
Neurocomputing 74 (2011) 2502–2510
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

� Corr

E-m
journal homepage: www.elsevier.com/locate/neucom
MELM-GRBF: A modified version of the extreme learning machine for
generalized radial basis function neural networks
Francisco Fernández-Navarro �, César Hervás-Martı́nez, Javier Sanchez-Monedero,
Pedro Antonio Gutiérrez

Department of Computer Science and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, 3rd floor, 14074 Córdoba, Spain
a r t i c l e i n f o

Available online 20 May 2011

Keywords:

Generalized radial basis functions neural

networks

Extreme learning machine

Multi-classification

Generalized Gaussian distribution
12/$ - see front matter & 2011 Elsevier B.V. A

016/j.neucom.2010.11.032

esponding author. Tel.: þ34 957 21 83 49; fa

ail address: i22fenaf@uco.es (F. Fernández-Na
a b s t r a c t

In this paper, we propose a methodology for training a new model of artificial neural network called the

generalized radial basis function (GRBF) neural network. This model is based on generalized Gaussian

distribution, which parametrizes the Gaussian distribution by adding a new parameter t. The general-

ized radial basis function allows different radial basis functions to be represented by updating the new

parameter t. For example, when GRBF takes a value of t¼ 2, it represents the standard Gaussian radial

basis function. The model parameters are optimized through a modified version of the extreme learning

machine (ELM) algorithm. In the methodology proposed (MELM-GRBF), the centers of each GRBF were

taken randomly from the patterns of the training set and the radius and t values were determined

analytically, taking into account that the model must fulfil two constraints: locality and coverage. An

thorough experimental study is presented to test its overall performance. Fifteen datasets were

considered, including binary and multi-class problems, all of them taken from the UCI repository.

The MELM-GRBF was compared to ELM with sigmoidal, hard-limit, triangular basis and radial basis

functions in the hidden layer and to the ELM-RBF methodology proposed by Huang et al. (2004) [1]. The

MELM-GRBF obtained better results in accuracy than the corresponding sigmoidal, hard-limit,

triangular basis and radial basis functions for almost all datasets, producing the highest mean accuracy

rank when compared with these other basis functions for all datasets.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Artificial neural networks (ANN) are largely used in applica-
tions involving classification or function approximation. Lately, it
has been proved that several classes of ANN are universal function
approximators [2–4]. Among them, we find radial basis function
neural networks (RBFNNs) [5,6], multi-layer perceptrons (MLPs)
[7] or product unit neural networks (PUNNs) [8,9]. All are multi-
layered networks and can be considered as connectionist models.
RBFNNs use, in general, hyper-ellipsoids to split the pattern space.
This is different from MLPs which build their classifications on
pseudo-hyper-planes, defined by a weighted sum [10].

RBFNNs use the value of the distance to estimate the response
value, being functions of two arguments, x and c, where
x¼ ðx1,x2, . . . ,xK Þ

T is the vector of co-ordinates of a pattern of the
dataset and c¼ ðc1,c2, . . . ,cK Þ

T are the location parameters to
determine kernel positions. The characteristic feature of local
ll rights reserved.

x: þ34 957 21 83 60.

varro).
RBFNNs is the fact that their response value decreases monotoni-
cally with the distance from the center c of the radial function.

RBFNNs are parametrized by a width denoted here by r. If the
distance between x and c is small compared to the width of the
kernel, the kernel value will be close to one. Large distances by
contrast are mapped to values close to zero. The width of the
RBFNNs in kernel-based methods must produce a correct balance
between covering: the sum of all RBFs must have a high value in all
patterns of the dataset; and locality: the RBF should provide a high
value (close to one) for patterns that are close to the environment
where the RBF is located, and low values (near zero) for patterns
that are not located in the region of space where the RBF is centered.

The Gaussian RBFs are based on the Gaussian density function
and are defined by a ‘‘center’’ position and a ‘‘width’’ parameter.
The Gaussian function gives the highest output when the incom-
ing variables are closest to the center position and decreases
monotonically as the distance from the center increases. Gaussian
distribution can be parametrized by a real parameter t, resulting
in generalized Gaussian distribution (GGD). The GGD may repre-
sent different forms of distribution function by changing a real
parameter t. We can highlight the impulsive, Laplacian, Gaussian
and uniform distributions.

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.11.032
mailto:i22fenaf@uco.es
dx.doi.org/10.1016/j.neucom.2010.11.032

F. Fernández-Navarro et al. / Neurocomputing 74 (2011) 2502–2510 2503
Based on this probability distribution, we propose the general-
ized radial basis function (GRBF) by removing the constraints of a
probability function. In this way, the generalized radial basis
function (GRBF) is defined as

fðx; c,r,tÞ ¼ exp �
Jx�cJt

rt

� �
: ð1Þ

Training of RBFNNs can be classified into two categories: quick
learning and full learning. Quick learning usually involves a two-
step process. First, the parameters governing the basis functions
are determined by a relatively fast, unsupervised clustering [11]
or vector quantization approach [12]. Next, the weights of the
basis functions are determined using linear optimization techni-
ques. A full learning scheme (for instance gradient-descent-based
methods) optimizes all of the parameters in a supervised mode
[6,13,14].

Gradient-descent-based algorithms may converge very slowly
to the solution of the given problem if the learning rate is small.
However, if the learning rate is large, they can be unstable or
divergent. They may also easily get over-fitting or be stuck in local
optima [15,16]. Moreover, most of the training algorithms based
on gradient descent are still slow due to the many iterative steps
required in the learning process. That is the reason why our
proposal will be based on the first approach.

Recently, Huang et al. showed that a single hidden layer
feedforward neural network (SLFN) can learn distinct observa-
tions with an arbitrary small error margin if the activation
function is chosen properly [17–19]. An effective training algo-
rithm for SLFNs called extreme learning machine (ELM) was also
proposed by Huang et al. [20,21]. In ELM, the input weights of the
hidden nodes are randomly chosen, and the output weights of
SLFNs can be determined through the pseudo-inverse operation
of the output matrix in the hidden layer. This algorithm can avoid
many of the problems which occur in gradient-descent-based
learning methods. For that reason, the GRBF proposed in this
paper was trained by means of a modified version of the ELM
algorithm (MELM-GRBF).

The main novelty introduced by the MELM-GRBF is in the
determination of the GRBFs. While in the ELM-RBF algorithm [1],
the centers and the radii of the RBFs are selected randomly, in the
MELM-GRBF algorithm proposed, the centers are initialized by
randomly selecting some patterns in the training dataset. The
values of the radius and t are determined analytically by solving
two equations that ensure that the model fulfils two constraints:
locality and coverage.

This paper is organized as follows: a brief analysis of the
generalized Gaussian distribution is given in Section 2. The single
layer feedforward GRBFNN is presented in Section 3. A methodol-
ogy to optimize the GRBFNN parameters based on ELM is
presented in Section 4. Section 5 explains the experiments that
were carried out. Finally, Section 6 summarizes the conclusions of
our work.
Fig. 1. Probability density function of the generalized Gaussian distribution (GGD)

with different values of t, c¼0 and r¼ 1.
2. Generalized Gaussian distribution

In order to cope with some limitations of the Gaussian RBF
[22–24], we need to use another model that can describe the
statistical behaviors of the object and background classes in a
multiclassification problem in the best possible way. A possible
solution is to adopt a more general parametric model that should
satisfy two main properties: (i) flexibility (i.e., it should be
capable of modeling a large variety of statistical behaviors) and
(ii) stability (i.e., it should not require the estimation of a large
number of parameters). Motivated by the above observations,
the present study proposes a new class of RBFs based on general-
ized Gaussian distribution (GGD).

The GGD requires only one additional parameter to be esti-
mated compared to the Gaussian distribution, and it can approx-
imate a large class of statistical distributions (e.g., impulsive,
Laplacian, Gaussian, and uniform distributions). The analytical
equation of the probability density function of the GGD is given
by

pðx; c,r,tÞ ¼ t
2rGð1=tÞ

exp �
Jx�cJt

rt

� �
, ð2Þ

where c, r40 and t40 are the parameters of the mean, the scale
or width and the shape of the distribution, respectively. GðzÞ is the
Gamma function, an extension of the factorial function, which is
defined as GðzÞ ¼

R1
0 tz�1e�t dt, for z40. The scale parameter r

that expresses the width of the distribution is related to the
normal standard deviation by the equation:

r¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð1=tÞ
Gð3=tÞ

s
, ð3Þ

where s is the normal standard deviation. The shape parameter t
refines the decay rate of the density function. It is worth noting
that t¼ 2 yields Gaussian density and t¼ 1 results in Laplacian
density distribution. As limit cases, for t-0, the distribution
becomes impulsive, whereas for t-1 it approaches uniform
distribution (Fig. 1). Then, the scale parameter models the width
of the GGD peak and the shape parameter is inversely propor-
tional to the decreasing rate of the peak.

The GGD model is intrinsically stable, since it is characterized
by few parameters to be estimated. Compared to Gaussian
distribution, thanks to an additional statistical parameter (i.e., the
shape parameter), it is more flexible and can approximate a large
class of statistical distributions.

In this paper, based on this probability distribution, we define
a novel RBF, by removing the constraints of a probability function,
called generalized radial basis function (GRBF) which is defined
using the following expression (for a k-dimensional input space):

fjðx; cj,rj,tjÞ ¼ exp �
Jx�cjJ

tj

r
tj

j

 !
, ð4Þ

where xi ¼ ðxi1, . . . ,xikÞ
T is the vector of measurements, k is the

number of inputs, rj the width of the GRBF, cj ¼ ðcj1, . . . ,cjkÞ
T the

center and tj the shape parameter of the j-th GRBF.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 0.5
τ = 1.0
τ = 1.5
τ = 2.0
τ = 3.0
τ = 8.0

Fig. 2. Radial unit activation in one-dimensional space with c¼0 and r¼1 for the

generalized RBF (GRBF) with different values of t.

Fig. 3. Structure of generalized radial basis function neural networks.

F. Fernández-Navarro et al. / Neurocomputing 74 (2011) 2502–25102504
This basis function allows better matching between the shape
of the kernel and the distribution of the distances, since the t
parameter provokes concavity or convexity around the point
where the distance is the radii of the kernel, r. Fig. 2 presents
the radial unit activation for the GRBF for different values of t.
3. Single layer feedforward generalized radial basis function
neural network

A scheme of single layer feedforward GRBFNN models is given
in Fig. 3, where J is the number of classes and m is the number of
hidden nodes or GRBFs of the ANN.

Suppose that there are n training patterns ðxi,tiÞ, i¼ 1,2, . . . ,n,
where xi ¼ ðxi1,xi2, . . . ,xikÞ

T and ti ¼ ðti1,ti2, . . . ,tiJÞ
T are the i-th

input pattern and its target, respectively. Let us denote that
cl ¼ ðcl1,cl2, . . . ,clkÞ

T is the center vector connecting the input units
to the l-th hidden unit, rl is the width of the l-th GRBF and tl is the
shape parameter, l¼1,y,m. Finally, bj

¼ ðbj
1,bj

2, . . . ,bj
mÞ

T is the
weight vector connecting the hidden nodes to the j-th output
node. The main goal of training process is to determine the
optimized parameters: cl, rl, tl, and bj, so that they minimize
the squared error (SE) function defined by

SE¼
Xn

i ¼ 1

XJ

f ¼ 1

ðoif�tif Þ
2, ð5Þ

where oif is the estimated output corresponding to the i-th input
pattern and the f-th class.

A popular training algorithm for solving this problem has been
backpropagation (BP) [25] in which the ANN parameters are
tuned based on gradient descent with error propagation from
the output layer to the input layer. Gradient-descent-based
methods (like BP [25] or iRpropþalgorithms [26,24]) may easily
get over-fitting or be stuck in local optima. Furthermore, it is well
known that gradient-descent-based methods are computationally
very costly. For that reason, the parameters of the single layer
generalized radial basis function neural network are optimized
with a modified version of the extreme learning machine (ELM)
algorithm [17].
4. Selection of parameters of the GRBFS via ELM: MELM-GRBF

Recently, an efficient learning algorithm, called extreme learn-
ing machine (ELM), for single layer networks (SLFNs) has been
proposed by Huang et al. [27]. The minimization process of
squared error function in the ELM is performed by using a linear
system:

Hb¼ T, ð6Þ

where H is called as the hidden layer output matrix of the SLFN
and defined as

H¼ ðh1,h2, . . . ,hmÞ

¼

f1ðx1; c1,r1,t1Þ . . . fmðx1; cm,rm,tmÞ

.

f1ðxn; c1,r1,t1Þ . . . fmðxn; cm,rm,tmÞ

0
B@

1
CA

n�m

, ð7Þ

T¼ ðt1,t2, . . . ,tnÞ
T
n�J , ð8Þ

and

b¼ ðb1,b2, . . . ,bJ
Þm�J : ð9Þ

While in the original ELM-RBF [1], the centers of the RBFs are
initialized randomly (as the radius value) in MELM-GRBF, the
centers of the GRBFs are taken randomly from patterns in the
training set. For the i-th hidden node, an integer random k is
selected in f1, . . . ,ng, where n is the number of patterns in the
training set. After that, the value of the center of the i-th hidden
node is assigned to the value of the k-th pattern of the training
set, i.e., ci’xk, kAUðf1, . . . ,ngÞ and Uðf1, . . . ,ngÞ represents a one-
dimensional uniformly distributed discrete random variable,
where n is the number of patterns in the training set.

Once the centers of the GRBFs have been located, the value of
the width and the shape parameter t of each one have to be
defined. Typically two alternatives are considered in order to
determine the value of the width parameter. The first one consists
in taking the widths rj equal to a constant for all Gaussian
functions [28,29]. In [29], for example, the widths are fixed as
follows:

r¼
dmaxffiffiffiffiffiffiffiffi

2M
p , ð10Þ

where M is the number of centers and dmax is the maximum
distance between those centers. Such a procedure fixes the degree
of overlapping of the Gaussian kernels. This choice would be close
to the optimal solution if the data were uniformly distributed in
the input space, leading to a uniform distribution of the centroids.
The second option consists in estimating the width of each RBF

Fig. 4. MELM-GRBF framework.

1 http://www.uco.es/grupos/ayrna/index.php?lang=en (‘‘Datasets’’ section).

F. Fernández-Navarro et al. / Neurocomputing 74 (2011) 2502–2510 2505
independently, computing the width factors rj by the k-nearest
neighbor heuristic [30–32]:

rj ¼
1

k

ffiXk

i ¼ 1

Jcj�ciJ
2

 !vuut , ð11Þ

where the ci are the k-nearest neighbors of centroid cj. A
suggested value given in [30] for k is 2. This second class of
methods offers the advantage of taking the distribution variations
of the data into account.

In MELM-GRBF, the widths of the GRBF, r, and the shape
parameters, t, have been fitted according to the characteristics of
the distribution of the distances because these parameters are
intimately related to them.

Two requirements are to be fulfilled: (i) smallest distances in
the distribution (which we note dN) are to be mapped to high
values (for instance, 0.95) of the basis function and (ii) largest
distances (which we note dF) must be mapped to lower values
(for instance, 0.05). These high and low values will be determined
by a user-defined l parameter (e.g., if l¼ 0:05 high values will be
0.95 and low values 0.05).

In the case of GRBFNN, t and r can be calculated as follows by
solving two different equations:

exp �
dF

r

� �t� �
¼ l, ð12Þ

exp �
dN

r

� �t� �
¼ 1�l: ð13Þ

From these equations, the t and r parameters are defined as

t¼
ln

lnðlÞ
lnð1�lÞ

� �

ln
dF

dN

, ð14Þ

r¼
dN

ð�lnð1�lÞÞ1=t
¼

dF

ð�lnðlÞÞ1=t
: ð15Þ

The most critical part in choosing the parameter of the basis

function is in choosing the values of ‘‘far’’ distances (dF). In our

proposal, the dF parameter is chosen as the distance from the
center of the hidden node whose t value is being adjusted to the

nearest center, i.e., for the i-th hidden node, the dF parameter is

set as dF ¼ Jci�cjJ, where j is the nearest hidden node to hidden

node i. Analyzing various forms of GRBFs with different values of
t, we observed that the main difference between them lies in the

tail, so the dN value could be considered equal for all GRBF.

Therefore, the dN parameter is set to the square root of a sum of
squared, random, small residuals along all dimensions, i.e., for the

i-th hidden node, the dN parameter is set as dN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2
Þ � k

q
, where

k is the number of inputs and d represents a small residual
distance in each dimension, which in our case is taken as 0.001
(it is necessary to anticipate that the input data will be normalized
in the interval [�2,2]).

Then, we show an example of how to calculate dN and dF

parameters for an example with three hidden nodes and five
input variables. Eq. (16) shows the pairwise distances between
the three nodes in the hidden layer. As an example, for the second

hidden node, the dN parameter is calculated as dN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2
Þ � k

q
¼

ffi
ð0:0012

Þ � 5
q

¼ 0:002, and the dF parameter is calcu-

lated as dF ¼ Jci�cjJ¼ Jc2�c3J¼ 0:031:

Pairwise distances¼

0:000 0:054 0:073

0:054 0:000 0:031

0:073 0:031 0:000

0
B@

1
CA: ð16Þ
By using these expressions for dF and dN, the only free
parameter is l, which determines the t and r values for a given
combination of dF and dN. The l value which determines what is
considered a high value and what is considered a low value was
experimentally determined by a cross-validation procedure using
the values f0:01,0:02, . . . ,0:10g.

Once the respective definitions of dN and dF are set, t is found
by Eq. (14) and then r is determined using Eq. (15).

Finally, the output weights are determined by

b̂ ¼HyT, ð17Þ

where Hy is the pseudo-inverse of H. In summary, the MELM-
GRBF algorithm can be described as follows (Fig. 4).
5. Experiments

The proposed methodology was applied to 15 datasets taken from
the UCI repository [33]. The selected datasets include binary pro-
blems and multi-class problems and present different numbers of
instances, features and classes (see Table 1). The datasets with their
corresponding partitions have been included on a public website.1

In the first subsection, a description of the datasets and the
experimental configuration is given. Then, there is a presentation
of the proposed model compared to other models with different
basis functions in the hidden layer. The influence of the l and the
number of hidden unit parameters is then evaluated and, finally,
the values of t are analyzed in order to find some hints explaining
the difference of performance of the GRBF model.
5.1. Experimental design

The proposed method (MELM-GRBF) is compared with the
ELM algorithm using different ANN models. The ANNs selected for
comparison purposes differ in the activation function used in the
hidden layer nodes. Thus, there is a comparison with models that
have the following activation functions in the hidden layer nodes:
�
 Sigmoidal function (Sig). In this context, sigmoidal function refers
to the special case of the logistic function, defined by the formula:

sigðnÞ ¼
1

1�expð�nÞ
, ð18Þ

where n is the weighted sum of the inputs.

�
 Hard-limit transfer function (Hardlim). This transfer function

returns zero if the argument of the function is less than zero
and returns one if the argument is greater than or equal to

http://www.uco.es/grupos/ayrna/index.php?lang=en

Table 1

Characteristics of the 15 datasets used for the experiments: number of instances (Size), number of real (R), binary (B) and nominal (N) input variables, total number of

inputs (In.), number of classes (Out.), and per-class distribution of the instances (Distribution).

Dataset Size R B N In. Out. Distribution

Hepatitis 155 6 13 – 19 2 (32, 123)

Heart 270 13 – – 13 2 (150, 120)

Haberman 306 3 – – 3 2 (225, 81)

Card 690 6 4 5 51 2 (307, 383)

Pima 768 8 – – 8 2 (500, 268)

German 1000 6 3 11 61 2 (700, 300)

Newthyroid 215 5 – – 5 3 (150, 35, 30)

Balance 625 4 – – 4 3 (288, 49, 288)

Gene 3175 – – 60 120 3 (765, 765, 1648)

Lymph 148 3 9 6 38 4 (2, 81, 61, 4)

Anneal 898 6 14 18 59 5 (8, 99, 684, 67, 40)

Glass 214 9 – – 9 6 (70, 76, 17, 13, 9, 29)

Ecoli 336 7 – – 7 8 (143, 77, 52, 35, 20, 5, 2, 2)

Vowel 990 10 – – 10 11 (90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90)

Yeast 1484 8 – – 8 10 (463, 429, 30, 163, 51, 44, 35, 244, 20, 5)

All nominal variables are transformed to binary variables.

Table 2
Number of hidden nodes used for each basis function in the 15 datasets.

Dataset ELM- ELM- ELM- ELM- ELM- MELM-

F. Fernández-Navarro et al. / Neurocomputing 74 (2011) 2502–25102506
zero. Hardlim is defined as follows:

hardlimðnÞ ¼ 1 if nZ0; ¼ 0, otherwise: ð19Þ
Sig Hardlim Tribas Radbas RBF GRBF

�

Hepatitis 5 20 15 20 20 15

Heart 20 20 15 20 20 15

Haberman 5 5 5 5 20 5

Pima 20 15 20 20 20 20

Newthyroid 20 20 20 20 20 10
Triangular basis function (Tribas). Tribas function is a piece-
wise linear (PWL) function and it calculates its output accord-
ing to

tribasðnÞ ¼ 1�absðnÞ if �1rnr1; ¼ 0, otherwise: ð20Þ
Balance 20 20 20 20 20 15

�
 Glass 15 20 20 20 20 20

Ecoli 15 20 20 20 20 10

In Card, German, Gene, Lymph, Anneal, Yeast, and Vowel, all basis functions were

performed with 20 hidden nodes.
Radial basis function (Radbas). Radial basis function for addi-
tive type of SLFNs instead of RBF type of SLFNs. Radbas is
defined as

radbasðnÞ ¼ expð�n2Þ: ð21Þ
Finally, we also compare MELM-GRBF to the ELM-RBF proposed
by Huang et al. [1], where the centroids and radius of the basis
functions are selected randomly and the connections between
hidden and output layers are determined by solving Eq. (17). The
main difference between ELM-RBF and Radbas is that Radbas applies
a standard lineal combination of input variables and the connections
between the input and hidden layers, and ELM-RBF measures the
distance of each pattern to its centroid, weighting the final output
by its radius.

The experimental design was conducted using a holdout cross-
validation procedure with 3=4 � n instances for the training
dataset and n=4 instances for the generalization dataset. To
evaluate the stability of the methods, the ELM algorithm was
run 30 times for each problem. The performance of each model
was evaluated using the correct classification rate (C) in the
generalization set and the average time needed to train the model
at each iteration, measured in seconds (T).

As previously stated, the l value for MELM-GRBF was experimen-
tally determined by a cross-validation procedure applied to the
training set, using the values f0:01,0:02, . . . ,0:10g. For all the
approaches, the number of hidden nodes was also adjusted in a
similar way, gradually increasing its value by an interval of 5 (f5,10,
15,20g) and then selecting the nearly optimal number of nodes based
on a cross-validation method. Table 2 includes the optimal number of
hidden nodes selected for each basis functions in each dataset.

Furthermore, a simple linear rescaling of the input variables
was carried out over the interval [�2,2], with Xn

i being the
transformed variables. Finally, all the simulations were carried
out in MATLAB 2009 (R2009a) environment running in an Intel
Core i5, 2.27 GHz CPU. The source code in MATLAB of the MELM-
GRBF methodology is freely available upon request to the authors.
5.2. Results of MELM-GRBF

In this subsection, the MELM-GRBF method is compared to
ELM with different basis functions (described in Section 5.1). The
aim of this section is to show that by using the MELM-GRBF
algorithm, the ELM methodology can improve its performance.

Table 3 shows the mean and the standard deviation of the
correct classification rate (CG) in the generalization set for each
dataset and the Sig, Hardlim, Tribas, Radbas, RBF and GRBF basis
functions and the mean of training time (T) of each basis function
for all datasets. Based on the mean CG and T, the ranking of each
method in each dataset (R¼1 for the best performing method and
R¼6 for the worst one) is obtained and the mean accuracy and
training time (C G and T) and the mean ranking (RCG

and RT) are
also included in Table 3. From the analysis of the statistical
descriptive results, it can be concluded that the MELM-GRBF
method obtained the best results for all datasets in CG. With
regard to the training time T, the GRBF basis function alone was
less efficient than other basis functions (Sig, Hardlim, Tribas and
Radbas). Furthermore, the MELM-GRBF method yields the best
mean (C G ¼ 77:58%) and ranking (RCG

¼ 1:06) in CG.
Another aspect that is important to point out is that the

MELM-GRBF method is far more robust than the ELM method
with other basis functions, which can be observed on analyzing
the values of standard deviation that the different basis functions
generated for each dataset.

To determine the statistical significance of the rank differences
observed for each method in the different datasets, we have carried
out a non-parametric Friedman test [34] with the ranking of CG and
T of the best models as the test variables. The test shows that the
effect of the method used for classification is statistically significant

Table 3
Statistical results of the ELM algorithm using different basis functions: Mean and standard deviation (SD) of the accuracy in the generalization set (CG ð%Þ), mean accuracy

(C G ð%Þ), mean accuracy ranking (RCG
), mean training time (T) and mean training time ranking (RT).

Datasets Method (CG ð%Þ)

ELM-Sig ELM-Hardlim ELM-Tribas ELM-Radbas ELM-RBF MELM-GRBF

Hepatitis 76.1574.24 75.9874.23 70.3478.34 74.0175.07 63.16712.97 80.3271.89
Heart 75.7873.51 77.0572.69 64.0174.97 66.3774.34 61.6679.81 77.6471.31
Haberman 73.1172.22 74.0771.04 71.0074.06 73.2472.07 66.75710.11 75.2671.00
Pima 76.9271.65 70.8873.15 70.0573.36 72.6272.79 51.28713.30 77.9671.37
Card 80.6573.76 76.5774.63 60.7374.13 64.85757 51.3678.22 90.0570.85
German 70.1871.59 70.3871.96 68.3471.70 68.5872.29 60.20714.50 73.5671.33
Newthyroid 93.3972.41 91.6074.83 93.3373.02 95.55 7 3.06 80.4375.20 95.8671.61
Balance 90.5571.06 85.0273.47 69.4676.96 77.9276.67 68.4876.74 91.2570.53
Gene 55.1971.85 56.8272.21 43.8671.81 51.1671.02 38.05712.30 65.9872.15
Lymph 73.6076.72 76.9375.75 45.4976.66 52.4376.83 46.93713.51 85.5872.34
Anneal 85.4573.31 81.4873.41 64.6875.16 76.2672.42 60.74724.67 90.3971.38
Glass 67.7175.23 59.6276.87 64.4675.65 65.2274.69 43.20710.48 72.6472.34
Ecoli 87.4972.56 76.1174.20 77.4574.46 84.2772.66 64.4779.06 88.5071.54
Vowel 36.5073.97 29.8373.00 23.3473.57 28.6074.65 17.7773.63 48.0972.70
Yeast 56.5671.15 45.5772.66 50.0472.68 53.9271.32 29.7677.85 56.6771.09

C G ð%Þ 73.25 69.86 62.43 66.99 53.61 77.98

RCG
2.46 3.26 4.80 3.53 5.93 1.00

T 0.016 0.014 0.016 0.016 0.055 0.019

RT 3.10 2.96 3.10 3.10 5.50 3.23

The best result is in bold face and the second best result in italics.

Table 4
Comparison of the MELM-GRBF method with other basis functions: critical difference (CD) values and differences of rankings of the Nemenyi and Bonferroni–Dunn tests,

using MELM-GRBF as the control method and CG as the test variable.

Nemenyi test

Method(i) Method(j)

ELM-Sig ELM-Hardlim ELM-Tribas ELM-Radbas ELM-RBF MELM-GRBF

ELM-Sig – 0.79 2.33 1.06 3.46 1.46

ELM-Hardlim – – 1.53 0.26 2.66 2:26þ�
ELM-Tribas – – – 1.26 1.13 3:80þ�
ELM-Radbas – – – – 2.40 2:53þ�
ELM-RBF – – – – – 4:93þ�

CDa ¼ 0:1 ¼ 1:76, CDa ¼ 0:05 ¼ 1:94

Bonferroni–Dunn test

Control method Compared Method

ELM-Sig ELM-Hardlim ELM-Tribas ELM-Radbas ELM-RBF MELM-GRBF

MELM-GRBF 1.46 2:26þ� 3:80þ� 2:53þ� 4:93þ� –

CDa ¼ 0:1¼ 1.58, CDa ¼ 0:05¼ 1.75

�, 3: Statistically difference with a ¼ 0.05 (�) and a ¼ 0.1 (3).

þ: The difference is in favor of Method(j) (Nemenyi test).

or Control method (Bonferroni–Dunn test).

F. Fernández-Navarro et al. / Neurocomputing 74 (2011) 2502–2510 2507
at a significance level of 5%, as the confidence interval is
C0 ¼ ð0,F0:05 ¼ 2:34Þ and the F-distribution statistical values are
Fn ¼ 83:39=2C0 for CG and Fn ¼ 5:34=2C0 for T. Consequently, we
reject the null-hypothesis stating that all algorithms perform equally
in mean ranking.

Based on this rejection, the Nemenyi post hoc test is used to
compare all classifier to each other. This test considers that the
performance of any two classifier is deemed significantly different
if their mean ranks differ by at least the critical difference (CD):

CD¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðKþ1Þ

6D

r
, ð22Þ

where K and D is the number of classifiers and datasets, and the q

value is derived from the studentized range statistic divided byffiffiffi
2
p

[35,36]. However, it has been noted that the approach of
comparing all classifiers to each other in a post hoc test is not as
sensitive as the approach of comparing all classifiers to a given
classifier. One approach to this latter type of comparison is the
Bonferroni–Dunn test. This test can be computed using Eq. (22)
with appropriate adjusted values of q [36].

The results of the Bonferroni–Dunn and Nemenyi tests for
a¼ 0:10 and 0.05 using CG as the test variable can be seen in
Table 4. From the results of this test, it can be concluded that
MELM-GRBF obtains a significantly better CG ranking than all the
remaining classifiers except for the Sig basis function. Using the
training time, T, as the test variable, the Hardlim method does not
achieve significantly better results than the MELM-GRBF method.

The training time of the MELM-GRBF method is significantly
better than that of the ELM-RBF. The reason for this is that the
MELM-GRBF has been implemented taking into account the

5
10

15
20

0

0.05

0.1

m (Number of Hidden Nodes)

Card dataset

λ

C
G

 (%
)

95

90

85

80

75

Fig. 6. The performance of MELM-GRBF is not very sensitive to the parameters (l,

m): an example on Card dataset.

F. Fernández-Navarro et al. / Neurocomputing 74 (2011) 2502–25102508
benefits that MATLAB provided when using matrix operations
instead of iterative loops.

5.3. Influence of the l and m parameters on the accuracy of

MELM-GRBF

As we mentioned above, the l parameter is determined
through a cross-validation process. For that reason, we considered
interesting to analyze the influence of the l parameter on the
overall accuracy of the model. As an example, Fig. 5 shows the
evolution of the generalization accuracy of the model for different
values of the l parameter in the Anneal, Ecoli, German and Glass
datasets. In general, as observed from Fig. 5, the best performance
values are obtained with l values of 0.04–0.06 (which is also truth
for the other datasets). Therefore, in order to reduce the complex-
ity of the algorithm, the cross-validation process of the l para-
meter could be eliminated. Because the best compromise
between locality and coverage is obtained with l¼ 0:05 value,
we can consider 0.05 as the default value of the l parameter.

In the MELM-GRBF methodology, the number of hidden nodes
m is also a hyperparameter of the algorithm, together with l. For
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
88

88.5

89

89.5

90

90.5

91

91.5

λ

Anneal dataset

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
88

88.1

88.2

88.3

88.4

88.5

88.6

88.7

88.8

88.9

λ

C
G

 (%
)

C
G

 (%
)

C
G

 (%
)

C
G

 (%
)

Ecoli dataset

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
73

73.1

73.2

73.3

73.4

73.5

73.6

73.7

73.8

73.9

74

λ

German dataset

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
72

72.2

72.4

72.6

72.8

73

73.2

73.4

λ

Glass dataset

Fig. 5. Influence of the l parameter on the accuracy of the model.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

τ values τ values

τ values τ values

R
el

at
iv

e
fre

qu
en

cy

Card dataset

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
el

at
iv

e
fre

qu
en

cy

Glass dataset

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
el

at
iv

e
fre

qu
en

cy

Gene dataset

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
el

at
iv

e
fre

qu
en

cy

Pima dataset

Fig. 7. Relative frequency distribution of t values of the models provided by the MELM-GRBF.

F. Fernández-Navarro et al. / Neurocomputing 74 (2011) 2502–2510 2509
each problem, we have considered 10 different values of l and four
different values of m resulting in a total of 40 pairs of ðl,mÞ. The 10
different values of l are 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,
0.09, and 0.10 and the four different values of m are 5, 10, 15, 20.
After extensive simulations, it is found that the performance
of MELM-GRBF is actually not so sensitive to the combination of
(l, m). Similar to SVM with ELM kernel [37], MELM-GRBF usually
can achieve competitive generalization performance in most cases
as long as the number of hidden nodes m is large enough. As
observed from Fig. 6, the generalization performance of MELM-
GRBF tends to monotonically increase with the number of hidden
nodes m. One only needs to adjust the l parameter, although the
performance of MELM-GRBF is not very sensitive to l either.
Furthermore, in the previous paragraph, we determined that
l¼ 0:05 obtained best compromise between locality and coverage.

5.4. Analysis of t values

The aim of this subsection is to analyze the values of t, in order
to justify the use of MELM-GRBF instead of ELM-RBF. This can give
us some hints about the good performance of the MELM-GRBF
model compared to ELM-RBF. Fig. 7 shows the relative frequency
distributions of the t values of the models obtained in the 30 runs
for Card, Gene, Glass and Pima datasets. The higher the number of
hidden nodes with ta2, the more different the behavior of the
MELM-GRBF with respect to a standard RBFNN.

The RBFNN with GRBF kernels generally presents the best
accuracy results in the experiments. These results can be explained
because the MELM-GRBF could find good values of the t parameter
for the radial units, which generates a better choice for the shape of
the GRBFs. While the final values of t in the experiments with Pima
or Card (Fig. 7(a) and (d)) were close to 2, i.e., the shape of the GRBF
was similar to the shape of the Gaussian function, the values of t
were higher in the experiments with Gene dataset (Fig. 7(c)). The
higher flexibility provided by the use of radial units with different
RBF shapes (different values of t) also explains the good perfor-
mance of the RBFNN with the GRBF kernel.

6. Conclusions

This paper proposes a new approach to determine the optimized
parameters for the generalized radial basis functions neural net-
works. The use of GRBFs has made possible the modification of the
shape of the RBF by changing a real parameter t, and to have radial
units with different RBF shapes in the same RBFNN. The coefficients
of the model are estimated by means of a modified version of the
extreme learning machine (ELM). In this way, the centers of each
GRBF are taken randomly from the patterns of the training set and
the radius and t values are determined analytically.

The evaluation of the model and the algorithm for the 15 datasets
considered show that the MELM-GRBF is more accurate and robust
when compared with the rest of the basis functions used in the ELM
(Sig, Hardlim, Tribas, Radbas and ELM-RBF). MELM-GRBF has the
highest statistically significant mean ranking of CG compared to
Hardlim, Tribas, Radbas, ELM-RBF and the highest mean ranking of
CG (though not statistically significant) when compared to the Sig
basis function. Moreover, MELM-GRBF shows promising values of
training time compared to the rest of the basis functions. The influe-
nce of the two hyperparameters of the model was also analyzed,
concluding that MELM-RBF is not so sensitive to their values.
Acknowledgment

The authors would like to thank Dr. Huang GB who generously
provided us with the source code of the ELM-RBF. This work has

F. Fernández-Navarro et al. / Neurocomputing 74 (2011) 2502–25102510
been partially subsidized by the TIN 2008-06681-C06-03 project
of the Spanish Inter-Ministerial Commission of Science and
Technology (MICYT), FEDER funds and the P08-TIC-3745 project
of the ‘‘Junta de Andalucı́a’’ (Spain). The research of Francisco
Fern~andez-Navarro has been funded by the ‘‘Junta de Andalucı́a’’
Predoctoral Program, grant reference P08-TIC-3745.

References

[1] G.B. Huang, C. Slew, Extreme learning machine: RBF network case, in: 8th
International Conference on Control, Automation, Robotics and Vision
(ICARCV), vol. 2, 2004, pp. 1029–1036.

[2] J. Park, I.W. Sandberg, Approximation and radial-basis-function networks,
Neural Computation 5 (2) (1993) 305–316.

[3] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University
Press, Oxford, UK, 1996.

[4] C.M. Bishop, Improving the generalization properties of radial basis function
neural networks, Neural Computation 3 (4) (1991) 579–581.

[5] D. Manrique, J. Rı́os, A. Rodrı́guez-Patón, Evolutionary system for automati-
cally constructing and adapting radial basis function networks, Neurocom-
puting 69 (16–18) (2006) 2268–2283.

[6] A. Staiano, R. Tagliaferri, W. Pedrycz, Improving RBF networks performance in
regression tasks by means of a supervised fuzzy clustering, Neurocomputing
69 (13–15) (2006) 1570–1581.

[7] I.C. Yeh, W. Cheng, First and second order sensitivity analysis of MLP,
Neurocomputing 73 (10–12) (2010) 2225–2233.

[8] F.J. Martı́nez-Estudillo, C. Hervás-Martı́nez, P.A. Gutiérrez, A.C. Martı́nez-
Estudillo, Evolutionary product-unit neural networks classifiers, Neurocom-
puting 72 (1–2) (2008) 548–561.

[9] A.C. Martı́nez-Estudillo, F.J. Martı́nez-Estudillo, C. Hervás-Martı́nez, N. Garcı́a,
Evolutionary product unit based neural networks for regression, Neural
Networks 19 (4) (2006) 477–486.

[10] P.A. Gutiérrez, C. Hervás-Martı́nez, M. Carbonero, J.C. Fernández, Combined
projection and kernel basis functions for classification in evolutionary neural
networks, Neurocomputing 72 (13–15) (2009) 2731–2742.

[11] Z. Uykan, C. Guzelis, Input–output clustering for determining centers of
radial basis function network, in: Proceedings of the 1997 European Con-
ference on Circuit Theory and Design, vol. 2, Technical University of
Budapest, European Circuit Society, Hungary, 1997, pp. 435–439.

[12] M. Vogt, Combination of radial basis function neural networks with opti-
mized learning vector quantization, in: Proceedings of IEEE International
Conference on Neural Networks (ICNN), vol. 3, San Francisco, CA, 1993,
pp. 1841–1846.

[13] L. Xu, RBF nets, mixture experts, and Bayesian Ying-Yang learning, Neuro-
computing 19 (1–3) (1998) 223–257.

[14] G. Bugmann, Normalized Gaussian radial basis function networks, Neuro-
computing 20 (1–3) (1998) 97–110.

[15] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, in: Intelligent Signal Processing, IEEE Press, 2001,
pp. 306–351.

[16] M. Ventresca, H.R. Tizhoosh, Improving gradient-based learning algorithms
for large scale feedforward networks, in: IJCNN’09: Proceedings of the 2009
International Joint Conference on Neural Networks, IEEE Press, Piscataway,
NJ, USA, 2009, pp. 1529–1536.

[17] G.B. Huang, Q. Zhu, C. Siew, Extreme learning machine: theory and applica-
tions, Neurocomputing 70 (1–3) (2006) 489–501.

[18] G.B. Huang, L. Chen, Enhanced random search based incremental extreme
learning machine, Neurocomputing 71 (16–18) (2008) 3460–3468.

[19] Y. Lan, Y.C. Soh, G. Huang, Ensemble of online sequential extreme learning
machine, Neurocomputing 72 (13–15) (2009) 3391–3395.

[20] G. Feng, G.B. Huang, Q. Lin, R. Gay, Error minimized extreme learning
machine with growth of hidden nodes and incremental learning, IEEE
Transactions on Neural Networks 20 (8) (2009) 1352–1357.

[21] J. Cao, Z. Lin, G.B. Huang, Composite function wavelet neural networks with
extreme learning machine, Neurocomputing 73 (7–9) (2010) 1405–1416.

[22] F. Scarselli, A. Chung Tsoi, Universal approximation using feedforward neural
networks: a survey of some existing methods, and some new results, Neural
Networks 11 (1) (1998) 15–37.

[23] F. Fernández-Navarro, C. Hervás-Martı́nez, P.A. Gutierrez, M. Carboreno,
Evolutionary q-gaussian radial basis functions neural networks for multi-
classification, Neural Networks, in press. URL /http://dx.doi.org/10.1016/
j.neunet.2011.03.014S.

[24] F. Fernández-Navarro, C. Hervás-Martı́nez, M. Cruz, P.A. Gutierrez, A. Valero,
Evolutionary q-Gaussian radial basis function neural network to determine
the microbial grow/thno growth interface of Staphylococcus aureus, Applied
Soft Computing 11 (3) (2011) 3012–3020.

[25] Y. Chauvin, D.E. Rumelhart, Backpropagation: Theory, Architectures, and
Applications, Lawrence Erlbaum Associates, Inc, Mahwah, NJ, USA, 1995.

[26] C. Igel, M. Hüsken, Empirical evaluation of the improved Rprop learning
algorithms, Neurocomputing 50 (6) (2003) 105–123.

[27] G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning
scheme of feedforward neural networks, in: IEEE International Conference on
Neural Networks—Conference Proceedings, vol. 2, 2004, pp. 985–990.
[28] J. Park, I.W. Sandberg, Universal approximation using radial basis function
networks, Neural Computation 3 (2) (1991) 246–257.

[29] S. Haykin, Neural Networks: A Comprehensive Foundation, third ed., Pre-
ntice-Hall, 2008.

[30] J. Moody, C. Darken, Fast learning in networks of locally-tuned processing
units, Neural Computation 1 (2) (1989) 281–294.

[31] F. Fernández-Navarro, A. Valero, C. Hervás-Martı́nez, P. Gutı́errez, R. Garcı́a-
Gimeno, G. Zurera-Cosano, Development of a multi-classification neural
network model to determine the microbial growth/no growth interface,
International Journal of Food Microbiology 141 (2010) 203–212.

[32] F. Fernández-Navarro, C. Hervás-Martı́nez, P. Gutı́errez, A dynamic over-
sampling procedure based on sensitivity for multi-class problems, Pattern
Recognition 44 (8) (2011) 1821–1833. URL /http://dx.doi.org/10.1016/j.
patcog.2011.02.019S.

[33] A. Asuncion, D. Newman, UCI Machine Learning Repository, 2007. URL
/http://www.ics.uci.edu/�mlearn/MLRepository.htmlS.

[34] M. Friedman, A comparison of alternative tests of significance for the problem
of mrankings, Annals of Mathematical Statistics 11 (1) (1940) 86–92.

[35] O.J. Dunn, Multiple comparisons among means, Journal of the American
Statistical Association 56 (1961) 52–56.

[36] Y. Hochberg, A. Tamhane, Multiple Comparison Procedures, John Wiley &
Sons, 1987.

[37] G. Huang, X. Ding, H. Zhou, Optimization method based extreme learning
machine for classification, Neurocomputing 74 (1–3) (2010) 155–163.
Francisco Fernández Navarro was born in Córdoba,
Spain, in 1984. He received the B.S. degree in Compu-
ter Science from the University of Córdoba, Spain, in
2007. He is currently working toward the Ph.D. degree
at the Department of Computer Science and Numerical
Analysis. His current interests include radial basis
function neural networks, evolutionary computation
and hybrid algorithms.
César Hervás Martı́nez was born in Cuenca, Spain. He
received the B.S. degree in Statistics and Operating
Research from the Universidad Complutense, Spain, in
1978 and the Ph.D. degree in Mathematics from the
University of Seville, Seville, Spain, in 1986. He is a
Professor with the University of Córdoba in the Depart-
ment of Computing and Numerical Analysis, in the area of
computer science and artificial intelligence. His current
research interests include neural networks, evolutionary
computation, and the modelling of natural systems.
Javier Sanchez-Monedero is a Ph.D. Student in the
Department of Computer Science and Numerical Ana-
lysis, University of Córdoba (Spain). He received the B.S
in Computer Science from the University of Granada,
Spain, in 2008 and the M.S. in Multimedia Systems
from the University of Granada, Spain, in 2009. His
research interests are related to real-time distributed
systems middleware and evolutionary algorithms and
artificial neural networks for classification.
Pedro Antonio Gutiérrez was born in Córdoba, Spain,
in 1982. He received the B.S. degree in Computer
Science from the University of Seville, Spain, in 2006
and the Ph.D. degree in Computer Science and Artificial
Intelligence from the University of Granada, Granada,
Spain, in 2009. He is an Assistant Professor with the
University of Córdoba in the Department of Computer
Science and Numerical Analysis. His current research
interests include neural networks and their applica-
tions, evolutionary computation and hybrid algorithms.

http://dx.doi.org/10.1016/j.neunet.2011.03.014
http://dx.doi.org/10.1016/j.neunet.2011.03.014
http://dx.doi.org/10.1016/j.patcog.2011.02.019
http://dx.doi.org/10.1016/j.patcog.2011.02.019
http://www.ics.uci.edu/∼mlearn/MLRepository.html
http://www.ics.uci.edu/∼mlearn/MLRepository.html

	MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks
	Introduction
	Generalized Gaussian distribution
	Single layer feedforward generalized radial basis function neural network
	Selection of parameters of the GRBFS via ELM: MELM-GRBF
	Experiments
	Experimental design
	Results of MELM-GRBF
	Influence of the lambda and m parameters on the accuracy of MELM-GRBF
	Analysis of tau values

	Conclusions
	Acknowledgment
	References

