However, the par-

ticular combination of EA with local search is extremely

important in terms of possible solution quality and com-

putational efficiency; and therefore, the right mixture of

local exploitation versus global exploration should be

found.

The first proposal (hybrid evolutionary programming

optimizing the Final best solution, HEPF) is the simplest

approach, i.e., the L–M algorithm is applied to the best

individual obtained by the EP algorithm in the final gen-

eration. This allows to refine the solution obtained by the

EP algorithm, improving the final accuracy of the model.

3.2.3 Dynamic hybrid evolutionary programming

with clustering (DHEPC)

Martınez-Estudillo et al. [20] proposed the hybrid combi-

nation of three methods for the design of evolutionary

PUNNs (EPUNNs) for regression: an EA, a clustering

process and a local search procedure. Clustering methods

create groups (clusters) of mutually close points that could

correspond to relevant regions of attraction. The clustering

process is applied in a specific space where each individual

is mapped to a different point depending on its perfor-

mance. Then, local search procedures can be started once

in every such region, e.g., from its centroid or from the best

individual of the cluster. The authors of the work reported

that the application of a clustering algorithm for selecting

individuals representing the different regions in the search

space was more efficient than using the optimization

algorithm for every individual in the population.

In this paper, we apply this method (which is known as

dynamic hybrid evolutionary programming with Cluster-

ing, DHEPC) to the problem of wind speed prediction. The

clustering process is applied to the best ~s � NP individuals of

the population, where ~s is a parameter of the algorithm. The

population is divided into K clusters C1;C2; . . .;CK , using a

standard K-means algorithm. We have selected the k-

means clustering [21] because it is a fast and easy to

implement algorithm and also it is really fast. This algo-

rithm allows partitioning the population of functions into k

clusters, where the functions that belong to the same cluster

have similar values in the training set. In this algorithm, the

cluster centroid is defined as the mean data vector average

over all items in the cluster. The number of clusters must

be pre-assigned and the initial classification is randomly

given. After that, the L–M algorithm (local search process)

is applied to the best individual of each cluster. The opti-

mized individuals for all clusters are included in a set C

(local optimum set).

The combined clustering and local search process is

applied dynamically every Gt generations and in the final

one, where Gt must be fixed by the user. The individuals

obtained with the local search in each cluster are included

(stored) in the set C (dynamic local optimum set). The final

solution is the best individual among the local optimums of

set C (see Fig. 4).

4 Experiments and results

In this section, the configuration and the results obtained

during the evaluation of the previously presented method-

ologies in a real wind park are presented. First, the data are

described, and the parameter values of the algorithms are

included. Then, the results obtained are analyzed, and some

conclusions are drawn from one of the best models

obtained.

4.1 Input data and configuration of the tested

algorithms

As part of the training process of the proposed product unit

neural network, the input variables must be selected with

care. The selection involves choosing which variables are

going to be used from the MM5 results, and choosing

which grid points surrounding the park are considered.
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This selection has been carried out using the following

process: first, as we have mentioned before, the MM5

model produces forecasts in specific points in a

15 km 9 15 km grid, at several heights. Also, recall that

the mesoscalar prediction of the wind produces correlated

variables in the different points of forecasting. Thus, the

idea is to look for grid points nearest to the park that

present the highest correlation coefficients between the

MM5 wind speed series and the mean hourly wind speed at

the wind park for a given period of time. The average

hourly wind speed was calculated taking the whole set of

turbines integrating the park. Since these series are highly

correlated with each other, the average wind speed is a

good measure to retain those MM5 grid points showing the

closest wind speed trends compared with those found at the

park height. Since the four grid points surrounding the park

were those with the highest correlation coefficients, we

retained the two of them that presented the minimum

correlation coefficient among them, in order to keep as

much information as possible regarding wind variability.

After several analysis of different sets of variables, we

obtained that the following 6 inputs provided the best set of

prediction variables in the neural network (note that

including more inputs did not improve the performance of

the neural network prediction capacity): the wind speed

series in two grid points surrounding the park (s1 and s2),

the wind direction (d), and temperature (T) in one of the

previous points. Note that all these data are collected from

the MM5 results at a given height, approximately equal for

all the turbines, considering the orography of the park. The

input variables are completed using two temporal series to

obtain a measure of the solar cycle, strongly related to

atmospheric circulation. We use the following equations to

express the solar cycle:

H1 ¼ sin H � 2p
24

� �
ð11Þ

H2 ¼ cos H � 2p
24

� �
ð12Þ

where H = [0, 23] is an integer vector. Note that (11) and

(12) express the solar cycle during 24 h.

The hybrid forecasting system of this paper, including

the product unit neural network, has been applied to the

short-term wind speed prediction of a set of turbines in a

wind park located at Albacete, a southeastern province of

Spain. This park is known as ‘‘La Fuensanta’’ wind park.

‘‘La Fuensanta’’ is a medium size wind park, with 33 wind

turbines of 1.5 MW of nominal power each. Specifically,

we have carried out the wind forecasting for turbines 1, 7,

15, 21, 27, and 33, located in different points of the park.

Real data from January 2006 to June 2006 at ‘‘La Fuen-

santa’’ have been obtained from anemometers situated in

each wind turbine, and used in this study. On the other

hand, we have collected the corresponding data from the

global model considered, the data from atmospheric

soundings and the metar data from that date. The MM5

model has been applied to them. The set of parameteriza-

tions chosen for the atmospheric processes previously lis-

ted comprise the Grell cumulus formation, the Blackardar

parametrization for the planetary boundary layer, the

Goodard Explicit Moisture for phase transitions, and the

RRTM longwave scheme for radiation processes. Further

details regarding these schemes may be found in [19]. This

selection is based on previous analyses performed running

the MM5 with different sets of parameterizations. The

results obtained by correlating the different outputs of

MM5 with wind data for ‘‘La Fuensanta’’ show that this set

up for the MM5 model produced the highest correlation

coefficients. For the sake of simplicity, these results are not

shown in this paper. Finally, the output of the MM5 model

run with this set of parameterizations is taken as the input

data for the neural network. Note that some of these data

may be not useful if they coincide with problems in the

Fig. 4 Pseudo-code for the

dynamic hybrid evolutionary

programming with clustering

(DHEPC) algorithm

Neural Comput & Applic

123



wind turbine (stops due to excessive wind, technical stops,

mechanical problems, etc). Note that, in these cases, no

output at the wind turbine is available for the correspond-

ing input data. After this filtering process, the experimental

design was conducted using a holdout cross-validation

procedure, with 30 runs and approximately 75% of

instances for the training set and 25% for the test set. Then,

we construct training sets of 6273, 5768, 6284, 6284, 6049,

and 6144 samples, and test sets of 1569, 1443, 1572, 1572,

1513, and 1537 samples for turbines 1, 7, 15, 21, 27, 33

respectively. Recall that each sample consists of two values

of wind speed at two points in the park, one value of wind

direction in one of the points, one value of temperature at

one of the points, and the two series of solar cycle. The

output of the network is the corresponding value of the

mean hourly wind speed at each turbine of the wind park.

Part of the statistical data used in the modeling process has

been included in Table 1 to better analyze and understand

the nature of the problem.

Regarding the configuration of the HEP algorithms

tested in this paper, all of them were implemented in lan-

guage C?? and were run on a PC Pentium IV compatible

computer. The principal parameters used in the algorithms

can be seen in Table 2. The stopping criterion was reached

whenever one of the following two conditions was fulfilled:

(i) The algorithm achieved a given generation; and (ii) for

10 generations, there was no improvement either in the

average performance of the best 20% of the population or

in the fitness of the best individual. An analysis of variance

was used for adjusting these meta-parameters. The analysis

had also shown that the algorithm was quite robust to the

modification of the values of the parameters within rea-

sonable ranges. The use of an EA, which dynamically

adapts to the problem evaluated, results in a performance,

which is negligibly affected by minor changes in these

parameters.

The performance of the algorithms was tested using

various network topologies that were run 30 times. The

accuracy of each model was assessed in terms of the

standard error of prediction (SEP) for the results obtained

for the generalization set. The SEP was calculated as:

SEP ¼ 100
�W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðWi � ŴiÞ2
s

; SEP ¼ 100
�W

ffiffiffiffiffiffiffiffiffiffi
MSE
p

ð13Þ

where Wi and Ŵi are the experimental and expected values

for wind speed, �W is the mean of the experimental values

of the generalization set, and n is the number of patterns

used for the generalization set. Finally, also the mean

square error (MSE) obtained with each proposed algorithm

is calculated in order to show their performance.

4.2 Results

Table 3 summarizes the performance of the different pro-

posed approaches to the prediction problem in each

Table 1 Part of the statistical data used in modeling, corresponding

to turbine # 1

Sample # Training fragment

Inputs (MM5 data) Output

s1 s2 d T H1 H2 Ws

1 3.76 4.69 160.34 291.98 0.00 1.00 4.24

2 3.65 4.60 163.16 291.80 0.26 0.97 6.05

3 3.54 4.55 166.09 291.73 0.50 0.87 6.72

4 3.44 4.49 168.92 291.65 0.71 0.71 5.74

5 3.37 4.41 171.33 291.43 0.87 0.50 7.18

6 3.14 4.23 174.34 291.34 0.97 0.26 5.51

..

.

6272 4.07 3.73 3.1 284.47 0.71 -0.71 3.74

6273 4.06 3.74 12.52 285.83 0.5 -0.87 3.63

Test fragment

1 3.80 3.45 19.71 287.49 0.26 -0.97 3.81

2 3.50 3.17 26.20 288.71 -0.00 -1.00 2.87

3 3.44 3.18 30.12 289.57 -0.26 -0.97 3.94

4 3.69 3.48 28.47 290.37 -0.50 -0.87 3.93

5 4.00 3.90 23.72 291.30 -0.71 -0.71 4.27

6 4.32 4.20 19.05 291.69 -0.87 -0.50 3.48

..

.

1568 2.82 4.70 187.17 295.75 -0.50 0.87 3.21

1569 2.77 4.36 218.39 295.85 -0.26 0.97 7.07

Table 2 Set of parameters common to all the experiments

Evolutionary algorithm’s parameters

Population size, NP 1,000

Maximum number of generations 400

Minimum number of nodes, Mmin 3

Maximum number of nodes, Mmax 6

Exponents interval [-M, M] [-5, 5]

Coefficients interval [-L, L] [-5, 5]

Parametric mutation’s parameters

a1(0) = 1, a2(0) = 0.5, b = 0.1, q = 10

Structural mutation’s parameters

IntervalNode addition ½DMIN;DMAX� [1, 2]

Node deletion ½DMIN;DMAX� [1, 2]

Connection addition ½DMIN;DMAX� [1, 6]

Connection deletion ½DMIN;DMAX� [1, 6]

Hybrid algorithm’s parameters

K ¼ 4; ~s ¼ 0:25;Gt ¼ 200
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considered turbine of the park. The table shows the mean

and standard deviation (SD) values of SEP and MSE (over

30 runs of the algorithms), and also the errors of the best

models obtained are displayed in the last rows of the table.

Similar results have been included for the number of links

or connections (#links) of the obtained models. As can be

seen, the PUNN with DHEPC training approach outper-

forms (in terms of mean SEP and MSE) the other imple-

mented training algorithms (EP and HEPF).

In order to have a further validation of the results, a

comparison with a multi-layer perceptron (MLP) and radial

basis function (RBF) neural network is carried out. The

MLP described in [8] is used to make this comparison. The

RBF neural network is a Gaussian RBF network, deriving

the centers and width of hidden units using k-means and

combining the outputs obtained from the hidden layer

using a supervised linear regression.1 The test results of the

MLP and the RBF neural network with different number of

neurons in the hidden layer are shown in Table 4. Note that

the proposed PUNN with the DHEPC training is able to

improve the results of both methods in all the turbines

considered. Note that the best MLP is usually obtained with

12 or 14 neurons in the hidden layer and the best RBF

number of neurons ranges from 9 to 11 neurons. The lowest

MSE difference between the best MLP and the EPUNN

model is 0.2 (Turbine 15), and the largest MSE difference

is 0.59, obtained for Turbine 1. For the RBF, the lowest

MSE difference is 0.79 (Turbine 1), and the largest MSE

difference is 1.51, obtained for Turbine 21.

The interest of the proposed PUNNs is not only that they

improve the results of other approaches (MLP and RBF), as

shown before, but also that we can obtain a (non-linear)

interpretable model of the system. In this case, we show

and interpret the model obtained for Turbine 1 of the park.

4.2.1 Analysis of the best PUNN models obtained

The best PUNN model obtained for Turbine 1 (the one in

which the EPUNN model performs much different than the

MLP) is shown in Table 5. A graphical representation has

been included in Fig. 2 for an easier analysis. Note that the

algorithm selects the most important inputs thanks to the

Table 3 Results obtained with a PUNN network as regressor in the complete wind speed forecasting model

Turbine # 1 7 15 21 27 33

Error Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

SEPEP 38.75 ± 0.37 38.64 ± 0.40 39.78 ± 0.57 39.32 ± 0.41 35.66 ± 0.28 35.92 ± 0.34

SEPHEPF 38.61 ± 0.55 38.45 ± 0.47 39.81 ± 0.47 38.83 ± 1.21 35.36 ± 0.38 35.85 ± 0.47

SEPDHEPC 38.58 ± 0.56 38.44 ± 0.49 40.02 ± 0.66 38.86 ± 1.22 35.36 ± 0.32 35.89 ± 0.49

MSEEP 5.31 ± 0.10 4.09 ± 0.08 5.22 ± 0.15 4.96 ± 0.10 4.22 ± 0.07 3.63 ± 0.068

MSEHEPF 5.27 ± 0.15 4.05 ± 0.10 5.23 ± 0.12 4.84 ± 0.32 4.15 ± 0.09 3.62 ± 0.09

MSEDHEPC 5.26 ± 0.15 4.05 ± 0.10 5.28 ± 0.18 4.85 ± 0.32 4.15 ± 0.08 3.63 ± 0.10

Links Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

#linksEP 19.80 ± 4.16 19.53 ± 3.51 27.10 ± 2.82 25.30 ± 2.42 26.17 ± 2.67 25.33 ± 2.43

#linksDHEPC 20.53 ± 3.21 20.57 ± 3.52 27.67 ± 2.96 25.47 ± 2.83 26.43 ± 3.19 26.30 ± 3.21

MSEBestðDHEPCÞ 5.02 3.91 4.91 4.59 3.99 3.44

#nodesBestðDHEPCÞ 5 nodes 6 nodes 6 nodes 6 nodes 6 nodes 6 nodes

The results are shown with in terms of the different training methods used

Table 4 Test results obtained (MSE) with a multi-layer perceptron

(MLP) and a radial basis function (RBF) neural network as regressors

compared with the results obtained by the best EPUNN found with

the DHEPC algorithm

Turbine # MLP (# NHL) EPUNN

9 10 11 12 13 14 15

1 5.70 5.64 5.62 5.67 5.64 5.61 5.74 5.02

7 4.27 10.05 7.14 4.25 4.28 4.27 7.48 3.91

15 5.15 5.13 8.09 5.13 5.13 5.11 5.12 4.91

21 5.09 8.33 8.35 5.03 5.06 5.03 5.03 4.59

27 4.44 4.46 4.46 4.42 4.43 4.44 4.45 3.99

33 3.91 3.90 3.90 3.93 3.91 3.92 6.48 3.44

RBF (# NHL)

1 5.95 5.81 5.99 6.20 6.52 6.89 7.02 5.02

7 5.32 5.42 5.30 5.33 5.35 5.48 5.48 3.91

15 6.31 6.41 6.34 6.53 6.64 7.21 7.27 4.91

21 6.18 6.10 6.39 6.37 6.65 7.10 7.15 4.59

27 5.18 5.04 5.15 5.53 5.52 6.22 6.26 3.99

33 4.47 4.46 4.61 4.86 4.87 5.19 5.21 3.44

# NHL stands for the number of neurons in the hidden layer

1 For this comparison, we have considered the WEKA machine

learning workbench with the corresponding RBFNetwork algorithm

(http://www.cs.waikato.ac.nz/ml/weka/).

Neural Comput & Applic

123

http://www.cs.waikato.ac.nz/ml/weka/


corresponding structural mutators (add connection and

remove connection). It is easy to see that the most

important product units are PU1 and PU2, in this order. The

variables that most influence this turbine are T and H1 in

PU1 and s1, d and H2 in PU2. The former is inversely

related to the model output (Ŵs), and the latter is directly

related to Ŵs. Thus, an increment in T means a strong

increment of PU1, whereas, on the other hand, a strong

increment of H1 implies a small increment in PU1. This

means that PU1 reaches a maximum value for T large, and

H1 small, see Fig. 5. In addition, note that the larger is PU1,

the smaller Ŵs.

Mathematically, PU1 is modeled as follows:

PU1 ¼ ðTÞ0:296 � ðH1Þ0:010 ð14Þ

and PU2 is modelled as:

PU2 ¼ ðs1Þ0:075 � ðdÞ�0:062 � ðTÞ0:580 � ðH2Þ0:057 ð15Þ

Figure 5 shows the construction of product unit PU1 as a

function of variables T and H1. We can observe that there is

a kind of interaction between both variables, as expected

(T stands for the temperature in a point of the wind park

and H1 stands for the first component of the solar solar

cycle).

A different analysis can be carried out on the linearity

between the real values of Ws and the most important

product units PU1 and PU2: if we consider only these two

product units (PU1 and PU2 in this case), we would have a

regression hyper-plane given by:

ŴsðPUÞ ¼ 0:471� 0:669 � PU1 þ 0:511 � PU2 ð16Þ

instead of the initial equation given in Table 5. Note that

we could construct a much simpler linear regressor

considering only PU1 and PU2, though this model would

be less efficient than the original one.

Finally, note that we have obtained a model similar to

the one described in this paper for each turbine considered

in the study. The description of the models for all the

turbines is quite similar to the process carried out before in

Turbine 1. Instead of the complete description of all the

models, we summarize the results in Table 6, where we

show the most important product units for each turbine,

with the variables with a higher influence in the wind speed

prediction. Note that the set of most important variables in

the wind speed prediction depends on the turbine consid-

ered. This is expected, since we have chosen turbines in

different parts of the wind farm, far away one from the

others. It is interesting to note that in the majority of the

turbines, the most important variables (the ones which

capture the main information of wind speed prediction) are

the wind speed in a given point and the solar cycle,

whereas other variables such as temperature or wind

direction are less important. However, these variables are

also included in the complete models, so we cannot just

remove them, since the model would be less accurate than

the current ones.

A final experiment has been carried out in order to prove

the necessity of the rest of variables. Since H1 and H2

appear to be the most important variables, we can study the

relationship between the real output for all the training

points (Ws) and these two variables (again only for Turbine

1). Figure 6 shows that the relationship between the two

variables and the real output is clearly non-linear, and also,

that Ws is independent of the joint value of H1 and H2.

Table 5 Best model obtained with the DHEPC approach for wind

Turbine 1

Best model for Turbine #1

Ŵs ¼ 0:471� 0:669 � PU1 þ 0:511 � PU2 � 4:010 � PU3

� 5:722 � PU4 þ 4:998 � PU5

PU1 ¼ T0:296 � H0:010
1

PU2 ¼ s0:075
1 � d�0:062 � T0:580 � H0:057

2

PU3 ¼ s�0:061
1 � s2:818

2 � d2:612 � H0:017
1

PU4 ¼ s2:186
1 � s�0:823

2 � d16:493 � H�0:018
2

PU5 ¼ s1:018
1 � s1:030

2 � d2:388 � H0:034
1 � H0:014

2

#nodes ¼ 5; #links ¼ 25

SEPG ¼ 37:67; MSEG ¼ 5:02

s1; s2; d;T ;H1;H2 2 ½0:1; 0:9�

Variables in the model (see Sect. 4.1) are s1: wind speed in point 1, s2:

wind speed in point 2, d: wind direction, T: temperature, H1 and H2:

components of the solar cycle

Fig. 5 Relation between variables T (temperature), H1 (solar cycle)

and product unit PU1
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Because of this reason, it is clear that, although these two

variables are very important, a linear regressor trying to

predict the output only from a linear combination of both

values would not be enough for this case, and proper non-

linear model (as PUNNs are) can perform a better

prediction.

5 Conclusions

This study demonstrates the capability of evolutionary

product unit neural networks (EPUNNs) to perform

accurate short-term wind prediction. A previous system [8]

has been modified by replacing a previous multi-layer

perceptron by an evolutionary product unit neural network

(EPUNN). Moreover, three different EPUNN algorithms

(EP, HEPF, and DHEPC) have been evaluated in PUNNs

training for the wind speed prediction problem in several

different turbines of a wind farm in Spain. The statistical

results show that DHEPC yields better results than the

other proposed approaches, with lower MSE mean and

standard deviation. When compared with the MLP and

RBF neural networks, the best EPUNNs obtained a lower

MSE with a lower number of coefficients.

The low complexity (in terms of number of coefficients)

of EPUNNs allowed the interpretation of the relation

between the wind speed and the different variables selected

as inputs. This kind of interpretation is not usually con-

sidered in previous wind speed prediction research works,

specially when using MLPs, since the high number of

coefficients and neurons make difficult to isolate the non-

linear effects of the variables in the predicted response. In

this paper, we have shown the study of the best model for

one turbine of the wind farm, drawing interesting conclu-

sions on how the different variables of the models affect

the final results obtained.
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