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Prototype Selection for Nearest Neighbor
Classification: Taxonomy and Empirical Study

Salvador Garcı́a, Joaquı́n Derrac, José Ramón Cano, and Francisco Herrera

Abstract—The nearest neighbor classifier is one of the most used and well known techniques for performing recognition tasks. It has
also demonstrated itself to be one of the most useful algorithms in data mining in spite of its simplicity. However, the nearest neighbor
classifier suffers from several drawbacks such as high storage requirements, low efficiency in classification response and low noise
tolerance. These weaknesses have been the subject of study for many researchers and many solutions have been proposed. Among
them, one of the most promising solutions consists of reducing the data used for establishing a classification rule (training data), by
means of selecting relevant prototypes. Many prototype selection methods exist in the literature and the research in this area is still
advancing. Different properties could be observed in the definition of them but no formal categorization has been established yet. This
paper provides a survey of the prototype selection methods proposed in the literature from a theoretical and empirical point of view.
Considering a theoretical point of view, we propose a taxonomy based on the main characteristics presented in prototype selection
and we analyze their advantages and drawbacks. Empirically, we conduct an experimental study involving different sizes of data sets
for measuring their performance in terms of accuracy, reduction capabilities and run-time. The results obtained by all the methods
studied have been verified by nonparametric statistical tests. Several remarks, guidelines and recommendations are made for the use
of prototype selection for nearest neighbor classification.

Index Terms—Prototype selection, nearest neighbor, taxonomy, condensation, edition, classification.
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1 INTRODUCTION

THE k-Nearest Neighbors rule (kNN) [1] is one of the
most well known and used nonparametric classifiers

in Machine Learning and Data Mining (DM) tasks [2].
In spite of its simplicity, it has also demonstrated itself
to be one of the most useful and effective algorithms
in DM [3] and Pattern Recognition [4] and it has been
considered one of the top ten methods in DM [5]. kNN is
simple to implement yet powerful, owing to its theoreti-
cal properties which guarantee that for all distributions,
its probability of error is bounded above by twice the
Bayes probability of error. The naive implementation of
this rule has no learning phase, in that it uses all the
training set objects in order to classify new incoming
data. Hence, it belongs to the family of lazy learners
[6], [7] in opposition to the eager learners which build a
parameterized compact model of the target variable [8].

Classification typically involves partitioning samples
into training and testing partitions, obtaining the train-
ing set TR with N samples and the test set TS with
M samples. Each sample is represented by an attribute
vector, which contains a number d of attributes that are
quantitative or qualitative data that describe the sample.
Let xi = {xi1, xi2, . . . , xid} be a training sample from TR,
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1 ≤ i ≤ N and xj = {xj1, xj2, . . . , xjd} be a test sample
from TS, 1 ≤ j ≤ M , and let ω be the true class of
a training sample xi and ω̂ be the predicted class for a
test sample xj (ω, ω̂ ∈ 1, 2, . . . ,Ω). Here, Ω is the total
number of classes. During the training process, we use
only the true class ω of each training sample to train the
classifier, while during testing we predict the class ω̂ of
each test sample. With the kNN rule, the predicted class
of the test sample xj is set as equal to the true class ω
of the majority of the set of samples TK, formed by the
samples xl of TR, 1 ≤ l ≤ k, when we rearrange the TR
set in ascending order according to the defined distance
metric (in the space of samples) to xj . In the case of a
tie, the true class is given by the closest xl sample from
TK to xj that belongs to a conflicting class.

It is well known that kNN suffers from several draw-
backs [2]. Mainly, three weaknesses cause a great impact
on the successful application of the algorithm. The first
one is the necessity of high storage requirements in
order to retain the set of examples which defines the
training set and allows it to perform the decision rule.
The second one is the low efficiency obtained during
the computation of the decision rule, caused by multiple
computations of similarities between the test and train-
ing samples. Finally, kNN (especially 1NN) presents low
tolerance to noise, due to the fact that it uses all data as
relevant even when the training set contains incorrect
data.

Several approaches have been suggested and studied
in order to tackle the drawbacks mentioned above. In-
creasing the kNN performance and noise tolerance is
obtained by the estimation of the optimal k parameter [9]
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or making the kNN algorithm adaptive to data [10], [11]
by means of determining local decision boundaries in
which the shape of the neighborhoods can be modified
to be more elongate if needed. The research on similarity
metrics to improve the effectiveness of kNN (and other
related techniques based on similarities) is very exten-
sive in the literature [12], [13], [14], [15] together with
distance functions suitable to being used under high
dimensionality conditions [16]. Other techniques related
to reducing computational costs involve partitioning the
feature space [17], computing distances within specific
nearby volumes [18], [19] or using advanced storage
structures, such as k-d trees or R-trees [20]. When the
samples are preprocessed into a data structure, the near-
est examples can be reported efficiently. Approximate
Nearest Neighbors (ANN) techniques assume that dis-
tances are measured using any class of approximation
error bound, enabling to achieve significantly faster run-
ning times. They have demonstrated excellent perfor-
mance in large dimension domains [21], [22].

Nevertheless, a successful technique which simulta-
neously faces the computational complexity, storage re-
quirements and noise tolerance of kNN is based on data
reduction. These techniques aim to obtain a represen-
tative training set with a lower size compared to the
original one and with a similar or even higher classifi-
cation accuracy for new incoming data. In the literature,
they are known as reduction techniques [23], Instance
Selection [24] or Prototype Selection (PS) methods [25].
A formal specification of the PS problem is the following:
Let S ⊆ TR be the subset of selected samples resulting
from the execution of a PS algorithm, then we classify a
new pattern xj from TS by the kNN rule acting over S
instead of TR.

PS methods select a subset of examples from the orig-
inal training data. Depending on the strategy followed
by the methods, they can remove noisy, redundant and
both kinds of examples. The main advantage indicated
in PS methods is the capacity to choose relevant ex-
amples without generating new artificial data. Many
applications manage real data and the generation of new
data does not make sense. The PS problem is frequently
confused with other similar problems known as Proto-
type Generation (PG) or abstraction methods [26]. Some
researchers include PG into PS, but PG methods generate
and replace the original data with new artificial data [27]
allowing it to fill regions in the domain of the problem
which have no representative examples in original data.

A widely used categorization of PS methods con-
sists of three types of techniques: edition methods, con-
densation methods and hybrid methods [24], [28]. The
goal of edition methods is to remove noisy instances
in order to increase classifier accuracy. Condensation
methods aim to compute a training-set-consistent subset,
removing superfluous instances that will not affect the
classification accuracy of the training set. Finally, hybrid
methods search for a small subset of the training set that
simultaneously achieves the elimination of both noisy

and superfluous instances.
Some reviews of PS methods can be found in the lit-

erature [23], [24], [29], [30]. However, the characteristics
of the methods are not studied completely and they do
not present a taxonomy which could classify all methods
according to their similarities. For example, in [23], the
main properties of the PS methods are analyzed but no
categorization is set out; or in [29], [30], PS methods are
not differentiated from PG methods.

Apart from the absence of a complete taxonomy of
PS methods in the literature, we have observed that the
algorithms proposed are usually compared with a subset
of the complete family of PS methods and, in most of
the studies, no rigorous analysis has been carried out.
Furthermore, many new methods have been proposed
in recent years and they are going unnoticed in respect
to the PS method reviewed in well-known surveys [23],
[29]. Figure 1 illustrates a comparison network where
each node corresponds to a PS algorithm and a directed
vertex between two nodes indicates that the algorithm
of the start node has been compared with the algorithm
of the end node. The size of the node is correlated to
the number of input and output vertices. We can see
that most of the PS algorithms are represented by small
nodes and that the graph is far from being complete,
which has prompted the present paper.

Dealing with large data sets is also possible with
kNN when PS is applied to them. In [31], a process
called stratification was proposed for PS in order to cope
with large data sets, offering excellent results. In this
paper, we also address the improvement achieved by
the combination of stratification and PS in comparison
to other alternatives based on ANN.

The mentioned reasons motivate the global purpose
of this paper, which can be divided into four objectives:

• To propose a complete taxonomy based on the
main properties observed using the PS methods. The
taxonomy will allow us to know the advantages and
drawbacks from a theoretical point of view.

• To make an empirical study for analyzing the meth-
ods in terms of accuracy, reduction capabilities and
time complexity. Our goal is to identify the best
methods in each family and to stress the relevant
properties of each one.

• To compare the PS methods with other related tech-
niques that speed up the kNN computation when
tackling very large data sets. ANN techniques will
be compared with stratified PS.

• To illustrate through graphical representations of
selected data the effect of the main PS methods.
Graphical representations help us to understand the
results obtained in the experimental study.

The experimental study will include a statistical anal-
ysis based on nonparametric tests and we will conduct
experiments involving a total of 42 PS methods and
58 small and medium size data sets. The comparison
with ANN methods involve 7 large data sets more. The
graphical representations of selected data will be done
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Fig. 1: Comparison Network of PS methods. Later, the methods will be defined in Table 1.

by using a 2-dimensional data set called banana with
moderate complexity features.

This paper is organized as follows. The related and
advanced work on PS is given in Section 2. Section
3 presents the PS methods reviewed, their properties
and the taxonomy proposed. Section 4 describes the
experimental framework for small and medium data
sets, examines the results obtained in the empirical
study and presents a discussion of them. The study of
large data sets as well as the comparison with ANN
is conducted in Section 5. Graphical representations of
selected data by PS methods are illustrated in Section 6.
Section 7 concludes the paper. Finally, we must point
out that the paper is associated with the web page
http://sci2s.ugr.es/pstax which collects extra data re-
garding algorithms descriptions and implementations
and detailed experimental results.

2 RELATED AND ADVANCED WORK
Research in improving kNN through data preprocessing
is common and in high demand nowadays. PS could
represent a feasible and promising technique to obtain
expected results, which justifies its relationship to other
methods and problems. This section provides a wide
review of other topics closely related to PS and describes
other works and future trends which have been studied
in the last few years.

• Prototype Generation/Abstraction: These methods are
not limited only to select examples from the training
set. They could also modify the values of the sam-
ples, changing their position in the d-dimensional

space considered. Most of them use merging or
divide and conquer strategies to set new artificial
samples [32], or are based on clustering approaches
[29], Learning Vector Quantization (LVQ) [33] hy-
brids, advanced proposals [26], [27] and evolution-
ary algorithms based schemes [34], [35], [36].

• Instance and rule learning hybridizations: This includes
all the methods which simultaneously use instances
and rules in order to compute the classification of a
new object. If the values of the object are within the
range of a rule, its consequent predicts the class;
otherwise, if no rule matches with the object, the
most similar rule or instance stored in the data base
is used to estimate the class. Similarity is viewed
as the closest rule or instance based on a distance
measure. In short, these methods can generalize an
instance into a hyperrectangle or rule [37], [38], [39].

• Weighting, Boosting: This area refers to the combina-
tion of PS methods with other well-known schemes
used for improving accuracy in classification prob-
lems. For example, the weighting scheme combines
the PS with the Feature Selection [40], [41] or Feature
Weighting [42], [43], [44], where a vector of weights
associated with each attribute determines and in-
fluences the distance computations. In boosting, a
PS method is run several times and a classification
decision is made according to the majority class
obtained over several subsets and the kNN rule [45],
[46].

• Distance Functions: Several distance metrics have
been used with kNN and PS, especially when work-
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ing with categorical attributes [47]. There are some
PS approaches which learn not only the subset of
the selected prototype, but also the distance metric
employed [48], [49]. Also, PS is suitable for use on
other types of dissimilarity based classifiers [25],
[50].

• Scaling up: One of the disadvantages of the PS
methods is that most of them report a prohibitive
run time or even cannot be applied over large size
data sets. Recent improvements in this field cover
the stratification of data [31], [51], [52] and the
development of distributed approaches for PS [53].

• Training Set Selection: The literature includes some
attempts at using instance selection to obtain subsets
of examples suitable for use as an input to other DM
and machine learning algorithms, such as decision
trees [54] and neural networks [55]. Different prob-
lems to classification have also been dealt with using
instance selection, such as subgroup discovery [56],
[57] and multiple instance learning [58], [59].

• Imbalanced learning: One of the most promising tech-
niques in imbalanced learning is based on data
preprocessing, such as re-sampling of data mainly
focused on less important concepts with respect to
the minority classes [60]. It is noticeable that most
of the under-sampling approaches are modifications
of classic PS methods to increase the data balance
[61], [62].

• Data Complexity: This area studies the effect on the
complexity of data when PS methods are applied
previous to the classification [63] or how to make
a useful diagnosis of the benefits of applying PS
methods taking into account the complexity of the
data [64], [65].

Works and proposals enumerated in this subsection
are out of the scope of this paper. We have to point
out that the main objective of this paper is to give
a wide overview of the PS methods proposed in the
literature and to establish a comparison of them without
considering external and classifier dependant factors,
such as distance functions and weighting; advanced
improvements for specific goals, such as improving ef-
ficiency or application to more complex domains; and
advanced representations, such as rule hybridizations
and prototype abstractions.

3 PROTOTYPE SELECTION TAXONOMY

This section presents the taxonomy of PS methods and
the criteria used for building it. First, in Subsection 3.1,
the main characteristics which will define the categories
of the taxonomy will be outlined. In Subsection 3.2, we
briefly enumerate all the PS methods proposed in the
literature. The complete and abbreviated name will be
given together with the reference. Finally, Subsection 3.3,
presents the taxonomy.

3.1 Common Properties in Prototype Selection
Methods

This section provides a framework for the discussion of
the PS methods presented in the next subsection. The
issues discussed include order of the search, type of
selection and evaluation of the search. These mentioned
issues are involved in the definition of the taxonomy,
since they are exclusive to the operation of the PS
algorithms. Other classifier-dependent issues such as
distance functions or exemplar representation will be
presented. Finally, some criteria will also be pointed out
in order to compare PS methods.

3.1.1 Direction of Search
When searching for a subset S of prototypes to keep
from training set TR, there are a variety of directions in
which the search can proceed:

• Incremental: An incremental search begins with an
empty subset S, and adds each instance in TR to S
if it fulfills some criteria. In this case, the algorithm
depends on the order of presentation and this factor
could be very important. Under such a scheme, the
order of presentation of instances in TR should be
random because by definition, an incremental algo-
rithm should be able to handle new instances as they
become available without all of them being present
at the beginning. Nevertheless, some recent incre-
mental approaches are order-independent because
they add instances to S in a somewhat incremental
fashion, but they examine all available instances to
help select which instance to add next. This makes
the algorithm not truly incremental as we have
defined above, although we will also consider them
as incremental approaches.
One advantage of an incremental scheme is that
if instances are made available later, after training
is complete, they can continue to be added to S
according to the same criteria. This capability could
be very helpful when dealing with data streams or
online learning. Another advantage is that they can
be faster and use less storage during the learning
phase than non-incremental algorithms. The main
disadvantage is that incremental algorithms must
make decisions based on little information and are
therefore prone to errors until more information is
available.

• Decremental: The decremental search begins with
S = TR, and then searches for instances to remove
from S. Again, the order of presentation is impor-
tant, but unlike the incremental process, all of the
training examples are available for examination at
any time.
One disadvantage with the decremental rule is that
it presents a higher computational cost than incre-
mental algorithms. Furthermore, the learning stage
must be done in an off-line fashion because decre-
mental approaches need all possible data. However,
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if the application of a decremental algorithm can
result in greater storage reduction, then the extra
computation during learning (which is done just
once) can be well worth the computational savings
during execution thereafter.

• Batch: Another way to apply a PS process is in batch
mode. This involves deciding if each instance meets
the removal criteria before removing any of them.
Then all those that do meet the criteria are removed
at once. As with decremental algorithms, batch pro-
cessing suffers from increased time complexity over
incremental algorithms.

• Mixed: A mixed search begins with a pre-selected
subset S (randomly or selected by an incremental
or decremental process) and iteratively can add
or remove any instance which meets the specific
criterion. This type of search allows rectifications
to already done operations and its main advantage
is to make easy to obtain good accuracy-suited
subsets of instances. It usually suffers from the same
drawbacks reported in decremental algorithms, but
this fact depends to a great extent on the specific
proposal. Note that these kinds of algorithms are
closely related to the order-independent incremental
approaches but, in this case, instance removal from
S is allowed.

• Fixed: A fixed search is a subfamily of mixed search
in which the number of additions and removals
remains the same. Thus, the number of final proto-
types is determined at the beginning of the learning
phase and is never changed. This strategy of search
is not very common in PS, although it is typical in
PG methods, such as LVQ.

3.1.2 Type of Selection

This factor is mainly conditioned by the type of search
carried out by the PS algorithms, whether they seek to
retain border points, central points or some other set of
points.

• Condensation: This set includes the techniques
which aim to retain the points which are closer to
the decision boundaries, also called border points.
The intuition behind retaining border points is that
internal points do not affect the decision boundaries
as much as border points, and thus can be removed
with relatively little effect on classification. The idea
behind these methods is to preserve the accuracy
over the training set, but the generalization accuracy
over the test set can be negatively affected. Nev-
ertheless, the reduction capability of condensation
methods is normally high due to the fact that there
are fewer border points than internal points in most
of the data.

• Edition: These kinds of algorithms instead seek
to remove border points. They remove points that
are noisy or do not agree with their neighbors.
This removes close border points, leaving smoother

decision boundaries behind. However, such algo-
rithms do not remove internal points that do not
necessarily contribute to the decision boundaries.
The effect obtained is related to the improvement
of generalization accuracy in test data, although the
reduction rate obtained is lower.

• Hybrid: Hybrid methods try to find the smallest
subset S which maintains or even increases the
generalization accuracy in test data. To achieve this,
it allows the removal of internal and border points
based on criteria followed by the two previous
strategies. The kNN classifier is highly adaptable to
these methods, obtaining great improvements even
with a very small subset of instances selected.

3.1.3 Evaluation of Search
kNN is a simple technique and it can be used to direct
the search of a PS algorithm. The objective pursued
is to make a prediction on a non-definitive selection
and to compare between selections. This characteristic
influences the quality criterion and it can be divided into:

• Filter: When the kNN rule is used for partial data to
determine the criteria of adding or removing and no
leave-one-out validation scheme is used to obtain a
good estimation of generalization accuracy. The fact
of using subsets of the training data in each decision
increments the efficiency of these methods, but the
accuracy may not be enhanced.

• Wrapper: When the kNN rule is used for the com-
plete training set with the leave-one-out validation
scheme. The conjunction in the use of the two men-
tioned factors allows us to get a great estimator of
generalization accuracy, which helps to obtain better
accuracy over test data. However, each decision
involves a complete computation of the kNN rule
over the training set and the learning phase can be
computationally expensive.

3.1.4 Other properties
We can remark on other properties related to PS. They
influence the operation and results which can be ob-
tained with PS in combination with kNN. However,
these properties are dependent on the type of kNN
employed, or define different data reduction methods
and they are not good for establishing a distinction or
taxonomy among them.

• Representation: This issue deals with the type of
examples retained in the subset S. In its formal
definition PS methods only allow subsets of existing
examples in the training set to be obtained. Other
types of representation (pointed out in Section 2)
could tolerate the modification of examples to rep-
resent collections of instances to form rules.

• Distance Function: The distance function (or similar-
ity function) is used to decide which neighbors are
closest to an input vector and can have a dramatic
effect on an instance-based learning system. Two
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distance functions are the most used in kNN: the
Euclidean distance and the HVDM distance [47].

• Voting: Another decision that must be made is the
choice of k, which is the number of neighbors
used to decide the output class of an input vector.
Furthermore, within the k nearest neighbors of input
data, ties may occur among two or more classes
and a decision must also be made. In such cases,
an arbitrary selection of the class or a distance-
weighted choice is used.

Note that the three properties analyzed here will de-
pend on the properties of the kNN (or instance-based
learning) approach that we use. It is logical to provide
the PS method with a similar distance function and
voting schemes to the ones used by the subsequent kNN
classifier.

3.1.5 Criteria to Compare PS Methods
When comparing PS methods, there are a number of
criteria that can be used to evaluate the relative strengths
and weaknesses of each algorithm. These include storage
reduction, noise tolerance, generalization accuracy and
time requirements.

• Storage reduction: One of the main goals of the PS
methods is to reduce storage requirements. Further-
more, another goal closely related to this is to speed
up classification. A reduction in the number of
stored instances will typically yield a corresponding
reduction in the time it takes to search through these
examples and classify a new input vector.

• Noise tolerance: Two main problems may occur in the
presence of noise. The first is that very few instances
will be removed because many instances are needed
to maintain the noisy decision boundaries. Secondly,
the generalization accuracy can suffer, especially
if noisy instances are retained instead of good in-
stances.

• Generalization accuracy: A successful algorithm will
often be able to significantly reduce the size of the
training set without significantly reducing general-
ization accuracy.

• Time requirements: Usually, the learning process is
done just once on a training set, so it seems not to
be a very important evaluation method. However,
if the learning phase takes too long it can become
impractical for real applications.

3.2 Prototype Selection Methods
More than 50 PS methods have been proposed in the
literature. This section is devoted to enumerating and
designating them according to a standard followed in
this paper. For more details on their descriptions and
implementations, the reader can visit the URL associated
to this paper. Implementations of the algorithms in Java
can be found in KEEL software [114].

Table 1 presents an enumeration of PS methods re-
viewed in this paper. The complete name, abbreviation

TABLE 1: PS methods reviewed

Complete name Abbr. name Reference

Condensed Nearest Neighbor CNN [66]
Reduced Nearest Neighbor RNN [67]
Edited Nearest Neighbor ENN [68]

No name specified Ullmann [69]
Selective Nearest Neighbor SNN [70]

Repeated Edited Nearest Neighbor RENN [71]
All-KNN AllKNN

Tomek Condensed Nearest Neighbor TCNN [72]
Mutual Neighborhood Value MNV [73]

MultiEdit MultiEdit [74], [75]
Shrink Shrink [76]

Instance Based 2 IB2 [77]
Instance Based 3 IB3

Monte Carlo 1 MC1 [40]
Random Mutation Hill Climbing RMHC

Minimal Consistent Set MCS [78]
Encoding Length Heuristic ELH [79]

Encoding Length Grow ELGrow
Explore Explore

Model Class Selection MoCS [80]
Variable Similarity Metric VSM [81]

Gabriel Graph Editing GGE [82]
Relative Neighborhood Graph Editing RNGE

Polyline Functions PF [83]
Generational Genetic Algorithm GGA [84], [85]

Modified Edited Nearest Neighbor MENN [86]
Decremental Reduction Optimization Procedure 1 DROP1 [23]
Decremental Reduction Optimization Procedure 2 DROP2

Decremental Reduction Optimization Procedure 3 DROP3
Decremental Reduction Optimization Procedure 4 DROP4
Decremental Reduction Optimization Procedure 5 DROP5

Decremental Encoding Length DEL
Estimation of Distribution Algorithm EDA [87]

Tabu Search CerveronTS [88]
Iterative Case Filtering ICF [89]

Modified Condensed Nearest Neighbor MCNN [90]
Intelligent Genetic Algorithm IGA [91]

Prototype Selection using Relative Certainty Gain PSRCG [92], [93]
Improved KNN IKNN [94]

Tabu Search ZhangTS [95]
Iterative Maximal Nearest Centroid Neighbor Iterative MaxNCN [96]

Reconsistent Reconsistent
C-Pruner CPruner [97]

Steady-State Genetic Algorithm SSGA [98]
Population Based Incremental Learning PBIL

CHC Evolutionary Algorithm CHC
Patterns by Ordered Projections POP [99]

Nearest Centroid Neighbor Edition NCNEdit [100]
Edited Normalized Radial Basis Function ENRBF [24]
Edited Normalized Radial Basis Function 2 ENRBF2

Edited Nearest Neighbor Estimating Class Probabilistic ENNProb [101]
Edited Nearest Neighbor Estimating ENNTh [101]

Class Probabilistic and Threshold
Support Vector based Prototype Selection SVBPS [102]

Backward Sequential Edition BSE [103]
Modified Selective Subset MSS [104]

Generalized Condensed Nearest Neighbor GCNN [105]
Fast Condensed Nearest Neighbor 1 FCNN [28]
Fast Condensed Nearest Neighbor 2 FCNN2
Fast Condensed Nearest Neighbor 3 FCNN3
Fast Condensed Nearest Neighbor 4 FCNN4

Noise Removing based on Minimal Consistent Set NRMCS [106]
Genetic Algorithm based on Mean Square Error, GA-MSE-CC-FSM [107]

Clustered Crossover and Fast Smart Mutation
Steady-State Memetic Algorithm SSMA [108]

Hit Miss Network C HMNC [109]
Hit Miss Network Edition HMNE

Hit Miss Network Edition Iterative HMNEI
Template Reduction for KNN TRKNN [110]

Prototype Selection based on Clustering PSC [111]
Class Conditional Instance Selection CCIS [112]

Cooperative Coevolutionary Instance Selection CoCoIS [113]
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Fig. 2: Prototype Selection Map

PS Methods

Condensation Edition Hybrid

Increm
ental

D
ecrem

ental

B
atch

D
ecrem

ental

B
atch

D
ecrem

ental

B
atch

M
ixed

+ W
rapper

Fixed
+ W

rapper

Increm
ental

W
rapper

Filter

CNN
Ullmann
TCNN
MNV

MCNN
GCNN
FCNN
PSC

RNN
SNN

Shrink
MCS
MSS

IKNN
POP

Reconsistent
TRKNN

ENN
Multiedit
RNGE
MENN

NCNEdit
ENRBF
ENNTh

AllKNN
MoCS

IB3
VSM
PF

DROP3
PSRCG
Cpruner
SVBPS
NRMCS

BSE
ICF

HMNEI
CCIS

Explore
GGA

CerveronTS
EDA
IGA

ZhangTS
CHC

GGA-MSE-
CC-FSM
SSMA

CoCoIS

RMHC

Fig. 3: Prototype Selection Taxonomy

and reference are provided for each one. In the case
of there being more than one method in a row, they
were proposed together and the best performing method
(indicated by the respective authors) is depicted in bold.

3.3 Taxonomy of Prototype Selection Methods
The properties studied above can be used to categorize
the PS methods proposed in the literature. The direction
of the search, type of selection and evaluation of the
search may differ among PS methods and constitute a set
of properties which are exclusive to the way of operating
of the PS methods. This section presents the taxonomy
of PS methods based on these properties.

In order to situate the PS methods in time, we illustrate
a map of the main methods proposed in each paper
enumerated in Table 1. We refer to as main methods
those which are the preferred or have reported the best
results in the paper in which they were proposed (in
other words, the ones in bold when more than one

method is proposed in a certain paper). Figure 2 depicts
the map of PS methods. The figure allows us to point
out interesting facts:

• Condensation and Edition techniques display op-
posite behavior and they were joined when IB3
was proposed. IB3 is the first hybrid method which
combines an edition stage with a condensation one.
Since its proposal, there has been a significant effort
in proposing new hybrid approaches, decreasing the
proposals of condensation methods.

• Few edition methods have been proposed in com-
parison to the other two families. The main reasons
are that the first edition method, ENN, obtains good
results in conjunction with kNN and the edition ap-
proaches do not achieve high reduction rates, which
is one of the objects of interest in PS. Incremental
edition approaches have not been proposed because
it is very important to know the complete set of data
for identifying noisy instances.
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• Recent efforts in proposing PS methods are being
noted in condensation and hybrid approaches. Both
of them could be made in any direction search,
but the mixed direction search is typical in hybrid
methods and it is not presented in condensation
methods.

• Wrapper evaluation searches are only presented in
hybrid approaches (usually in a mixed direction
search). This evaluation search is intended to opti-
mize a selection, without thinking of computational
costs. The resulting selection depends on the whole
training set whereas in edition and condensation
approaches, the decision is made considering only
local information.

Furthermore, Figure 3 illustrates the categorization fol-
lowing a hierarchy based on this order: type of selection,
direction of search and evaluation of the search. It allows
us to distinguish among families of methods and to
estimate the size of each one.

One of the objectives of this paper is to highlight the
best methods depending on their properties, taking into
account that we are conscious that the properties could
determine the suitability of use of a specific scheme. To
do this, in Section 4, we will conclude which methods
perform best for each family considering several metrics
of performance.

4 EXPERIMENTAL FRAMEWORK, EMPIRICAL
STUDY AND ANALYSIS OF RESULTS: SMALL
AND MEDIUM DATA SETS

This section presents the experimental framework fol-
lowed in this paper, together with the results collected
and discussions on them. Subsection 4.1 will describe the
complete experimental set up. Then, the study will be
divided into two parts: study and analysis of the results
obtained over small data sets (Subsection 4.2) and over
medium data sets (Subsection 4.3). Finally, Subsection 4.4
will provide a global discussion of the results obtained.

4.1 Experimental Set Up

The aim of this section is to show all the factors and
issues related to the experimental study. We specify the
data sets, validation procedure, parameters of the algo-
rithms, performance metrics and PS methods involved
in the analysis. The statistical tests used to contrast the
results are also briefly commented on the end of this
section.

The performance of PS algorithms is analyzed by
using 58 data sets taken from the UCI Machine Learning
Database Repository [115] and KEEL data set repository
1. Data sets are divided into two categories: small size
and medium size data sets. The small size data sets have
no more than 2,000 instances, whereas medium data sets
have no more than 20,000 instances. Large size data sets

1. http://www.keel.es/datasets.php

will be considered later (in a separate study, see Section
5).

The main characteristics of these data sets are summa-
rized in Table 2. For each data set, the name, number of
examples, number of attributes (numeric and nominal)
and number of classes are given.

The data sets considered are partitioned using the ten
fold cross-validation (10-fcv) procedure. The parameters
of the PS algorithms are those recommended by their
respective authors. We assume that the choice of the
values of parameters is optimally chosen by their own
authors. Nevertheless, in the PS methods that require the
specification of the number of neighbors as parameter,
its value coincides with the k value of the kNN rule
afterwards. But all edition methods consider a minimum
of 3 nearest neighbors to operate (as recommended in
[68]), although they were applied to a 1NN classifier.
The Euclidean distance is chosen as the distance metric
because it is well-known and the most used for kNN. All
probabilistic methods (including incremental methods
which depend on the order of instance presentation) are
run three times and the final results obtained correspond
to the average performance values of these runs.

Two performance measures are widely used because
of their simplicity and successful application when
multi-class classification problems are treated. We refer
to accuracy and Cohen’s kappa [116] measures, which
will be adopted to measure the efficacy of the PS meth-
ods in terms of classification success.

• Accuracy: is the number of successful hits relative
to the total number of classifications. It has been by
far the most commonly used metric for assessing
the performance of classifiers for years [117].

• Cohen’s kappa: is an alternative to accuracy, a method,
known for decades, which compensates for random
hits [116]. Its original purpose was to measure the
degree of agreement or disagreement between two
people observing the same phenomenon. Cohen’s
kappa can be adapted to classification tasks and
its use is recommended because it takes random
successes into consideration as a standard, in the
same way as the AUC measure [118].
An easy way of computing Cohen’s kappa is to
make use of the resulting confusion matrix in a
classification task. Specifically, the Cohen’s kappa
measure can be obtained using the following expres-
sion:

kappa =
N

∑Ω
i=1 yii −

∑Ω
i=1 yi.y.i

N2 − ∑Ω
i=1 yi.y.i

,

where yii is the cell count in the main diagonal
of the resulting confusion matrix, N is the number
of examples, Ω is the number of class values, and
y.i,yi. are the columns and rows total counts of
the confusion matrix, respectively. Cohen’s kappa
ranges from −1 (total disagreement) through 0 (ran-
dom classification) to 1 (perfect agreement). Being a
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TABLE 2: Summary description for classification data sets

Data Set #Ex. #Atts. #Num. #Nom. #Cl. Data Set #Ex. #Atts. #Num. #Nom. #Cl.
abalone 4,174 8 7 1 28 mammographic 961 5 5 0 2
appendicitis 106 7 7 0 2 marketing 8,993 13 13 0 9
australian 690 14 8 6 2 monk-2 432 6 6 0 2
automobile 205 25 15 10 6 newthyroid 215 5 5 0 3
balance 625 4 4 0 3 nursery 12,960 8 0 8 5
banana 5,300 2 2 0 2 pageblocks 5,472 10 10 0 5
bands 539 19 19 0 2 penbased 10,992 16 16 0 10
breast 286 9 0 9 2 phoneme 5,404 5 5 0 2
bupa 345 6 6 0 2 pima 768 8 8 0 2
car 1,728 6 0 6 4 ring 7,400 20 20 0 2
chess 3,196 36 0 36 2 saheart 462 9 8 1 2
cleveland 303 13 13 0 5 satimage 6,435 36 36 0 7
coil2000 9,822 85 85 0 2 segment 2,310 19 19 0 7
contraceptive 1,473 9 9 0 3 sonar 208 60 60 0 2
crx 690 15 6 9 2 spambase 4,597 57 57 0 2
dermatology 366 34 34 0 6 spectheart 267 44 44 0 2
ecoli 336 7 7 0 8 splice 3,190 60 0 60 3
flare-solar 1,066 11 0 11 6 tae 151 5 5 0 3
german 1,000 20 7 13 2 texture 5,500 40 40 0 11
glass 214 9 9 0 7 thyroid 7,200 21 21 0 3
haberman 306 3 3 0 2 tic-tac-toe 958 9 0 9 2
hayes-roth 160 4 4 0 3 titanic 2,201 3 3 0 2
heart 270 13 13 0 2 twonorm 7,400 20 20 0 2
hepatitis 155 19 19 0 2 vehicle 846 18 18 0 4
housevotes 435 16 0 16 2 vowel 990 13 13 0 11
iris 150 4 4 0 3 wine 178 13 13 0 3
led7digit 500 7 7 0 10 wisconsin 699 9 9 0 2
lymphography 148 18 3 15 4 yeast 1484 8 8 0 10
magic 19,020 10 10 0 2 zoo 101 16 0 16 7

scalar, it is less expressive than ROC curves when
applied to binary-classification. However, for multi-
class problems, kappa is a very useful, yet simple,
meter for measuring the accuracy of the classifier
while compensating for random successes.

The set of PS methods involved in the experimental
study should be reduced for space restrictions and to
avoid obtaining unnecessary results. It is determined by
the following guidelines:

• One method is chosen from each proposal paper.
The preferred one is that which performs best given
the instructions of the corresponding authors. In the
case of having two or more methods of different
capabilities (i.e., efficiency vs. efficacy), we prefer the
best performing in terms of efficacy. The PS methods
selected, in the case of there being more than one
proposal per paper, are those highlighted in bold in
Table 1.

• All PS methods must have a reasonable time com-
plexity over small data sets. Many of the proposals
are unable to be run over a data set with more
than 500 instances. It is the case in the following
algorithms: CerveronTS, ZhangTS, BSE and GA-
MSE-CC-FSM.

• Old proposals that have not had much attention in
the literature do not participate in the experimental
study. This is the case with: Ullmann, PF and EDA.

Thus, the empirical study involves 42 PS methods

from those listed in Table 1. We want to outline that the
implementations are only based on the descriptions and
specifications given by the respective authors in their
papers. No advanced data structures and enhancements
for improving the efficiency of PS methods have been
carried out. All methods (including the slowest ones)
are collected in KEEL software [114].

Statistical analysis will be carried out by means of
nonparametric statistical tests. In [119], [120], [121], au-
thors recommend a set of simple, safe and robust non-
parametric tests for statistical comparisons of classifiers.
The Wilcoxon test [122] will be used in order to conduct
pairwise comparisons among all PS methods considered
in the study. The reader can also look up the web page
http://sci2s.ugr.es/sicidm for more details in nonpara-
metric statistical analysis.

4.2 Analysis and Empirical Results on Small Size
Data Sets
Table 3 presents the average results obtained by the PS
methods over the 39 small size data sets. Red. denotes
reduction rate achieved, tst Acc. and tst Kap. denote the
accuracy and kappa obtained in test data, respectively;
Acc.∗Red. and Kap.∗Red. correspond to the product of
accuracy/kappa and reduction rate, which is an estima-
tor of how good a PS method is considering a tradeoff
of reduction and success rate of classification. Finally,
Time denotes the average time elapsed in seconds to
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TABLE 3: Average results obtained by the PS methods over small data sets

Red. tst Acc. tst Kap. Acc. ∗ Red. Kap. ∗ Red. T ime

Explore 0.9789 CHC 0.7609 SSMA 0.5420 CHC 0.7399 CHC 0.5255 1NN –
CHC 0.9725 SSMA 0.7605 CHC 0.5404 SSMA 0.7283 SSMA 0.5190 CNN 0.0027
NRMCS 0.9683 GGA 0.7566 GGA 0.5328 Explore 0.7267 GGA 0.5014 POP 0.0091
SSMA 0.9576 RNG 0.7552 RMHC 0.5293 GGA 0.7120 RMHC 0.4772 PSC 0.0232
GGA 0.9411 RMHC 0.7519 HMNEI 0.5277 RMHC 0.6779 Explore 0.4707 ENN 0.0344
RNN 0.9187 MoCS 0.7489 RNG 0.5268 RNN 0.6684 RNN 0.4309 IB3 0.0365
CCIS 0.9169 ENN 0.7488 MoCS 0.5204 NRMCS 0.6639 CoCoIS 0.4294 MSS 0.0449
IGA 0.9160 NCNEdit 0.7482 NCNEdit 0.5122 IGA 0.6434 IGA 0.4080 Multiedit 0.0469
CPruner 0.9129 AllKNN 0.7472 ENN 0.5121 CoCoIS 0.6281 MCNN 0.4051 ENNTh 0.0481
MCNN 0.9118 HMNEI 0.7436 AllKNN 0.5094 MCNN 0.6224 NRMCS 0.3836 FCNN 0.0497
RMHC 0.9015 ENNTh 0.7428 CoCoIS 0.4997 CCIS 0.6115 DROP3 0.3681 MoCS 0.0500
CoCoIS 0.8594 Explore 0.7424 ENNTh 0.4955 CPruner 0.6084 CCIS 0.3371 MCNN 0.0684
DROP3 0.8235 MENN 0.7364 1NN 0.4918 DROP3 0.5761 IB3 0.3248 MENN 0.0685
SNN 0.7519 1NN 0.7326 POP 0.4886 IB3 0.4997 CPruner 0.3008 AllKNN 0.0905
ICF 0.7160 CoCoIS 0.7309 MENN 0.4886 ICF 0.4848 ICF 0.2936 TRKNN 0.1040
IB3 0.7114 POP 0.7300 Explore 0.4809 PSC 0.4569 HMNEI 0.2929 CCIS 0.1090
PSC 0.7035 RNN 0.7276 Multiedit 0.4758 TCNN 0.4521 TCNN 0.2920 HMNEI 0.1234
SVBPS 0.6749 Multiedit 0.7270 MSS 0.4708 FCNN 0.4477 FCNN 0.2917 ENRBF 0.1438
Shrink 0.6675 MSS 0.7194 RNN 0.4691 SVBPS 0.4448 MNV 0.2746 PSRCG 0.1466
TCNN 0.6411 FCNN 0.7069 FCNN 0.4605 SNN 0.4324 CNN 0.2631 CPruner 0.1639
FCNN 0.6333 MCS 0.7060 IB3 0.4566 MNV 0.4266 SVBPS 0.2615 ICF 0.1708
MNV 0.6071 CNN 0.7057 CNN 0.4560 HMNEI 0.4128 PSC 0.2594 Shrink 0.1811
CNN 0.5771 TCNN 0.7052 MCS 0.4559 CNN 0.4072 MENN 0.2443 VSM 0.1854
VSM 0.5669 IKNN 0.7027 TCNN 0.4555 Reconsistent 0.3840 Reconsistent 0.2406 IKNN 0.1920
Reconsistent 0.5581 MNV 0.7026 MNV 0.4523 MENN 0.3682 MCS 0.2348 NRMCS 0.2768
HMNEI 0.5551 IB3 0.7024 IKNN 0.4494 MCS 0.3637 ENNTh 0.2294 NCNEdit 0.3674
TRKNN 0.5195 IGA 0.7024 DROP3 0.4470 VSM 0.3600 TRKNN 0.2077 MCS 0.4126
MCS 0.5151 DROP3 0.6997 IGA 0.4455 TRKNN 0.3496 MSS 0.2073 DROP3 0.5601
PSRCG 0.5065 Reconsistent 0.6880 MCNN 0.4443 ENNTh 0.3439 PSRCG 0.2072 SNN 0.7535
MENN 0.5000 NRMCS 0.6856 Reconsistent 0.4310 PSRCG 0.3433 SNN 0.1983 SVBPS 1.0064
ENNTh 0.4629 ENRBF 0.6837 ICF 0.4101 Shrink 0.3411 VSM 0.1964 TCNN 1.9487
GCNN 0.4542 MCNN 0.6826 PSRCG 0.4092 MSS 0.3168 AllKNN 0.1799 Explore 2.1719
MSS 0.4404 PSRCG 0.6779 TRKNN 0.3999 GCNN 0.3022 GCNN 0.1774 MNV 2.5741
AllKNN 0.3532 ICF 0.6772 NRMCS 0.3962 AllKNN 0.2639 Multiedit 0.1657 Reconsistent 4.5228
Multiedit 0.3483 TRKNN 0.6729 GCNN 0.3905 Multiedit 0.2532 IKNN 0.1444 RNG 7.1695
IKNN 0.3214 CCIS 0.6669 SVBPS 0.3875 IKNN 0.2258 ENN 0.1293 RNN 16.1739
ENRBF 0.3042 CPruner 0.6664 PSC 0.3687 ENRBF 0.2080 RNG 0.1243 CHC 23.7252
ENN 0.2525 GCNN 0.6654 CCIS 0.3676 ENN 0.1891 Shrink 0.1152 SSMA 27.4869
RNG 0.2360 SVBPS 0.6591 VSM 0.3465 RNG 0.1782 NCNEdit 0.1146 RMHC 32.2845
NCNEdit 0.2237 PSC 0.6495 ENRBF 0.3309 NCNEdit 0.1674 ENRBF 0.1007 GCNN 61.4989
MoCS 0.1232 VSM 0.6350 CPruner 0.3295 MoCS 0.0923 MoCS 0.0641 GGA 84.9042
POP 0.0762 SNN 0.5751 SNN 0.2638 POP 0.0556 POP 0.0372 IGA 122.1011
1NN – Shrink 0.5110 Shrink 0.1726 1NN – 1NN – CoCoIS 267.3500

*It cannot be run over medium data sets for efficiency reasons

complete a run of a PS method 2. In the case of 1NN,
the time required is not displayed due to the fact that
no PS stage is run before. For each type of result,
the algorithms are ordered from the best to the worst.
Algorithms highlighted in bold are those which obtain
the best result in their corresponding family, according
to the taxonomy illustrated in Figure 3. They will make
up the experimental study of medium size data sets,
showed in the next subsection.

All detailed results for each data set and PS method
(including averages and standard deviations), together
with the study of the 3NN classifier can be seen at URL
http://sci2s.ugr.es/pstax. In the interest of compactness,

2. The machine used was an Intel Core i7 CPU 920 at 2.67GHz with
4GB of RAM

the study corresponding to 3NN has been not included
in the paper mainly due to the fact that the results
obtained are very similar to 1NN. They can be found
at the URL given above.

The Wilcoxon test [122], [119], [120] is adopted con-
sidering a level of significance of α = 0.1. Table 4 shows
a summary of all the possible comparisons employing
the Wilcoxon test among all PS methods over small data
sets. This table collects the statistical comparisons of the
four main performance measures used in this paper:
tst Acc., tst Kap., Acc. ∗ Red. and Kap. ∗ Red.. The
individual comparisons between all possible PS methods
are exhibited in the URL associated with this paper (http:
//sci2s.ugr.es/pstax). Table 4 shows, for each method
in the row, the number of PS methods outperformed by
using the Wilcoxon test under the column represented by
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TABLE 4: Wilcoxon test results over small data sets

tst Acc. tst Kap. Acc. * Red. Kappa. * Red.
+ ± + ± + ± + ±

AllKNN 25 40 22 40 7 16 10 25
CCIS 4 21 2 25 30 36 26 35
CHC 31 41 29 41 41 41 38 41
CNN 8 19 7 27 12 20 15 27
CoCoIS 22 37 20 38 29 36 27 38
CPruner 8 25 0 21 28 34 1 26
DROP3 7 28 5 31 29 32 29 35
ENN 24 39 22 38 3 9 6 20
ENNTh 22 41 19 41 10 27 13 27
ENRBF 20 37 0 29 3 13 0 7
Explore 22 38 11 35 38 40 33 40
FCNN 5 20 4 26 14 25 13 28
GCNN 4 27 5 31 2 14 1 14
GGA 27 40 25 40 37 39 38 40
HMNEI 25 39 22 41 9 27 15 30
IB3 5 23 5 29 23 29 22 31
ICF 4 21 2 24 22 28 18 30
IGA 7 25 5 28 30 34 32 35
IKNN 11 29 11 32 1 11 2 12
MCNN 2 15 5 24 29 34 29 34
MCS 7 23 9 29 16 28 13 30
MENN 27 41 21 41 11 27 12 29
MNV 6 20 6 26 14 26 16 29
ModelCS 26 39 26 41 1 2 1 8
MSS 17 29 17 32 2 12 4 20
Multiedit 23 35 7 34 7 15 7 18
NCNEdit 26 40 27 41 2 9 3 18
NRMCS 6 28 2 28 36 38 25 38
POP 16 33 19 38 0 0 0 4
PSC 0 10 3 11 17 26 9 27
PSRCG 5 15 4 19 5 16 2 20
Reconsistent 4 16 4 22 12 18 8 24
RMHC 27 38 26 40 33 37 34 39
RNG 34 41 29 41 3 9 5 18
RNN 15 30 7 30 33 36 33 37
Shrink 0 5 0 2 7 22 0 13
SNN 0 4 1 5 15 26 2 27
SSMA 28 41 30 41 39 40 39 41
SVBPS 2 17 3 24 18 27 12 27
TCNN 8 24 5 27 15 24 16 27
TRKNN 2 17 3 24 11 22 5 21
VSM 1 8 2 13 6 17 2 16

’+’ symbol. The column with the ’±’ symbol indicates the
number of wins and ties obtained by the method in the
row. The maximum value for each column is highlighted
in bold.

Observing Tables 3 and 4, we can point out the best
performing PS methods:

• In condensation incremental approaches, all meth-
ods are very similar in behavior, except PSC, which
obtains the worst results. FCNN could be high-
lighted in accuracy/kappa performance and MCNN
with respect to reduction rate with a low decrease

in efficacy.
• Two methods can be stressed from the condensation

decremental family: RNN and MSS. RNN obtains
good reduction rates and accuracy/kappa perfor-
mances, whereas MSS also offers good performance.
RNN has the drawback of being quite slow.

• In general, the best condensation methods in terms
of efficacy are the decremental ones, but they have
as their main drawback that they require more
computation time. POP and MSS methods are the
best performing in terms of accuracy/kappa, al-
though the reduction rates are low, especially that
one achieved by POP. However, no condensation
method is more accurate than 1NN.

• With respect to edition decremental approaches,
few differences can be observed. ENN, RNGE and
NCNEdit obtain the best results in accuracy/kappa
and MENN and ENNTh offers a good tradeoff con-
sidering the reduction rate. Multiedit and ENRBF
are not on a par with their competitors and they
are below 1NN in terms of accuracy.

• AllKNN and MoCS, in edition batch approaches,
achieve similar results to the methods belonging
to the decremental family. AllKNN achieves better
reduction rates.

• Within the hybrid decremental family, three
methods deserve mention: DROP3, CPruner and
NRMCS. The latter one is the best of them, but
curiously, its time complexity rapidly increases in
the presence of larger data sets and it cannot tackle
medium size data sets. DROP3 is more accurate
than CPruner, which achieves higher reduction
rates.

• Considering the hybrid mixed+wrapper methods,
SSMA and CHC techniques achieve the best results.

• Remarkable methods belonging to the hybrid family
are DROP3, CPruner, HMNEI, CCIS, SSMA, CHC
and RMHC. Wrapper based approaches are slower.

• The global best methods in terms of accuracy or
kappa are MoCS, RNGE and HMNEI.

• The global best methods considering the tradeoff
reduction-accuracy/kappa are RMHC, RNN, CHC,
Explore and SSMA.

4.3 Analysis and Empirical Results on Medium Size
Data Sets

This section presents the study and analysis of medium
size data sets and the best PS methods per family,
which are those highlighted in bold in Table 3. The goal
pursued is to study the effect of scaling up the data in PS
methods. Table 5 shows the average results obtained in
the distinct performance measures considered (it follows
the same format as Table 3) and Table 6 summarizes the
Wilcoxon test results over medium data sets.

We can analyze several details from the results col-
lected in Tables 5 and 6:
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TABLE 5: Average results obtained by the best PS methods per family over medium data sets

Red. tst Acc. tst Kap. Acc. ∗ Red. Kap. ∗ Red. T ime

MCNN 0.9914 RMHC 0.8306 RMHC 0.6493 SSMA 0.8141 SSMA 0.6328 1NN –
CHC 0.9914 SSMA 0.8292 SSMA 0.6446 CHC 0.8018 CHC 0.6006 POP 0.1706
SSMA 0.9817 RNG 0.8227 HMNEI 0.6397 RNN 0.7580 RMHC 0.5844 CNN 1.1014
CCIS 0.9501 HMNEI 0.8176 ModelCS 0.6336 RMHC 0.7476 RNN 0.5617 FCNN 3.2733
RNN 0.9454 ModelCS 0.8163 RNG 0.6283 GGA 0.7331 GGA 0.5513 MCNN 4.4177
GGA 0.9076 CHC 0.8088 1NN 0.6181 CCIS 0.6774 IB3 0.4615 IB3 6.6172
RMHC 0.9001 GGA 0.8078 POP 0.6143 CPruner 0.6756 FCNN 0.4588 MSS 7.9165
DROP3 0.8926 1NN 0.8060 MSS 0.6126 MCNN 0.6748 DROP3 0.4578 CCIS 12.4040
CPruner 0.8889 AllKNN 0.8052 GGA 0.6074 DROP3 0.6635 CPruner 0.4555 ModelCS 15.4658
ICF 0.8037 POP 0.8037 CHC 0.6058 IB3 0.6144 CCIS 0.5579 AllKNN 24.6167
IB3 0.7670 RNN 0.8017 FCNN 0.6034 FCNN 0.6052 CNN 0.4410 HMNEI 28.9782
FCNN 0.7604 IB3 0.8010 IB3 0.6018 CNN 0.5830 MCNN 0.4295 CPruner 35.3761
CNN 0.7372 MSS 0.8008 CNN 0.5982 ICF 0.5446 Reconsistent 0.3654 MENN 37.1231
Reconsistent 0.6800 FCNN 0.7960 AllKNN 0.5951 Reconsistent 0.5101 MSS 0.3513 ICF 93.0212
MSS 0.5735 CNN 0.7909 RNN 0.5941 MSS 0.4592 HMNEI 0.3422 DROP3 160.0486
HMNEI 0.5350 MENN 0.7840 MENN 0.5768 HMNEI 0.4374 ICF 0.3337 Reconsistent 1,621.7693
MENN 0.3144 CPruner 0.7600 Reconsistent 0.5373 MENN 0.2465 MENN 0.1814 RNG 1,866.7751
AllKNN 0.2098 Reconsistent 0.7501 DROP3 0.5129 AllKNN 0.1689 AllKNN 0.1248 SSMA 6,306.6313
RNG 0.1161 DROP3 0.7433 CPruner 0.5124 RNG 0.0955 RNG 0.0729 CHC 6,803.7974
POP 0.0820 CCIS 0.7130 CCIS 0.4714 POP 0.0659 POP 0.0504 RMHC 12,028.3811
ModelCS 0.0646 MCNN 0.6806 MCNN 0.4332 ModelCS 0.0527 ModelCS 0.0409 GGA 21,262.6911
1NN – ICF 0.6776 ICF 0.4152 1NN – 1NN – RNN 24,480.0439

TABLE 6: Wilcoxon test results over medium data sets

tst Acc. tst Kap. Acc. * Red. Kappa. * Red.
+ ± + ± + ± + ±

AllKNN 9 19 10 19 3 4 3 6
CCIS 1 7 0 4 11 18 4 14
CHC 5 20 5 19 19 20 15 20
CNN 4 10 5 13 6 11 7 15
CPruner 3 14 0 5 8 14 2 15
DROP3 2 11 2 10 9 14 8 15
FCNN 4 12 5 14 6 16 9 17
GGA 5 13 4 14 12 18 12 17
HMNEI 10 19 12 20 5 10 5 14
IB3 2 11 4 9 9 17 9 16
ICF 0 4 0 7 6 11 3 11
MCNN 0 2 0 4 10 17 7 18
MENN 11 19 8 18 4 8 4 9
ModelCS 10 20 12 20 1 1 0 3
MSS 6 18 9 18 3 10 4 11
POP 7 20 10 20 0 0 0 2
Reconsistent 1 10 3 10 3 9 4 11
RMHC 11 19 9 19 13 18 14 19
RNG 15 20 15 20 2 3 0 4
RNN 4 14 4 12 14 18 15 19
SSMA 8 20 9 19 19 20 19 20

• Five techniques outperform 1NN in terms of accu-
racy/kappa over medium data sets: RMHC, SSMA,
HMNEI, MoCS and RNGE. Two of them are edition
schemes (MoCS and RNGE) and the rest are hybrid
schemes. Again, no condensation method is more
accurate than 1NN.

• Some methods present clear differences when deal-
ing with larger data sets. This is the case with
AllKNN, MENN and CHC. The first two, tend to try

new reduction passes in the edition process, which
is against the interests of accuracy and kappa, and in
medium size problems this fact is more noticeable.
Furthermore, CHC loses the balance between reduc-
tion and accuracy when data size increases, due to
the fact that the reduction objective becomes more
easy.

• There are some techniques whose run could be
prohibitive when the data scales up. This is the case
for RNN, RMHC, CHC and SSMA.

• The best methods in terms of accuracy or kappa are
RNGE and HMNEI.

• The best methods considering the tradeoff
reduction-accuracy/kappa are RMHC, RNN
and SSMA.

4.4 Global View of the Obtained Results

Assuming the results obtained, several PS methods
could be emphasized according to the accuracy/kappa
obtained (RMHC, SSMA, HMNEI, RNGE), the reduction
rate achieved (SSMA, RNN, CCIS) and computational
cost required (POP, FCNN). However, we want to re-
mark that the choice of a certain method depends on
various factors and the results are offered here with the
intention of being useful in making this decision. For
example, an edition scheme will usually outperform the
standard kNN classifier in the presence of noise, but few
instances will be removed. This fact could determine
whether the method is suitable or not to be applied
over larger data sets, taking into account the expected
size of the resulting subset. We have seen that the PS
methods which allow high reduction rates while preserv-
ing accuracy are usually the slowest ones (hybrid mixed
approaches such as SSMA) and they may require an ad-
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vanced mechanism to be applied over large size data sets
or they may even be useless under these circumstances.
Fast methods that achieve high reduction rates are the
condensation approaches, but we have seen that they are
not able to improve kNN in terms of accuracy. In short,
each method has advantages and disadvantages and the
results offered in this section allow the making of an
informed decision within each category.

In short, and focusing on the objectives usually con-
sidered in the use of PS algorithms, we can suggest the
followinf, to choose the proper PS algorithm:

• For the tradeoff reduction-accuracy rate: The algo-
rithms which obtain the best behavior are RMHC
and SSMA. However, these methods achieve a sig-
nificant improvement in the accuracy rate due to a
high computation cost. The methods that harm the
accuracy at the expense of a great reduction of time
complexity are DROP3 and CCIS.

• If the interest is the accuracy rate: In this case, the
best results are to be achieved with the RNGE as
editor and HMNEI as hybrid method.

• When the key factor is the condensation: FCNN is
the highlighted one, being one of the fastest.

5 EXPERIMENTAL FRAMEWORK, EMPIRICAL
STUDY AND ANALYSIS OF RESULTS: LARGE
DATA SETS

This second experimental study is focused on the anal-
ysis of the behavior of PS when they tackle large prob-
lems. Since the immediate application of these methods
over large sets should be avoided due to their computa-
tional cost, we will introduce the use of the stratification
procedure (Section 5.1) to mitigate this drawback, and
thus develop a suitable approach to large problems.
We compare this approach with two well-known ANN
proposals (Section 5.2) through an empirical study with
several large data sets (Section 5.3). The results achieved
are reported and discussed in Section 5.4.

5.1 Stratification
The stratification strategy [31] splits the training data
into disjoint strata with equal class distribution. The
initial data set is divided into two sets, TR and TS, as
usual (e.g. a tenth of the data for TS, and the rest for TR
in 10-fold cross validation). Then, TR is divided into t
disjoint sets TDj , strata of equal size, TD1, TD2 · · ·TDt,
maintaining class distribution within each subset. In this
manner, the subsets TR and TS can be represented as
follows:

TR =
t⋃

j=1

TDj , TS = TD\TR

Then, a PS method should be applied to each TDj ,
obtaining a selected subset TDSj for each partition. The
final prototype selected set is obtained joining every

TDSj obtained. Finally, the kNN classifier can be applied
to TS, using the final prototype selected set as training
data.

The use of the stratification allows us to run any
PS method over reduced versions of the entire training
set, thus easing the problem of dealing with very large
training sets by reducing the number of instances that
the PS must handle simultaneously.

5.2 Approximated Nearest Neighbors
Two well-known ANN approaches will be used as com-
parisons in this study: Balanced Box Decomposition Tree
(BBD-Tree) [21] and Locality Sensitive Hashing (LSH)
[22]:

• BBD-Trees are an improved version of the well-
known k-d trees [20] which consists of two types of
nodes: split nodes and shrink nodes. Split nodes rep-
resent partitions made by using an axis-orthogonal
line to split the node, whereas shrink nodes denote
partitions made by using a box rather than a line.
By alternating split nodes and shrink nodes, both the
geometric size and the number of points associated
with each node are greatly reduced, thus improving
the efficiency of the tree regarding both storage
requirements and query time.

• LSH is a family of methods which share the ob-
jective of hashing the instances of the training set
by using several hashing functions, which ensures
that the probability of collision is much higher for
instances that are close to each other than for those
that are apart. With the use of these hash tables,
the LSH methods are able to obtain excellent query
times, even in high dimensional problems. Several
types of hashing functions have been defined within
the LSH framework, in order to adjust the method
to the distance space defined (Hamming distance,
Euclidean distance, etc.).

5.3 Experimental Framework
The performance of PS and ANN algorithms is analyzed
by using 7 large data sets taken from the UCI Machine
Learning Database Repository [115] and KEEL data set
repository (see Table 7). The performance measures an-
alyzed are the same that were employed in the former
study, excepting the running time, which is split into
three categories:

• Model time: Time elapsed when applying the PS
method over all strata, or when using the ANN
method to build the necessary data structures to
efficiently answer the queries (trees, hash tables,
etc.).

• Training time: Time elapsed classifying the full train-
ing set.

• Training time: Time elapsed classifying the full test
set.

Regarding PS methods, CCIS, DROP3, FCNN, HM-
NEI, RMHC, RNG and SSMA were selected since they
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TABLE 8: Average results obtained

Red. tst Acc. tst Kap. Acc. ∗ Red. Kap. ∗ Red.

SSMA 0.9844 RNG 0.8198 SSMA 0.5654 SSMA 0.8069 SSMA 0.5596

CCIS 0.9210 SSMA 0.8173 HMNEI 0.5605 CCIS 0.7458 CCIS 0.4970

RMHC 0.9006 RMHC 0.8133 LSH 0.5433 RMHC 0.7324 DROP3 0.4870

DROP3 0.8844 1-NN 0.8060 1-NN 0.5426 DROP3 0.7186 RMHC 0.4836

FCNN 0.6956 HMNEI 0.8009 RMHC 0.5370 FCNN 0.5842 FCNN 0.4208

HMNEI 0.6008 LSH 0.8001 BBDTree 0.5346 HMNEI 0.4928 HMNEI 0.3389

RNG 0.2090 DROP3 0.7952 DROP3 0.5244 RNG 0.1430 RNG 0.0648

BBDTree – CCIS 0.7951 CCIS 0.5233 BBDTree – BBDTree –

LSH – BBDTree 0.7940 RNG 0.5223 LSH – LSH –

1-NN – FCNN 0.7770 FCNN 0.5095 1-NN – 1-NN –

TABLE 7: Summary description for large classification
data sets

Data Set #Ex. #Atts. #Num. #Nom. #Cl. #t
adult 48,842 14 6 8 2 4
census 299,285 41 13 28 2 27
connect-4 67,557 42 0 42 3 6
fars 100,968 29 5 24 8 9
kddcup 494,020 41 26 15 23 45
poker 1,025,010 10 10 0 10 92
shuttle 58,000 9 9 0 7 5

showed several interesting capabilities in the study with
medium size data sets (highest accuracy, faster running
times, high reduction rates, etc.). We used the same set
up for them as that used in the former study, and set
up the strata size as near as possible to 10,000 instances
(Table 7 indicates the exact number of strata used for
each data set under the column denoted by #t). BBD-
Trees implementation was adapted from the one offered
at http://www.cs.umd.edu/∼mount/ANN/ and LSH
implementation was adapted from the LSH kit available
at http://lshkit.sourceforge.net/. Finally, 1NN behavior
has also been analyzed as a baseline method for this
study. As before, further details of the concrete set up
used can be seen at URL http://sci2s.ugr.es/pstax.

5.4 Results and analysis

Table 8 presents the average results obtained by the PS
and ANN methods over the 7 large size data sets. As
before, Red. denotes reduction rate achieved, tst Acc.
and tst Kap. denote the accuracy and kappa obtained in
test data, respectively; Acc.∗Red. and Kap.∗Red. corre-
spond to the product of accuracy/kappa and reduction
rate, which is an estimator of how good a PS method is
considering a tradeoff of reduction and success rate of
classification. In addition, Table 9 shows the statistical
significances for SSMA expressed by p-values computed
by the Wilcoxon test, the methods outperformed con-
sidering α = 0.1 are depicted in bold. In the case of
ANN methods, the measures that requires the compu-
tation of reduction capabilities (Red., Acc. ∗ Red. and
Kap.∗Red.) are not specified because they do not remove
any instance from the data. Instead, we can compare the

TABLE 9: Wilcoxon’s statistical significances reported for
SSMA (p-values)

SSMA tst Acc. tst Kap. Acc. ∗ Red. Kap. ∗ Red.

vs. DROP3 0.031 0.031 0.016 0.016

vs. FCNN 0.078 0.078 0.016 0.016

vs. RHMC 0.016 0.016 0.016 0.016

vs. RNG 1.000 0.205 0.016 0.016

vs. HMNEI 0.047 0.271 0.016 0.016

vs. 1NN 0.078 0.078 – –

vs. BBDTree 0.078 0.094 – –

vs. LSH 0.078 0.078 – –

TABLE 10: Average time results obtained (seconds)

modelT ime tra Time tst T ime

1NN 0 SSMA 285 SSMA 38

LSH 4 LSH 1,091 LSH 120

BBDTree 57 BBDTree 1,181 BBDTree 130

HMNEI 80 CCIS 1,240 CCIS 133

FCNN 100 RMHC 1,306 RMHC 155

CCIS 1,349 DROP3 1,471 DROP3 159

RNG 14,635 FCNN 4,469 FCNN 497

DROP3 16,899 RNG 7,738 RNG 846

SSMA 45,193 HMNEI 8,003 HMNEI 866

RMHC 77,260 1NN 27,087 1NN 3,088

time elapsed on each type of operation. Table 10 presents
the average time elapsed in seconds, where modelT ime
denotes the time spent by the method in its building model
phase (i.e performing of PS processes over all strata for
stratified PS methods, or building trees or hash tables for
ANN methods), tra T ime denotes the time elapsed in the
classification of the training set, and tst T ime denotes
the time elapsed in the classification of the test set 3. As
before, all detailed results for each data set and PS or
ANN methods (including averages, standard deviations
and statistical significances with Wilcoxon’s test) can be
seen at URL http://sci2s.ugr.es/pstax.

Observing Tables 8, 9 and 10, we can point out the fol-
lowing about the performance of stratified PS methods:

• DROP3, RMHC, CCIS and SSMA shows the best
reduction power of the PS methods considered.
Furthemore, the use of the stratification strategy has

3. The machine used was the same as the previous study
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not harmed the reduction power of PS methods, in
general, which suggests an advantage in using it
when aiming to obtain very reduced subsets when
tackling large problems.

• RNG, SSMA and RMHC are able to outperform
1NN in accuracy. The rest of the PS methods achieve
similar behavior to 1NN.

• With respect to kappa measure, SSMA and HMNEI
show the best average results. Again, most of the
PS methods achieve competitive results when com-
pared with 1NN.

• Regarding composite performance measures, Acc. ∗
Red. and Kap.∗Red., SSMA shows the best behavior
in the study. Furthermore, CCIS, DROP3 and RMHC
can be highlighted as very competitive methods
when analyzing both composite measures, whereas
HMNEI and RNG achieve poor results, mainly due
their low reduction power.

• HMNEI and FCNN shows a very good performance
regarding time elapsed in the PS phase. By constrast,
DROP3, RMHC and SSMA are the slowest methods
in this phase, which again highlights the importance
of employing the stratification procedure in order to
properly apply these methods to large problems.

• With respect to the time elapsed in training and
test phases, those methods with the highest reduc-
tion power (DROP3, RMHC, CCIS and, especially,
SSMA) show the best results. Furthermore, all PS
methods are able to improve at least three times
(nearly 100 times in the case of SSMA) the time
consumption of the 1NN classifier.

In general, the behavior of the PS methods when com-
bined with the stratification procedure has been shown
to be satisfactory. When facing a given large problem, a
practitioner can choose either an accurate method with
a high reduction power (such as SSMA or RMHC) or a
fast method which would be able to quickly condense
the training data into a smaller subset, without losing too
much accuracy with respect to the original 1NN (such
as HMNEI or FCNN).

If we compare these results with the ones achieved by
the ANN techniques, we can state the following:

• ANN techniques remain, in general, as accurate as
the 1NN classifier. Therefore, they are competitive
when compared with the PS methods which are not
mainly focused on removing noise from the data set,
but they are outperformed by those which perform
any effective competence enhancing process.

• Regarding running time, both ANN techniques
show very competitive behavior when dealing with
large problems. Although they did not perform any
reduction at all, they are able to perform queries in
a very fast way, which match the time elapsed by
PS methods in the classification phase.

The answer to deciding whether to employ a PS or an
ANN method when facing a large problem lies in the in-
terest of the practitioner and his/her concrete objectives.

For example, if the main interest is to tackle the problem
quickly with a reasonable precision in classification, then
an ANN method would be appropriate. On the other
hand, if the user is interested in a quick method which
would also be able to summarize and reduce the data
to a more compact representation, without the necessity
of spending additional resources on storing additional
structures, a fast PS method like FCNN or HMNEI
would be the best option. Finally, if the interest lies
in obtaining highly precise classifiers, represented with
very compact data sets, no matter how much time the
PS phase takes, then a strong PS method such as SSMA
or RMHC would be the best option.

6 VISUALIZATION OF DATA SUBSETS: A
CASE STUDY BASED ON THE BANANA DATA
SET

This section is devoted to illustrating the subsets selected
resulting from some PS algorithms considered in our
study. To do this, we focus on the banana data set, which
contains 5,300 examples in the complete set. It is an
artificial data set of 2 classes composed of three well-
defined clusters of instances of the class −1 and two
clusters of the class 1. Although the borders are clear
among the clusters there is a high overlap between both
classes. The complete data set is illustrated in Figure 4a.

The pictures of the subset selected by some PS meth-
ods could help to visualize and understand their way
of working and the results obtained in the experimental
study. The reduction rate, the accuracy and kappa values
in test data registered in the experimental study are
specified in this order for each one. In original data sets,
the two values indicated correspond to accuracy and
kappa with 1NN:

• Figure 4b shows the resulting subset of the classical
condensation algorithm. It can be appreciated that
all border points are kept but interior points are
removed. The accuracy and kappa decrease with
respect to the original, as is usually the case with
purely condensation algorithms.

• Figure 4c illustrates the resulting subset of one of the
newest condensation algorithms proposed: FCNN.
The subset has a similar appearance to that obtained
by CNN and the performance is also similar in both.
The advantage of this method is difficult to see in
graphical representations, but its improvement with
respect to CNN can be seen in the experimental
study section.

• Figures 4d and 4e represent the subset selected by
the IB3 and DROP3 methods respectively. These
methods are thought to be modifications of classical
condensation algorithms but they integrate a noise
filter pass, turning them into hybrid approaches.
Both methods obtain a lower accuracy and kappa
regarding 1NN with the original data set, but the
reduction rates obtained are very high. The main
factor which influences the reduction rate is noise
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(a) Banana Original (0.8751, 0.7476) (b) CNN (0.7729, 0.8664, 0.7304) (c) FCNN (0.8010, 0.8655, 0.7284)

(d) IB3 (0.8711, 0.8442, 0.6854) (e) DROP3 (0.9151, 0.8696, 0.7356) (f) ICF (0.8635, 0.8081, 0.6088)

(g) RNGE (0.1170, 0.8930, 0.7822) (h) AllKNN (0.1758, 0.8934, 0.7831) (i) CPruner (0.8636, 0.8972, 0.7909)

(j) HMNEI (0.3617, 0.8906, 0.7787) (k) RMHC (0.9000, 0.8972, 0.7915) (l) SSMA (0.9879, 0.8964, 0.7900)

Fig. 4: Data Subsets in Banana Data Set

removal. Note that the difference in accuracy and
kappa is higher in IB3, which suggests that IB3
penalizes the most complicated concept or class.

• Figure 4f shows the resulting subset of the ICF
method. It is a curious algorithm which separates
the data into smaller clusters, some isolated and
others overlapped. Nevertheless, the performance
achieved by this method is quite poor.

• Figures 4g and 4h depict the subset of data selected

by the RNGE and AllKNN methods. Both belong
to the edition approaches and the unique differ-
ence observed is that AllKNN performs a slightly
more aggressive removal of instances in the decision
boundaries. The performance and reduction rates
are very similar between them and both improve
the performance of 1NN over the original data set.

• Figures 4i and 4j represent the subset of data se-
lected by CPruner and HMNEI methods. CPruner
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performs well over this data set, obtaining good
performance and reduction rates. Its way of working
is based on producing isolated scatters clusters with
no overlapping. On the other hand, HMNEI is one
of the best methods studied in this paper. It allows
one to obtain excellent behavior in terms of efficacy,
closer to edition approaches, but while increasing
the reduction rate.

• Figures 4k and 4l illustrate the subset of data se-
lected by RMHC and SSMA methods. They are
wrapper methods and iterate many times to obtain
an optimal subset. RMHC requires as a parameter
the final size of the subset selected and this parame-
ter is very difficult to set a priori. In the banana case,
keeping 10% of prototypes may be excessive. How-
ever, SSMA can also adjust and optimize the subset
to have the lowest possible number of instances.
The performance in accuracy and kappa obtained
improves 1NN and most of the PS methods studied
with a reduction of around 98%. It seems that the
prototypes selected are just those needed to define
the 1NN regions in an accurate way.

We have seen the resulting subsets of condensation,
edition and hybrid methods. The latter do not follow
a specific behavior pattern, since some of them can
keep the frontiers and remove noisy instances (DROP3),
others can produce clusters of data (ICF) and others
can identify the decision boundaries with the minimum
number of prototypes (SSMA). Nevertheless, visual char-
acteristics of selected subsets are also the subject of
interest and can also help to decide the choice of a PS
method.

7 CONCLUDING REMARKS

The present paper offers an exhaustive survey of Pro-
totype Selection methods proposed in the literature.
Basic and advanced properties, existing work and re-
lated fields have been reviewed. Based on the main
characteristics studied, we have proposed a taxonomy
of Prototype Selection methods. Furthermore, the most
important methods have been empirically analyzed over
small, medium and large sizes of classification data sets.
To illustrate and strengthen the study, some graphical
representations of data subsets selected have been drawn
and statistical analysis based on nonparametric tests has
been employed. Several remarks and guidelines can be
suggested:

• A researcher/practitioner interested in applying a
PS method should know the characteristics needed
when choosing one of them. The taxonomy pro-
posed and the empirical study can help to make
this decision.

• In the proposal of a new PS method, the best
approaches and those which fit with the basic prop-
erties of the new proposal should be compared. To
do this, the taxonomy and the analysis of results can
guide a future proposal in the correct way.

• This paper helps non-experts in PS methods to
differentiate them, to make an appropriate decision
about their application and to understand their be-
havior.

• It is important to know the main advantages of
each PS method. In this paper, many PS methods
have been empirically analyzed but a specific con-
clusion cannot be determined on the best perform-
ing method. This choice depends on the problem
tackled but the results offered in this paper could
help to reduce the set of candidates.

• The empirical study allows us to stress several
methods among the whole set:

– RMHC and SSMA, as representatives of the hy-
brid family, obtain an excellent tradeoff between
reduction and classifier success.

– RNGE achieves the highest accuracy rate within
the edition family. HMNEI, belonging to hybrid
methods, is also a good alternative to increase
kNN efficacy.

– As condensation methods, RNN and FCNN are
the best performing techniques. FCNN is one of
the fastest PS approaches.

• The PS methods in conjunction with the stratifi-
cation process [31] obtain satisfactory results over
large data sets. They are very competitive in com-
parison to approximate nearest neighbor methods
(BBD and LSH). SSMA can outperform them in
terms of accuracy and classification time at the
expense of a high computational cost in the selection
process.

We finally note that there is a web site (http://sci2s.
ugr.es/pstax) associated with this paper that collects all
the descriptions and implementations of the methods
reviewed, as well as all detailed results obtained and
statistical analysis conducted in the experimental study.
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